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ABSTRACT 

A distributed parameter model of a railway two–level catenary system is presented for the anal-

ysis of the coupled wave dynamics. The wires are modelled as two straight axis parallel beams, 

with linear equilibrium equations, and the moving load applied by the pantograph is modelled as 

a constant concentrated travelling force. The general solution is sought by an application of the 

Ritz–Galerkin method, and then compared with direct time integrations of a finite element mod-

el (FEM), achieved by two different integration schemes. The proposed model provides a valid 

reference for appropriately selecting the FEM parameters, in order to reduce the errors due to 

spurious modes, affecting the numerical integrations especially at high speeds of the moving 

pantograph. 
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1.  Introduction 

Railway catenary systems, supplying trains with electric power, play an important role in de-

termining the maximum allowable railway velocity, which is limited to a certain percentage of 

the wave propagation velocity of the contact wire. The analysis of their dynamic behaviour is 

not straightforward, basically consisting of a wave propagation problem in structures excited by 

moving loads [1], and the bibliography on the specific topic is not extensive. 

In [2] an analytical method is proposed for calculating the steady–state response of a two–level 

catenary to a moving pantograph, represented by a travelling constant force; the model for the 

catenary consists of two strings, the upper one fixed at periodically spaced points, connected 

each other by equidistant lumped mass–spring–dashpot elements. In [3] it is recognized that a 

beam model with dispersive wave characteristics better represents the contact wire than a string 

model, and a method is presented in the paper for estimating the wave propagation velocity of a 

railway contact wire by applying a wavelet transform to experimental signals. The problem of 

flexural oscillations of a single infinite beam resting on identical periodic simple elastic sup-

ports, caused by a harmonic concentrated force moving steadily along the beam, is solved in [4] 

with an application of the Fourier transform. Using modal analysis, the deflection of a single 

beam of finite length without intermediate supports, subjected to an axial tensile force and a 

moving concentrated force, has been analytically determined in [5]. 

A two–level catenary including bending stiffness in the wires has been considered in [6], ex-

pressing the displacements as finite sums of sine functions, and computing the responses of the 

discretized system via Lagrange equation’s method. The same approach has been adopted also 

in [7], with additional inclusion in the numerical model of a three degrees of freedom panto-

graph with unilateral contact. 
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In this study a distributed parameter model of a railway two–level catenary system is presented 

for the analysis of the coupled wave dynamics. The contact and messenger wires are modelled 

as two straight axis Euler–Bernoulli parallel beams, while the moving load applied by the pan-

tograph is represented by a constant travelling force. The wires are interconnected by non–

equally spaced linearly elastic droppers with lumped masses, and supported by linearly elastic 

brackets. The contact wire holds lumped masses positioned in correspondence of each bracket 

and representing the registration arms. The general solution is sought by the Ritz–Galerkin 

method, using a set of comparison functions [8] given by the eigenfunctions of a pinned–pinned 

Euler–Bernoulli beam. 

The results of the presented method are given providing complete analytical developments and 

are compared with direct time integrations of a FEM of the system, which is the common ap-

proach to solve the problem under analysis [9–10], for its high flexibility and relatively easy 

implementation. 

Unfortunately, the complexity of the dynamic behaviour may cause numerical errors affecting 

the FEM solutions, especially at high speeds of the moving pantograph. These errors are very 

often related to numerical wave modes, or spurious modes, introduced by the time integration 

algorithms. 

The most common technique to discard spurious modes consists in adding numerical damping, 

either by an intrinsic property of the algorithm, as in the Bathe method [11], or by using explicit 

parameters, as in the Generalized– method [12]. Both methods are compared with the pro-

posed distributed parameter technique. 

 

2. Distributed parameter model 

A distributed parameter model of a railway catenary system is considered, with some simplify-

ing assumptions: the wires are modelled as two straight axis parallel beams, with linear equilib-

rium equations (neglecting in particular the slackening of the droppers), while the moving load 

applied by the pantograph is simply modelled as a constant concentrated travelling force. Damp-
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ing is disregarded in the model under investigation, because it is often considered as negligible 

(as suggested by [13]). Moreover, one of the main purposes of the paper is to discuss the numer-

ical damping added by integration algorithms and this effect can be better highlighted for un-

damped systems. Introducing damping phenomena carries further analytical and computational 

effort, in particular when non-proportional damping distribution is taken into account [14-17]. 

2.1.  Description of the model 

The model consists of two parallel pinned–pinned Euler–Bernoulli beams (representing the con-

tact wire and the messenger wire), interconnected by H linearly elastic droppers with lumped 

masses, and supported by J linearly elastic brackets. In addition, the contact wire holds J 

lumped masses representing the registration arms, positioned in correspondence of a bracket as 

shown in Fig. 1. The adopted nomenclature is reported in Appendix A. 

  

The two coupled equilibrium equations, one for the contact wire (subscript 1) and the other for 

the messenger wire (subscript 2), can be written in the form: 

2 4 2 2 2

1 1 1 1 1

1 1 1 01 01 1 12 12 1 22 4 2 2 2
1 1

2 4 2 2

2 2 2 2

2 2 2 02 2 12 12 2 12 4 2 2
1 1

( ) ( ) ( ) ( , )

( ) ( ) ( ) 0

J H

j h

j h

J H

j h

j h

w w w w w
K T m k w x x m k w w x x f x t

t x x t t

w w w w
K T k w x x m k w w x x

t x x t

  

  

= =

= =

       
+ − + + − + + − − =   

       

    
+ − + − + + − − = 

    

 

                           









 (1) 

where  () is the Dirac distribution and f (x,t) represents an external force density acting on the 

contact wire. 

2.2. Solution for a travelling constant force 

For a constant load travelling at a speed v , the external force density acting on the contact wire 

Fig. 1. Schematic of the distributed parameter model. 

 
Fig. 1. Schematic of the distributed parameter model. 
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can be expressed as 

( ), 0
( , ) ,

0,

e

e

e

P x t t t L
f x t t

t t

−  
= =



v

v


                                                                                    (2) 

The solution is sought by the Ritz–Galerkin method, using a set of N comparison functions [8] 

given by the first N eigenfunctions of a pinned–pinned Euler–Bernoulli beam of length L: 

 
 

 

T

1 1 1 1 1

1 T

2 2 2 2 1

( , ) , ( )
( ) , ( ) sin , 1

( , ) , ( )

n N

n nN

n N

w x t tn x
x x n N

L w x t t


 









 = = 
= = =   

= =  

Φ η η
Φ

Φ η η
              (3) 

After introducing the expressions of w1 and w2, eqs. (3), in the equilibrium equations (1), the lat-

ter are multiplied by  and then integrated over the entire spatial domain, yielding a mass ma-

trix M and a stiffness matrix K in the form: 

1 01

12

2

011

12

022

     1

     2

  1

   2

HJ

H

J H H

J H H

m
L m

k
L k

k





    
= + +    

    

−    
= + +    

−    

I 0 Σ 0Σ 0
M

0 I 0 Σ0 0

Σ 0D 0 Σ Σ
K

0 Σ0 D Σ Σ

                                                                  (4) 

where both M and K are 2N2N matrices, while the NN inner matrices are: 

   

     
T T

1 1

2 2 2 2

1 1 1 2 2 2

diag 1 , diag 0 ,

( ) ( ) , ( ) ( ) ,

diag , diag

J H

J n j n j H n h n h

j h

x x x x

n n n n
T K T K

L L L L

   

   

= =

= =

= =

                
= + = +             

                   

 

I 0

Σ Σ

D D

                                   (5) 

The solution of the algebraic eigenproblem: 

2 − = K M z 0                                                                                                                           (6) 

yields a set of 2N natural angular frequencies n and a set of 2N real eigenvectors zn. These nat-

ural angular frequencies may be compared with those of the two beams without intermediate 

elastic constraints and lumped masses (say 1n and 2n): 

2 2

1 1 2 2

1 2

1 1 2 2

,n n

T K T Kn n n n

L L L L

   
 

   

   
= + = +   

   
                                                                (7) 

After partitioning the nth eigenvector in two vectors of size N (components of zn from 1 to N, 

and from N+1 to 2N respectively): 
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n

n

n

 
=  
 

ψ
z

ζ
                                                                                                                                      (8) 

the general integral can be expressed in the form: 

  

  

2
T

1

1

2
T

2

1

( , ) cos ( ) sin ( )

( , ) cos ( ) sin ( )

N

g n n n n n

n

N

g n n n n n

n

w x t A t B t

w x t A t B t

 

 

=

=


= +



 = +






Φ ψ

Φ ζ

                                                                            (9) 

where the spatial coordinate x is hidden in the vector , while An and Bn are constants depend-

ing on the initial conditions. 

The particular integral can be found by writing the equation of motion according to eqs. (4): 

2
1

12

( )
, ( ),

N

n n

n

t
p t P

=

   
+ = = = =   

  


η Φ
Mη Kη f η z f

η 0

v
                                                                  (10) 

Introducing now an angular frequency 0, given by the pantograph travelling at a constant speed v : 

0
L


 =

v
                                                                                                                                    (11) 

eqs. (10) can be decoupled and solved in the form: 

2

0 02 2
1 1 0

( ) ( ) sin ( ) ( ) sin ( )
( )

N N
nr

n n n nr n

r rn n n

P P
p t p t r t p t r t

m m r


   

 = =

+ =  =
−

                               (12) 

where mn represents the nth modal mass of the system. In the particular case in which both        

1 = 2 =   and m01 = m12 = 0, then: 

1

2
nm L n=                                                                                                                              (13) 

Recalling eqs. (3), (8) and (10), the particular integral can be obtained directly from eqs. (12): 

T2

1 02 2
1 1 0

T2

2 02 2
1 1 0

( , ) sin ( )
( )

( , ) sin ( )
( )

N N
nrn

p

n rn n

N N
nrn

p

n rn n

w x t P r t
m r

w x t P r t
m r




 




 

= =

= =

  
=  

−  


 
=   − 

 

 

Φ ψ

Φ ζ
                                                                      (14) 

Adding the general integral wg eqs. (9) to the particular integral wp eqs. (14), and introducing the 

initial conditions (zero displacement and zero velocity): 

 

 
1 2 0

2 2
11 2 0

( ,0) ( ,0) 0 0,
0,

( ,0) ( ,0) 0 0, ( )

N
nr

n n

r n n n

w x w x x L r
A B P

mw x w x x L r



  =

 = =  
 = = −

 = =   −  
                      (15) 
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yield the solution for 0  t  te in the form: 

T2
0

1 02 2
1 1 0

T2
0

2 02 2
1 1 0

( , ) sin( ) sin( )
( )

( , ) sin( ) sin( )
( )

N N
n rn

n

n rn nn

N N
n rn

n

n rn nn

r
w x t P r t t

m r

r
w x t P r t t

m r

 
 

 

 
 

 

= =

= =

       = −  
  −       


     
 = −   

 −       

 

 

Φ ψ

Φ ζ

                                         (16) 

or alternatively, with the spatial variable appearing explicitly: 

2
0

1 02 2
1 1 1 0

0

2 02 2
1 1 0

1 1
( , ) sin sin( ) sin( )

( )

1 1
( , ) sin sin( ) sin( )

( )

N N N

nr nr n

n r rn nn

N N

nr nr n

r rn nn

rr x
w x t P r t t

m L r

rr x
w x t P r t t

m L r


   

 


   

 

= = =

= =

      
= −     

−         

    
= −   

−    

  

 
2

1

N

n=






   
  
    



                (17) 

Adopting mass–normalized eigenvectors, i.e.: 

ˆ 1 1
ˆ

ˆ

n n

n n

nn n nm m

   
= = =   
    

ψ ψ
z z

ζζ
                                                                                               (18) 

the notation in eqs. (17) would be simplified with mn = 1. Note that the only distinction between 

w1 and w2 is a different factor (nr  nr) in the first square brackets. 

For t > te the solution is a free response that can be expressed by means of the general integral 

eqs. (9) alone, with initial conditions given by: 

1 2

1 2

( , ), ( , )

( , ), ( , )

e e

e e

w x t w x t

w x t w x t





                                                                                                                   (19) 

which can be computed from eqs. (17) at t = te. After some passages the free response can be 

written as: 

2
0

1 2 2
1 1 1 0

0

2 2 2
1 0

1 1
( , ) sin ( 1) sin[ ( )] sin( )

( )

1 1
( , ) sin ( 1) sin[ (

( )

N N N
r

nr nr n e n

n r rn nn

N
r

nr nr n

rn nn

rr x
w x t P t t t

m L r

rr x
w x t P

m L r


   

 


  

 

= = =

=

      
 = − − −       −         

   
= −   

−    

  


2

1 1

)] sin( )
N N

e n

n r

t t t
= =






    
 − −    

     
 

    (20) 

Resonance occurs if r0 = n, in which  case the solution (for 0  t  te) is modified according 

to: 

 
0

0

02 2 2

0

lim sin( ) sin( ) sin( ) ( )cos( )
( ) 2n

nr nr

n n n n
r

nn n

r
r t t t t t

r 

  
    

  →

   
− = −  

−   

                             (21) 
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The proposed technique generalizes the method described in [5], in which eq. (27) represents a 

particular case of the first of eqs. (17) in the present work. The computational effort of this pro-

cedure pertains to the algebraic eigenproblem eq. (6), which has to be solved only once. 

2.3. Solution for a non–travelling step force 

In the case of a non–travelling step force, the external load density acting on the contact wire in 

eqs. (1) can be expressed as: 

0( , ) ( ) ( )Ff x t F x x u t t= − −                                                                                                        (22) 

where u is the unit–step function. The general integral is still given by eqs. (9) and the expres-

sion of the particular integral can be found following the previously adopted procedure. Consid-

ering a different forcing term f, in this case constant with respect to time, eq.(10) becomes: 

2
1

12

( )
, ( ),

N
F

n n

n

x
p t F

=

   
+ = = = =   

  


η Φ
Mη Kη f η z f

η 0
                                                                 (23) 

Consequently, eqs. (12) can be rewritten in the form: 

2

2
1 1

( ) ( ) sin ( ) sin
N N

F F

n n n nr n nr

r rn n n

r x r xF F
p t p t p t

m L Lm

 
  

= =

   
+ =  =   

   
                               (24) 

The introduction of the initial conditions as in eqs. (15) (zero displacement and zero velocity in  

t = t0) yields the solution: 

 

 

2

1 0 0

1 1

2

2 0 0

1 1

1
ˆ( , ) ( ) ( ) 1 cos[ ( )] ( ), ( ) sin

1 ˆ( , ) ( ) ( ) 1 cos[ ( )] ( ), ( ) sin

N N

n n F n n nr

n rn

N N

n n F n n nr

n rn

r x
w x t F x x t t u t t x

L

r x
w x t F x x t t u t t x

L


    




    



= =

= =

    
= − − − =   

  


    = − − − =      

 

 

            (25) 

which represent the time response at a coordinate x due to a force–step of amplitude F applied at 

a coordinate xF since t = t0. 

2.4. Solution for a non–travelling harmonic force. 

In the case of harmonic excitation, the external force density acting on the contact wire in eqs. 

(1) can be expressed as: 

0 0( , ) ( )sin[ ( )] ( )Ff x t F x x t t u t t = − − −                                                                                   (26) 
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where  is the angular frequency of the harmonic load. The expression of the particular integral 

is sufficient to determine the frequency response function. The procedure begins as in eqs. (10) 

and (23):  

2
1

0

12

( )
, ( ), sin[ ( )]

N
F

n n

n

x
p t F t t

=

   
+ = = = = −   

  


η Φ
Mη Kη f η z f

η 0
                                             (27) 

Then, decoupling the equations yields: 

0 2 2
1

( ) sin[ ( )] sin
( )

N
F

n n n nr

rn n

r xF
p t G t t G

Lm


 

  =

 
= −  =  

−  
                                              (28) 

giving the solution in the form: 

( )

( )

2 2
T 1

1 2
1 1

2 2
T 2

2 2
1 1

( ) ( )( )
( )

1

( ) ( )( )
( )

1

N N
n n F

n n

n n n

N N
n n F

n n

n n n

x xG x
G x G

F

x xG x
G x G

F

 

 

 

 

= =

= =


=  =

−

 =  =
 −

 

 

Φ ψ

Φ ζ

                                                                  (29) 

which represents a frequency response function (namely, the receptance) at a coordinate x due 

to a harmonic load of amplitude F and angular frequency   acting at a coordinate xF. As a con-

sequence, the particular integral becomes: 

1 1 0

2 2 0

( , ) ( )sin[ ( )]

( , ) ( )sin[ ( )]

w x t G x t t

w x t G x t t





= −


= −
                                                                                                   (30) 

The general integral is again the same, given by eqs. (9). The introduction of the initial condi-

tions as in eq. (15) (zero displacement and zero velocity at t = t0) yields the constants An and Bn: 

T

02 2

T

02 2

( )
sin ( )

( )

( )
cos ( )

( )

F n

n n

n n n

F n

n n

n n n

x
A F t

m

x
B F t

m




  




  

=
−

= −
−

Φ ψ

Φ ψ
                                                                                  (31) 

and then the solution in the form: 

2

1 0 02 2
1 1 1

2 2 2
1 1

1 1
( , ) sin sin sin[ ( )] sin[ ( )]

1 1
( , ) sin sin s

N N N
F

nr nr n

n r rn nn

N N
F

nr nr

r rn n

r xr x
w x t F t t t t

m L L

r xr x
w x t F

m L L

 
   

 


 

 

= = =

= =

        
= − − −       

−         

     
=      

−      

  

 
2

0 0

1

in[ ( )] sin[ ( )]
N

n

n n

t t t t


 
=






    
− − −  

   


(32) 
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representing the response at a coordinate x to an harmonic excitation of amplitude F and angular 

frequency   acting at a coordinate xF since t = t0. 

 

3. Finite element method modelling  

The proposed method is compared with a FEM of the system in order to evaluate its perfor-

mance and results. Mass and stiffness matrices are built by considering prismatic homogeneous 

isotropic Euler–Bernoulli beam elements under axial load, each bringing two nodes and six de-

grees of freedom [18]. Such an analysis can also provide information on the choice of a numeri-

cal integration scheme that matches the dynamic behaviour of the system, which is basically a 

wave propagation problem. Direct time–integration methods, with known initial conditions, typ-

ically fulfil the requests of accuracy and stability, their parameters being the only user defined 

quantities. The wave propagation nature of the problem makes it difficult to obtain accurate so-

lutions because of spurious accelerations, numerical dispersion and dissipation [19]. Ideally, a 

time integration method should preserve the real wave velocity, yielding a solution with actual 

wave modes only. Unfortunately, numerical errors are always present and a method capable of 

giving small wave speed errors and discarding numerical high frequency modes is desirable. 

This can be achieved either by introducing numerical damping, which suppresses the high fre-

quency spurious wave modes using an adjustable parameter, or by some inherent properties of 

integration schemes. Some methods particularly suited to this purposes are available in the tech-

nical literature and in the following the Generalized– method [12] and the Bathe method [11] 

are considered. Their results are compared with the solutions of the proposed method. The 

adopted nomenclature is reported in Appendix A. 

3.1. Generalized–α method 

Proposed by J. Chung and G. M. Hulbert [12], the Generalized– method uses two parameters, 

i.e. m and f , that average the internal and external forces between consecutive time instants, 

as well as inertia forces. The basic form of the method is given by: 
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2

1 1

1 1

1 1 1 1

1

2

(1 )

(1 ) (1 ) (1 ) (1 )

n n n n n

n n n n

m n m n f n f n f n f n f n f n

h h

h

 

 

       

+ +

+ +

+ + + +

  
= + + − +  

  

 = + − + 

     − + + − + + − + = − +    

υ υ υ υ υ

υ υ υ υ

M υ υ C υ υ K υ υ f f

   (33) 

If m = f = 0 the method reduces to Newmark’s scheme, whose well known parameters are  

and . In the general case the resulting time integration algorithm gets second-order accuracy 

and it is unconditionally stable by setting: 

21 1
, (1 )

2 4
f m f m     = + − = + −                             (34) 

Furthermore, the two averaging parameters are responsible for numerical damping, which can 

be controlled introducing the spectral radius at infinity , related to the amplification matrix of 

the method [20]. By choosing an appropriate asymptotic spectral radius, the  parameters are 

simply obtained by: 

2 1
, , with 0 1

1 1
m f

 
  

 
 



 

−
= =  

+ +
                                                                         (35) 

In the case of null numerical damping ( = 1), the method acts like the trapezoidal rule, includ-

ing high order modes in the solution, while in the case of maximum numerical damping ( = 0) 

a condition known as “asymptotic annihilation” is obtained and spurious oscillations in the high 

frequencies are eliminated after one time–step. For any other value of  between 0 and 1 the 

introduced numerical dissipation will filter out a certain range of high frequencies, while pre-

serving accuracy in the low–frequency band. 

3.2. Bathe method 

Recently K.J. Bathe and G. Noh developed a time integration scheme that, unlike the General-

ized– method, does not require the setting of any parameter, thus the choice of an appropriate 

step size is enough to damp out numerical high modes [11]. The method divides each time–step 

into two sub–steps, one solved by means of the trapezoidal rule and the other one solved using 



 
 

 

 

 
 

13 
 
 
 

the 3–point Euler backward method, respectively. The equation of motion at time instant tn+1 is 

then split in two sub–equations that can be written in the form: 

1 1 2 1

2 1 2

ˆˆ

ˆˆ

n

n

+

+

=

=

K υ f

K υ f

                                     (36) 

where: 

1 2

2 2

1 1/2 2

1 1 1/2 1/2 1/22 2

16 4ˆ

9 3ˆ

16 8 4ˆ

12 3 4 1 4 1ˆ

n n n n n n

n n n n n n n

h h

h h

h h h

h h h h h h

+

+ + + +

= + +

= + +

   
= + + + + +   

   

   
= + − + − + −   

   

K M C K

K M C K

f f M υ υ υ C υ υ

f f M υ υ υ υ C υ υ

                                    (37) 

Accelerations, velocities and displacements are computed using the typical equations of trape-

zoidal and Euler backward methods. The resulting algorithm is an implicit second–order accu-

rate scheme, capable of discarding numerical modes provided that the time step is appropriately 

selected.  

To achieve some insight on the choice of the time step, the simple case of travelling wave (giv-

en by the d’Alembert equation in one dimension) is considered. If c0 is the wave velocity, the 

resulting Courant–Friedrichs–Lewy number (CFL) will be:  

0CFL
h

c
l

=                                                       (38) 

CFL relates the ratio between element size l and time–step h (i.e. a velocity) to the speed of the 

travelling information in the physical space. If an explicit time integration solver is used, then 

the choice of this value is crucial in order to guarantee stability in the solution, and the condition 

is usually CFL ≤ 1. On the contrary, implicit time integration algorithms are usually less sensi-

tive to numerical instability and larger values of CFL may be tolerated. It is important to high-

light that in general the stability of the response does not ensure its physical correctness [20].  

For the Bathe method a relation between the values of the CFL number, the wavenumber k (re-

lated to the frequency ω of the wave mode) and the element size l can be obtained. In particular, 
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setting CFL = 1 will produce all wave modes having 0.6h kl    to be almost non–

dispersive (meaning that the wave speed has not significant alterations), whereas all higher fre-

quency modes will be dissipated [19]. 

  

4. Numerical examples: Application to overhead contact lines 

The proposed method can easily be adapted to railway overhead contact lines, simply by con-

sidering the characteristics of the messenger wire, contact wire, steady arms and droppers. In the 

following section the data reported in the standards EN50318 [13] and EN50149 [21] will be 

adopted. 

 

4.1. Non-travelling step force in a contact wire  

Recalling an example presented in [9], a step excitation of magnitude f is applied to a pinned-

pinned contact wire. The force acts at a distance xF from one support, and the acceleration is 

measured at a distance xM, as shown in Fig. 2.  

 

An analytical undamped solution to this problem has been already found in [7, 9], and it can be 

derived from eq. (25) of the presented method if only one beam is considered.  

The first N = 400 terms are considered in the proposed method: this modal truncation is the only 

source of error in this case, since the comparison functions adopted in eq. (3) are, in fact, the ei-

genfunctions for this system. 

In this case, the equation of the wave speed can be rewritten as a function of the considered 

modes [5]: 

Fig. 2. Definition of the test problem: non-travelling step force in a contact wire, where 

L = 200 m, xF = 95 m, xM = 135 m, µ= 1.35 kg/m, EI = 168 Nm2, T = 20 kN, f=100 N. 
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2

                   1,2,3,...j

j EI T
c j

L



 

 
= + = 

 
                                                                            (39) 

As a direct consequence, the definition given for CFL in eq. (38) cannot be used as a unique ref-

erence. The wave speed of the 400th mode can rather be taken as an upper limit for the modes 

included in the solution, and the damping properties of the numerical algorithms can be ana-

lysed separately. The CFL related to this choice is then called CFLN. 

As discussed previously, the purpose of the presented paper is to analyse the effects of the nu-

merical damping introduced by the integration algorithms, and to rely on it to handle numerical 

spurious modes. Indeed, structural damping has also the effect of bounding numerical modes, 

but this should be considered as a property of the system, rather than a parameter to be tuned. 

Moreover, railway overhead contact lines are low-damped systems, and the introduction of 

structural damping in absence of numerical damping is not sufficient to suppress spurious 

modes. A further investigation about this point may be conducted considering the system de-

picted in Fig. 2 and adding a realistic amount of proportional damping. This kind of damping is 

generally described by means of two parameters  and β, that allow the damping ratio ζj of the 

jth mode to be written as: 

2 2

j

j

j

= +





                                                                                                                        (40) 

Where ωj is the jth undamped natural frequency,  = 0.06, β = 6∙10-6 [22]. Fig. 3 shows a com-

parison between the presented method and the Generalized- method with and without structur-

al damping respectively. The adopted discretization is summarized in Table 2, without numeri-

cal damping in both cases. Numerical modes arise especially in the undamped case, and 

structural damping can only weaken their effects. It seems then appropriate not to rely on it to 

remove numerical modes; thus, for the purpose of this investigation, only numerical damping is 

considered in the following sections. 
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As already shown, the Bathe method is capable of discarding high spurious modes in relation to 

the discretization used: fixing the value of l and lowering h will cause the method to include an 

increasing number of participating wave modes, meaning that a compromise between desired 

accuracy and numerical damping should be found. Taking the analytical method as a reference, 

a parametric study is summarized in Table 1, where l and h are chosen so to obtain CFLN=1 in 

each case. Two indices are used to evaluate the performance, the wave distortion and the root 

mean square (RMS) error between the acceleration computed with the presented method and the 

Bathe method. The wave distortion is computed evaluating the maximum cross correlation be-

tween the two accelerations (here called 1w  and 2w ) according to eq. (41). The final time inter-

val is chosen according to Table 2 and the results are reported in Fig. 4a. 

 
1 2 1 2( ) ( ) ( )w wR E w t w t= +                                                                                                        (41) 

Fig. 3. Acceleration of the measuring point xM. Solid blue line: proposed method with pro-

portional damping; dashed red line: Generalized– method with no numerical damping and 

no structural damping; dashed-dotted green line: Generalized– method with no numerical 

damping and with proportional (structural) damping.  
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The Generalized– method is based on the trapezoidal rule, therefore the suggestions reported 

in [11] are followed to set its discretization, considering CFLN=0.65. The final values are re-

ported in Table 2. As mentioned above, its damping properties depend on the value of the as-

ymptotic spectral radius, whose effects can be clearly seen in Fig 3 and Fig. 4: without numeri-

cal damping spurious accelerations arise, especially around the wave front. Generally speaking, 

the introduction of manually controlled numerical dissipation is a powerful solution, however it 

is not an easy choice when dealing with complex systems, or when a comparative model is not 

available. These cases should then be tackled by a trial–and–error procedure, which is at least 

time consuming. 

 

Table 1. Period shift and RMS error for the Bathe method in numerical example 4.1. 

 

Element size l (m) Time step h (ms) Wave distortion (ms) RMS error (m/s2) 

0.10 0.7 -2.1 3.6329 

0.08 0.5 -1.3  4.1278     

0.05 0.3 -0.7 4.6324     

0.03 0.2 -0.2 5.6019 

 

Table 2. Discretization adopted in numerical example 4.1 

 Generalized– method Bathe method 

Element size l (m) 0.08 0.08 

Time step h (ms) 0.37  0.5  

 

 
 

Fig. 6. Acceleration of the measuring point xM.  

a) Solid blue line: proposed method; dashed red line: Bathe method.  

b) Solid blue line: proposed method; dotted green line: Generalized– method (no numerical damp-

ing); dashed red line: Generalized– method (ρ∞ = 0.4). 

 
Fig. 3Fig. 4 
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4.2. Forced harmonic vibrations in the contact wire 

Considering again the system of Fig. 2, a harmonic force ( )sinf = F t  is applied with F=10 

N and ν = Ω/(2π)=50 Hz . The force acts at a distance xF from one support, and the acceleration 

is measured at a distance xM.  

The modal truncation is again N=400 in the proposed method, while discretizations are adopted 

yielding CFL = 1 for the Bathe time integration algorithm, and CFL = 0.65 for the Generalized–

 method (with no numerical damping) [11]. In order to evaluate the CFL, the element size is 

set according to Table 3 and the wave speed c is computed with the following equation [3]: 

Fig. 4. Acceleration of the measuring point xM.  

a) Solid blue line: proposed method; dashed red line: Bathe method (l=0.1 m, h=7∙10-4 s); 

dashed-dotted green line: Bathe method (l=0.03 m, h=2∙10-4 s); 

b) Solid blue line: proposed method; dashed red line: Bathe method (l=0.08 m, h=5∙10-4 s);  

c) Solid blue line: proposed method; dashed red line: Generalized– method (ρ∞ = 0.4, 

l=0.08 m, h=3.7∙10-4 s). 
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2 24

2

T T EI
c

 



+ +
=                                             (42) 

The wavelength related to the forcing oscillation is then equal to 2.5 m, while the wavelength of 

the 400th mode, whose velocity can be computed by eq. (39), is 1 m. As the load starts acting at 

time t = 0 s, two waves travel from xF pointing to the right and to the left, hereinafter called 

“RTW” (Right Travelling Wave) and “LTW” (Left Travelling Wave). After 0.3202 s the RTW 

meets the measuring point, while the LTW reaches the left end point and comes back, interfering 

with the wave produced by the load. It is very interesting to notice what happens when LTW re-

flects, because if numerical errors are present when computing the acceleration due to a single 

travelling wave, these errors will allegedly sum up when dealing with reflected waves. Table 3 

summarizes the parameters used in the integration schemes. 

 

The time history of the acceleration is given in Fig. 5, using eq. (32) of the presented method. 

Table 3. Discretization adopted in numerical example 4.2 

 Generalized– method Bathe method 

Element size l (m) 0.05 0.05 

CFL 0.65 1 

Resulting time step h (s) 2.6 10-4  4 10-4  

 

 
 

Table 1. Discretization adopted in numerical example 4.1 

 Generalized– method Bathe method 

Length interval (m) 0.05 0.05 

CFL 0.65 1 

Resulting time interval (s) 2.6 10-4  4 10-4  
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During the initial transient the Generalized– method shows little spurious accelerations be-

cause of the absence of numerical damping, while the Bathe method automatically discards nu-

merical high modes. However, after the initial transient they both perform very well if a single 

travelling wave is present (Fig. 5a). 

When the first reflection occurs, the three methods perform quite differently (Fig. 5b). For a 

deeper analysis, a particular case may be considered: the loading point position xF is selected as 

an integer multiple of the wavelength related to the harmonic excitation. This will theoretically 

cause a destructive interference when the LTW meets the measuring point, giving null accelera-

tion till the second reflection occurs. Furthermore, xF and xM  are two nodes in the FE model. 

Fig. 5. Acceleration of the measuring point xM during two time windows: a) before the 

RTW meets the measuring point (0.3202 s), b) after the reflected LTW meets the meas-

uring point (1.3610 s). Solid blue line: proposed method; dashed red line: Generalized–

 method (no numerical damping); dashed–dotted green line: Bathe method. 

 
 

Fig. 5Fig. 6. Acceleration of the measuring point xM during two time windows: before 

the RTW meets the measuring point (0.3202 s) and after the reflected LTW meets the 

measuring point (1.3610 s). Solid blue line: proposed method; dashed red line: General-

ized– method (no numerical damping); dashed–dotted green line: Bathe method. 

 



 
 

 

 

 
 

21 
 
 
 

The selected values are the wavelength 1.89λ c n= =  m and the distance xF = 5λ. The RTW will 

meet the measuring point after 0.3143 s, while the destructive interference will occur at              

t = 0.4629 s. Two time screenshots of the acceleration along the wire, computed with the pre-

sented method, are given in Fig. 6. It can be seen that at t = 0.93 s the acceleration of the meas-

uring point is almost negligible, as expected. 

 

Comparing now the acceleration computed with the finite element methods, it can be seen in 

Fig. 7 that small errors are present, especially for the Generalized– method with no numerical 

damping. Furthermore, the numerical wave speed and the numerical wave number can be ex-

tracted from the time history, so a comparison is reported in Table 4.  

Fig. 6. Two screenshots of the acceleration along the contact wire for the proposed method: 

a) t = 0.11 s, before the RTW meets the measuring point; b) t = 0.92 s, after the first reflec-

tion; red arrow: load point; green dot: measuring point.  

 
Fig. 7Fig. 8. Two screenshots of the acceleration along the contact wire for the proposed 

method: a) t = 0.11 s, before the RTW meets the measuring point; b) t = 0.92 s, after the 

first reflection; red arrow: load point; green dot: measuring point.  
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4.3. Moving load in a simplified overhead contact line and considerations on the influence of 

the bending stiffness 

A further step towards the analysis of a complete overhead contact line is made by considering 

the simplified catenary system shown in Fig. 8, without lumped masses. The load travels at 300 

km/h through two spans 60 m long each, with constant modulus P = 200 N. The proposed 

method has been applied with a modal truncation at approximately 300 Hz (N = 400), while the 

discretization adopted in the two FE models is obtained following the same procedure used so 

far. CFLN is set to 1 for the Bathe method, and to 0.65 for the Generalized-α method. In this 

case the wave speeds of the upper and lower wires are slightly different, so the minimum result-

ing h has been selected, following eq. (38). The final values are reported in Table 5.  

Fig. 7. Acceleration of the measuring point xM. Solid blue line: proposed method; dashed 

red line: Generalized– method (no numerical damping); dashed–dotted green line: Bathe 

method. 

 

 
Fig. 9. Acceleration of the measuring point xM. Solid blue line: proposed method; dashed 

red line: Generalized– method (no numerical damping); dashed–dotted green line: Bathe 

method. 

 

Table 4. Comparison between theoretical and numerical wave speed and wave number.  

 Analytical Proposed method Generalized–  Bathe  

Wave speed (m/s) 127.2482 127.2482 127.3278 127.2482 

Error (%) - 0 0.0625 0 

Wave number (m–1) 0.5291 0.5298 0.5302 0.5298 

Error (%) - 0.1325 0.2026 0.1325 

 

 
 
Fig. 10Table 2. Comparison between theoretical and numerical wave speed and wave number.  

 Analytical Proposed method Generalized–  Bathe  

Wave speed (m/s) 127.2482 127.2482 127.3278 127.2482 

Error (%) - 0 0.0625 0 

Wave number (m–1) 0.5291 0.5298 0.5302 0.5298 

Error (%) - 0.1325 0.2026 0.1325 
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In this case, because of the presence of elastic elements k12 and k02, the solution computed with 

the presented method is an approximation of the solution to the equilibrium eqs. (1), obtained 

using the comparison functions in eqs. (3). Before starting the time domain analysis, it is thus 

useful to investigate the frequency domain, comparing the natural frequencies and mode shapes 

of the structure, computed with both the proposed method and the finite element model. Since 

only transverse modes are taken into account in this study, the eigenvalues and eigenvectors re-

lated to the other degrees of freedom computed with the FE model are discarded. The natural 

frequencies of the contact wire are shown in Fig. 9, while the Modal Assurance Criterion of the 

first 6 modes is represented in Fig. 10. 

Table 5. Discretization adopted in numerical example 4.3 

 Generalized– method Bathe method 

Element size l (m) 0.08 0.08 

Time step h (ms) 0.30  0.47  

 

 
 

Fig. 6. Acceleration of the measuring point xM.  

a) Solid blue line: proposed method; dashed red line: Bathe method.  

b) Solid blue line: proposed method; dotted green line: Generalized– method (no numerical damp-

ing); dashed red line: Generalized– method (ρ∞ = 0.4). 

 
Fig. 13Fig. 14 

Fig. 8: Definition of the test problem: moving load in a simplified overhead contact line, 

where P = 200 N, k12 = 105 N/m, k02 = 1010 N/m, υ = 300 km/h, µ1 = 1.35 kg/m, µ2 = 1.07 

kg/m, EI = 168 Nm2, T1 = 20 kN, T2 = 16 kN. 

 

 
Fig. 11Fig. 12: Definition of the test problem: moving load in a simplified overhead con-

tact line, where P = 200 N, k12 = 105 N/m, k02 = 1010 N/m, υ = 300 km/h, µ1 = 1.35 kg/m, µ2 

= 1.07 kg/m, EI = 168 Nm2, T1 = 20 kN, T2 = 16 kN. 
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Fig. 9: Natural frequencies of the contact wire. a) Blue circles: proposed method; red cross-

es: FE method. b) Difference (%) between the two methods. 

 

 
Fig. 15Fig. 16: Natural frequencies of the contact wire. a) Blue circles: proposed method; 

red crosses: FE method. b) Difference (%) between the two methods. 
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Because of the high degree of consistency in both frequencies and mode shapes, time histories 

can be compared. Only the displacement and the acceleration given by the presented method are 

shown, since the displacements computed with the three different methods overlap almost per-

fectly, and the previous considerations on the accelerations still hold. In particular, Fig. 11 

shows the evolution of the system at different time instants, while Fig. 12 shows the displace-

ment and the acceleration of the contact wire at a distance xM = 20 m. Also, the total stress ex-

erted on the contact wire is represented. This is essentially composed by two components: the 

normal stress, i.e. the ratio of the tensile force to the area of the section, and the dynamic oscilla-

tions related to the bending of the wire. The latter is obtained evaluating the bending moment: 

2

1

1 1 2

( , )w x t
M K

x


= −


                                                                                                                   (43) 

where 2 2

1( , ) /w x t x  is the curvature of the contact wire, which can be analytically derived from 

eqs. (17) and (20).  

Fig. 10: Modal Assurance Criterion of the first 6 modes. 

 
 

Fig. 17Fig. 18: Modal Assurance Criterion of the first 6 modes. 
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The total stress is then: 

( , )
, 0

2

T M x t z d
z

A I
 = +                                                                                                      (44) 

where z is the vertical coordinate along the transverse section of the wire and has its maximum 

on the upper and lower borders.  

 

Fig. 11: Time evolution of the simplified overhead contact line model. Vertical arrows 

indicate the position of the load P. 
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A considerable part of the stress is due to the axial load and is constant, while the stress related 

to bending is variable. The dynamic stress is not negligible and provides a 20% increment of the 

total stress when the pantograph meets the measuring point. When a string model is adopted for 

the two wires (instead of a Euler-Bernoulli beam model), their bending stiffness becomes null 

and the resulting total stress is associated only to the axial force. The string model can be ob-

tained in the presented method by setting K = 0 for both the contact wire and the messenger 

Fig. 12: Results of the presented method for the measuring point xM = 20 m. a) Dis-

placement of the contact wire. b) Acceleration of the contact wire. c) Stress of the con-

tact wire. Dashed vertical lines: time instants when the lowest speed wave meets the 

measuring point. Continue vertical lines: time instants when either the load or the waves 

reflected due to the load meet the measuring point.  

 
 

Fig. 19Fig. 20: Results of the presented method for the measuring point xM = 20 m. a) 

Displacement of the contact wire. b) Acceleration of the contact wire. Dashed vertical 

lines: time instants when the lowest speed wave meets the measuring point. Continue 

vertical lines: time instants when either the load or the waves reflected due to the load 

meet the measuring point.  
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wire and leads to a non-dispersive wave propagation, i.e. to a constant wave speed. The effect 

can be seen in Fig. 13, showing a comparison between the two approaches in terms of accelera-

tion. This is the simplest wave propagation model and it is acceptable in many engineering 

problems. In the specific case of railway contact lines, the axial force is dominant and the bend-

ing stiffness can be neglected for low velocities of the pantograph. At high speeds, however, the 

bending stress might be important [5], as the fatigue fracture is one of the most critical failures 

in this framework [23]. The most stressed areas of the overhead contact line can be recognized 

in Fig. 14, which shows two contour plots of the total stress for the contact wire and the mes-

senger wire. It appears that the bending stress is particularly relevant in the areas close to the 

support of the messenger wire (60 m), close to the droppers (30 m and 90 m), and in contact 

with the pantograph.  

 

Fig. 13: Acceleration of the contact wire for the measuring point xM = 20 m. a) Non-

zero bending stiffness K = EI; b) Zero bending stiffness K = 0. 
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Fig. 14 gives also a representation of the propagation and the reflections of the waves that occur 

along the two wires, whose deeper analysis is suggested as follows. Referring to Fig. 12, as the 

load starts to travel at time t0 = 0 s with velocity υ, waves propagate from the zero position. The 

slowest wave with speed c1 will meet the measuring point after a time 1 1
0.16 sc Mt x c=  , 

when a change of slope in the displacement can be clearly observed. Before this instant, the ac-

celeration oscillates with an increasing period, meaning that higher wave modes travel faster, as 

expected. The moving load will meet the measuring point after a time 1 0 24 sMt x . =  , when 

another change of slope in the displacement can be observed, and when the acceleration shows a 

great discontinuity. After 1t u  reflections will occur due to both the propagation of the initial 

waves and the waves that start travelling each time the moving load meets an elastic connection 

(i.e. a dropper). In order to highlight the first reflections, a scheme is provided in Fig. 15.  

Fig. 14: Contour plot of the total stress in the spatial-time domain. a) Stress on the mes-

senger wire. b) Stress on the contact wire. 
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At each indicated instant (t1c , …, t2v) , as well as in following ones, a change of slope occurs in 

the displacement. This phenomenon is quite easily observed if just a small number of waves is 

considered. But it becomes more difficult to interpret when more waves start interfering, as it 

can be clearly observed in the acceleration time history of Fig. 12b. 

4.4. Dynamics of a complete overhead contact line under a moving load 

Finally, the dynamics of a complete catenary is investigated: ten spans are taken into account, 

60 m long each and including nine non–equally spaced droppers, according to [13]. Further-

more, there are two lumped masses on each dropper, representing the inertia of the dropper with 

its clamps, and a lumped mass at the end of each span in the contact wire, representing the iner-

tia of the registration arm. The system is shown in Fig. 16; the representation of the lumped 

masses is omitted. A similar system is studied in the benchmark proposed in [24] with the aim 

of studying the pantograph-catenary interaction. 

 

Fig. 15: Wave reflections related to the measuring point. Dashed arrows: time instants 

when the lowest speed wave meets the measuring point.  Continue arrows: time instants 

when either the load or the waves reflected due to the load meet the measuring point.  

 

 
Fig. 21Fig. 22: Wave reflections related to the measuring point. Dashed arrows: time in-

stants when the lowest speed wave meets the measuring point.  Continue arrows: time in-

stants when either the load or the waves reflected due to the load meet the measuring point.  
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All the phenomena discussed so far still are present, but they are not straightforward to observe 

due to the complexity of the considered system. In fact, reflections will occur almost as the load 

starts moving and the resulting acceleration time history is difficult to interpret, as can been seen 

in Fig. 17a, which shows the acceleration of the contact wire at 60 m. The proposed method has 

been applied with a modal truncation at approximately 300 Hz (N = 2000), while the discretiza-

tion of the FE model is the same of the previous case (Table 5). The probability distributions of 

the shown time histories are provided in Fig. 17b, while the statistical parameters are listed in 

Table 6. Some samples are distinctly out of a normal distribution for the following two reasons: 

the zero value before the arrival of the first waves, with a positive excess of kurtosis (3 being 

the kurtosis of the normal distribution); the peak caused by the load is related to the slightly 

negative skewness. Furthermore, the second and the third rows of Table 6 show the results ob-

tained when a 10th order Butterworth band-pass filter is applied to the time history computed 

with the proposed method and the FE model (Bathe), acting in the frequency band 0-20 Hz and 

20-300 Hz respectively. 

Fig. 16: Definition of the test problem: Dynamics of a complete overhead contact line 

under a moving load. P = 200 N, k12 = 105 N/m, k02 = 1010 N/m, υ = 300 km/h, µ1 = 1.35 

kg/m, µ2 = 1.07 kg/m, EI = 168 Nm2, T1 = 20 kN, T2 = 16 kN, m0 = 0.33 kg, m12 = 0.2 kg. 

 
 

Fig. 23Fig. 24: Definition of the test problem: Dynamics of a complete overhead con-

tact line under a moving load. P = 200 N, k12 = 105 N/m, k02 = 1010 N/m, υ = 300 km/h, 

µ1 = 1.35 kg/m, µ2 = 1.07 kg/m, EI = 168 Nm2, T1 = 20 kN, T2 = 16 kN, m0 = 0.33 kg, 

m12 = 0.2 kg. 
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Fig. 17: Acceleration of the contact wire at 60 m. a) Time domain - blue line: proposed 

method, red line: Bathe method. b) Probability distribution - blue bars: proposed method, 

red bars: Bathe method. 

 
 
 

Fig. 25: Acceleration of the contact wire at 60 m. a) Time domain - blue line: proposed 

method, red line: Bathe method. b) Probability distribution - blue bars: proposed method, 

red bars: Bathe method. 

 
 

Table 6: Statistical parameters of the acceleration with the proposed method and the Bathe 

method.  

  Proposed method Bathe method 

Original data 

Mean value µ (m/s2) 0.0629 0.0642 

Standard deviation σ (m/s2) 28.0166 26.0793 

Maximum value (m/s2) 94.9488 97.0298 

Minimum value (m/s2) -264.6728 -340.6061 

Skewness -0.6263 -0.9591 

Excess of kurtosis 5.1967 10.8141 

Filtered data 
(0-20 Hz) 

Mean value µ (m/s2) 0.0936 0.1224 

Standard deviation σ (m/s2)  8.2554 8.2540 

Maximum value (m/s2) 33.9019 33.9094 

Minimum value (m/s2) -35.0706 -35.1372 

Skewness -0.0716 0.0312 

Excess of kurtosis 1.5149 1.5743 

Filtered data 
(20-300 Hz) 

Mean value µ (m/s2) -0.01878 0.01926 

Standard deviation σ (m/s2)  26.9220 22.2560 

Maximum value (m/s2) 98.1242 81.0812 

Minimum value (m/s2) -177.6214 -241.3405 

Skewness -0.0709 -0.3584 

Excess of kurtosis 0. 2253 1.9097 
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It can be seen that the probability distributions of the two time histories are similar, especially if 

higher frequencies are filtered out. This statement is in agreement with the previous results, and 

it is confirmed by Fig. 18a, that shows the power spectral density (PSD) of the acceleration 

computed by the presented method and its absolute difference with respect to the PSD computed 

by the Bathe method. As expected, the difference is negligible at low frequencies, in particular 

up to 20–30 Hz, while it becomes relevant at higher frequencies. 

 

Discrepancies at high frequencies may depend on the settings of the two methods (modal trun-

cation for the proposed method and temporal/spatial discretization for the Bathe method), as 

well as possible numerical dispersion and dissipation. However, the current standard EN50318 

[13] limits the frequency range of interest to 20 Hz for a 10 spans overhead contact line. The 

structural configuration is responsible for a high modal density (hundreds of modes in this fre-

Fig. 18: Power spectral density of the acceleration of the contact wire at 60 m. a) Solid 

blue line: presented method; dashed red line: difference between the presented method 

and the Bathe method. b) Solid blue line: presented method; dashed red line: difference 

between the presented method and the Generalized-α method, with ρ∞=1; dashed green 

line: difference between the presented method and the Generalized-α method, with 

ρ∞=0.7; dashed yellow line: difference between the presented method and the General-

ized-α method, with ρ∞=0.2. 

 
 

Fig. 26Fig. 27: Power spectral density of the acceleration of the contact wire at 60 m. 

Solid blue line: presented method; dashed red line: difference between the presented 

method and the Bathe method. 
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quency range) as can be seen in Fig. 19, which shows the punctual receptance of the contact 

wire computed using eq. (29) when a harmonic load is applied at 60 m.  

These considerations are still valid when using the Generalized– method, and it is appropriate 

to use the presented method as a comparison in order to select the optimum value of the asymp-

totic spectral radius ρ∞ for this specific case. According to numerical simulations, the best re-

sults are achieved if ρ∞ ≈ 0.65-0.75 for a 10 spans railway catenary system. Indeed, an excessive 

increase in the numerical damping (i.e. ρ∞→0) would cause a loss of information in the frequen-

cy range of interest, while an excessive reduction (i.e. ρ∞→1) would generate high spurious 

modes. In both cases the method would produce an erroneous representation of the system dy-

namics. Fig. 18b shows the power spectral density (PSD) of the acceleration computed by the 

presented method and its absolute difference with respect to the PSD computed by the General-

ized– method for three different values of the spectral radius ρ∞.  

 

 

Finally, the evolution of the system in terms of displacements within different time instants is 

represented in Fig. 20. Only the results given by the presented method are shown: the displace-

ments computed using the three considered methods are almost equal if proper integration pa-

rameters are selected. The numerical cost for the two approaches is different from a computa-

Fig. 19: Punctual receptance of the contact wire when a harmonic load is applied at 60 m. 

 
Fig. 28Fig. 29: Punctual receptance of the contact wire when a harmonic load is applied at 

60 m. 



 
 

 

 

 
 

35 
 
 
 

tional point of view. Indeed, time integration schemes may require a low time step and a fine 

spatial discretization to obtain the desired accuracy. By contrast, the presented method is not 

based on a computation over time so the time step can be increased without affecting the accu-

racy of the solution. Also, the solution can be computed only in the points of interest, and the 

calculation can be very easily parallelized, each response being independent from the previous. 

In this context, the simulation runs in 4-6 minutes for the three methods on the same CPU. 

 

 

 

Fig. 20: Time evolution of the complete overhead contact line model. 

 
 

 
Fig. 30: Time evolution of the complete overhead contact line model. 
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5. Conclusions 

A distributed parameter model for wave propagation in two-level catenary systems has been de-

veloped and validated by means of numerical examples. The wires are modelled as two straight 

axis parallel beams forced by the moving load applied by the pantograph. The general solution 

is sought by an application of the Ritz–Galerkin method, leading to a form that automatically 

discards higher frequency modes. Although the proposed method can be extended to several 

configurations, the aim of this paper was to provide a valid reference for time integrations of fi-

nite element models of railway overhead contact lines. Two different integration schemes have 

been considered: the Generalized– method and the Bathe method. As a general rule, the solu-

tion sought by a FEM is always affected by numerical errors due to the discretization adopted. 

In the present study it has been highlighted how in the considered system numerical errors are 

mostly related to spurious wave modes. The behaviour of both methods has been investigated in 

different cases, taking the presented model as a reference. It is observed that as waves travel, the 

errors related to wave velocities and amplitudes can accumulate, thus producing a very errone-

ous numerical solution. 

Results have shown that errors produced by the FE models can be reduced implementing a nu-

merical dissipation technique, provided that a proper adjustment to the case study is performed. 

Some considerations about the settings of the integrations schemes have therefore been dis-

cussed, eventually obtaining a set of optimum parameters for the two algorithms. Particular at-

tention has been paid to the coupled dynamics of a complete overhead contact line. Indeed, op-

timal settings for this kind of systems are crucial in the investigation of pantograph-catenary 

contact dynamics, especially when considering a pantograph travelling at high speed. A compar-

ison with the proposed method has shown that proper settings can lead to a high degree of con-

fidence in the frequency range of interest, while discordances arise only at higher frequencies. 
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Appendix A. Nomenclature 

General nomenclature 

2

4 4

 total length of a single beam (wire) (m)

 diameter (m)

 mass per unit length (kg/m)

 constant axial load on a single beam (wire) (N)

 Young's modulus (N/m )

/ 64  area moment of inertia (m )

L

d

T

E

I d

=

=

=

=

=

= =





 

2

th

bending stiffness (Nm )

 flexural displacement (m)

0,  spatial coordinate

 position of the  intermediate support (registration arm and bracket)

 total number of intermediate supports

 

j

h

K EI

w

x L

x j

J

x

= =

=

 =

=

=

= th

0

position of the  connection between the wires (dropper)

 total number of droppers

 position in which a lumped non-moving force is applied to the contact wire

 equivalent lumped mass of a regis

F

h

H

x

m

=

=

=

12

0

12

tration arm (kg)

 equivalent lumped masses of a dropper, at the connections with the wires (kg)

 linear stiffness of a bracket (N/m)

 linear stiffness of a dropper (N/m)

 constant modulus of 

m

k

k

P

=

=

=

= the moving force applied to the contact wire by the pantograph (N)

 constant modulus of a lumped non-moving force applied to the contact wire (N)

 constant travelling speed of the pantograph (m/s)

 

F

t

=

=v

= time (s)

, proportional damping coefficients= 

 

FEM nomenclature 

1 1

1

 time step (s)

length of element (m)

vector of displacements at time instant ( 1)

FEM mass matrix

FEM damping matrix

FEM stiffness matrix

FEM forcing vector at time instant 

n n

n n

h

l

t h n

t

+ +

+

=

=

= = +

=

=

=

=

υ

M

C

K

f 1

Newmark coefficient

Newmark coefficient

Generalized–  method averaging coefficient

Generalized–  method averaging coefficient

Asymptotic spectral radius

m

f





 

 



+



=

=

=

=

=
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Figure captions  
 

Fig. 1.  Schematic of the distributed parameter model. 

Fig. 2. Definition of the test problem: non-travelling step force in a contact wire, where L = 200 

m, xF = 95 m, xM = 135 m, µ= 1.35 kg/m, EI = 168 Nm2, T = 20 kN, f=100 N. 

Fig. 3. Acceleration of the measuring point xM. Solid blue line: proposed method with propor-

tional damping; dashed red line: Generalized– method with no numerical damping and no 

structural damping; dashed-dotted green line: Generalized– method with no numerical damp-

ing and with proportional (structural) damping. 

Fig. 4.  Acceleration of the measuring point xM.  

a) Solid blue line: proposed method; dashed red line: Bathe method (l=0.1 m, h=7 10-4 s); 

dashed-dotted green line: Bathe method (l=0.03 m, h=2 10-4 s); 

b) Solid blue line: proposed method; dashed red line: Bathe method (l=0.08 m, h=5 10-4 s);  
b) Solid blue line: proposed method; dashed red line: Generalized– method (ρ∞ = 0.4, l=0.08 
m, h=3.7 10-4 s). 
 
Fig. 5. Acceleration of the measuring point xM during two time windows: before the RTW meets 
the measuring point (0.3202 s) and after the reflected LTW meets the measuring point (1.3610 
s). Solid blue line: proposed method; dashed red line: Generalized– method (no numerical 
damping); dashed–dotted green line: Bathe method. 
 
Fig. 6. Two screenshots of the acceleration along the contact wire for the proposed method: a) t 
= 0.11 s, before the RTW meets the measuring point; b) t = 0.92 s, after the first reflection; red 
arrow: load point; green dot: measuring point.  

 
Fig. 7. Acceleration of the measuring point xM. Solid blue line: proposed method; dashed red 
line: Generalized– method (no numerical damping); dashed–dotted green line: Bathe method. 
 
Fig. 8: Definition of the test problem: moving load in a simplified overhead contact line, where 
P = 200 N, k12 = 105 N/m, k02 = 1010 N/m, υ = 300 km/h, µ1 = 1.35 kg/m, µ2 = 1.07 kg/m, EI = 
168 Nm2, T1 = 20 kN, T2 = 16 kN. 
 
Fig. 9: Natural frequencies of the contact wire. a) Blue circles: proposed method; red crosses: 
FE method. b) Difference (%) between the two methods. 
 
Fig. 10: Modal Assurance Criterion of the first 6 modes. 
 
Fig. 11: Time evolution of the simplified overhead contact line model. Vertical arrows indicate 
the position of the load P. 
 
Fig. 12: Results of the presented method for the measuring point xM = 20 m. a) Displacement of 
the contact wire. b) Acceleration of the contact wire. c) Stress of the contact wire. Dashed verti-
cal lines: time instants when the lowest speed wave meets the measuring point. Continue verti-
cal lines: time instants when either the load or the waves reflected due to the load meet the 
measuring point.  
 
Fig. 13: Acceleration of the contact wire for the measuring point xM = 20 m. a) Non-zero bend-
ing stiffness K = EI; b) Zero bending stiffness K = 0. 
 
Fig. 14: Contour plot of the total stress in the spatial-time domain. a) Stress on the messenger 
wire. b) Stress on the contact wire. 
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Fig. 15: Wave reflections related to the measuring point. Dashed arrows: time instants when the 
lowest speed wave meets the measuring point.  Continue arrows: time instants when either the 
load or the waves reflected due to the load meet the measuring point.  
 
Fig. 16: Definition of the test problem: Dynamics of a complete overhead contact line under a 
moving load. P = 200 N, k12 = 105 N/m, k02 = 1010 N/m, υ = 300 km/h, µ1 = 1.35 kg/m, µ2 = 1.07 
kg/m, EI = 168 Nm2, T1 = 20 kN, T2 = 16 kN, m0 = 0.33 kg, m12 = 0.2 kg. 
 
Fig. 17: Acceleration of the contact wire at 60 m. a) Time domain - blue line: proposed method, 
red line: Bathe method. b) Probability distribution - blue bars: proposed method, red bars: Bathe 
method. 
 
Fig. 18: Power spectral density of the acceleration of the contact wire at 60 m. a) Solid blue 
line: presented method; dashed red line: difference between the presented method and the Bathe 
method. b) Solid blue line: presented method; dashed red line: difference between the presented 
method and the Generalized-α method, with ρ∞=1; dashed green line: difference between the 
presented method and the Generalized-α method, with ρ∞=0.7; dashed yellow line: difference 
between the presented method and the Generalized-α method, with ρ∞=0.2. 
 
Fig. 19: Punctual receptance of the contact wire when a harmonic load is applied at 60 m. 
 
Fig. 20: Time evolution of the complete overhead contact line model. 

 

 


