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A method for locating rockfall impacts using
signals recorded by a microseismic network
Teresa Gracchi1* , Alessia Lotti1, Gilberto Saccorotti2, Luca Lombardi1, Massimiliano Nocentini1,
Francesco Mugnai1,3, Giovanni Gigli1, Marco Barla4, Andrea Giorgetti5, Francesco Antolini4, Andrea Fiaschi6,
Luca Matassoni6

and Nicola Casagli1

Abstract

Background: Rockfall events are one of the most dangerous phenomena that often cause several damages both
to people and facilities. During recent years, the scientific community focused the attention at evaluating the
effectiveness of seismological methods in monitoring these phenomena. In this work, we present a quick and
practical method to locate the rebounds of some man-induced boulders falls from a landslides crown located in
the Northern Apennines (Central Italy). The reconstruction of the trajectories was obtained by means of back
analysis performed through a Matlab code that takes into account both the DEM (Digital Elevation Model) of the
ground, the geotechnical-geophysical characteristics of the slope and the arrival times of the seismic signals
generated by the rock impacts on the ground.

Results: The localization results have been compared with GPS coordinates of the points and videos footage acquired
during the simulations, in order to assess the reliability of the method. In most cases, the retrieved impact points match
with the real trajectories, showing a high reliability. Furthermore, four different cases have been identified as a function
of the geomechanical, geophysical and morphological conditions. Due to the latter ones, in some case it was necessary
to assume different values for the propagation velocity of the elastic waves in the ground, here assumed to be isotropic
and homogeneous.

Conclusions: This work aims at evaluating the effectiveness of a quick and practical method to locate rockfall
events using a small-aperture seismic network. The obtained results indicate that the technique can provide
quantitative information about the area most prone to impact of detached blocks. The method still presents
some uncertainty, but reducing some of the approximations (e.g. by better constraining the velocity model),
it could lead to prompt and more accurate results, easily applicable to hazard estimates.

Keywords: Seismic monitoring, Seismic network, Rockfall simulation, Rockslide, Localization, Traveltime function

Background
Landslides are frequent and widespread geomorpho-
logical phenomena that often cause huge damages.
Italy is one of the country more prone to landslides
(Classified European Landslide Susceptibility Map,
Günther et al. 2014). One of the greatest risk factor
is the occurrence of boulders detachments from un-
stable rock slopes, potentially dangerous for people

and goods. During last years news often highlighted
the spread of these potentially lethal events (10/5/
2010 Val Trebbia, Piacenza; 9/8/2011 Trentino).
Therefore, it is necessary to gain further insights on
these phenomena, with the aim to better comprehend
the behavior of a rock falling down from a slope, to
subsequently identify the areas where such phenom-
ena could occur.
In particular, the identification of areas where a rockfall

might happen, allows for the implementation of
stabilization or protective measures before the occurrence
of catastrophic events (Baillifard et al. 2003). The analysis
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of rockfall trajectories in fact, is essential to calibrate,
design and distribute mitigation measures. Moreover,
this turns into significant saving of money, according
to Shuster and Leighton (1988) who estimated that if
appropriate strategies are adopted, at least the losses
caused by instability phenomena can be reduced by
more than 90%.
In addition to the most common application of seis-

mology (Allen, 1978; Jongmans and Garambois, 2007) as
prospecting, sliding surface identification (Bruno & Mar-
tillier, 2000; McCann & Forster, 1990) and microzona-
tion (Bour et al., 1998; Scott et al., 2006), seismic and
microseismic networks have already been applied to
study rockslide (Helmstetter and Garambois, 2010;
Deparis et al. 2008; Dammeier et al. 2011), showing that
seismic signals can provide interesting information on
rockfall events (Norris, 1994; Dammeier et al., 2016;
Hibert et al., 2014; Lacroix and Helmstetter, 2011).
Indeed, crack propagation generate micro-seismic
events (Manconi et al. 2016).
Furthermore, seismic measurements could be suitable

for this purpose since they are non-invasive methods
and are relatively inexpensive (Vilajosana et al.
2008).Within this framework, numerous researchers
focused on the localization of rockfall events, with the
aim to implement the proposed technique as a part of
an early-warning system, able to quickly identify the
most active portions of an unstable slope.
For this target, different techniques have been pro-

posed in literature. In most cases, the localization of the
impact points has been done using the polarization ana-
lysis of the seismic signal (Vilajosana et al. 2008; Levy et
al. 2011); others (Bottelin et al. 2014; Lacroix and Helm-
stetter 2011) proposed the triangulation technique, or
the beamforming method.
This study aims to localize rock impacts on the ground

using the arrival times extracted from the traces with
manual picking. This method is rarely used due to its
complexity and the result loss of time (Dammeier et al.
2011; Colombero et al. 2016; Chen and Holland, 2016),
especially when traces are affected by ambient noise. On
the other hand, where a large number of data are not
involved, the manual procedure can be a good com-
promise since it bars false misrepresents and allow some
considerations concerning seismic noise and signal amp-
litude. Once the manual picking procedure has been
carried out, the proposed method results to be very
quick and practical, allowing localization without the
need to study waveform, frequency content or ampli-
tude, that can be required in other methods (e.g. the
polarization analysis).
The work shows the accuracy of the method ap-

plied in our case study comparing the obtained
results to the real blocks trajectories filmed during a

field campaign when some man-induced rockfalls
were carried on.
To reach the targets, we localized blocks impacts on

the ground recorded as a single transient by the seismic
network. The first step consisted in the manual picking
of the arrival times, the second one focused on the
localization of each detected transient to reconstruct the
whole trajectory from the throw point to the arrival one
(both measured also by GPS technique).
In some studies artificial rockfall events have been

filmed in order to evaluate some parameters as velocity
and energy (Berger et al. 2002; Vilajosana et al. 2008). In
particular, a work similar to the one we are reporting,
was carried on by Bottelin et al. (2014) during an event
on the French Alps. In that case a rockslide was artifi-
cially triggered by blasting an unstable rock mass and a
seismic network, recording in continuous, was settled.
During the experiment, some cameras filmed the boul-
ders and videos have been used to estimate the rockfalls
velocities but not as a tool to verify the localization
process reliability.

Study area
The chosen test site was located in a dismissed lime-
stone quarry near the town of Assisi in the Northern
Apennines, Central Italy (Fig. 1). The unstable wedge
consists of a huge portion of the northwestward slope of
Mount Subasio and involves a volume of ~ 182.000 m3

(Intrieri et al. 2012). The collapse could threat county
(S.P. 249) and state (S.S. 444) roads placed downstream
the unstable wedge, which are the only connection be-
tween the town of Assisi and the villages in the sur-
roundings (green tracks, Fig. 1).
The slope, oriented approximately along the SE-NW

direction (with a dip of about 30–38°) is mainly made of
Maiolica Formation which consists of well stratified
micritic limestone (from 10 cm to 1 m) with intercal-
ation of thin clay layers. The rockslide is in the upper
part of the quarry and has a rough trapezoidal shape.
The upper boundary is associated to a big tension crack
up to one meter wide and 100 m long, the lower one
matches with the sliding surface that transversally cut
the slope, and the western lateral boundary consists of a
persistent fractures system derived from the coalescence
of several joint families. The slide generally showed slow
movements after heavy rainfalls (Ponziani et al. 2011,
Intrieri et al. 2012), and due to the intense fracturing, it
is particularly subject to rockfall phenomena.
Two major events, happened in 2004 and in 2005, and

respectively involved a few tens of m3 and 2500 m3

(Graziani et al. 2009), getting the attention of the scien-
tific community. Since then many studies have been car-
ried out on the area by Alta Scuola di Perugia and the
Department of Earth Sciences of the University of
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Florence trying to identify some parameters able to fore-
cast the landslide movements.
The rockslide (Cruden and Varnes, 1996) has been in-

strumented starting from summer 2007 with a network
equipped with 13 wire extensometers, 1 thermometer, 1
rain gauge and 3 cameras (Intrieri et al. 2012) that con-
tinuously monitored the slope. A seismic network was
installed on December 2012 (Lotti et al. 2015; Amorese
et al. 2015) to supplement the monitoring system. More-
over a WSN system was installed in 2013 composed of
15 wireless nodes, where one of these acts as network
coordinator (NC), 3 clinometers (tiltmeters), 4 wire

extensometers, 2 bar extensometers, and 4 soil hygrome-
ters in the framework of a National Research Project
(PRIN 2009) in cooperation by University of Florence,
University of Bologna and Politecnico di Torino (Gior-
getti et al. 2016). A ground based radar interferometry
campaign was also conducted as part of the project
(Barla & Antolini 2016, Antolini et al. 2016).

Field survey and instrumentation
For the above mentioned purposes, the Department of
Earth Sciences of the University of Florence tested the
application of a microseismic network. The network,

Fig. 2 Location of the seismic stations (blue pyramids) on Digital Terrain Model (DTM) of Torgiovannetto quarry. Some launch and arrival points
are reported on the DTM as dots. All the tracks were filmed by the four cameras positioned at different heights (yellow cubes). C1, C2, C3 and C4
represents the Canon 660D, Nikon D700 and the two Canon EOS 600D cameras respectively. A and B represents two launch areas to which correspond
different fall behavior (as explained in ‘results and discussions’ section)

Fig. 1 The former limestone quarry of Torgiovannetto, Assisi (PG), Italy
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equipped with four stations, has been installed in collab-
oration with the Parsec Foundation (former Prato
Ricerche). The stations acquired data in continuous
mode from December 2012 to July 2013.
Figure 2 shows the location of each station: three outside

the landslide body (TOR1, TOR2, TOR3) and one (TOR4)
over it. Each station consists of a S45 tri-axial seismometer
with a natural frequency of 4.5 Hz cable-connected to a 24-
bit digitizer. SARA Electronic Instrument provided both
the devices. The sampling frequency was set to 200 Hz.

Data were recorded in miniSEED format (Halbert et al.
1988) and subsequently converted in SAC (Seismological
Analysis Code, Goldstein et al., 2003; Goldstein & Snoke,
2005) format for processing operations.
To calibrate and verify the performance of the applied

techniques, we carried out two days of field campaign
(25/06/2013 and 04/07/2013), during which we triggered
some man-induced rockfalls hurling about 95 blocks
from different points of the slope (some of them are re-
ported as dots in Fig. 2).

Fig. 3 Some of the blocks painted in bright colors and numbered, used for the man-induced rockfalls simulation

a

b

Fig. 4 a Example of recording at TOR4 station during the rockfall simulation. b Zoom on a transient caused by a rockfall
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During the entire experiment, each throw was filmed by
four high resolution cameras (two Canon EOS 600D, one
Canon 660D and a Nikon D700, yellow cubes, Fig. 2), to
compare the impact locations as retrieved from analysis of
the seismic traces with the effective trajectories of the fall-
ing blocks.
We also measured the coordinates of start and final

(when possible) blocks’ impact points with a dynamic
GPS. Points coordinates were tracked on a geo-
referenced Digital Terrain Model (DTM). The DTM has
been obtained from a point cloud acquired by a laser
scanning survey carried out in July 2007.
The thrown rock blocks (ranging in size from 21 ×

20 × 19 cm to 105 × 58 × 39 cm) have been painted with
bright colors in order to be better recognized in the vid-
eos, and numbered to be precisely related to their GPS
coordinates (Fig. 3).

Methods
Localization procedure
The localization of the boulders’ impact points was
attained using an algorithm based on the non-linear in-
version of seismic waves arrival times.
First, the slope has been parameterized by a regular grid

of equally-spaced, geo-referenced nodes. The location pro-
cedure thus consists in an exhaustive grid search for those
nodes at which the misfit function between measured and
theoretical travel times is minimized. The localization
problem has two unknowns: a) the hypocenter coordi-
nates X0 = (x0, y0, z0) and b) the origin time t0. For a seis-
mic network of N stations, the arrival times ti (i = 1...N) at
the generic i-th station whose coordinates are given by the
position vector Xi = (xi, yi, zi) are expressed as:

ti ¼ t0 þ Δ X�0; ;X
�
i

� �þ ej ð1Þ
where Δ X�0; ;X� i

� �
is the travel time function and ej is the

error due to the inaccuracy of the arrival time estimation
and to the travel time function uncertainty.
Arrival times at individual stations are estimated

through a manual picking procedure. At each grid node,
the predicted travel times to the different stations are
calculated under the assumption of isotropic and homo-
geneous medium (see later in this Section). Both sides of
eq. 1 are then subtracted by their respective mean values
calculated over the different stations of the network.
This allows eliminating the origin time t0 from the set of
unknowns; eq. 1 is thus rewritten as:

ti−T� ¼ Δ X�0; ;X
�
i

� �
−Δ� ð2Þ

where T� and Δ� are the station-averaged arrival times
and travel times, respectively (Tarantola and Valette,
1982; Moser et al., 1992).
The theoretical travel times between each station and

all the nodes of the gridded topographic surface (DTM)
are then calculated assuming a homogeneous and iso-
tropic medium:

ΔX�0; ;X� iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xoð Þ2 þ yi−yoð Þ2 þ zi−zoð Þ2

q

v
ð3Þ

where i is a generic station and v is the constant propa-
gation velocity assumed equal to 2000 m/s. The velocity
has been chosen after several tests modifying the value
from 1500 m/s to 5000 m/s that are typical values for
the Maiolica formation (Rocca, 1983), with 500 m/s as
step. Comparing the results with the videos, 2000 m/s
was proved to be the most reliable velocity.
Finally, for any generic trial source located at X0, a misfit

function is calculated through the L2-norm of the differ-
ence between the measured times and the theoretical ones:

R X0ð Þ ¼
Xnsta

i¼1
ti−T�
� �

− Δi½ theo−Δ�
���

i
j2 ð4Þ

Finally, the probability of location is expressed as:

P X0ð Þ ¼ exp −0:5 R X0ð Þ=σ2� �

where σ2 is an error term which includes the uncertain-
ties related to both picking errors and inaccuracies in
travel time predictions due to incomplete knowledge of
the velocity structure.
The solution is assumed to be associated with the grid

node at which P(X0) takes a maximum.
Values of P(X0) are displayed as a colored surface

superimposed on the gridded topographic surface; for
each separate inversion, the grid node at which P(X0)
takes its maximum represent the most likely epicentral

Fig. 5 Spectrum of the transient showed in Figure 4b
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location (Saccorotti et al., 1998). When the energy of
single consecutive rock impacts is high enough to gener-
ate well-distinguishable seismic pulses having clear on-
sets, then the location procedure is iterated to track,
through the subsequent locations, the trajectories of the
falling blocks.

Seismic traces and manual picking procedure
An example of some man-induced rockfall events re-
corded at the four stations is presented in Fig. 4. Traces
have been displayed using GEOPSY (GEOPhisical Signal
database for noise arraY processing, ver. 2.9.0). Figure 4a)
point out the interval time from 12:10:00 to 12:20:00 UTC
of June 25th, 2013 (day of simulation) recorded by TOR4
station. A rockfall event is generally recorded as a series of
short impulses, whose time length spans from 3 s to 10 s

while the number of rebounds were strictly influenced by
the local topography (Fig. 4b). The involved frequencies
are higher than those of the background noise or of other
signals of different origin (e.g., earthquakes; Suriñach et al.
2005), in our case ranging from 10 Hz to 40 Hz, with
main peaks at 17 Hz and 30 Hz (Fig. 5).
Manual picking of the arrival time at each station has

been done on the traces visualized in GEOPSY, by first
extracting from the continuous seismic recordings only
those portion encompassing artificial rockfalls. An example
of manual picking of the arrival times at individual stations
is shown in Fig. 6. Even if the microseismic network covers
a small area (200 m× 100 m), the signal’s amplitude at the
four stations changes significantly, as a consequence of the
diverse station-to-source distances, which implies different
geometrical spreading and inelastic attenuation.

Fig. 6 Manual picking of the first impact’s arrival time (highlighted in red) at stations TOR1, TOR2, TOR3 and TOR4, respectively from the top to
the bottom. As an example, here is reported an event occurred at 12:38 UTC on 25th June 2013, first day of simulation. For each station, the
maximum amplitude expressed in counts and the detected arrival time are pointed out. The signals are presented with different amplitude scales
for visualization purposes
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For the analysis that follow a MATLAB code was used.
The analysis was carried out for the vertical component
(SHZ) since it showed the best signal to noise ratio.
For both simulation days, traces recorded by TOR 3

resulted to be more difficult to analyze and pick because
of the higher distance from the impact points (sources),
that caused the signal attenuation. Moreover, TOR3
shows a lower signal-to-noise-ratio that can be explained
considering that this station is located in the upper part
of the quarry, surrounded by trees that, especially during
windy days, induce vibrations to the ground concealing
transient signals.

Results and discussion
The described procedure was applied to achieve the
localization of subsequent impacts recorded during 57
rockfall simulations extracted from a database of 95
throws. Some of the throws have been discarded since
the falls failed (the blocks immediately stopped) or the
energy involved was too low and did not produce an
event large enough to be detected by all stations.
The result of the localization procedure was the

probability point cloud with its maximum value
marked with green circles (Fig. 7b). In the image, an

example showing an event occurred on 25th June
2013 at 12:06 (UTC) is reported, concerning a rock
mass of dimension 23 × 50 × 23 cm (Fig. 7a). In that
case, 4 impacts have been picked on the traces, de-
noting 4 rebounds (orange arrows, Fig. 7c). Table 1
shows the results of the manual picking, namely la-
bels required for the elaboration process. For each
one, the localization procedure has been applied to
spatially identify the impact points and consequently
to retrace the trajectory followed by the rock block.
The red line shows the trajectory previously measured
by GPS and videos analysis. In particular, the path
was obtained by jointing the launch and arrival GPS
points coordinates. Videos have been used to assure
the reliability of this method, discarding too irregular
trajectories. The probability map is relative to the last
impact detected. As shown by Fig. 7b, green circles
are aligned and quite close to the reconstructed
trajectory.
As expected, the results of the boulders fall simula-

tions were not homogenous: the launch position, and
the eventual breakage of the blocks determined differ-
ences in the trajectories and the kinematic of the failed
mass. This is clearly visible in the localization results.

a

c

b

Fig. 7 Example of the localization procedure. a Block used for the simulation. b Localization output. Warm and cold bar colors indicate respectively
high and low probability of the last impact. c Recording at TOR4 station. The orange arrows highlight peaks considered for the elaboration process

Gracchi et al. Geoenvironmental Disasters  (2017) 4:26 Page 7 of 12



In particular, three different cases have been identified:

CASE1: Clear rebounds
This case concerns all the signals generated by blocks
launched approximately from steps 1 to 5 m high.
They rebound on the slope until they stopped, as it
was also observed in both seismic recordings and
video footages. The recorded signals were character-
ized by a sequence of short-duration transients, each
one usually shorter than 1 s (Fig. 8c, d).
Figure 8 illustrates the results of two experiments held

on 25th June 2013 at 12:21 and at 12:12 (UTC), for
which respectively 4 and 5 rebounds have been identified
in the seismic traces. In both cases, the subsequent im-
pacts were located within a limited area and could allow
the identification of the zones most prone to rockfall im-
pacts. (Fig. 8a, b).

CASE 2: Blocks hurled next to TOR2 station
Some of the blocks used for the simulations have been
hurled from point A in Fig. 2. In this landslide sector,
the Maiolica outcrops are characterized by a lower dens-
ity of fractures. For this reason, we believe that that sec-
tor is characterized by higher propagation velocity of the
seismic waves. Moreover, the area is characterized by a
different morphology, since point A was close to the
quarry external limit that acted as a big obstacle, indu-
cing waves reflection (Fig. 10a). Due to the latter reason,
the difference between the measured times and the the-
oretic ones (calculated considering linear distances) is
too high to provide a reliable result comparable to the
one from ‘CASE 1’. It is worth to note that in fact, with
the aim to develop a quick and practical method to de-
tect the blocks trajectories, a bi-dimensional grid of the
ground has been used, without considering a seismic
wave propagation velocity model of the area. As a conse-
quence of the two above mentioned effects, the location
procedure failed for the first impacts albeit the user
could manually pick the arrival times at each station.
Such problem did not affect the following rebounds that
matched with the reconstructed path (red line in Fig. 9).

a

c

d

b

Fig. 8 Localization procedure for CASE 1 events. a Output for the event occurred on 25th June 2013 at 12:21 UTC. b Output for the event occurred
on 25th June 2013 at 12:12 UTC. c 12:21 event recorded at TOR4 seismic station. d 12:12 event recorded at TOR4 seismic station. The orange arrows
highlight peaks considered for the elaboration process

Table 1 Arrival times at TOR4 station obtained by manual
picking. Event occurred on 25th June 2013 at 12:06 UTC

Impact 1 Impact 2 Impact 3 Impact 4

TOR4 12 06 51.485 12 06 52.924 12 06 54.983 12 06 56.454
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As proof, we tried to localize the first impact of a
block hurled from point A increasing the propagation
waves velocity from 2000 m/s to 3000 m/s. As expected,
the obtained result was reliable (Fig. 10b).

CASE 3: Slides on a bedding plane
Some of the blocks throwed from point B (Fig. 2) slide
on a bedding plane. In particular, they fell from a 1 m
high step and then started their glide crossing the bed-
ding plane. In this case seismic traces showed only one
meaningful peak due to the first and only impact
followed by noise or signals too close in time to be
manually picked (Fig. 11b). Moreover, all that was clearly
visible after the first impact was recorded by only one or
two stations, due to the low energy involved. The single
impact was well located, and it matched very well the re-
constructed trajectory (Fig. 11a).

Conclusions
In this paper an algorithm based on the non-linear
inversion of seismic waves arrival times recorded by a
microseismic network (equipped with 4 stations) to

localize the impact points of some boulders artificially
thrown along a slope prone to rockfalls has been pro-
posed. Results showed that the methodology is gener-
ally reliable and able to retrace the path travelled by
the fallen blocks, since the calculated trajectories
matched with real ones, unless some errors due to
the assumptions. Nevertheless, the applicability of the
method to each impact strictly depends on the area
of impacts: when the approximation used are
respected (bi-dimensional model and homogeneous
medium with an isotropic propagation velocity, ‘CASE
1’), the identified source point is correctly located,
otherwise, if the impact point is located on the out-
cropping bedrock (near TOR2, ‘CASE 2’) a modifica-
tion of the medium velocity value is required in order
to obtain a good match between the real and the
retraced position.
The accuracy of the methodology is strictly connected

to the positioning of the seismic network: the closer the
impacts to the instruments, the higher the amplitude of
the signals and consequently the manual picking will be
feasible at all the stations.

a

c

d

b

Fig. 9 Localization procedure for CASE2. a Localization output for the event occurred on 4th July at 12:38 UTC. b Localization output for the event
occurred on 4th July at 12:34 UTC. Red circles point out the first impact that we were not able to localize correctly. c 12:38 event recorded at TOR4
seismic station. d 12:34 event recorded at TOR4 seismic station. The orange arrows highlight peaks considered for the elaboration process
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As far as the blocks size is concerned, no influence on
method efficiency has been found, but it’s worth to take
into account that size of the same order of magnitude
have been considered in this work.
The location procedure is intrinsically affected by un-

certainties associated with different causes. These are: 1)

measuring errors, due to difficulties in detecting the first
arrival arising from low SNR or emergent traces; 2)
intrinsic instrumental limitations, given by the step sam-
pling of the digital signal (0,005 s); 3) theoretical approx-
imations, due to the assumption of a constant
propagation velocity (assumed equal to 2000 m/s); and

Fig. 10 a Proximity to TOR2 station at the edge of the former quarry. b Localization of the first impact of the event occurred on 4th July at 12:38
UTC. The localization procedure was made assuming a velocity equal to 3000 m/s

a

b

Fig. 11 Localization procedure for CASE 2. a Localization output for the event occurred on 25th June 2013 at 12:02 UTC. b 12:02 event recorded
at TOR4 seismic station. The orange arrows highlight peaks considered for the elaboration process
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4) inaccuracies in the ray-tracing procedure, due to the
fact that ray trajectories have been calculated as straight
lines connecting the nodes of the gridded topographic
surface and individual stations. Even under the homoge-
neous medium approximation, such trajectory cannot be
realistic in case of rough topographic surfaces.
The proposed technique provides interesting information

about the area that is most prone to impact of the detached
blocks, and can represent a useful tool for mapping those
areas that need to be protected by defense works (protec-
tion works). It is worth noting that the degree of uncer-
tainty could be further reduced by minimizing certain
approximations inherent to the method (as example, by
using a reliable velocity model).
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