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Abstract 

The laser additive manufacturing techniques (LAM) are of growing interest in 

different industries due to their capacity to produce near net shape components in a 

single step. Particularly in the case of the Ni-based superalloys, LAM processes can 

produce highly complex shape components more cheaply with respect to the 

traditional technologies.  

However, nowadays, there is still a lack of knowledge on the study of the 

process parameters on the microstructure and densification levels and the study of 

tailored heat treatments to meet standard qualification as well as precise industrial 

requirements. 

This thesis presents the research performed on two Ni-based superalloys 

produced by LAM processes. Inconel 625 (IN625) fabricated by laser powder bed 

fusion (LPBF) and directed energy deposition (DED) and Hastelloy X (HX) built 

by LPBF. 

For LPBF IN625 alloy was studied the effect of different process parameters 

on the hardness and densification level, obtaining dense samples (relative density 

over 99.8 %). Afterward, it was studied in detail the microstructure, mechanical and 

thermomechanical properties of as-built IN625. The results showed that the tensile 

behaviours of as-built IN625 state are higher than minimum values requirements 

for wrought IN625 alloys, due to very fine dendritic structures (mainly less than 1.5 

micron) coupled with high dislocation density. However, the characterisation of as-

built IN625 samples revealed that heat treatments are necessary to decrease the 

residual stresses, reduce elements segregation, and produce mechanical properties 

suitable for industrial applications. For this reason, the microstructural evolution of 

LPBF IN625 under different heat treatments was investigated. According to the 

performed heat treatment, the mechanical properties of heat-treated IN625 were 



 

influenced by phases precipitation (mainly γʺ phases and carbides) and/or 

recrystallisation, grain growth and dissolution of dendritic structures. 

For DED IN625 alloy, the aim of this work was to determine the impact of 

different process parameters on the densification level (relative density over 99.7 

%), hardness and microstructure in order to select the appropriate parameters for 

industrial production. 

Finally, LPBF HX alloy was studied in a research collaboration with GE AVIO 

s.r.l. The target of this work was to investigate the microstructure of as-built and 

post-processed LPBF HX alloy. The as-built HX samples showed different 

microcracks caused by the LPBF process, so some samples were hot isostatically 

pressed (HIPed) to close the microcracks. The microstructure, grain size, phases 

and hardness of the as-built, heat-treated and HIPed HX samples were investigated. 

The results revealed that in case microcracks appear during production, they can be 

removed after specific post processing, generating LPBF HX parts with grain size 

similar to standard solution heat-treated (SHT) wrought HX alloy. 
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Chapter 1 

Introduction  

This chapter gives a review of the significant literature on the basics metallurgy 

of superalloys, considering in detail the characteristic of Hastelloy X (HX) and 

Inconel 625 (IN625) alloys. 

The chapter further presents the microstructures of Ni-based superalloys by two 

laser additive techniques, laser powder bed fusion (LPBF) and directed energy 

deposition (DED), also indicating the main advantages and drawbacks. 

1.1 Categories of superalloys  

Superalloys can be commonly divided into three primary categories: 

 Fe,Ni-based alloys; 

 Ni-based alloys; 

 Co-based alloys; 

The classification of some superalloys is provided in Table 1. 
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Table 1: Classification of some superalloys [1,2]. 

 

All the type of superalloys share a common basic microstructure, which 

consists of an austenitic (γ) matrix with face-centered cubic (fcc) crystal structure, 

coupled with different dispersed secondary phases [1–4].  

Ni-based superalloys are characterised by high strength at high-temperature, 

which is excellent for the production of turbine blades and disks for aircraft or 

industrial gas turbine parts. According to the application, they can be used as both 

cast and wrought conditions. Wrought processes produce materials with higher 

ductility and toughness than cast alloys, whereas cast alloys have larger grains than 

wrought alloys, resulting in enhanced creep resistance. Therefore, wrought Ni-

based superalloys are frequently used for the fabrication of turbine discs and forged 

blades. For instance, some wrought Ni-based alloys are Udimet 700, Rene 41, 

Waspaloy, N-901, and Udimet 630. Differently castings Ni-based superalloys are 

used for high-temperature applications, as investment-cast turbine blades. Some 

cast Ni-based alloys are represented by Inconel 713 and 738 alloys, or MAR-M200. 

The Ni-based superalloys can be mainly reinforced by solid solution strengthening 

or by precipitation strengthening mechanisms [2,4]. 

Fe,Ni-based superalloys are mainly used in application such as turbine discs or 

forged rotors, in which high toughness and ductility are required. For these reasons, 

they are mainly used as wrought state, which is considered more ductile than cast 

materials, as mentioned before. These superalloys are cheaper than other types of 

superalloys, owing to the large quantity of Fe added. Also in this case, they can be 

solid solution strengthened or precipitation strengthened alloys [3]. 

Finally, Co-based superalloys are often used for components that require high 

hot corrosion resistance or low-stress structural applications at moderate to high 

temperatures, such as vanes or other components in gas turbine engines. These 

Ni-based Fe,Ni-based Co-based 
Inconel 

(600,617,625,718) 
Incoloy 

(800,801,802,825,903) 
Haynes 188 

Nimonic (75,80A,90) A-286 L-605 
Rene (41,95) Alloy 901 MAR-M918 

Astroloy Discaloy MP35N 
Hastelloy (X,C-22,G-

30) 
Haynes 556 MP159 

Waspaloy H-155 Stellite 6B 
Haynes 230 N-155 J-1570 
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alloys are fabricated by both cast or wrought processes, depending on the 

mechanical characteristics required. For instance, some alloys are X-40, MAR-M 

302, Haynes 188. These alloys are mainly solid solution strengthened alloys, and 

they are only reinforced by carbides, having a less strengthening effect with respect 

to γ΄ and γʺ phases [2,4]. However, an exception is J-1570 alloy, which presents 

strengthening from Ni3Ti precipitation, although it is not a valid alternative to 

precipitation hardened Ni-based superalloys [2]. 

The research presented in this thesis deals with HX and IN625 alloys, which 

are two solid solution strengthened Ni-based superalloys. However, the mechanical 

properties of these alloys can drastically change, mainly due to the formation of 

carbides for HX alloy and several phases such as carbides, gamma double prime 

(γʺ) phases as well as delta (δ) phases for IN625 alloy, during service at high 

temperature or heat treatments. The formation of these phases can have both a 

positive or adverse effect on their mechanical properties depending on their size, 

shape, and position inside the alloys [5,6]. 

1.1.1 Solid solution strengthened superalloys 

Solid solution strengthening mechanism derives from the addition of different 

soluble elements. These elements distort the lattice parameters of the matrix due to 

the different atomic radius, hindering the dislocation movement. Therefore, solid 

solution strengthening is correlated to the atomic size difference, generally up to a 

maximum difference of around 10 % in atomic size [2]. In order to create greater 

lattice distortion and reduce diffusion, high melting point elements are added.  

Solid solution strengthening decreases the stacking fault energy in the crystal 

lattice, resulting in inhibition of dislocation cross slip, which is the primary 

deformation mode in imperfect crystals at high temperatures [2]. A lower stacking 

fault energy makes it more arduous for dislocations to alter the directions. In this 

way, when a dislocation hits a barrier, it is more laborious for the dislocation to be 

able to bypass that barrier by moving onto a new slip plane [3]. 

Regarding the fcc structures, the low stacking fault energy of superalloys bring 

to three connected effects: 

• Dissociation of dislocations into partials; 

• Generation of hexagonally close-packed (hcp) stacking fault ribbons; 

• Improved adversity of movement of dislocations from fcc matrix to hexagonal 

close-packed (hcp) fault; 
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Finally, atomic clustering or short-range order can also reinforce the matrix. 

The effect is attributed to the electronic orbitals, and it is more intense for some 

elements such as Mo, W, Cr and Al, involving an enhanced hardening impact on 

the austenitic matrix, compared with Fe, Ti, Co, V [2]. Strengthening effect due to 

short-range order decreases rapidly above about 60 % of the absolute melting 

temperature (0.6Tm) due to the enhancement of diffusion mechanisms.  

In fact, above this temperature (0.6Tm), creep and strength are significantly 

influenced by diffusion, reducing the mechanical properties. In this case, the use of 

heavy elements is suitable thanks to their lower diffusion rates, but they also tend 

to increase alloy density and provoke the formation of detrimental phases, mainly 

located in interdendritic or grain boundary areas [2]. 

1.1.2 Precipitation strengthened superalloys 

By precipitation strengthening mechanism, it is possible to increase the 

mechanical properties and creep strength of alloys for elevated temperature 

applications.  

In the case of Ni-based superalloys, the addition of elements such as Al, Ti and 

Nb promote the formation of strengthened phases. Two of the most significant 

coherent precipitates are intermetallic compounds γ -Ni3(Ti,Al) or γ -Ni3Nb phase, 

which can hinder the movement of dislocations. In this case, the movement of a 

dislocation within the austenitic matrix can occur by cutting through or by 

overtaking the particles. However, the precipitates should have a precise 

characteristic to provide a reinforcing effect [2,7]: 

• Coherency strains between the austenitic matrix (γ) and the formed phases (γ , γ );  
• Antiphase-boundary (APB) energy correlated to an ordered precipitate (γ , γ ); 
The APB denotes the energy necessary to the dislocation to cut through the ordered 

precipitate because cutting could result in disordering between the matrix and 

precipitate. 

• Volume fraction of the precipitate (γ , γ ); 
• Particle size; 

 

The strengthening obtained using coherent strains and ordering increases with 

particle size since these two mechanisms require that dislocations cut through the 

particle.  
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However, the increment in strength coupled with increasing particle size is 

restricted by Orowan bowing, where the dislocation will bypass too large particle. 

The strengthening effect, in this case, is given by the extra work needed for the 

dislocation to alter its path [2,7]. 

1.2 Phases formed  

The following paragraphs will describe the main precipitates present within the 

superalloys. 

1.2.1 Gamma prime (γ΄) phase 

γ    Ni3(Al,Ti) phase is considered one of the most important strengthening phase 

in a significant number of Ni,Fe and Ni-based superalloys [2,3,8]. γ΄ is an fcc 

intermetallic compound, showing coherency with the γ matrix. Typically, γ    phases 
are dispersed throughout the matrix, strengthening the alloys by means of Orowan 

mechanism. Even though, elevated thermal exposures can promote the formation 

of intergranular film of γ    phase, which can play a role in avoiding the grain growth 

for prolonged thermal exposures [2,9]. The morphology of this phase is strongly 

correlated to the lattice mismatch that depends on heat treatment and chemical 

composition. A lattice mismatch difference from 0 % to 0.2 % involves spherical 

precipitate (Figure 1a); between 0.5 % and 1.0 %, a cuboidal precipitate (Figure 

1b); over 1.25 %, a plate-like precipitate (Figure 1c) [8,9]. 

The spherical shape reduces the surface energy, but when the lattice mismatch 

becomes larger, the change to cuboidal morphology stemmed from the necessity to 

minimise elastic energy [8]. The lattice parameter of the γ matrix increases more 

drastically with increasing temperature than the lattice parameter of the γ    phase, 
thus generating a progressively negative lattice mismatch at high temperatures 

where creep is an issue [10]. The higher lattice mismatch between γ/γ    enhances 
creep life in single-crystal Ni-based superalloys since the γ/γ    interface is a barrier 
to mobile dislocations [8].  

As the lattice mismatch is further increased, the interfacial dislocations become 

more strictly spaced and act as a vigorous barrier to mobile dislocations shearing 

through the interface. Besides, the dimension of the γ    phase is also fundamental to 
give remarkable precipitation hardening, because the hardening normally improves 

with particle size, until the particle reaches a critical size. However, it is important 

to avoid temperatures superior to around 0.6Tm and superior to the solvus 

temperature of γ    phase. In the first case, the temperature involves a coarsening 
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effect on γ΄ phase, making easier the dislocation bypassing, whereas in the other 

case, the temperature dissolves the γ΄ phases. In both cases, the thermal exposures 

cause a reduction of mechanical properties.  

Finally, it is interesting to note that for superalloys with high Ti/Al ratios, γ΄ 
phase tends to transform into  phase for continued service at high temperature. 
This last phase has a hcp structure and can form intergranular cellular shape or 

intragranular acicular platelets in a Widmanstätten pattern [2].  
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Figure 1 - TEε images showing different γ΄ phase shapesμ (a) fine spherical γ΄ 
phases within Inconel 718 plus alloy [11], (b) cuboidal γ΄ phases along  <100> direction 
within a Ni-8.5Al-5.4Ti alloy [12], (c) plate-like γ΄ phases within Ni-12at%Al alloy [13]. 

1.2.2 Gamma double prime (γʺ) and δ phases 

γ  Ni3Nb precipitate is the main strengthening phase for superalloys rich in Nb, 

such as Inconel 718 and 625 alloys. This phase presents a coherent body-centred 

tetragonal (bct) exhibiting a disc-shaped morphology (Figures 2a and 2b), generally 

with a thickness of 10 nm and a diameter of 50 nm [3]. This phase is usually 

scattered throughout the austenitic matrix with nanometric size, strengthening the 

alloys by means of Orowan mechanism [2,5,14]. 

For these alloys, the heat treatments must be correctly tailored to ensure the 

formation of γʺ phases instead of δ (Ni3Nb) phases. In fact, this precipitate is 

metastable, and for prolonged thermal exposures, typically higher than 650 °C 

[2,15], γ  phase is transformed in acicular orthorhombic  phase (Figure 2c), 
leading to a severe degradation of the mechanical properties [5]. In this last case, it 

is necessary to perform heat treatment above the δ solvus (around 1000 °C), in order 

to increase the mechanical properties. However, the formation of a small amounts 

of δ phases can also have a positive effect to control the grain growth, and so 

improving tensile properties and fatigue resistance [3]. 
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Figure 2: (a) FESEM image of IN625 alloy showing disc-shaped γʺ phases after 
thermal exposure at 700 °C for 1000 hours [15]; (b) TEM image of IN625 alloys showing 

γʺ phases after ageing at 700 °C for 100 hours [16]; (c) FESEM image of IN625 alloys 

showing acicular  phases after thermal exposures at 800 °C for 1000 hours [15]. 
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1.2.3 Carbides  

The morphology, size and position of the carbides play an important factor for 

improving or decreasing the mechanical properties of the superalloys, especially at 

elevated temperatures [2]. Carbides are commonly present in all kinds of 

superalloys, and they tend to form mainly along the grain boundaries and twin 

boundaries, generating film of carbides or fine inter/intragranular disperse carbides, 

during thermal exposures. In the first case, this type of morphology render the alloy 

affected to brittle intergranular fracture. On the contrary, in the second case, they 

hinder the movement of dislocation hardening the alloy (Orowan mechanism), and 

in particular fine intergranular carbides can also obstruct the grain boundary slip 

during creep, and inhibit the grain growth during thermal exposures [2,17,18]. 

It is possible to distinguish between primary carbides, which are generated 

during the solidification process, and secondary carbides, which are formed during 

thermal exposures [3]. The primary carbides commonly assume the formula of MC 

and M6C, with “ε” indicating several elements, as reported in Table 2 [2,3]. 

Primary εC carbides mainly present fcc crystal structure, where “ε” can be Nb, 
Ti, Ta, W, which are formed as discrete blocky particles or as eutectic phases during 

casting solidification. During the solidification process, these carbides form as 

various particles scattered throughout the material, within intragranular and 

intergranular regions. Besides, thermal exposures over 1038 °C can provoke the 

formation of secondary MC carbides, having the same shape of primary MC 

carbides [3]. Primary M6C carbides having fcc crystal structure, where M is 

predominantly rich in refractory elements such as Mo and W, commonly form 

blocky particles along the grain boundaries [2,3]. Thermal exposure commonly 

between 816 and 982 °C can promote the formation of secondary M6C carbides, 

when the concentration of Mo plus W is around 6-8 at % for Ni-based superalloys 

and about 4-6 at % for Co-based superalloys [2,19]. However, the decomposition 

of primary W-rich MC carbides can generate areas rich in W, reaching the condition 

to form secondary M6C carbides, for alloys with a low level of Mo and W. 

Furthermore, M6C carbides are more beneficial to control the grain size during 

processing of wrought alloys than other types of carbides [2,3]. During thermal 

exposure, the decomposition of MC carbides can result in the formation of M23C6 

carbides, which is a Cr-rich carbide (M predominately consisted of Cr).  

The M23C6 carbides is generally formed for thermal exposures around 790-816 

°C, and they can form film of carbides along the grain boundaries, generating brittle 

areas that represent a favourite path for crack growth, leading to a decrease in stress-
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rupture strength and ductility, as mentioned before. Besides, the formation of this 

type of carbides cause depletion of Cr within the austenitic matrix, reducing the 

corrosion resistance, involving intergranular stress corrosion cracking, so their 

amount and size must be controlled. Differently, it is also possible to have 

dispersing fine intra/intergranular M23C6 carbides, which can reinforce the material. 

However, at high temperatures, M23C6 carbides also can form agglomerates, 

generating some coarse carbides on the grain boundary, promoting crack initiation 

sites [2,3]. 

Finally, among other types of carbides, it is possible to mention, the secondary 

Cr-rich M7C3 carbides, which are generally intergranular carbides having 

discontinuous blocky particle shape. This carbides has been observed only observed 

in some Co-based superalloys and in Nimonic 80A for heat treatment over 999 °C 

[2,3,19].  

The formation of carbides during thermal exposure clearly can reduce the 

amount of different elements such as Nb, Mo and W within the austenitic matrix, 

generating areas depleted of these elements. In a similar condition, the stresses may 

be dissipated along these depleted areas close to the grain boundaries, instead of 

along the intergranular carbides [2]. It should be noted that there are other type of 

carbides MxCy in superalloys, which derive from different coefficient of “x” and 
“y”. For instance, the carbides from M3C to M13C are typically reported as M6C, 

because it is difficult to distinguish among them, due to similar characteristics [20]. 

The main characteristic of the different carbides reported above are listed in 

Table 2, while some micrographs of carbides in superalloys are shown in Figures 

3.  
Table 2: Characteristic of typically carbides observed in superalloys [3]. 

Phase Crystal structure M elements 
Temperature 

(°C) 

MC 

Cubic 

M is Ti, Nb, Ta, Hf, Th, Zr 

with some solubility for Ni, Zr, 

Mo 

Over 1038 

M23C6 

Fcc 

M is mainly Cr with some 

solubility for Ni, Co, Fe, Mo and 

W 

790 – 816 
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M6C 

Fcc 

M is mainly Mo and W with 

some solubility for Cr, Ni, Nb, 

Fe, Ta and Co. 

816 - 982 

M7C3 hexagonal M is generally Cr Over 999 
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Figure 3:(a,b) OM image of Inconel 738 showing MC and M23C6 carbides 

adapted from [21]; (c) FESEM image of GH984 alloy showing intergranular 

particle and film of M23C6 carbides adapted from [22]; (d) FESEM image of HX 

alloy showing M6C and M23C6 carbides adapted from [23]; (e,f) SEM images of 

Ni-Cr-W alloys showing intergranular M23C6 carbides adapted from [24]. 

1.2.4 Borides 

Borides are hard refractory phases, with blocky or half-moon shapes. These 

particles are typically formed at grain boundaries since B has low solubility in the 

matrix and so tends to segregate at grain boundaries. Borides are formed in Ni-Fe, 

and Ni-based superalloys with a concentration of B superior to 0.03 % wt and they 

can reinforce the alloy similarly to carbides [2]. Boride typically revealed in 

superalloys are M3B2 borides having tetragonal crystal structures, and they can be 

rich in Mo, Ta, Nb, Ni, Fe or V.  Even though B content is closely checked in 

superalloys, borides are reported in brazed joints of superalloys when low melting-

point Ni-Cr-B brazing alloys are employed [2,24]. It is reported that the very low 

concentration of B (a few part for million) can promote the cracking of the heat 

affected zone in the welding of Ni-based superalloys [2,24]. 

1.2.5 Sulfocarbides 

S has been reported to be extremely harmful to the stress-rupture life of Ni-

based alloys for quantity around superior to 50 ppm [2]. This chemical element 

highly segregates to grain boundaries and particularly to carbide-matrix interfaces 

[25]. The presence of S and C can result in the generation of sulfocarbides (M2SC), 

which have been noted in the interdendritic zones of cast alloys in both plate and 

hexagonal forms [3,26]. The M2SC exhibits a hexagonal crystal structure, with 

small lattice mismatch to the fcc structure of MC carbides, and these particles can 
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provoke cracks propagation. However, it is more detrimental the presence of S 

element within the grain boundaries than sulfocarbides [26]. 

1.2.6 Nitrides 

Among the most common nitrides in superalloys, it is possible to find TiN, 

HfN, and NbN, with square or rectangular shapes, having cubic crystal structure 

[2,3]. Nitrides form in the liquid phase just before solidification, and they are 

nucleation sites both for primary MC carbides and for grains [27–29]. Therefore, 

the presence of nitride can compromise the directionally solidified alloys [27]. 

Nevertheless, they are usually present in small amounts, without having significant 

effect on mechanical properties [2]. The Nitrides are insoluble to the melting point 

of the alloy, and consequently, they are not influenced by heat treatment [2]. 

1.2.7 Topologically Close-Packed Phases 

Topologically close-packed (TCP) are frequently plate-like or needle-like 

phases, which are harmful phases, and extensive effort has been made to avoid 

compositional ranges, that can provoke their significant formation during service 

or thermal exposures. The internal structure of these phases consisted of atoms, 

which are close-packed in layers that are separated by intervening layers of 

relatively large atoms. The TCP phases typically found in superalloys include σ-

AxBy, -Ax By , and δaves-A2B phases, where A is Fe, Ni or Co, and B is Nb, Mo, 

Ta, Cr.  

σ phase is commonly reported in Fe-Ni and Co-based superalloys for prolonged 

thermal exposure from 540 °C to 980 °C, whereas it is rarely found in Ni-based 

superalloys, having tetragonal crystal structure. The phase has typically irregularly 

shaped globules, or elongated forms and it could be exchanged for M23C6 carbides 

[2,3,30]. 

 phases is found in alloys enriched in Mo or W for prolonged thermal 

exposures, they have typically a rhombohedral crystal structure. This phase can 

exhibit coarse, irregular Widmanstatten platelets shapes, revealing a morphology 

similar to M6C carbides [2].  

Finally, Laves phases are typical in Fe-Ni base and Co-based superalloys, 

having hexagonal crystal structure, that appears as irregularly shaped globules, or 

as platelets after prolonged thermal exposures. This phase can be both formed by 

eutectic reaction in Nb-rich superalloys or for prolonged thermal exposures at high 

temperature (approximately around 727-1093 °C ) [3,31,32].  
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These brittle phases tend to form along the grain boundaries acting as an 

obstacle to dislocation motion, which results in dislocation pile-ups at the 

precipitate interface, reducing the cohesion at the interface, thus promoting crack 

initiation. As a result, their formation can drastically reduce rupture strength and 

elongation at break as well as creep resistance [2,14,33]. Besides, these phases 

consume a high percentage of refractory elements such as Mo and W, which lessen 

the austenitic matrix of such solid-solution-hardening elements. The formation of 

tcp phases can be reduced by acting on the chemical compositions, tailoring the 

concentration of Cr, Mo, and W [2].  

Some techniques have been studied to determine the susceptibility of any 

particular alloy to tcp-phase formation. For instance, the electron vacancy method 

(Nv), embodied in PHACOMP [14], has been used to determine σ, , and δaves 
phases formation in superalloys [2,34]. This method considers the correlation 

between tcp-phase precipitation and the number of electron vacancies in the γ 
matrix. Ni,Fe-based superalloys reveal a greater tendency to form tcp phases since 

the electronic structure of Fe has four vacant d sites and this structure tend to form 

intermetallic with extremely low interatomic distances, i.e., the δaves and σ phases 
[2]. Figures 4a, 4b and 4c show some examples of the morphology of σ, µ and δaves 
phases, respectively.  
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Figure 4μ (a) TEε image of HX alloy showing intergranular σ phases adapted from 
[20]; (b) TEM images of HX ally exhibiting M6C, M23C6 carbides and µ phases adapted 

from [20]; (c) FESEM image of IN625 plus alloy showing Laves phases with eutectic-

like morphology [35]. 

1.3 Effect of the specific elements within superalloys 

The base elements in superalloys are crucial in determining its microstructural 

evolution and properties, such as tensile strengths and corrosion resistance. 

Superalloys contain a large combination of chemical elements in order to generate 

the desired properties [2,3].  

The austenitic matrix can be reinforced by solid solution strengthening by 

adding different elements like Cr, Mo. The presence of Cr and Al promote Cr2O3 

and Al2O3 formation on the external surface of the superalloys, respectively. These 

oxides increase the oxidation resistance. Elements such as Ti, Al, Nb can lead to 
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the formation of secondary phases involving a further strengthening effect. There 

are also some useful minor elements, which can improve determined properties in 

superalloys. C and B are added to promote the carbides and borides formation, 

which can be helpful in precise condition. Instead, B, Zr and Hf are added to give 

grain boundary effects other than precipitation or carbide formation.  

Finally, detrimental tramp elements, such as Si, P, S, P, Ag often in amounts of 

parts-per-million level, have been correlated to mechanical properties reduction, 

since they tend to segregate in grain boundaries and reduce the cohesive energy 

between grains generating crack propagation sites. In this case, Mg can be added 

for tramp elements control since it tends to tie up and eliminate some harmful 

elements such as S in the solid solution state, whereas Ti tends to form TiN using 

N within the matrix austenitic. 

Table 3 provides a summary of the main effects of the chemical elements within 

the three categories of superalloys [2,3]. 

Table 3: Effect of alloying elements in superalloys [3]. 
Effects Fe,Ni-base Ni-base Co-base 

Solid-solution 
strengtheners 

Cr,Mo Nb, Cr, Mo, 
Ni, W, Ta 

Co, Cr ,Fe, Mo, W, 
Ta ,Re 

Form MC Ti, C Ti, C W, Ta, Ti, Mo, Nb, 
Hf, C 

Form M7C3 - Cr, C Cr, C 
Form M23C6 Cr, C Cr, C Cr, Mo, W, C 
Form M6C Mo Mo, W Mo, W, Nb 

Form 
Carbonitrides 

C,N C,N C, N 

Form γ΄ phase Al, Ni, Ti - Al, Ti 
Form γʺ phase Ni, Nb Nb - 

Retardant for η Al, Zr - - 
Oxidation 

resistance 
Cr Al, Cr Al, Cr, La, Ce 

Grain boundary 
refiners 

- - B, C, Zr, Hf 

1.4 Heat treatments for superalloys 

Heat treatments are a fundamental process in order to obtain the desired 

microstructure and mechanical features for superalloy components [2,3,36]. The 

heat treatment can be classified into 4 types: 
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1) Annealing treatment is performed to trigger recrystallisation and grain  growth, 

reducing hardness of the materials.  

The annealing treatment, therefore, is used at least for one of the following 

objectives: 

A. Increase the ductility and so reduce the hardness, to make easier the 

forming or machining; 

B. Relieve residual stresses (e.g. after welding process); 

C. Produce specific microstructure features, or soften age hardened structures 
by resolution of second phases. 

D. To homogenise a cast ingot. 

 

Temperatures vary widely, depending on alloy and working service. 

Occasionally, when final application components are being shaped (e.g., forging of 

a gas turbine disk), reheating for hot working is limited to temperatures that do not 

solubilise all secondary phases since these phases at grain boundaries limit the grain 

growth. The temperature and time of some typical annealing treatments for wrought 

superalloys are listed in Table 4. 
Table 4: Common annealing treatments for wrought superalloys [3]. 

Fe,Ni-based alloys Temperature (°C) Holding time for 

inch of section (hours) 

19-9 DL 980 1 

A-286 980 1 

Discaloy 1035 1 

Ni-based alloys   

Hastelloy X 1175 1 

Inconel 625 980 1 

Inconel 718 955 1 

Nimonic 80A 1080 2 

Waspaloy 1010 4 

Co-based alloys   

L-605 1230 1 

S-816 1205 1 
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2) Solution heat treatment is typically performed between 1040 °C and 1230 °C, 

just under below the incipient melting temperature. 

The temperature of the solutioning treatments is higher than the annealing ones, 

because it is mainly applied to dissolve secondary phases dispersed within the 

alloys. Although, solutioning treatments may not fully dissolve all second phases 

as MC carbides.  

Another function of this heat treatment is to homogenise the microstructure by 

means of solid state diffusion, and to eliminate microsegregations, generating a 

more uniform distribution of the elements. 

Finally, it can also induce recrystallisation and grain growth, obtaining 

maximum ductility. For the same alloy, the solutioning generates larger grains than 

the annealing treatments. Table 5 provides some common solution heat-treated 

(SHT) conditions for wrought superalloys. 

 
Table 5: Common SHT treatments for wrought superalloys [3]. 

Fe,Ni based alloys 
Temperature 

(°C) 

Time 

(hours) 
Cooling 

A-286 980 1 Oil quench 

Discaloy 1010 2 Oil quench 

Ni-based alloys    

Hastelloy X 1175 1 Rapid quench* 

Inconel 625 1150 2 Rapid quench* 

Inconel 718 980 1 Air cool 

Nimonic 80A 1080 8 Air cool 

Waspaloy 1080 4 Air cool 

Co-based alloys    

L-605 1230 1 Rapid cool 

*It is necessary to cool down rapidly at 540 °C to avoid the formation of precipitates. 

3) Ageing treatments promote the formation of strengthened phases, such as γ    and 
γ  phases or secondary carbides, also controlling the formation of detrimental 
phases. 
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It is interesting to note that some alloys present a double ageing treatment. For 

instance, U- 500 is double aged for the stabilization of grain boundary carbides, in 

order to obtain a compromise between tensile strength and stress-rupture life. 

 

The heat treatments are the following: 

 

• SHT at λ82 °C for 4 h (air cooled); 
• Stabilised at 843 °C for 24 h (air cooled); 
• Aged at 7θ0 °C for 1θ h (air cooled); 
 

The solution treatment dissolves all phases exclude MC carbides. Afterwards, 

the cooling promotes the formation of γ΄ precipitate nucleates. The stabilization at 

843 °C provokes the formation of fine intergranular M23C6 carbides as well as more 

γ΄ phases. Finally, the second ageing treatment increases the volume fraction, and 

possibly the number, of γ΄ precipitates.  

These heat treatments modify the original microstructure allowing the 

improvement of stress-rupture life and reinforcing the alloys by the formation of 

fine intergranular M23C6 carbides and γ΄ phases within the alloys. However, 

overageing can have detrimental effects producing undesirable or too large 

precipitates.  

For example, overageing of A-28θ at θη0 °C results in γ    →  transformation, 
and overageing of Inconel 718 leads to in γ  →  transformation. 
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Some typical ageing treatment conditions for wrought superalloys are given in 

Table 6. 

 
Table 6: Common ageing treatments for wrought superalloys [3]. 

Fe,Ni based alloys 
Temperature 

(°C) 

Time 

(hours) 
Cooling 

A-286 720 16 Air cool 

Discaloy 730 20 Air cool 

Ni-based alloys    

Inconel 718* 
1° step720 

2° step 620 

1° step 8 

2° step 8 
Air cool 

Nimonic 80A 705 16 Air cool 

Waspaloy* 
1° step 845 

2° step 760 

1° step 24 

2° step 16 
Air cool 

Co-based alloys    

S-816 760 12 Air cool 

*double ageing (divided into 2 steps) 

4) Stress relieving of superalloys is carried out to reduce the stress within the 

materials, and it must be carefully designed to avoid possible undesired effects such 

as an excessive grain growth or the formation of secondary phases. 

For these reasons, stress relieving is generally performed below the annealing or 

recrystallisation temperatures.  

Regarding the wrought alloys, stress relieving is typically performed on 

solution strengthened superalloys, whereas on age-hardenable alloys an annealing 

or solution treatment is commonly applied, that guarantees the reduction of the 

internal stresses and also prepares the alloys for the subsequent ageing treatment.  

A large number of casting superalloys are Ni-based superalloys and most of 

them are age hardenable alloys, and elevated temperature exposures involve 

microstructural changes. Therefore, stress relief treatments are not usual practiced 

with cast Ni-based superalloys. However, this heat treatment can be used to prevent 

dimensional changing for stringent geometrical tolerances, or after welding 

processes.  
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For many alloys, stress relief has been designed by empirical studies of stress 

decay with time and temperature, assessed by nondestructive means such as X-ray 

diffraction. However, this is not an entirely useful technique for superalloys, where 

the effect of the stress relieving on the microstructure should also evaluate the 

impact on other properties such as low-cycle fatigue, crack growth, and creep 

rupture [2,3,36].  

The stress relieving conditions for some wrought superalloys are reported in 

Table 7. 

Table 7 : Common stress relieving treatments for wrought superalloys [3]. 

Fe,Ni based alloys 
Temperature 

(°C) 

Holding time for 

inch of section (hours) 

19-9 DL 675 4 

Ni-based alloys   

Inconel 625 870 1 

Inconel 600 900 1 

 

To sum up the heat treatments applied to superalloys are used for these functions: 

• To promote grain growth or recrystallization; 
• To homogenise the alloy or solubilise the precipitate in precipitation-hardened 

alloys; 

• To promote the formation of secondary phases; 
• To reduce residual stresses within the superalloys. 
 

1.5 Specific properties of IN625 and HX superalloys  

1.5.1 IN625 superalloy 

IN625 is a solid solution strengthened Ni-based superalloy, which is used for 

its high temperature strength, excellent fabricability, weldability as well as 

outstanding corrosion resistance [5,37,38]. The chemical composition is under the 

UNS N06625 specification, and it is reported in Table 8. 
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Table 8: Chemical requirement for IN625 alloy according to UNS N06625 specification. 

Element Weight percent (wt %) 

Ni 58.0 min 

Cr 20.0-23.0 

Mo 8.0 -10.0 

Fe 5.0 max 

Nb+Ta 3.15-4.15 

Co 1.0 max 

Mn 0.50 max 

Si 0.50 max 

Al 0.40 max 

Ti 0.40 max 

C 0.10 max 

P 0.015 max 

S 0.015 max 

 

According to ASTM B443, this material is generally available in two different 

conditions: 

 Grade 1 described as annealed state; 

 Grade 2 described as solution annealed or solution heat-treated (SHT) 

state; 

 

Grade 1 IN625 parts are annealed over 871 °C, commonly between 871 °C and 

982 °C, and this material is used for service up to medium high temperature (around 

593 °C). Grade 2 IN625 components are SHT at least at 1093 °C, and they are used 
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for service over 593 °C. The main difference between the two conditions is the grain 

size, which enhances specific properties of the alloy.  

Grade 1 IN625 alloys present smaller grains and so higher corrosion resistance 

than Grade 2 alloy. On the other hand, the large grains of grade 2 IN625 alloys 

provide higher creep resistance and also higher ductility than grade 1 IN625 alloys 

[39]. Grade 1 IN625 alloys having high corrosion-fatigue strength, high tensile 

strength, and resistance to chloride-ion stress-corrosion cracking are widely used 

for the production of seawater applications. It is also used for wire rope for mooring 

cables, propeller blades for motor patrol gunboats, submarine auxiliary propulsion 

motors, exhaust ducts for Navy utility boats, submarine transducer controls, and 

steam-line bellows. 

Differently IN625 grade 2 alloys are desirable to the aerospace field. It is widely 

used in applications as aircraft ducting systems, engine exhaust systems, 

combustion system, turbine seals, fuel and hydraulic line tubing, spray bars, heat-

exchanger, turbine shrouds, spray bars, hydraulic tubing and turbine blades 

[15,37,39,40]. 

Table 9 summarises the minimum mechanical properties of IN625 alloys 

according to the ASTM B443 together with the values of wrought and cast IN625 

alloys presented in the literature. 

Table 9: Minimum tensile properties of IN625 alloys according to ASTM B443 and 

tensile properties of wrought and cast IN625 alloys; yield strength (YS), ultimate tensile 

strength (UTS) and elongation (A). 

IN625 State YS (MPa) UTS (MPa) A (%) 

Annealed cold-rolled 

sheet and strip [37] 
414 827 30 

SHT cold/hot-rolled 

sheet and strip [37] 
276 690 30 

Annealed hot-rolled [40] 479 965 54 

Cast [3] 350 710 48 

*1038 °C for 1 hour  

As mentioned before, IN625 is a solid solution strengthened alloys, although 

its mechanical properties can highly change for the precipitation of different phases 
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during service in temperature or heat treatments. Figure 5 shows a Time-

Temperature-Transformation (TTT) diagram of IN625 alloy, revealing the 

formation of different phases as carbides (MC, M6C and M23C6), γʺ phase, δ phase 

as well as δaves phases. Typically, the formation of γʺ phases increase the tensile 

strengths, whereas δ and Laves phases are detrimental leading to a ductility 

reduction. Differently, the carbides can give both positive and negative effect based 

on position, morphology and size. 

 

Figure 5: Time-Temperature-Transformation (TTT) diagram of IN625 alloy [39]. 

Cast IN625 alloys present the formation of NbC carbides (T around 1250 °C) 

and Laves phases (T around 1200 °C) due to eutectic reactions [29,31]:  →  � + � �  →  � + � � �ℎ � � 

Due to the Laves phases are very detrimental to the ductility, it is therefore 

crucial to perform a solution treatment over 1093 °C to dissolve Laves phases. On 

the other hand, also by solution treatment is difficult to eliminate NbC carbides, 

because they start di dissolve around 1190 °C. However, they do not give any 

particular problem when they are scattered inside the matrix [5,38].  
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1.5.2 HX superalloy 

HX is another solid-solution strengthened Ni-based superalloys with very high 

temperature strength and oxidation resistance. Table 10 reports the chemical 

composition of HX alloy, which is under the UNS N06002 specification [41–43].  

Table 10: Chemical requirement for HX alloy according to UNS N06002. 
Element Weight percent (wt%) 

Ni Bal. 

Cr 20.5-23.0 

Fe 17.0-20.0 

Mo 8.0-10.0 

Co 0.5-2.5 

W 0.2-1.0 

Mn 1.0 max 

Si 1.0  max 

P 0.04 max 

S 0.03 max 

 

This alloy is generally SHT at 1175 °C for 1 hour, and it presents grain size 

ASTM number between 4 and 5 (around 90 µm and 63 µm, respectively) 

[36,43,44]. In this state, the microstructure of SHT HX alloys typically consisted of 

a γ matrix and primary εo-rich M6C carbides, generated during solidification 

[6,43,44].  

HX is widely used for the fabrication of the cross ducts in the high-temperature 

gas-cooled reactor (HTGR), operating between 618 °C and 816 °C as well as 

combustor cans and spray bars. Besides, it can also be used in industrial furnace 

applications thanks to its high oxidation resistance up to around 1177 °C. Finally, 

HX is broadly employed in the chemical process industry for retorts, muffles, 

catalyst support grids, tubing for pyrolysis operations [41–43].  

The minimum tensile properties reported in the ASTM B435 standard and the 

tensile properties of some available data on wrought HX alloys are given in Table 

11. 
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Table 11: Minimum tensile properties of HX alloys according to ASTM B435 

and tensile properties of some SHT wrought HX alloys. 

HX State YS (MPa) UTS (MPa) A (%) 

Wrought* 240 min 655 min 35 min 

Wrought (sheet) [41] 381 788 57 

Wrought (sheet) [3] 360 785 43 

*according to ASTM B435. 

However, also in this case, during service at high temperatures, HX alloy is 

subjected to the formation of different phases, which can remarkable change its 

mechanical properties.  

Figure 6 illustrates a TTT diagram of HX alloy, revealing the formation of 

different phases, mainly carbides (M6C and M23C6), µ and σ phases. Primarily, the 

formation of film of carbides can result in premature components failures, as 

discussed in paragraph 2.4.3. 

 

Figure 6: TTT diagram of HX alloy [20]. 
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In the past, the main research on HX alloy had studied its evolution of the 

microstructure under different thermal exposures, in order to evaluate the 

mechanical properties development for application at high temperature [6,20,42–
44]. 

1.6 Additive manufacturing (AM) techniques 

Additive manufacturing (AM) represents a class of layer by layer 

manufacturing techniques that enable the production of highly complex 

components from a 3D CAD model [45–47]. This model is then divided and 

approximated to a sequence of 2-D slices of with a determined thickness, and 

subsequently, each layer is built up by adding material.  

Among AM process, the LPBF and DED are two of the most widely used 

processes to fabricate Ni-based superalloys [47–49]. These AM processes can 

overcome the problems related to the traditional subtractive manufacturing of Ni-

based superalloys, which is significantly arduous and expensive, due to these 

materials are characterised by high hardness, temperature strength and low thermal 

diffusivity [1,50,51]. Furthermore, the AM technologies present other different 

advantages: [45,52–54] 

 Raw material efficiency. AM, consume less material than subtractive 

manufacturing processes.  

 Production flexibility. AM processes do not require mould or other 

expensive manufacturing set up, and so they result to be cheaper for the 

small batches. 

 

However, these new technologies also present some drawback: [45,52–54]  

 

 Size limitation: the dimensions of the components depends on the 

dimensions of the building chamber.  

 Support design and removal: Due to the presence of high residual stresses 

the AM components require support structures to avoid distortion. 

Afterward, these support structures have to be removed, thus increasing 

the post-processing time.  

 Defects: the surface roughness could be not suitable for the industrial 

application, so post processing treatments are required.  

 Anisotropy: These processes create anisotropic materials.  
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 Cost: The high cost of the machines and powder make these processes 

available for the fabrication of components with complex shapes and not for 

simple shapes. 

Some of the Ni-based superalloys produced by LPBF and DED processes are 

listed in Table 12. 

Table 12: List of the main Ni-based superalloys produced by LPBF and DED processes. 

Ni-based 

superalloys 
LPBF DED 

Inconel 625 [55–57] [51,58] 

Hastelloy X [8,59–61]  - 

Inconel 718 [62–66] [67,68]  

Inconel 939  [69] - 

Inconel 738 [70] [71] 

CM247LC [72,73] - 

 

1.6.1 LPBF process 

One of the main laser additive manufacturing (LAM) technologies applied to 

the fabrication of Ni-based superalloy parts is laser powder bed fusion (LPBF) 

process, which is considered a powder bed fusion (PBF) process [48,74].   

The LPBF machines are known with different names, selective laser melting 

(SLM), direct metal laser remelting, direct metal laser sintering (DMLS) or 

Lasercusing according to the producer [45]. The LPBF process melts consecutive 

layers of loose powder according to precise 3D CAD data, to build dense 

components [45,47,75]. 
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Figure 7 illustrates a schematic representation of an LPBF system. 

 
Figure 7: Schematic diagram of an LPBF process [56]. 

The main steps of the operation are:  

1) The recoater blade moves from the powder dispenser to building platform, 

spreading a determined thin layer of loose powder across the building platform or 

previously solidified layers; 

2) After the powder is laid, the laser beam selectively melts some areas of the 

layer of loose powder according to the processed data; 

3) The building platform is lowered by the thickness of a single layer, 

meanwhile the recoater blade comes back to the original position (powder dispenser 

side); 

4) The powder dispenser moves up in order to allow the deposition of a new 

layer of loose powder; 

5) The process is replicated layer by layer until completion of the component. 

 

During the LPBF process, the components are built under inert gas protection, 

typically Ar or N2, to prevent oxidation. The main process parameters are the laser 

power P (in W), the hatching distance hd (mm), which is the offset between two 

adjacent scan tracks, the scan speed of the laser v (in mm/s) and the layer thickness. 

Using all the parameters excepted the layer thickness is possible to assess the energy 
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delivered per unit area of material, known as Energy density (ED - J/mm2) using the 

following formula [56,76]: 

�� = �� ∗ ℎ� 
      (1) 

 

Different scanning strategy can be applied to build components by LPBF 

process. Typically, the scanning areas is divided into stripe or square areas [54].  

The stripe can be orientated along x or y direction or alternate (Figure 8a, 8c and 

8d).  

An alternative is the EOS scanning strategy, in which the stripes are rotated to 

67 ° between subsequent layers (Figure 8e) [56,77]. For the square areas (Figure 

8c), these squares can be scanned and melted according to a precise configuration 

called chess strategy or in a randomly way known as island strategy [72,78].  

 

Figure 8: Different scanning strategy for LPBF process [54]. 

Using different process parameters and scanning strategy the thermal history of 

the components change, generating different microstructures and residual stresses. 

In the literature, it is possible to find a lot of works on this topic [48,56,72,79]. 

1.6.2 DED process 

DED is another of the main LAM technologies used to fabricate Ni-based 

superalloy components (Figure 9) [45,47,80]. This type of process is also known 

with different names: laser metal deposition (LMD), laser engineering net shaping 

(LENS), direct metal deposition (DMD), etc., based on the producers and different 

modification about the material deposition strategy [47,80].  

DED process employs a high-power laser beam to produce a melt pool on a 

metallic substrate, into which metallic powder is directly deposited using a carrier 

gas. The powder melts to form a deposited material onto the substrate. Typically, 

the substrate is moved along the x-y plane to deposit consecutive layers by a 
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computer controlled system, in order to form the desired geometry. In this system, 

the z-direction is controlled by moving up the lens and powder nozzles. The inert 

gas is used to deliver the powder onto the support and shield the deposited material 

from oxidation, during the process [45,47,51,58]. 

 

Figure 9: Schematic illustration view of a DED system [45]. 

The main controllable process parameters, common to all DED processes, are 

laser power P (Watt), the scan speed v (in mm/s), the average diameter of the laser 

track d (in mm) and the powder flow rate Pf (g/min). In the literature, the energy 

density, also known as specific energy, Ed (J/mm2) is a combined parameter, 

obtained using the following formula [80,81]: 

�� = � × �⁄   (2) 

It allows the quantification of the energy delivery for unit area of material. 

Other process parameters are considered material-dependent and diverge with DLD 

machines (e.g. number of nozzles, nozzle design) as well as the type and flux of 

inert gas used.  

Finally, also the scanning strategy plays a crucial role to produce dense 

components [80]. The five most common deposition strategies for DED process are 

illustrated in Figure 10. These various deposition patterns remarkable influence the 

geometric, residual stresses and mechanical properties of the components [80]. 
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Among all the deposition strategies, the raster pattern is the most used in DED 

process due to its ease of implementation [80]. In fact, this deposition strategy of 

the raster pattern does not base on the geometry of the fabricated component, and 

consequently can be implemented to fabricate a variety of parts [82]. Nickel et 

al.[83] demonstrated that a deposition strategy with lines oriented λ0◦ from the 
substrate’s longer axis diminish the deflection of parts. 

 

Figure 10: Different deposition strategy used in DED process: a) raster, b) zig-zag or 

bi-directional, c) offset-out, d) offset-in and e) fractal [80]. 

1.6. 3 Difference between LPBF and DED  

A comparison of the main features between the LPBF (referred as SLM) and 

DED (referred as LMD) is reported in Figure 11. 

The LPBF process produces samples with higher dimensional accuracy and 

lower roughness than DED process. On the other hand, the DED has a higher build-

up rate and can create larger components than LPBF. In fact, the maximum 

dimensions of the LPBF components are limited by the building chamber [84]. 

However, the two processes can be complementary each other depending on the 

components characteristics.  
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Figure 11:Characteristics of LPBF (referred as SLM) and DED (referred as LMD) [84]. 

1.7 Powders for additive manufacturing processes  

The powder used for AM processes are typically gas atomised powder obtained 

using an inert gas (such as Ar or N2), reducing the risk of oxidation. Besides, gas 

atomisation is characterised by lower cooling rate than water atomisation, 

generating more regular and spherical particles [53,85,86].  

In order to obtain dense samples, AM processes primarily need powders with 

excellent flow properties to guarantee a smooth spreading of the powder bed for 

LPBF and powder feeding for DED. However, the humidity content, the particles 

size distribution and size can significantly influence the powder flowability 

[45,85,86].  

Furthermore, other characteristics of the powder can have an impact on the 

densification of the components. For instance, the determination of the skeletal 

density of the powder is crucial to assess the presence of internal pores. In fact, 

during the gas atomisation process, the inert gas can be entrapped within the 

particles powders, thus generating pores in the solid samples during the LAM 

processes [53,56,85].  

Another factor is to determine the presence of surface oxides, which can also 

reduce the solidification due to the balling effect, leading to the formation of 

irregular porosities [85]. Finally, it is possible to note that LPBF powders have size 

around 10 - 63 µm while DED powders have size around 45 - 150 µm [53,56,68,85].  
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1.8 Microstructures of LPBF and DED Ni-based 

superalloys  

1.8.1 LPBF Ni-based superalloys 

In LPBF process, the laser beam melts layers of powder generating a 

microstructure consisted of melt pools, as visible in Figure 12. The shape and 

position of the melt pools are correlated to the scanning strategy used. 

 

Figure 12: 3D composite images of LPBF as-built IN718 alloy showing the melt 

pools along different planes [65]. 

During the process, the heat fluxes are dissipated along the z-axis from the top 

of the samples to the building platform, generating strong anisotropy due to the 

formation of columnar grains along the building direction. Differently, 

perpendicular to the building direction the microstructure is characterised by 

random orientated equiaxed grains as can be seen in EBSD images of IN625 alloy 

in Figure 13 [61,72,87]. 
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Figure 13: EBSD images along the building direction (a) and perpendicular to the 

building direction (b) for LPBF IN625 alloy [55]. 

It was demonstrated that the texture is influenced by the laser scanning strategy 

and process parameters, becoming stronger with the increment of the energy density 

(energy delivered on the layer of powder) [65]. 

The grains and melt pools consisted of extremely fine columnar and cellular 

dendritic architectures, having typically size less than 1 µm [55,60,88]. These 

dendrites are created due to the high heating/melting and cooling/solidification in 

narrow areas result in high cooling rates around (103 to 108 K/s) [55,88,89].  

It is well known that the high mechanical properties of the Ni-based superalloys 

produced by LPBF mainly derive from these very fine dendritic architectures 

coupled with high dislocation density ) [55,88,89].  

1.8.2 Microstructure of DED as-built Ni-based superalloys 

The microstructure of DED Ni-based superalloys is similar to LPBF ones, 

revealing the presence of columnar grains along the building direction (z-axis) and 

dendrite architectures. 
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In this case, the DED materials are characterised by larger precipitates and 

dendrite architectures than LPBF ones, showing primary and secondary dendrite 

with micrometric size [51,56,58]. These differences are attributed to the cooling 

rates around 102 and 103 K/s that is lower with respect to the LPBF samples [45,80]. 

1.9 Defects within LPBF and DED Ni-based alloys  

The main defects present within LPBF and DED Ni-based superalloys will be 

discussed in the following paragraphs (1.9.1 and 1.9.2). 

1.9.1 Pores  

LPBF Ni-based superalloys can present spherical or irregular pores 

[46,74,78,89,90]. The spherical pores can derive from entrapped gas within the gas 

atomised powder. In this case, when the laser beam melts the powder, the gas within 

the powders has no time to overflow from the molten pool.  

Figure 14 shows this kind of porosity that affect the formation of an Inconel 

718 alloy for DED process. 

(a) 
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(b) 

Figure 14: OM image of gas entrapped pores within (a) the cross sectioned powder 

and (b) solid materials for DED Inconel 718 alloy [90].  

Besides, the spherical pores can also be caused by gas (in the chamber process) 

entrapped within the melt pools or/and gas evolution during melting owing too 

much moisture in the powder [46,89]. Differently, the irregular pores are caused by 

the unstable molten pool shape.  

During the solidification, in fact, the liquid contraction can result in the balling 

phenomenon, which block the formation of dense components [75,89]. The balling 

phenomenon is correlated to poor wetting between the liquid material and the 

substrate, due to low energy density. Rombouts et al. [91] and Yadroitsev et al. [92] 

demonstrated that the Marangoni convection causes the instability within the 

molten pool. Figure 15 shows an example of the porosity caused by low energy 

density on LPBF IN625 alloy.  

 
Figure 15: OM image of LPBF IN625 alloy produced with low energy density 

showing different pores due to lack of fusion [48]. 
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In order to eliminate the balling effect it is possible to modify the process 

parameters using higher energy density [62]. Furthermore, it was reported that the 

formation of oxide surfaces during the process tend to improve the balling effect, 

so a better control of the inert gas within the building chamber can contrast this 

phenomenon [74,93].  

However, too high energy density can provoke the material evaporation 

creating deep keyhole pores with irregular shapes [74,78]. The effect of different 

energy density applied to build TiAl6V4 alloy generating different keyhole pores 

is displayed in Figure 16. 

 

Figure 16: OM images of TiAl6V4 produced by LPBF showing the effect of the 

energy density: a) lack of fusion; b) optimised energy density; c) key hole produced by 

too high energy density [79]. 

1.9.2 Cracks  

The cracks present within Ni-based superalloys produced by LPBF and DED 

process can be correlated to cracks produced during welding or post-welding 

treatments, considering that these AM processes are multilayer/repeated welding 

process [49,74]. Primarily the cracks derived from welding of Ni-based superalloys 

can be caused by four different mechanisms:   

1) Solidification cracking knows also as hot tearing or hot cracking; 

2) Liquation cracking; 

3) Ductility-dip cracking; 

4) Strain-Age Cracking (SAC) or Post-Weld Heat Treatment (PWHT) 

Cracking. 

1) Solidification cracking also known as hot tearing and hot cracking is strongly 

associated with the chemical composition of the alloy [49] . 
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This phenomenon occurs during the last period of solidification when the 

fraction solid is around 0.7-0.98, when the increment of the viscosity of the liquid 

reduce it flow ability. During this point, the interdendritic liquid flow is not able to 

backfill into the contracting regions, promoting the formation of cracks. The 

thermal residual stresses localised into the liquid areas can induce the formation of 

cracks, typically crossing along dendritic or grain boundaries. The solidification 

cracking susceptibility is enhanced by increasing solidification range (difference 

between solidus and liquidus of material) or by the presence of segregated element 

into the interdendritic areas or grain boundaries [8,31,49,60,94]. 

Nevertheless little literature studied this phenomenon associated with the LPBF 

and DED processes [8,60]. Specifically for LPBF process, the cooling and 

solidification of the molten pool involve a shrinkage, hindered by the previously 

solidified layer. This mechanism produces tensile stress in the top layer and 

compressive stress in the inferior ones. Therefore, the cracks are formed when the 

residual stress surpass the ultimate tensile stress (UTS) of the alloy [60]. Typically, 

these cracks formed along the grain boundaries since they are the weakest areas due 

to the impurity segregation, as visible in Figure 17. 

 

Figure 17: OM image of LPBF HX showing cracks along the grain boundaries [60]. 

For LPBF HX alloy, Harrison et al [60] suggested that increase the thermal 

shock resistance of the alloy by improving the UTS is possible to reduce the 

presence of hot cracking. The UTS can be conceivable enhanced by the increment 

of solid solution strengthening elements and the decrement of tramp elements 

within the alloy. 
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2) The liquation cracking occurs when a material is quickly subjected to high 

temperature exposures, although under the overall melting point of the bulk 

material. In a similar condition, intergranular low-melting point phases (e.g. 

eutectic compounds) can melt, and thus the liquid infiltrates the grain boundaries, 

weakening them and provoking the cracking formation under residual or thermal 

stresses. 

In solid solution strengthened alloys this kind of cracking is typically associated 

with the liquation of carbides [95,96], whereas for γ΄ strengthened alloys is caused 

by the formation of low melting compounds, γ/γʺ eutectic or δaves/γ compound in 
the heat affected zone [71,94]. For instance, Figure 18 displays two liquation 

cracking within DED Inconel 718 alloys. In this case, Chen et al. [94] indicated that 

the cracks derives from the liquation of Laves phases within the heat affected zone.  

 

 

Figure 18: FESEM images of DED Inconel 718 showing liquation cracking due to 

the melting of Laves particles within the heat affected zone [94]. 

3) In the literature, the ductility-dip cracking is often approximated as hot 

cracking, although different mechanisms generate it. The formation of intergranular 

precipitates in high-angle grain boundaries coupled with the high residual stresses 

promote the cracks formation.  

Two different mechanisms have been indicated for the ductility-dip cracking.  

Collings et al. [97] suggested ductility-dip cracking is a a ‘creep-like’ 
mechanism,  which at a certain temperature provoke grain boundary sliding. In this 

way, the strain is concentrated along the intergranular precipitates, that hinder the 

grain boundaries movement, causing the formation of voids around the precipitates.   
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Young et al.[98] suggested another possible mechanism, in which the carbides 

at grain boundaries under intermediate temperatures produce stresses forming the 

voids which act for initial cracking formation. 

For the LPBF and DED processes the continuous heating flux may promote the 

formation of intergranular precipitates, generating the above mentioned 

mechanisms [74].  

For LPBF-CM247LC Carter et al.[72] and Xiang et al. [99] reported the 

formation of cracks caused by ductility dip cracking in high-angle grain boundaries, 

as shown in FESEM images of CM247LC in Figure 19.  

In the specific case of LPBF CM247LC, by TEM analysis, Xiang et al. [99] 

proposed that the ductility-dip cracking is caused by the interaction between 

intergranular carbides and dislocations that involve the formation of voids around 

the precipitates. The presence of voids coupled to high thermal residual stress of 

this process result in the crack formation. 

Besides, Tomus et al.[8] indicated the formation of cracks within LPBF HX 

alloy could be attributed to the formation of intergranular carbides coupled with the 

thermal stresses. They used the more general term hot cracking to define this type 

of cracks, although it may be correlated to ductility-dip cracking mechanism. 

 

Figure 19: FESEM images showing grain boundary crack due to the generation of 

voids around precipitates associated with the ductility-dip cracking for LPBF CM247LC 

[99].  

4) Strain-Age Cracking is correlated to the welding process and derives from 

the precipitation of phases such as γ΄ phases or carbides along the grain boundaries 
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after subsequent thermal exposures. An excessive formation of these precipitates 

combined with high residual stresses of the LPBF and DED processes can creates 

weak patch for the crack propagation. Henderson et al. [98] reported that these 

cracks typically open at grain boundaries where there are a significant amount of 

carbides acting as initiation points. 

1.9.3 Residual stresses 

The LPBF and DED processes are characterised by high residual stresses, 

which can have an adverse effect on the geometrical accuracy as well as the 

mechanical properties. In order to avoid the bending of the parts are commonly 

adopted support structures, although the residual stresses can deform it (Figure 20). 

 
Figure 20: Effect of the residual stresses on LPBF Inconel 718 alloy [78]. 

The study of these residual stresses based on different factors such as the shape 

of the component, the support structure, the materials properties as well as the 

processing parameters.  

For the DED process, different works have measured or modelled these stresses 

[100–103], even though this is generally for simple thin walls and a simple scan 

path.  

For LPBF process, Kruth et al. [104] reported that the residual stresses are 

strongly associated with the laser scan strategy. A simple raster scanning strategy 

seems to involve high stresses in one direction (transverse to the path), while 

longitudinally to the path the residual stress are almost zero; differently an island 

strategy shows a greater, but much more distributed residual stress level. Abe et 

al.[105] studied the steels produced by LPBF, showing that a second laser following 

the first can reduce the residual stress and also increase the ductility. 
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Chapter 2 

Materials and methods  

This chapter presents the materials and experimental methods used in the 

processing, sample preparation as well as characterisation of materials investigated 

within this thesis. 

2.1. LAM machines used 

2.1.1 LPBF process 

In this work, IN625 samples were fabricated using an EOS M270 Dual Mode 

system, whereas HX samples were built by means of an EOSINT M280 by GE 

AVIO s.r.l. The two LPBF machines are illustrated in Figure 21. 

  

Figure 21: Images of (a) EOS M270 and (b) EOS M280 devices [106,107]. 
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The main characteristics of the two machine are given in Table 13. 

Table 13: Technical available data of EOS M270 and EOS M280 devices [106–109]. 

 EOS M270 EOS M280 

Building volume 

(including building 

platform) 

250x250x250 mm3 250x250x325 mm3 

Layer thickness 

(material-dependent) 
20-100 µm Typically 20-60 µm 

Laser type Yb-fiber laser, 200 W 
Yb-fiber laser, 200 

or 400 W 

Precision optics F-theta-lens F-theta-lens 

Scan speed Up to 7 m/s Up to 7 m/s 

Variable focus 

diameter 
100-500 µm 100-500 µm 

Power supply 32 A 32 A 

Powder 

consumption 
5.5 KW max 8.5 KW max 

Building 

platform 

temperature 

40-80 °C* 100 °C 

*M270 Dual Mode version can reach a building platform temperature up to 200 °C. 

The two devices employ the EOS stripe scanning strategy characterised by the 

scan vector width (e.g. stripe width), the hatching distance (hd) between adjacent 

tracks and the overlap with the neighbouring stripes. Figure 22 provides a simplified 

representation of this strategy.  
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During the process, the laser advances due to mirrors that have to be accelerated 

to a precise speed, and considering the inertia of the mirror the speed might not be 

constant. To solve this problem, it is therefore employed the skywriting option 

which allows the movement of the mirrors when the laser is not active, involving a 

carefully controlled scan speed during the exposure. 

 
Figure 22:  Schematic illustration of the stripe scanning strategy [76]. 

For the production of IN625 specimens, the building platform was kept at 80°C. 

Each layer was subdivided into 5 mm stripes with an overlap of 0.12 mm, between 

adjacent ones. The stripes are melted with subsequent scan tracks produced by the 

laser. Afterward, the laser beam is rotated by 67° in comparison to the previous 

layer. A schematic illustration view of LPBF scanning strategy adopted to built 

IN625 samples is provided in Figure 23. 

 
Figure 23: Schematic representation view of the adopted LPBF scanning strategy to 

built IN625 specimens (the red arrows depicted the laser scans) [56]. 
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During the work, different combination of laser power P (in W), hatching 

distance hd (mm), and scan speed of the laser v (in mm/s) were used, while the layer 

thickness was kept at 20 µm. The energy density (ED- J/mm2) approach was used 

to assess the energy delivered per unit area of material.  

For the process parameter optimisation, three cubic IN625 samples (15x15x15 

mm3) was built using each set of process parameters (from S1 to S27) reported in 

Table 14. 

Table 14 : Process parameters values used for building LPBF-IN625 specimens. 

Sample P 
[W] 

v 
[mm/s] 

hd 

[mm] 
ED 

[J/mm2] 
S1 185 1200 0.07 2.20 
S2 185 600 0.11 2.80 
S3 175 900 0.11 1.77 
S4 185 600 0.09 3.43 
S5 185 900 0.09 2.28 
S6 185 1200 0.11 1.40 
S7 185 900 0.07 2.94 
S8 175 1200 0.11 1.33 
S9 195 600 0.11 2.95 
S10 175 600 0.07 4.17 
S11 175 1200 0.09 1.62 
S12 175 1200 0.07 2.08 
S13 185 1200 0.09 1.71 
S14 175 900 0.09 2.16 
S15 185 600 0.07 4.40 
S16 195 1200 0.11 1.48 
S17 195 900 0.11 1.97 
S18 195 600 0.09 3.61 
S19 195 900 0.07 3.10 
S20 185 900 0.11 1.87 
S21 195 900 0.09 2.41 
S22 175 600 0.11 2.65 
S23 195 1200 0.07 2.32 
S24 175 600 0.09 3.24 
S25 175 900 0.07 2.78 
S26 195 600 0.07 4.64 
S27 195 1200 0.09 1.81 
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Differently, the process parameters used to build the LPBF-HX specimens are 

omitted to protect the proprietary information.  

2.1.2 DED process 

The DED IN625 specimens were fabricated by Grupo Nicolas Correa Laser 

(GNC Laser) in Spain. The machine was equipped with a Laserline 3200 high 

power diode laser (with an output fibre of θ00 m) and a cladding nozzle mounted 

onto an ABB 6650 6 axis robot (Figure 24a). The machine also consisted of a 

company designed coaxial cladding head with three powder inputs, using Ar as the 

carrier gas, as well as a Sulzer Metco Twin 10 powder feeder (Figure 24b).  

(a) (b) 

Figure 24: Images of (a) ABB 6650 6 axis robot and (b) Sulzer Metco Twin 10 

powder feeder. 

During the process, the laser beam was defocused with a spot of 3 mm, using a 

60% overlapping ratio between contiguous laser tracks. A zig-zag deposition 

strategy was employed to build the components, which means that the laser beam 

is rotated 90° after each deposited layer as depicted in Figure 25. 
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Figure 25: Illustration view of the zig-zag deposition strategy used for DED process 

(the read arrows indicate the laser tracks) [56]. 

During the experiment, different combination of process parameters, modifying 

the laser power P (in W), the scan speed v (in mm/s), the mean diameter of the laser 

track d (in mm) and the powder flow rate Pf (g min-1) were employed. The energy 

density ED (J /mm2) approach was used to evaluate the energy delivered per unit 

area of material.  

For the process parameter optimisation, three cubic IN625 samples (15x15x15 

mm3) was fabricated using each set of process parameters from R1 to R27 reported 

in Table 15. 
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Table 15: Different process parameters and energy density used for building DED-

IN625 specimens. 

Sample P 
[W] 

v 
[mm/s] 

Pf 

[g/min] 
ED 

[J/mm2] 
R1 2100 10.0 9 70.0 
R2 1800 13.3 13 45.1 
R3 2100 13.3 9 52.6 
R4 2100 10.0 5 70.0 
R5 2100 13.3 5 52.6 
R6 1800 16.7 13 35.9 
R7 1800 10.0 13 60.0 
R8 2400 16.7 13 47.9 
R9 1800 13.3 5 45.1 
R10 1800 16.7 9 35.9 
R11 2400 16.7 9 47.9 
R12 2100 13.3 13 52.6 
R13 2400 13.3 9 60.2 
R14 2400 13.3 5 60.2 
R15 1800 10.0 9 60.0 
R16 1800 10.0 5 60.0 
R17 2400 16.7 5 47.9 
R18 2400 10.0 13 80.0 
R19 2400 13.3 13 60.2 
R20 2100 16.7 5 41.9 
R21 1800 13.3 9 45.1 
R22 2100 16.7 13 41.9 
R23 1800 16.7 5 35.9 
R24 2400 10.0 9 80.0 
R25 2100 16.7 9 41.9 
R26 2400 10.0 5 80.0 
R27 2100 10.0 13 70.0 

2.2 Superalloy powders used  

2.2.1 LPBF IN625 powder 

A gas atomised IN625 powder, provided by EOS GmbH, with a nominal 

composition reported in Table 16, was used. The declared particles size distribution 

is mainly between 40 µm and 60 µm [110]. 
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Table 16: Nominal chemical composition of IN625 powder [110]. 

Element Company data sheet (wt %) 
Ni Balance (>58.0) 
Cr 20.0-23.0 
Mo 8.0-10.0 
Fe ≤ η.0 
Nb 3.15-4.15. 
Co ≤1.0 
Si ≤0.η 

Mn ≤0.η 
Ti ≤0.4 
Al ≤0.4 
C ≤0.1 
Ta ≤0.05 
P ≤0.015 
S ≤0.015 

2.2.2 DED IN625 powder 

A gas atomised IN625 powder supplied by Höganäs (Sweden) was used. 

According to the company, the powder had particle size distribution between 53 

µm and 150 µm and the nominal chemical composition is reported in Table 17 

[111]. 

Table 17: Nominal chemical composition declared by the company [111]. 
Element Company data sheet (wt %) 

Ni Bal. 
Cr 21.5 
Mo 9.0 

Nb + Ta 3.8 
Fe 1.4. 
Si 0.4. 
Ti -. 
Al - 
Mn -. 
C <0.03 

2.2.3 LPBF HX powder 

In the present study, gas atomised HX powders supplied by LPW Technology 

Ltd was used. The nominal chemical composition declared by the company is listed 

in Table 18.  



2.2 Superalloy powders used 51 

 
Table 18: Chemical composition in weight percentage (wt%) of HX powder declared 

by the company [112]. 

Element Datasheet by company (wt%) 

Ni Balance 

Cr 20.50-23.00 

Fe 17.00-20.00 

Mo 8.00-10.00 

Co 1.50-2.50 

W 0.60-1.00 

Si 1.00 max 

V 0.25 

Hf 0.25 max 

Nb 0.25 max 

Cu 0.20 max 

C 0.05-0.07 

P 0.015 max 

S 0.015 max 

O 0.015 

B 0.100 max 
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2.3 Powder characterisations 

The gas atomised HX and IN625 powders were analysed using a field emission 

scanning electron microscope (FESEM - Zeiss Supra TM40) and scanning electron 

microscopy (SEM) Phenom XL, in order to study their morphology. The powder 

was mounted, ground and polished down to 0.05 µm using Al2O3 suspension, in 

order to analyse the cross section by means of an optical microscope (OM – Leica 

DMI 5000 M). The average value and standard deviation of residual porosity were 

determined using 200 particles at a magnification of 500x. The mounted and 

polished particles were etched with Kalling’s No.2 reagent (5 g CuCl2 in 100 ml 

HCl and 100 ml CH3CH2OH) to study their microstructure. 

The laser granulometry (Fritsch model Analysette 22 Compact) was used to 

determine the powder size distribution. The Hall flowmeter was used to evaluate 

both the apparent density and the flow rate according to the ASTM B 212 and 

ASTM B213, respectively for HX and DED powders. Differently, the flow rate of 

the LPBF-IN625 powder was assed using Carney flowmeter funnel according to 

ASTM B964, due to the powder did not flow in the Hall flowmeter. The skeletal 

density was determined by means of a pycnometer analysis using He 

(Quantachrome Ultrapyc 1200e). 

The chemical composition of the IN625 powders were analysed by FESEM 

equipped with energy dispersive X-ray spectrometry (EDS), in order to compare 

the results with the data sheets declared by the company. Finally, the chemical 

composition of the HX powder was assessed through an inductively coupled 

plasma-optical emission spectroscopy (ICP-OES) analysis, expected for C, S, and 

O determined by inert gas fusion (IGF) analysis. 

2.4 Metallographic sample preparation 

The HX and IN625 samples were sectioned using a precision cutting machine 

with aluminium oxide cutting wheels. The samples were sectioned both parallel the 

building direction (z) and perpendicular to the building direction (x-z) plane (see 

paragraphs 2.5.1 and 2.5.2). 

The samples were ground using different silicon carbides grinding papers down 

to grit 2400 and then polished down to 1 m using diamond suspensions. The 

polished as-built and post-processed HX samples were etched with Kalling’s No.2 
reagent (5 g CuCl2 in 100 ml HCl and 100 ml CH3CH2OH), which is a typical 

etchant used for superalloys [113–115].  
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Differently, for polished as-built and heat-treated IN625 samples were used two 

different etchants, in order to point out different microstructural features:  

To better reveal the grain boundaries and phases, samples were etched using 

Kalling’s No.2 reagent [113–115].  

To better reveal the melt pools and dendritic architectures, samples were etched 

using a specific mixed acids for IN625 alloy (15 ml HCl, 10 ml CH3COOH and 10 

ml HNO3) [113,115]. 

For both HX and IN625 alloys, the etching time for Kalling’s No.2 solution 
ranges between 30 sec and 3 minutes, based on the condition of the materials (as-

built or heat-treated). Likewise, for IN625 alloy the etching time for mixed acids 

range between 15 sec and 30 sec, for the same reason. 

2.5 Orientations of the samples for microstructural 

analysis 

2.5.1 As-built IN625 specimens 

The microstructures of DED as-built IN625 samples as well as LPBF as-built 

and heat-treated IN625 samples were studied using cubic samples (15x15x15 mm3). 

The samples were sectioned along x-y plane parallel to the building platform 

and z direction parallel to the building direction, as shown in Figure 26.  

 

Figure 26: Schematic representation of an IN625 cubic on the building platform 
showing the main orientation and the x-y plane and z direction. 
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2.5.2 As-built HX specimens  

The as-built HX cylinders with a length of 77 mm and a diameter of 14 mm 

were built orientated vertically and horizontally to the building platform. A 

schematic representation of the cylindrical samples built vertically and horizontally 

to the building platform together with their z-y and x-y planes is displayed in Figure 

27a and 27b, respectively. 

At the beginning, it was studied the microstructure of both orientated 

specimens, revealing a very similar level of porosity and microcracks between the 

x-y and z-y planes of the two orientated specimens. Besides, the microstructure 

features such as the shape of melt pools and grains along the x-y plane and z-y plane 

are the same for the two orientated conditions. 

Therefore, it was chosen to characterise and perform subsequent heat 

treatments only on the specimens built vertically to the building platform. In fact, 

this configuration allows the production of a greater number of components with 

respect to the other configuration, using the same building platform. 

The cylinders were cut along two different planes. The parallel plane to the 

building platform will be indicated as the x-y plane, whereas the perpendicular 

plane to the building platform (so parallel to the building direction) will be 

designated as the z-y plane. The as-built HX cylinders specimens were cut in 

samples with a thickness of 5 mm to have samples for performing subsequent heat 

treatments. 
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Figure 27: Schematic views illustrating the as-built HX cylinders orientated 
vertically (a) and horizontally (b) to the building platform; the x-y plane is parallel to the 
building platform whereas the z-y plane is both perpendicular to the building platform 
and parallel to the building direction. 

 

2.6 Microstructural analyses and phases characterisations 

2.6.1 Optical microscopy (OM) 

Optical microscopy (Leica DMI 5000 M) was employed to observe mounted 

particles powders, polished and etched solid samples. 

For HX samples, the residual porosity and cracking density were examined by 

taking 20 OM micrographs of polished samples and through image analysis using 

Image J software. A magnification of 100x using a resolution of 0.80 µm (equal to 

2 pixels) was selected. In such manner, an average porosity value was determined 

for each HX sample covering a total surface area of 13.2 mm2. The residual porosity 

was determined as a percentage with respect to the OM image area. 

For the measurement of cracking density was used the ferret length and the 

values were reported in the unit “mm of microcracks per mm2 of Oε image” as 

performed in other studies on Ni-based superalloys with microcracks [48,49].  
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Differently, for IN625 samples, the residual porosity was determined by taking 

10 OM micrographs of polished samples at 100x with a resolution of 0.80 µm, 

analysing a areas of 6.6 mm2. In this case no microcraking were detected. 

For all the samples, the percentage of carbides and/or different phases was also 

evaluated by taking 10 OM images (of etched samples) at a magnification of 500x 

analysing a total surface area of 0.25 mm2 with a resolution of 0.20 µm (equal to 2 

pixels). 

Finally, using the OM images of etched samples for HX conditions the grain 

size was assessed by means of the planimetric method according to the standard 

ASTM E112-12. 

Differently, the grain dimensions of IN625 samples were determined using 

Image J software, analysing different images. 

2.6.2 Scanning electron microscopy (SEM) 

The gas atomised powder dimensions, shape and morphology as well as 

microstructures of as-built and post-processed HX and IN625 samples were 

investigated by means of different FESEM equipped with energy-dispersive X-ray 

spectrometry (EDS) detector and scanning electron microscope (SEM – EDS).  

Furthermore, also the extracted carbides of HX samples were analysed by 

FESEM/SEM in order to study the morphology and chemical composition to 

support their indentification by XRD analysis. 

The following FESEM and SEM were used in this thesis:  

 FESEM + EDS SEM-FEG Assing SUPRA 25, Zeiss 

 FESEM + EDS Zeiss SupraTM40; 

 SEM Hitachi S4000 

 SEM + EDS Phenom XL; 

2.6.3 Transmission electron microscopy (TEM)  

Transmission electron microscopy (TEM) was used to visualise very fine 

precipitates within LPBF as-built and heat-treated IN625 samples.  

Thin foils were prepared by fine grinding to a thickness of 0.08 mm, cut to 

obtain 3 mm diameter discs, and subsequently electropolished to perforation with a 

90 % CH3COOH and 10 % HClO4 electrolyte. Electropolishing was performed at 
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approximately -20°C and 130 mA using a double-jet electropolisher (Struers 

TenuPol-5). 

TEM imaging was carried out by means of a JEOL JEM-2100F TEM (operating 

at 200 keV) equipped with energy dispersive spectroscopy (EDS). 

2.6.4 XRD analysis 

XRD analyses were carried out using an X-Pert Philips diffractometer (CuKα 
radiation) in a Bragg Brentano configuration operated at 40 kV and 40 mA with a 

step size of 0.013° and a counting at each step for a duration of 25 s.  The lattice 

parameter of the γ austenitic matrix and different phases were calculated using the 
peaks determined by XRD spectra recorded within the 2  range from 30° to λη°. 

The XRD spectra can be analysed using the 2theta and the wavelength of the 

X-ray ( ) to determine the interplanar spacing (d) following the Bragg’s δaw [116]: 

 �� =  ℎ, , ����  (3) 

ℎ, , =  � � sin � 
 (4) 

Where n is an integer, d is the interplanar spacing,  is the wavelength of the 
X-ray and  is the incident angle.  

Afterward, it is possible to use the following equation to determine the lattice 

parameters: 

ℎ, ,2 =  ℎ22 + 22 +  22 
 (5) 

   

Where a, b, c are the lattice parameters and h, k, l are the Miller indices. For 

cubic structures determined d and knowing that a=b=c it is possible to rewrite the 

equation to find the lattice parameter:  =  ℎ, , ∗  √ℎ2 + 2 + 2  (6) 

2.6.5 Carbides extraction 

An adequate amount of carbides for some HX conditions were anodically 

extracted at 2V with a stainless steel cathode using a solution of 25% HCl – 75% 

CH3OH at room temperature [117]. The extracted carbides were subsequently 
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analysed by means of XRD analysis and FESEM +EDS analysis to identified the 

type of carbides. 

2.7 Thermal analyses 

2.7.1 Thermo-mechanical analysis TMA 

Thermo-mechanical analysis (TMA-SETSYS Evolution Setaram instrument) was 

used to determine the coefficient of thermal expansion (CTE) in the range of 150-

1200 °C with a heating rate of 5 °C/min under an argon atmosphere. 

The samples used are parallelepipeds having a length of 10 mm and side 6x6 

mm2, built along x-y plane (parallel to the building platform) and z direction 

(parallel to the building direction). 

2.7.2 Laser flash analysis (LFA) 

The thermal conductivity (k) was calculated using the thermal diffusivity (a) and 

specific heat (Cp) determined by means of a laser flash FlashLine 4010 system, 

using the following equation [118,119]:  =  � ∗ � ∗ �� 

 

 (7) 

Where ρ is the material density approximated constant with the temperature. 

The experiments were performed in Ar atmosphere from 600 to 1000 °C with steps 

of 200 °C, using three IN625 disk samples (diameter of 12.7 mm and a thickness of 

3 mm) were built along x-y plane and z direction. 

2.8 Mechanical tests 

2.8.1 Hardness tests 

The Brinell hardness was evaluated on two different samples for each condition of 

HX samples and for three different samples for each state of IN625 samples, 

performing at least five indentations on each sample using an EMCO TEST M4U 

test machine. It was applied a load of 62.5 kgf for 15 seconds (HBW2.5/62.5) based 

on the ASTM E10-14 standard. 

The hardness Rockwell B (HRB) was performed according to the ASTM B18-

16, using two different samples for selected HX conditions.  
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2.8.2 Tensile Tests 

Using the optimised parameters, oversized cylindrical IN625 samples (length 

of 110 mm and diameter of 15 mm) for the tensile tests were fabricated parallel to 

the building platform along the x-y plane. Afterward, the specimens were machined 

to have a gauge length and a diameter of 40 mm and 8 mm, respectively. All tensile 

specimens were tested using a Zwick Z100 tensile machine applying a strain rate 

of 8x10-3 s-1, following the ASTM E8M standard. The tensile specimens were tested 

for as-built IN625 and three selected heat-treated conditions. To ensure 

representative behaviour, three specimens were performed for each conditions. 

The tensile data were used to determine the flow curve parameters by fitting 

the curve following the Ludwik-Hollomon equation: � = �0 + ∙ ��     (8) 

where 0 is the yield stress, K is the strength coefficient, ɛ is the plastic strain 
and n is the strain hardening coefficient. 

 

2.8.3 Impulse excitation technique 

An Impulse excitation technique was used to evaluate Young's modulus on 

IN625 samples with a length of 50 mm, a width of 10 mm and thickness of 4 mm, 

built along x-y plane. The test and the dimensions of the samples follow the ASTM 

E1876-15. The test were carried out on three samples for selected state.  

2.9 Post process treatments: heat treatments and HIP 

All the heat treatments were carried out using a muffle furnace (Bicasa mod 

B.E. 35, Milano, Italy) with a maximum operative temperature of 1450 °C. The 

temperature of the furnace was controlled by means of K-type thermocouple 

positioned close to the samples. Differently, HIP treatments on HX specimens were 

carried out at at Aubert & Duval facility. 

2.9.1 Post processing treatments performed on LPBF HX samples 

Solution treatments were performed at 1175 °C for different times using the 

recommended temperature for the solution treatment followed by water quenching 

[36]. Furthermore, another solution treatment was carried out at 1066 °C. Hardness 
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measurements and microstructural analyses were used to select the optimised SHT 

condition for improving the creep resistance. Heat treatments were performed on 

the SHT HX samples at 745 °C and 788 °C for short and prolonged times, 

simulating possible thermal exposures which could undergo components made of 

HX alloy, as the cross ducts in the high-temperature gas-cooled reactor 

(HTGR)[42,43].  

A group of as-built HX samples was HIPed at 1160 °C for 4 hours at 103 MPa, 

that result to be standard parameters for HX alloy [120]. In the current commercial 

HIP equipment cooling rates used for large parts cannot be faster than 10 °C/min, 

promoting the formation and growth of carbides. Hence, subsequent solution 

treatments were carried out at 1175 °C and 1066 °C. It should be noted that after 

each heat treatment, the samples were water quenched to avoid the formation of 

carbides during the cooling. 

2.9.2 Heat treatments performed on LPBF IN625 samples 

The microstructural and hardness evolution of the LPBF as-built IN625 

samples under different heat treatments was studied. Several direct ageing (without 

previous solutioning treatment), solution treatments as well as solutioning followed 

by ageing treatments were performed.  

Direct ageing treatments were carried out at 600, 700, 800 and 900 °C for 2, 8, 

and 24 hours, investigating 12 different conditions. Solution treatments were 

carried out at 1000 and 1150 °C for 1 and 2 hours, observing four distinct states. 

On SHT samples at 1150 °C for 2 hours subsequently, ageing treatments were 

carried out at 600, 700, 800 and 900 °C, for 2, 8 and 24 hours studying 12 

conditions. It should be noted that all the heat-treated IN625 samples were water 

quenched (WQ) to avoid any phases precipitation during cooling, as recommended 

in the literature for large sections [36]. 
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Chapter 3 

Results and discussion of IN625 

produced by LPBF  

The purpose of this chapter is to present the study on IN625 alloy produced by 

LPBF process using an EOSINT M270 Dual Mode. The work started with the 

powder characterisation to determine the particles size distribution, as well as their 

morphology, size and residual porosity. Afterward, it was performed a process 

parameters optimisation to define a good compromise between densification level 

and build-up rate. Besides, it was studied the effect of different process parameter 

on the microstructure, densification level, and hardness.  

The above results were already published in an international scientific journal 

[56]. Afterward, the work was focused on studying the microstructure and phases 

of the as-built state. However, post heat treatments are fundamental to generate 

specific microstructure and mechanical properties to match industrial requirements. 

For this reason, different heat treatments were carried out on IN625 samples. More 

specifically, direct ageing treatments (without soluton-treatment), solution 

treatments, and ageing treatments were performed. The microstructure and hardness 

evolution of the heat-treated IN625 samples were studied and using hardness 

measurements, three different heat treatments were selected for further analyses.  

On these three conditions was performed an in deep characterisation through 

TEM analysis and tensile test. Finally, the development of the tensile properties 

was correlated to microstructure and tensile fracture surfaces. 

The main target of this work can be drawn:  

1) Study and characterisation of the starting IN625 powder. 

2) Process parameters optimisation of as-built IN625 samples. 

3) Microstructural study of as-built IN625 samples. 

4) Study of the microstructure evolution under specific heat treatments. 

5) Study of the tensile properties of three selected heat-treated IN625 

conditions compared to as-built one.  
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3.0 Powders characterisation 

3.1 LPBF powder characterisation  

FESEM Micrographs for gas atomised IN625 particles powder are displayed in 

Figure 28a, showing fairly regular spherical particles, with the presence of some 

elongated particles. The magnified view in Figure 28b reveals some satellite 

particles, highlighted by yellow arrows, caused by the gas atomised process. 

 

 

Figure 28: FESEM images of IN625 powder showing particles at different 

magnifications (a,b) in which satellite particles are indicated by the yellow arrows. 

The powder particles were also mounted and polished to determine the residual 

porosity inside the particles. The particle cross-section, showing fine spherical 
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pores with a size of 2 µm and 8 µm pointed out by red circles in Figure 29a and 

29b. For the particles was estimated a residual porosity of about 0.040 %. This kind 

of pores can be ascribed to the entrapped gas during the LPBF process 

[53,90,121,122]. 

 

 

Figure 29: OM images of mounted IN625 powder particles cross section polished at 

different magnification (a, b) showing the presence of spherical pores, some of which are 

pointed out by red circles. 

The EDS analysis of the LPBF powder presented a chemical composition in 

the range of the declared company data sheet and standard UNS N06625, as 

reported in Table 19. Ta was not determined by EDS analysis due to the very low 

quantity (less than 0.1 % wt), whereas C was not determined to avoid 

overestimation. 
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Table 19: EDS results of main chemical elements in weight percentage (wt %) for 

LPBF IN625 powder compared to company datasheet and standard UNS N06625. 

Element Company data 
sheet (wt %) 

EDS powder   
(wt %) 

UNS N06625    
(wt %) 

Ni 58.0 min. 64.2 58.0 min 
Cr 20.0-23.0 21.6 20.0-23.0 
Mo 8.0-10.0 8.5 8.0-10.0 
Nb  3.15-4.15 3.6 3.15-4.15** 
Ta 0.05 max - - 
Fe 5.0max 0.6 5.0 max 
Co 1.0 max 0.3 1.0 max 
Si 0.5 max 0.3 0.5 max 

Mn 0.4 max 0.3 0.5 max 
Ti 0.4 max 0.3 0.4 max 
Al 0.4 max 0.3 0.4 max 
C 0.1 max  -* 0.10 max 

*not detected by EDS analysis due to overestimation;** reported as Nb + Ta 

From Figure 30, the particle size distribution of the SLM powder can be 

observed. The particle size had a d(0.1), d(0.5) and d(0.9) of 16 µm, 27 µm, and 48 

µm respectively. Besides, using an ultrasonic during the experiment, some 

agglomerate particles tend to disaggregate leading to higher detection of smaller 

particles, with subsequent modifications of d(0.5) and d(0.9) to a lower size of 25 

µm and 34 µm, respectively. The tendency of LPBF powder particles to form 

aggregates is caused by its small diameters. 

 
Figure 30: Particle size distribution determined using laser granulometry diffraction 

for LPBF powder with and without ultrasonic vibration. 
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The average values and standard deviations of apparent density, flowability and 

skeletal density are listed in Table 20. The results revealed that LPBF powder had 

a skeletal density of 8.47 ± 0.02 g/cm3, which is compatible with the IN625 alloy 

theoretical density of 8.44 g/cm3 [3]. 

The high skeletal density indicated that the particles had low residual porosity 

in agreement with the values of residual porosity determined during the particle 

cross-section analysis (see Figure 29). The apparent density was 4.09 ± 0.12 g/cm3, 

whereas the flowability was 13.0 ± 0.4 s/ 200g. 

It should be noted that the flowability was determined using the Carney 

flowmeter, since the powder did not flow in the Hall flowmeter due to a wide 

particle size distribution, as reported in the specification ASTM B964-09 and 

literature [86]. 

Table 20: Average value and standard deviation of Apparent density, Flowability and 

Skeletal density for IN625 powder. 

IN625 powder 
Apparent density 

[g/cm3] 

Flowability                

[s/ 200g] 

Skeletal density 

[g/cm3] 

LPBF powder 4.09 ± 0.12 13.0 ± 0.4 8.47 ± 0.02 

3.2 Process parameters optimisation  

Figure 31 displays the Brinell hardness values versus residual porosity of the 

as-built IN625 samples produced adopting various process parameters (reported in 

paragraph 2.1.1). 

The graph shows a hardness increment correlated to residual porosity reduction, 

with hardness mainly from 265 to 290 HBW and residual porosity around 0.04-0.20 

%. However, the very high hardness increase of 25 HBW associated with a residual 

porosity reduction of around 0.16%, seem to indicate that the different process 

parameters had an impact on the microstructure features of the samples, giving a 

hardness increment. In fact, modifying the scan speed, hatching distance, as well as 

the laser power, lead to different thermal profile during the process, thus involving 

different melting and consequent cooling as well as solidification rates, generating 

different microstructures.  
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Figure 31: Brinell hardness vs residual porosity for as-built IN625 samples obtained 

by LPBF process. 

Figure 32 displays the correlation between residual porosity and hardness to the 

energy density, clearly showing the effect of different energy density on the 

microstructure. From the graph, it is possible to observe how using high energy 

density around 3.0 – 4.5 J/mm2 is possible to improve the hardness and densification 

of the IN625 samples. 

 

Figure 32: Residual porosity and Brinell hardness vs energy density for as-built 

IN625 samples obtained by LPBF process. 

Table 21 summaries the process parameters, energy density correlated to the 

residual porosity and hardness determined during the experiment, in order to 

evaluate the effect of the single parameter.  
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The samples with the lowest porosity (0.0036 %) and highest hardness (293 

HBW) were fabricated using the same scan speed of 900 mm/s and hatching 

distance of 0.07 mm. 

By contrast, a laser power of 185 W and 175 W was employed to fabricate the 

samples with the lowest porosity and the highest hardness, respectively, although 

the difference is almost neglectable. 

The reduction of hatching distance causes a greater number of laser scanning 

and melt pools that may improve the densification levels and also allow the 

formation of more precipitates or segregate elements. Furthermore, the results 

highlight that slower scan speed of 1200 mm/s seems to improve the densification 

levels slightly, although the residual porosity was below 0.2 %. However, regarding 

the high densification levels obtained a scan speed of 1200 mm/s can be suitable 

for the industrial production, in order to improve the build-up rate. 

 

Table 21: Different process parameters and energy density used for fabricating 

IN625 specimens with the determined residual porosity and hardness [56]. 

Sample P [W] V [mm/s] 
hd 

[mm] 

ED 

[J/mm2] 

Residual 

porosity 

[%] 

Brinell 

hardness 

[HBW] 

S1 185 1200 0.07 2.20 0.050 ± 0.014 287 ± 3 

S2 185 600 0.11 2.80 0.069 ± 0.024 282 ± 3 

S3 175 900 0.11 1.77 0.063 ± 0.011 290 ± 4 

S4 185 600 0.09 3.43 0.046 ± 0.008 287 ± 3 

S5 185 900 0.09 2.28 0.039 ± 0.007 289 ± 4 

S6 185 1200 0.11 1.40 0.084 ± 0.021 275 ± 2 

S7 185 900 0.07 2.94 0.036 ± 0.009 288 ± 4 

S8 175 1200 0.11 1.33 0.122 ± 0.038 273 ± 2 

S9 195 600 0.11 2.95 0.058 ± 0.009 283 ± 2 

S10 175 600 0.07 4.17 0.048 ± 0.011 284 ± 4 

S11 175 1200 0.09 1.62 0.084 ± 0.018 279 ± 2 

S12 175 1200 0.07 2.08 0.045 ± 0.013 289 ± 3 
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S13 185 1200 0.09 1.71 0.062 ± 0.008 283 ± 3 

S14 175 900 0.09 2.16 0.053 ± 0.011 283 ± 4 

S15 185 600 0.07 4.40 0.061 ± 0.025 284 ± 4 

S16 195 1200 0.11 1.48 0.199 ± 0.025 266 ± 4 

S17 195 900 0.11 1.97 0.089 ± 0.016 276 ± 4 

S18 195 600 0.09 3.61 0.057 ± 0.015 281 ± 6 

S19 195 900 0.07 3.10 0.048 ± 0.012 286 ± 5 

S20 185 900 0.11 1.87 0.059 ± 0.017 284 ± 6 

S21 195 900 0.09 2.41 0.045 ± 0.013 290 ± 2 

S22 175 600 0.11 2.65 0.111 ± 0.023 279 ± 2 

S23 195 1200 0.07 2.32 0.046 ± 0.012 292 ± 5 

S24 175 600 0.09 3.24 0.070 ± 0.025 275 ± 3 

S25 175 900 0.07 2.78 0.039 ± 0.015 293 ± 4 

S26 195 600 0.07 4.64 0.064 ± 0.020 286 ± 4 

S27 195 1200 0.09 1.81 0.064 ± 0.014 285 ± 3 

 

3.3 Investigation of defects of as-built IN625 samples  

Figure 33 reveals the optical images of polished IN625 samples S7 and S16, 

which are the sample with the lowest porosity and the samples with the highest 

porosity, respectively.  

For the S7 samples, the micrograph (Figure 33a) mainly revealed occasional 

fine isolated spherical pores with the largest ones detected around 4-5 µm, whereas 

for the S16 samples the micrograph (Figure 33b) chiefly showed homogeneous 

distributed spherical pores, the largest ones around 5-7 µm.  

These spherical pores, some of which highlighted by red circles in Figure 33a 

and 33b, can derive from the entrapped gas in the starting powders that is released 

when the laser beam melts the powder, causing small pores in the molten melt pool 

[56]. 
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Figure 33: OM images of polished IN625 samples built using different process 

parameters (a) S7 and (b) S16 along the building direction, showing different spherical 

pores, where some of which are highlighted by red circles. 

3.4 Microstructure of as-built IN625 samples 

The following characterisation was performed on IN625 samples processed 

using a laser power of 195 W, a scan speed of 1200 mm/s and a hatching distance 

of 0.09 mm, in order to guarantee a compromise between the build-up rate and 

densification level (porosity 0.064 ± 0.014 %).  

Figure 34 shows a 3D composite OM image of an as-built IN625 sample along 

different planes. As can be observed from the micrograph, the microstructure of as-

built IN625 samples are made up of columnar grains (CGs) developing epitaxially, 

thus crossing several melt pools along the building direction (z-axis), with a length 
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generally from 400 to 5 µm. On the contrary, the microstructure mostly consists of 

equiaxed grains (EGs) with size from 5 to 100 µm, perpendicular to the building 

direction (x-y plane). Krietcber et al. [123] reported for the as-built IN625 samples 

mostly equiaxed grains with similar size to those determined during our 

investigation. 

 

Figure 34: 3D optical image composite of as-built IN625 sample showing columnar 

grains (CGs) and melt pool contours (MPCs) along the building direction and equiaxed 

grains (EG) perpendicular to the building direction (x-y plane); Kalling’s No.2 etchant 
was used. 

Figure 35 displays another 3D composite OM image of an as-built IN625 

sample along different plane, etched with another reagent. In this case, it is possible 

to observe the difference melt pool contours (MPCs) along the building direction 

(z-axis) and perpendicular to the building (x-y plane) both highlights by orange 

lines. The melt pools are not alienated along the building direction caused by the 

EOS scanning strategy involving a scanning laser beam rotation of 67° between two 

consecutive layers  [56,77,87]. 
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Figure 35: 3D optical image composite of as-built IN625 sample showing the melt 

pool contours (MPCs) along the building direction (z-axis) and perpendicular to the 

building direction (x-y) plane; Mixed acids reagent was used. 

Figure 36a reveals the FESEM image of as-built IN625 samples along the 

building direction, showing that the melt pools are made up of very fine primary 

dendritic structures.  

These primary dendrites had both cellular and columnar shapes as can be 

observed in Figure 36b. The cellular dendrites structures are believed to be 

associated with alteration of columnar dendrite structures caused by very high 

cooling rates, as reported in literature [124]. 



72 Results and discussion of IN625 produced by LPBF 

 

 

 

Figure 36: FESEM images at different magnification (a, b) exhibiting melt pools 

with columnar and cellular primary dendrites for as-built IN625 sample; Mixed acids 

reagent was used. 

Furthermore, it is interesting to note that the high heating and cooling rates of 

the process do not allow the full formation of secondary dendritic structures.  

The cellular dendritic structures have a size between 300 nm to 1 µm, whereas 

the primary dendritic arms spacing (PDAS) of columnar dendrites were determined 

0.7 ± 0.3 µm. The determined values of PDAS are compatible with other research 

activities on IN625 and nickel based superalloys produced by the LPBF process 

[55,60,66]. 

At higher magnification (Figure 37a and 37b) very fine bright precipitates along 

the dendritic areas indicated by arrows 1 and bright elongated phases along the 

interdendritic regions pointed out by arrows 2 can be observed. 
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Figure 37: FESEM images of as-built IN625 sample at high magnification showing: 

(a) columnar dendritic structures with nanoprecipitates indicated by arrow 1 and 

segregation of Nb and Mo within the interdendritic zones indicated by arrow 2; (b) 

cellular dendritic structures with nanoprecipitates indicated by arrow 1 and segregation of 

Nb and Mo within the interdendritic areas indicated by arrow 2 exhibiting melt pools with 

columnar and cellular primary dendrites for as-built IN625 sample; Mixed acids reagent 

was used. 

The very high cooling rates generate high density of tangled dislocations 

mainly located in the interdendritic regions, as can be seen in TEM image in Figure 

38a. Indefinite precipitate-like features can be noted in the interdendritic regions as 

pointed out by arrow 1 in Figure 38b. EDS analysis reported a relatively high 

concentration of Nb and C for these precipitates, suggesting the early stage 

formation of fine MC carbides. 
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Besides, EDS results revealed enrichment in Nb and Mo within the 

interdendritic areas, as highlighted by arrow 2 in Figure 38c. These areas indicated 

possible segregation of Nb and Mo due to their elevated tendency to segregate with 

interdendritic and grain boundary areas, as confirmed by the literature [32,125,126].  

Furthermore, TEM image (Figure 38d) showed in detail the hexagonal 

morphology of these precipitates within the dendritic core that have a size around 

10-50 nm. These phases are enriched in Nb, C and coherent with the austenitic 

matrix, as detailed in the inset in Figure 38d, indicating the formation of Nb-rich 

MC carbides due to eutectic reaction [5,32,125]. 
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Figure 38: TEM bright field images exhibiting: a) columnar dendrite structures with 

high density of dislocation chiefly positioned in the interdendritic regions; b) precipitates 

along the interdendritic areas indicated by arrow 1; c) Elements segregation along the 

interdendritic regions indicated by arrow 2; d) Nb-rich MC carbides within the dendritic 

areas pointed out by arrow 3 with the inset showing the coherency with the matrix. 

The presence of nanometric Nb-rich MC carbides is originated from eutectic 

reaction during solidification (δ → γ + εC) T  ̴1250 °C [31,125]. They should be 

mostly formed along the interdendritic areas which are enriched in Nb, C and other 

segregated elements. 

However, the very high cooling rates generate a supersaturated solution in 

which a part of the highly segregated elements (e.g. Nb, C) remain entrapped in the 

dendritic core, as reported in literature for the LPBF process [55,60]. The 

supersaturated state is also denoted by the presence of very fine Nb-rich MC 

carbides within the dendritic core. 
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The eutectic reaction during the solidification can promote the Laves phases 

formation (δ → γ + δaves phases) T ̴ 1200 °C, which can have elongated irregular 

shapes and appear as bright phases during FESEM investigation [31,125]. 

However, during the TEM investigation, no Laves phases were found, and these 

bright areas seem to be elements segregation. 

The presence or absence of Laves phases is mainly correlated to the chemical 

composition of the starting powder. In fact, it was reported that a high C/Nb ratio 

promotes the precipitation of Nb-rich MC carbides without formation of Laves 

phases, as well as a low concentration of Si and Fe can decrease their formation [5]. 

3.4.1 XRD analysis on as-built IN625 samples 

Figure 39 compares the XRD spectra of as-built IN625 samples along the 

building direction (z-axis) and perpendicular to the building direction (x-y plane). 

The XRD spectra only revealed the presence of solid solution γ-fcc austenitic phase 

with a lattice parameter of around 3.59 Å for both the planes.  

It is interesting to note a very strong (200) orientation along the x-y plane, as 

well as a strong (111) orientation along the z direction. It is stated that Inconel alloys 

produced by LPBF or electron beam melting (EBM) processes can involve 

particular crystallographic texture [64,87,123]. 

 

Figure 39: XRD spectra of as-built IN625 samples along x-y plane and z direction. 
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3.4.2 Thermal mechanical analyses on as-built IN625 samples 

The CTE of as-built samples built both along x-y plane and z direction are reported 

in Figure 40, showing very similar curves for both the samples. 

 

Figure 40: Coefficient of thermal expansion (CTE) vs temperature of as-built IN625 

samples built along x-y plane and z direction.  

The TMA curves revealed a deflection around 550-650 °C that may be caused 

by phases precipitation. The average values of the obtained CTE values were 

compared with available data on IN625 alloy at different temperatures, showing a 

good agreement, as reported in Table 22. 

Table 22: Average CTE for as-built IN625 samples and commercially available 

IN625 alloy at different temperatures. 

T (°C) 538 649 760 

CTE (10-6 °C-1)  [37] 14.0 14.8 15.3 

CTE (10-6 °C-1) as-built xy 14.1 14.5 15.3 

CTE (10-6 °C-1) as-built  z 14.1 14.5 15.2 

 

The thermal conductivity (K) of as-built samples built along the two different 

orientaton are reported in Table 23, showing K slighly higher than values 

commercially available. 
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Table 23: Average K for as-built samples and commercially available IN625 alloy at 

different temperatures. 

T (°C) 600 800 1000 

K (W/ m °C) as-built z 20.8 ± 0.4 22.7 ± 0.4 25.0 ± 0.9 

K (W/ m °C) as-built xy 22.8 ± 2.0 24.2 ± 1.4 26.4 ± 1.0 

K (W/ m °C) [37] 19.0 (649 °C) 20.8 (760 °C) 25.2 (982 °C) 

 

3.4.3 Tensile behaviour of as-built IN625 samples 

The tensile engineering stress-strain curves of three as-built IN625 specimens 

are illustrated in Figure 41.  

 

Figure 41: Tensile stress-strain curve for three as-built IN625 samples. 

 

The tensile properties of as-built specimens compared to the yield strength 

(YS), ultimate tensile strength (UTS) and ductility (A) of other LPBF as-built 

IN625 and wrought IN625 alloy are listed in Table 24. 

The as-built IN625 samples exceed the minimum requirements for LPBF 

IN625 alloy presented in the ASTM F3056-14 standard.  
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Besides, the as-built IN625 samples revealed tensile properties compatible with 

the IN625 samples produced by EOS company, although the studied IN625 samples 

had lower standard deviation than company IN625 ones. This difference can be 

caused by different process parameters used to fabricate the samples. 

The tensile properties of LPBF-built IN625 samples compared with other 

investigations, showed the tensile properties of as-built samples had YS and UTS 

similar to as-built LPBF IN625 processed by Yadroitsev et al. [127]. However, they 

determined a porosity lower than 1%, whereas a porosity of 0.064 ± 0.014% was 

determined during this investigation, so the divergence in ductility can be attributed 

to different densification levels.  

On the contrary, the elongation at break of IN625 processed by Wang et 

al.[128] showed similar values to the present as-built IN625 samples, but 

remarkable lower YS and UTS were reported in their study. 

In this case, the variation of tensile strengths can be associated with the use of 

different process parameters and scanning strategy, as pointed out in the literature 

[129]. Regarding the minimum tensile properties of commercially available 

wrought IN625 alloy, it is possible to note that as-built samples revealed higher 

strength and similar ductility with respect to as-rolled IN625 alloys [37]. 

The high tensile properties of these materials derived from the very fine 

dendritic architectures together with high dislocation density owing to the fast 

solidification and cooling rates of the LPBF process.  

Finally, Young’s modulus (E) of as-built IN625 determined by tensile test 

showed a value of 182 ± 13 GPa, whereas using a IMCE test was determined a 

value of 186 ± 2 GPa (using samples built along xy). 
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Table 24: Comparison of tensile properties of as-built specimens fabricated along the 

x-y plane, together with other LPBF-built IN625 along the x-y plane reported in other 

works and specifications as well as wrought IN625 alloys. 

IN625 sample 
E 

(GPa) 

YS 

(MPa) 

UTS 

(MPa) 

A 

(%) 

This study     

As-built 182 ± 13 783 ± 23 1041 ± 36 33 ± 1 

Other works and specifications 

LPBF ASTM F3056-14 - 275 (min) 485 (min) 30 (min) 

LPBF*[110]  170 ± 20 725 ± 50 990 ± 50 35 ± 5 

LPBF [127] - 800 ± 20 1030 ± 50 8-10 

LPBF [128] 196 ± 12 641.5 ± 23.5 878.5 ± 1.5 30 ± 2 

As-rolled [37] - 414 (min) 827 (min) 30 (min) 

*As-built state according to EOS data sheet;  

3.4.4 Fracture surface of as-built IN625 tensile samples 

The fracture surfaces of as-built IN625 tensile specimens were examined under 

SEM. The fracture surface showed a ductile fracture mode correlate to microvoids 

coalescence, some of which could be generated by gas porosity (Figure 42a). 

However, also some brittle fractures transgranular cleave like facets can be 

observed as indicated by the arrows in Figure 42b, as already observed for IN625 

samples [129]. It is possible to presume that the brittle fractures can be promoted 

by the segregation of Nb and Mo in the interdendritic regions. The very fine dimples 

are illustrated in Figure 42c.  
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Figure 42: SEM images of as-built IN625 tensile fracture surface: a) low 

magnification exhibiting ductile and brittle fracture surfaces; b) higher magnification 

exhibiting brittle surface fractures; c) higher magnification showing fine dimples and 

microvoids. 
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3.5 Investigation on direct aged IN625 conditions 

3.5.1 Hardness investigation 

The hardness of as-built and direct aged IN625 samples at different 

temperatures and times are reported in Figure 43 and Table 25. 

As can be noted, the greatest hardness values were obtained with heat 

treatments performed at 700 °C and 800 °C for 24 hours. By contrast, heat 

treatments performed at 600 °C and 900 °C did not lead to significantly hardness 

improvement.  

It is interesting to observe that heat-treated IN625 samples at 700 °C for 2 hours 

revealed a hardness increase of around 10%, whereas a thermal exposure at 600 °C 

and 900 °C for 2 hours did not significantly change the hardness with respect to the 

as-built state. 

 

Figure 43: Brinell hardness of as-built and direct aged IN625 samples at 600 °C, 700 

°C, 800 °C, 900 °C for 2 hours, 8 hours and 24 hours, respectively. 
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Table 25: Brinell hardness values of direct aged IN625 samples; starting condition 

285 ± 3 HBW of as-built IN625 samples. 

/ Temperature (°C) 

Time (h) 600 700 800 900 

2 275 ± 5 312 ± 4 296 ± 3 282 ± 5 

8 289 ± 3 320 ± 4 322 ± 4 299 ± 3 

24 307 ± 4 350 ± 4 349 ± 6 317 ± 5 

The microstructure of the direct aged IN625 samples will be discussed in the 

following sections. For the aged condition that revealed the highest hardness (700 

°C for 24 hours) will be studied more in deep its microstructure and its tensile 

properties. In this case, it was not selected the direct aged at 800 °C for 24 hours, 

since a similar thermal exposure promote the formation of  phases that is 
detrimental to the mechanical properties[5,15,39]. On the contrary, the thermal 

exposure at 700 °C should promote the formation of fine γʺ phases which is the 
main strengthening precipitate in IN625 alloy [5,15]. 

 

3.5.2 Microstructure of IN625 samples direct aged at 600 °C 

The OM images of the direct aged IN625 samples at 600 °C for 2 h, 8 h as well 

as 24 h are shown in Figure 44a, 44b and 44c, respectively.  

The three direct aged samples revealed a very similar microstructure to each 

other, showing the MPCs and CGs having size analogous to as-built IN625 state.  
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Figure 44: OM images of direct aged IN625 samples at 600 °C for 2 h (a), 8 h (b) and 

24 h (c) along the building direction; kalling's No.2 etchant was used. 
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At higher magnification, OM images of direct aged samples at 600 °C for 2 

hours (Figure 45a), 8 hours (Figure 45b), and 24 hours (Figure 45c) did not reveal 

significant modification with respect to the as-built state.  
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Figure 45: OM images at high magnification of direct aged samples at 600 °C for 2 

hour (a), 8 hours (b) and 24 hours (c) showing melt pools contours and fine dendritic 

structures. Kalling’s No.2 etchant was used. 

FESEM images of the direct aged sample at 600 °C for 200 hours (Figure 46a 

and 46b) display the grain boundaries (GBs) as well as MPCs.  

Comparing the FESEM images at a higher magnification of direct aged (Figure 

46c) and as-built IN625 state (Figure 46d) is possible to note a very similar dendritic 

structure consisted of fine precipitates, identified as Nb-rich MC carbides for the 

as-built state. Besides, Nb and Mo segregations in the interdendritic areas can be 

observed.  

According to the literature, a similar heat treatment should start promoting the 

formation of very fine γʺ phases that can explain the hardness increase of around 8 
% with respect to the as-built condition [5,39].  

However, the very fine dimensions of γʺ phases make difficult to discern them 
from carbides by means of FESEM analysis. 
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Figure 46: FESEM images of IN625 sample direct aged at 600 °C for 24 hours 

showing: a) melt pools contours (MPCs) and (GBs) of columnar grains; (b) higher 

magnification of a GBS and MPCs; (c) the dendritic structures and fine precipitates; (d) 

Dendrite structures and fine precipitates of as-built IN625 samples to compare with the 

aged condition. Kalling’s No.2 etchant was used. 

3.5.3 Microstructure of IN625 samples direct aged at 700 °C 

The OM images of the direct aged IN625 samples at 700 °C for 2 h, 8 h as well 

as 24 h are shown in Figure 47a, 47b and 47c, respectively. The microstructure at 

low magnification resulted to be very similar to as-built materials, showing the 

MPCs and CGs.  
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Figure 47: OM images of direct aged IN625 samples at 700 °C for 2 h (a), 8 h (b) and 

24 h (c) along the building direction; kalling's No.2 etchant was used. 

At higher magnified view, OM images of direct aged samples at 700 °C for 2 

hours (Figure 48a) 8 hours (Figure 48b) and 24 hours (Figure 48c) did not denote 

the formation of coarse precipitates.  

Therefore, the high hardness improvement must derive from the formation of 

nanometric phases, not visible by OM investigation. 
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Figure 48: OM images at high magnification of direct aged samples at 700 °C for 2 

hour (a), 8 hours (b) and 24 hours (c) showing melt pools contours and fine dendritic 

structures. Kalling’s No.2 etchant was used. 
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FESEM images (Figure 49a, 49b and 49c) of the direct aged sample at 700 °C 

for 24 h revealed dendritic architectures with shape and size similar to the as-built 

state.  

From Figure 49b, can be observed some sub-micrometric elongated phases (one 

of them pointed out by a yellow circle) along the grain boundaries. Besides, at 

higher magnification (Figure 49c), it is evident the presence of very fine nanometric 

precipitates attributed to the formation of γʺ phases.  
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Figure 49: FESEM images showing: (a) columnar grains and grain boundaries (GBs; 

(b) fine dendritic architectures and some elongated precipitates along the GBS; (c) the 

formation of very fine γʺ phases within the dendrite core; Kalling’s No.2 etchant was used. 

The TEM image (Figure 50a) shows slightly less definited high density of 

tangled dislocations in the interdendritic zones similar to the as-built materials, 

together with Nb-rich precipitate-like lines.  

However, the thermal exposure involved the formation of fine elongated 

precipitates and fine γʺ phases with a size around 10-30 nm. According to the 

literature, these elongated precipitates should be Cr-rich M23C6 carbides, although 

the very low quantity of carbon may indicate that a part of the elongated precipitates 

may be Nb-rich precipitates such as  phases or δaves phases. In fact, the grain 
boundaries could have an enrichment in segregated element, promoting their 

formation for shorter time with respect to the TTT diagram of IN625 alloy.  

The γʺ phases were inhomogeneous scattered, observing some clusters of γʺ 
precipitates together with  γʺ-depleted zones (Figure 50b).A similar phenomenon 

may derive from inhomogeneous solute concentration (especially Nb) due to the 

very fast solidification, generating Nb-rich and Nb-depleted region in the dendrites 

core. 
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Figure 50: TEM bright field images: c) exhibiting columnar dendrite architectures with 

high dislocation mainly in the interdendritic area and Nb-rich precipitates line indicated by 

orange oval; d) ellipsoidal γʺ phases. 

3.5.4 Tensile properties of direct aged samples 

The tensile engineering stress-strain curves of three direct aged IN625 

specimens at 700 °C for 24 hours are illustrated in Figure 51, whereas the tensile 

properties of the LPBF aged samples compared to wrought IN625 are reported in 

Table 26. 
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Figure 51: Tensile stress curves of direct aged IN625 samples at 700 °C for 24 hours. 

 

The direct aged IN625 samples reveald higher YS and UTS but lower A than 

as-built state. There is chiefly associated with the strengthening effect of the γʺ 
phases. Besides, the direct aged samples revealed higher YS and UTS and lower A 

than LPBF-built IN625 produced by EOS, minimum requirements for LPBF-built 

and as-rolled IN625 alloys, as reported in Table 26. 

In fact, a direct ageing at 700 °C for 24 hours did not dissolve the dendrite 

structures, so it was not possible to improve the ductility.  
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Table 26: Comparison of tensile properties of as-built, direct aged at 700 °c for 24 

hours, to other LPBF-built IN625 along the x-y plane reported in literature and wrought 

IN625 alloys. 

Inconel 625 sample E (GPa) YS  (MPa) UTS (MPa) A (%) 

This study     

AB 182 ± 13 783 ± 23 1041 ± 36 33 ± 1 

DA 204 ± 3 1012 ± 54 1222 ± 56 23 ± 1 

Other works and specifications 

LPBF ASTM F3056-

14 

- 275 (min) 485 (min) 30 (min) 

LPBF* [32] 170 ± 20 725 ± 50 990 ± 50 35 ± 5 

As-rolled [33] - 414 (min) 827 (min) 30 (min) 

*As-built state according to EOS data sheet;  

3.5.5 Tensile fracture surfaces of direct aged IN625 samples  

Figure 52a reveals the tensile fracture surface of direct aged sample, showing 

the presence of both ductile and brittle fractures. The fracture surface seem to start 

from highly segregated areas along the grain boundaries or interdendritic areas, but 

can also start in areas with  Cr-rich M23C6 carbides and γʺ phases, which promote 

the brittle fractures.  

During the investigation, a higher number of brittle fractures was observed with 

respect to the as-built state, showing intergranular Cr-rich M23C6 carbides, as shown 

in Figure 52b. 

 



96 Results and discussion of IN625 produced by LPBF 

 

 

 

Figure 52: SEM images of tensile fracture surfaces for the direct aged IN625 at 700 

°C for 24 hours showing: a) ductile and brittle fracture surfaces; b) SEM image obtained 

in secondary and backscattering electrons exhibiting Cr-rich M23C6 carbides. 

 

3.5.6 Microstructure of IN625 samples direct aged at 800 °C 

The microstructural evolution of as-built IN625 samples heat-treated at 800 °C 

for 2, 8 and 24 hours is illustrated in Figure 53a, 53b and 53c, respectively. For this 

heat treatment, the MPCs were less definite whereas it is still possible to observe 

the CGs. The grain boundaries resulted in being more definite due to the phase 

precipitation. 
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Figure 53 : OM images of direct aged IN625 samples at 800 °C for 2 h (a), 8 h (b) 

and 24 h (c) showing columnar grains along the building direction; kalling's No.2 etchant 

was used. 
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At higher magnified OM view, the direct aged samples at 800 °C for 2 hours 

(Figure 54a), 8 hours (Figure 54b) and 24 hours (Figure 54c) showed a progressive 

formation of inter/intragranular phases.  

The formation of phases along the grain boundaries was estimated by means of 

image analysis, obtaining 1.65 ± 0.39 %, 2.44 ± 0.34 % and 3.01 ± 0.31 % after 

heat treatment for 2 hours, 8 hours and 24 hours, respectively.  

It should be noted that the fraction of intragranular precipitates was not 

determined since it is arduous to distinguish them from interdendritic areas due to 

their very fine dimensions. 
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Figure 54: OM images at high magnification of direct aged samples at 700 °C for 2 

hour (a), 8 hours (b) and 24 hours (c) showing gradually formation of inter/intragranular 

precipitates; Kalling’s No.2 etchant was used. 

 

The FESEM view of direct aged sample at 800 °C for 24 hours in Figure 55a 

reveals the precipitation of acicular  phases, with sub-micrometric size up to 1 µm 

within the grains and 1-2 µm along the grain boundaries. Furthermore, other 

precipitates with block shape around 1-2 µm were detected (Figure 55b). According 

to the TTT diagram of IN625, these precipitates could be carbides or Laves 

phases[5,39].  

However, regarding the very low quantity of C it seems unlike the presence of 

a significant number of carbides with similar size. In fact, the EDS results (Table 

27) revealed the precipitates were enriched in Nb, suggesting the precipitation of 

Laves phases.  

Finally, it is still possible to observe fine spherical precipitates (Figure 55c), 

the same of the as-built state indicated as Nb-rich MC carbides. The hardness 

increment of these heat-treated IN625 samples is clearly attributed to formation of 

δ phases and Laves phases.  

According to the T-T-T diagram of IN625 other carbides such as M6C and 

M23C6 could be presence after a similar thermal exposure, although the very low 

level of carbon seems to inhibit their formation.  
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Figure 55: FESEM images of IN625 sample direct aged at 800 °C for 24 hours 

showingμ a) columnar grains with several precipitates throughout the material; b)  phases 
indicated by arrow 1 and Laves phases pointed out by arrow 2; c)  phases indicated by 
arrow 1 and fine spherical carbides (the same of as-built state).  
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Table 27: EDS results of the Laves phase and austenitic matrix for the direct aged 

IN625 sample at 800 °c for 24 hours. 

 Laves phase (arrow 2) Austenitic matrix 
 Wt % At % Wt % At % 

Ni 62.1 64.8 62.8 64.3 
Cr 18.0 21.2 21.1 24.4 
Mo 10.0 6.3 10.1 6.3 
Nb 8.1 5.3 4.4 2.8 
Fe 0.5 0.5 0.6 0.7 
Co 0.4 0.4 0.3 0.3 
Ti 0.5 0.6 0.4 0.5 
Al 0.4 0.9 0.3 0.7 

The EDS line reports in Figure 56 shows both elongated and almost globular 

Laves phases. The EDS clearly revealed an enrichment of Nb and Mo together with 

a depletion of Cr. A fraction of the elongated precipitates could be confused with  
phases (Ni3Nb), but the enrichment in Mo, exclude their formation. 



102 Results and discussion of IN625 produced by LPBF 

 

 

Figure 56: EDS line of direct aged sample at 800 °C for 24 hours showing Laves 

phases enriched in Nb and Mo with respet to the austenitic matrix. 

3.5.7 Microstructure of IN625 samples direct aged at 900 °C 

During the OM investigation, the direct aged samples at 900 °C for 2 (Figure 

57a), 8 (Figure 57b) and 24 hours (Figure 57c) exhibited a microstructure similar 

at samples heat treatment at 800 °C for the same times.  

In fact, the microstructure was dominated of CGs (with size similar to as-built 

state) along the building direction, coupled with a significant precipitation inside 

the grains as well as along the grain boundaries.  
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Figure 57: OM images of direct aged IN625 samples at 900 °C for 2 h (a), 8 h (b) 

and 24 h (c) along the building direction; Kalling's No.2 etchant was used. 
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At higher magnification (Figure 58a, 58b and 58c), it is evident as increasing 

the thermal exposure leaded to larger formation of inter/intragranular phases.  

By analysis the fraction precipitates along the grain boundaries, it was 

determined a fraction of 0.73 ± 0.14 %, 2.29 ± 0.36 % and 3.95 ± 0.72 %  after 

thermal exposure at 900 °C for 2, 8 and 24 hours, respectively.  
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Figure 58: OM images at high magnification of direct aged IN625 samples at 800 °C 

for 2 h (a), 8 h (b) and 24 h (c) revealing the increment of precipitates correlate to longer 

thermal exposure; Kalling's No.2 etchant was used. 

FESEM images revealed the presence of the largest precipitates along the grain 

boundaries (Figure 59a).  

At higher magnification in Figure 59b,  phases indicated by arrow 1 and block 
of precipitates, identified as Laves phases, indicated by arrow 2 can be observed. 

The  phase had a length from 200 nm up to 3 µm, whereas the δaves phases had a 
size up to 3 µm. The  phases were homogeneously distributed within the materials 
whereas the Laves phases were mainly located along the grain boundaries. 

Furthermore, very nanometric spherical carbides (the same of the as-built state) 

were still presence (Figure 59c).  

The presence of Laves phases was also supported by EDS analysis (Table 28), 

revealed a Nb enrichment correlated to a depletion of Cr with respect to the 

matrix.Furthermore, it should be noted that the meager quantity of C cannot 

generate the formation of such a high number of micrometric carbides located along 

the grain boundaries. 
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Figure 59: FESEM images of IN625 sample direct aged at 900 °C for 24 hours 

showing: a) columnar grains with a significant number of precipitates throughout the 

material, with the largest located along the grain boundaries (GBs); b)  phases indicated 
by arrow 1 and Laves phases pointed out by arrow 2; c) magnificated view on  phase 
and δaves phases indicated by arrow 1 and 2, respectively. Kalling’s No.2 etchant was 
used.  
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Table 28: EDS results of the Laves phase and austenitic matrix for direct aged 

sample at 900 °C for 24 hours. 

 Laves phase (arrow 2) Austenitic matrix 
 Wt % At % Wt % At % 

Ni 62.5 65.1 64.0 65.3 
Cr 17.0 20.0 21.3 24.5 
Mo 10.0 6.4 9.5 5.9 
Nb 8.6 5.7 3.9 2.5 
Fe 0.6 0.7 0.5 0.5 
Co 0.1 0.1 0.2 0.2 
Ti 0.6 0.8 0.3 0.4 
Al 0.6 1.4 0.3 0.7 

 

3.6 Investigation on SHT IN625 condition  

3.6.1 Hardness investigation 

Figure 60 displays the Brinell hardness values of as-built and SHT IN625 

samples at 1000 °C and 1150 °C for 1 hour and 2 hours, respectively. The solution 

treatments drastically reduced the hardness, and the SHT samples at 1150 °C 

revealed lower hardness than SHT ones at 1000 °C.  

It is worthwhile to note that solution treatments at 1150 °C generated hardness 

values similar to as-rolled IN625 after solution treatments (116-194 HBW)[37]. The 

Brinell hardness values of the SHT IN625 samples are listed in Table 29. 
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Figure 60 : Brinell hardness of as-built and SHT IN625 samples at 1000 °C and 1150 

°C for 1 hour and 2 hours.  

Table 29: Brinell hardness values of SHT IN625 samples; starting condition 285 ± 3 

HBW of as-built IN625 samples. 

/ Temperature (°C) 

Time (hours) 1000  1150  

1 212 ± 3 186 ± 3 

2 210 ± 5 189 ± 3 

 

The microstructure of the SHT IN625 samples will be investigated in the 

following paragraphs. In particular, for the conditions showed the lowest hardness 

(SHT at 1150 °C 2 hours) will be studied more in detail the microstructure and the 

tensile properties.  

It should be noted that it was not selected the solution treatment performed at 

1150 °C for 1 hour, in order to guarantee a major homogenisation reducing the 

chemical segregation of the as-built state. 
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3.6.2 Microstructure evolution of SHT IN625 at 1000 °C 

The solution treatment triggered the recrystallization and grain growth leading 

to the formation of equiaxed grains. In this case, the recrystallization chiefly 

stemmed from the high dislocation density of the as-built state.  

The microstructures of samples SHT for 1 hour (Figure 61a) were equal to 

samples SHT for 2 hours (Figure 61b), which seems to indicate that at this 

temperature the grain growth was limited. The equiaxed grains had a large size 

distribution mainly from 5 µm to 80 µm, and both the micrographs showed many 

twin boundaries throughout the grains. 

 

 

Figure 61: OM images of SHT IN625 samples at 1000 °C for 1 h (a) and 2 h (b) 

showing a microstructure mostly consisted of equiaxed grains along the building 

direction; Kalling's No.2 etchant was used. 
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The FESEM image (Figure 62a) of SHT samples at 1000 °C for 2 hours 

revealed equiaxed grains without the presence of coarse precipitates along the grain 

boundaries, as well as along the twin boundaries. At higher magnification (Figure 

62b), it is evident how the heat treatment dissolved the very fine dendritic 

architectures, and it is also possible to observe fine precipitates (around 20-250 nm) 

homogeneously distributed throughout the material. 

According to the TTT diagram of IN625 alloys, a similar heat treatment (1000 

°C for 2 hours) can promote the carbide formation [5,39,130]. Therefore, these 

precipitates could be secondary carbides or grown primary carbides.  

 

 

Figure 62: FESEM images of SHT IN625 sample at 1000 °C for 2 hours showing: a) 

equiaxed grains without the formation of coarse precipitates along the grain boundary 

(GB) and along the twin boundary (TB); (b) high magnification along a GB with presence 

of very fine precipitates. Kalling’s No.2 etchant was used.  
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3.6.3 Microstructure evolution of SHT IN625 at 1150 °C  

Figure 63a and 63b reveal the microstructure of SHT IN625 samples at 1150 

°C for 1 hour and 2 hours, respectively. The SHT IN625 samples mostly exhibited 

equiaxed grains with a large grain size distribution, mainly from 10 to 90 µm, 

together with copious numbers of twin boundaries. This microstructure derived 

from the recrystallisation and grain growth due to the high density dislocation of 

as-built state. 

 

 

Figure 63: OM images of SHT IN625 samples at 1150 °C for 1 hour (a) and 2 hours 

(b) showing equiaxed grains with twin boundaries. Kalling’s No.2 etchant was used.  

As can be seen in FESEM image (Figure 64a), the microstructure did not reveal 

coarse carbides along the grain boundaries or the twin boundaries. Besides, the 

dendritic architectures disappeared as an effect of the heat treatment. At higher 

magnification (Figure 64b), it is possible to observe very fine carbides (generally 

around 20-400 nm) with the largest one mainly located along the grain boundaries.  
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Figure 64: FESEM images of SHT IN625 samples at 1150 °C for 2 hours showing: 

(a) equiaxed grains with grain boundary (GB) and twin boundary (TB) without coarse 

carbides; (b) (GB) areas with fine carbides. 

TEM image in Figure 65a reveals very low dislocation density of the SHT 

condition caused by the recrystallisation. Besides, Figure 65b displays a carbide 

along the grain boundary. The EDS analysis revealed enrichment in Nb and Ti, 

indicating the formation of  Nb,Ti rich MC carbides, in accordance with the TTT 

diagram of IN625 and literature on IN625 alloys [5,39,131,132]. 

Therefore, the solution treatment generates new Nb,Ti-rich MC carbides, which 

can be correlated to the growth of primary carbides as well as the formation of 

secondary carbides. To dissolve this type of carbide is necessary to reach a 

temperature around 1200 °C [5]. 
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Figure 65: TEM bright field images: (a) showing the austenitic matrix with low 

dislocation density; (b) Nb,Ti-rich MC carbides along the grain boundary (GB) indicated 

by arrow 1. 
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3.6.4 Thermomechanical analysis on SHT IN625 samples  

The CTE of SHT IN625 samples fabricated along x-y plane and z direction are 

illustrated in Figure 66, revealing very similar trends for both the samples. 

 

Figure 66: Coefficient of thermal expansion (CTE) vs temperature of SHT IN625 

samples built along x-y plane and z direction.  

The obtained TMA curves presented a deflection around 500-700 °C, probably 

due to the formation of phases inside the material. The average values of the CTE 

revealed a good correlation with the available data on IN625 alloy at different 

temperatures, as reported in Table 30. 
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Table 30: Average CTE for SHT IN625 samples and commercially available IN625 

alloy at different temperatures. 

T (°C) 538 649 760 

CTE (10-6 °C-1)  [37] 14.0 14.8 15.3 

CTE (10-6°C-1)             

SHT xy 

13.9 14.0 14.8 

CTE (10-6 °C-1)             

SHT  z 

13.9 14.0 14.8 

 

3.6.5 XRD analysis on SHT IN625 samples  

Figure 67 compares the XRD patterns of SHT IN625 samples along the 

building direction (z-axis) and perpendicular to the building direction (x-y plane). 

The patterns showed the γ austenitic phase with a lattice parameter of around 3.ηλ 
Å for both the states.  

For the SHT IN625 state can be observed a signification reduction of the texture 

with respect to the as-built state (see Figure 39), due to recrystallisation and grain 

growth leading to the formation of equiaxed grains both along z-axis and x-y plane. 

Besides, for the SHT IN625 state, the peaks were narrower than as-built IN625 

state, indicating a increment of the crystal size [55]. 
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Figure 67: XRD spectra of SHT IN625 samples along the z-axis and x-y plane. 

 

3.6.6 Tensile properties of SHT IN625 samples  

The tensile engineering stress-strain curves of three SHT IN625 specimens at 

1150 °C for 2 hours are displayed in Figure 68, whereas the tensile properties of 

LPBF-built and solution-treated IN625 samples compared to wrought IN625 are 

reported in Table 31. 

 

Figure 68: Tensile stress curves of the SHT IN625 samples at 1150 °C for 2 h. 

0

20

40

60

80

100

120

140

160

180

200

35 45 55 65 75 85 95

In
te

n
si

ty
 (

a
.u

.)

2theta (θ)

SHT IN625 xy

SHT IN625 z

(111)

(200)

(220)
(311)



3.6 Investigation on SHT IN625 condition 117 

 
The SHT IN625 samples showed lower tensile strengths and higher elongation 

at failure than as-built state. There is mainly attributed to the elimination of the very 

fine dendritic architectures. Besides, it is interesting to note that the SHT IN625 

samples revealed higher tensile properties than minimum requirements for the 

traditional wrought grade 2 IN625 alloy based on ASTM B443. 

Comparing the tensile properties of the LPBF SHT IN625 samples to 

commercially available SHT wrought IN625, it is possible to note that the tensile 

properties are still superior to the minimum values, while the maximum values 

slightly exceed the tensile properties of LPBF SHT IN625 samples. 

Finally, the tensile test determined an E of 182 ± 13 GPa, whereas the IMCE 

test assessed a value of 206 ± 3 GPa for the SHT IN625 state. According to the 

IMCE test, the SHT state had a higher E than as-built state. The solution treatments 

dissolved Nb and Mo segregations involving a E reduction. However, the SHT 

samples revealed larger carbides than as-built state, so the reduction of Nb Ti ect. 

from the austenitic matrix could explain the increment of E, as reported in the 

literature [133]. 

Table 31: Comparison of tensile properties of as-built and SHT IN625 samples at 

1150 °C for 2 hours to SHT wrought IN625 according to ASTM B443 as well as data 

commercially available. 

Inconel 625 sample Young’s 

modulus (GPa) 

YS 

(MPa) 

UTS 

(MPa) 

Elongation 

(%) 

This study     

As-built 182 ± 13 783 ± 23 1041 ± 36 33 ± 1 

SHT 181 ± 16 396 ± 9 883 ± 15 55 ± 1 

Specifications 

Wrought SHT* - 276 (min) 690in) 30 (min) 

Wrought SHT [37] - 290-414 724-896 40-65 

*Wrought grade 2 solution annealed at least at 1093 °C according to ASTM B443 
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3.6.7 Tensile fracture surfaces analysis  

The SHT IN625 sample chiefly showed a ductile fracture mode resulting in a 

coalescence of microvoids, as can be seen in Figure 69a and 69b. The larger size of 

microvoids with respect to the as-built samples can reasonably derive from its 

greater ductility. Finally, for the solution-treated fracture surfaces, the dimples seem 

to be slightly deeper than as-built ones. 

 

 

Figure 69: SEM images of SHT IN625 tensile fracture surfaces: a) low magnification 

showing fracture surfaces with microvoids; b) higher magnification exhibiting 

microvoids and fine dimples. 
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3.7 Investigation on aged IN625 conditions 

3.7.1 Hardness investigation 

The Brinell hardness values of the SHT samples at 1150 °C for 2 hours and 

subsequently aged at 600 °C, 700 °C, 800 °C and 900 °C for different times are 

reported in Figure 70 and Table 32.  

The ageing treatments at 700 °C led to the highest hardness values, whereas 

thermal exposure at 900 °C resulted in the lowest hardness improvement, 

showing values compatible with the as-built state.  

Finally, ageing treatments performed at 600 °C and 800 °C revealed similar 

hardness improvement. 

 

Figure 70: Brinell hardness values of solutionized (SHT at 1150 °C for 2 hours) and 

subsequent aged IN625 samples performed at 600 °C, 700 °C, 800 °C, 900 °C for 2 

hours, 8 hours and 24 hours, respectively. 
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Table 32: Brinell hardness values of aged IN625 samples; starting condition 189 ± 3 

HBW of SHT IN625 samples. 

/ Temperature (°C) 

Time (h) 600 700 800 900 

2 199 ± 3 210 ± 3 195 ± 3 189 ± 3 

8 207 ± 3 260 ± 4 211 ± 3 189 ± 3 

24 228 ± 5 280 ± 5 235 ± 7 193 ± 3 

The microstructure of the SHT IN625 samples at 1150 °C for 2 hours followed 

by ageing treatments at different temperatures and times will be discussed in the 

following sections. In particular, for the aged IN625 state revealed the highest 

hardness values (700 °C 24 hours) will be considered in deep its microstructure and 

its tensile properties. 

3.7.2 Microstructure evolution of IN625 sample aged at 600 °C 

The OM images of aged samples at 600 °C for 2 hours (Figure 71a), 8 hours 

(Figure 71b) and 24 hours (Figure 71c), did not represent substantial modification 

with respect to the SHT IN625 state. In fact, the microstructure was made up of 

equiaxed grains with the same size of SHT IN625 samples as well as a high number 

of twin boundaries. 
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Figure 71: OM images of aged samples at 600 °C for 2 hour (a), 8 hours (b) and 24 

hours (c) showing equiaxed grains with twin boundaries; Kalling’s No.2 etchant was 
used. 

At higher magnification, OM images of aged samples at 600 °C for 2 hours 

(Figure 72a) 8 hours (Figure 72b) and 24 hours (Figure 72c) showed an slightly 

improvement of phases along the grain boundaries correlated to the time of heat 

treatment. 

By image analysis was calculated a precipitation fraction of 0.60 ± 0.12 % 

(aged at 600 °C 2 hours), 0.76 ± 0.16 % (aged at 600 °C 8 hours) and 1.03 ± 0.24 

% (aged at 600 °C 24 hours).  
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Figure 72: OM images of aged samples at 600 °C for 2 hour (a), 8 hours (b) and 24 

hours (c) showing a starting precipitation along the grain boundaries; Kalling’s No.2 
etchant was used. 
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FESEM images (Figure 73a) of the aged samples at 600 °C for 24 hours shows 

some equiaxed grains without the presence of coarse precipitates. As evident from 

Figure 73b, the thermal exposure generated fine precipitates (200-600 nm) along 

the grain boundaries, whereas nanometric white spots (around 10-25 nm) were 

detected throughout the materials (one of which indicated by arrow 1).  

According to the literature, this temperature and time could promote the 

precipitation of γʺ phases, which could be the white spots detected during the 
analysis (Figure 73b) [5,15,39]. The presence of fine γʺ phases can explain the 

hardness improvement of the aged IN625 samples (around 20 %) with respect to 

the SHT state. 

On the contrary, no Laves phases or δ phases should form for a similar thermal 

exposure up to 24 hours, although the FESEM analisys found some sub-

micrometric precipitates along the grain boundaries. However, it is well known the 

formation of phases is strong correlate to the chemical composition, so some 

chemical variation could alter the phases formation [5]. 

Another possible speculation is that grain boundary areas enriched in Nb, Mo 

and other segregated elements accelerated the formation of phases such as δ phases 

or Laves phases. However, future studies will be performed to confirm this theory. 
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Figure 73: FESEM images of aged IN625 samples at 600 °C for 24 hours showing: 

(a) equiaxed grains without coarse carbides; (b) Grain boundary areas with fine elongated 

precipitates and very fine bright intergranular precipitates indicated by arrow 1; Kalling’s 
No.2 etchant was used. 

3.7.3 Microstructure evolution of IN625 sample aged at 700 °C 

The samples aged at 700 °C for 2 hours (Figure 74a), 8 hours (Figure 74b) and 

24 hours (Figure 74c) showed equiaxed grains with dimensions similar to the SHT 

condition, pointing out that a similar thermal exposure did not alter the grain size. 
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Figure 74: OM images of aged samples at 700 °C for 2 hour (a), 8 hours (b) and 24 

hours (c) showing equiaxed grains with twin boundaries; Kalling’s No.2 etchant was 

used. 

At higher magnification, OM images of aged samples aged at 700 °C for 2 

hours (Figure 75a), 8 hours (Figure 75b) and 24 hours (Figure 75c) revealed an 

increment of phases. 

By image analysis was calculated a precipitate fraction of 1.28 ± 0.19 %, 1.52 

± 0.43 % and 2.54 ± 0.39 % after heat treatment for 2 hours, 8 hours and 24 hours, 

respectively. 
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Figure 75: OM images of aged samples at 600 °C for 2 hour (a), 8 hours (b) and 24 

hours (c) showing a starting precipitation along the grain boundaries; Kalling’s No.2 
etchant was used. 
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At higher magnification, FESEM image (Figure 76a) of aged sample at 700 °C 

for 24 hours revealed grain boundaries covered by elongated phases.  

Figure 76b displays both fine carbides (see inset in Figure 76b) and the 

elongated phases with size from nanometric up to 2 µm along the grain boundaries. 

At higher magnification (Figure 76c), fine γʺ phases (less than 30 nm) can be 

observed as slightly bright spots. 
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Figure 76: FESEM images showing: (a) fine elongated precipitates along the grain 

boundaries; (b) fine elongated precipitates along the grain boundaries  with inset showing 

εC carbides; (c) grain boundary with elongated precipitates and intragranular γʺ phases; 
Kalling’s No.2 etchant was used. 

TEM image (Figure 77a and 77b) reveal the presence of a phase enriched in Cr 

(length 400 nm) and another one (length 300 nm) enriched in Nb, respectively, 

determined by EDS analysis. The first result denoted the formation of Cr-rich 

M23C6 carbides whereas the other phases could be δ phases or Laves phases. 

As observed before, the very low quantity of carbon does not allow the 

precipitation of a very high number of carbides, so a part of the elongated 

precipitates may be δ phases or Laves phases. 

TEM images (Figure 77c and 77d), inside the grains revealed the presence of 

Nb,Ti-rich MC carbides (generated during the solution treatment) as well as the 

formation of ellipsoidal γʺ phases with dimension from 10 to 30 nm homogeneously 

scattered within the grains. The very high number of nanometric γʺ phases explain 

why the samples revealed a hardness improvement of around 50 % with respect to 

the SHT state, reaching values similar to the as-built state. 

Regarding the thermal exposure at 700 °C for 24 hours, the presence of Cr-rich 

M23C6 carbides and γʺ phases are in agreement with the T-T-T diagrams of IN625 

alloy mentioned in the literature. By contrast, it reported the presence of  phases 
or Laves phases for thermal exposure at 700 °C longer than 24 hours [5,39]. 

However, the phases’ formation can be subject to variation based on the 
chemical composition. Besides, as mentioned before, another possible theory is that 
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segregated elements such as Nb, Mo etc. play a crucial role to accelerate the 

formation of these phases along the grain boundaries. 
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Figure 77: TEM bright field images of aged IN625 sample at 700 °C for 24 

hours showing: a) intergranular Cr-rich M23C6 carbide; b) intergranular Nb-rich 

phase; c) intragranular Nb,Ti rich-εC carbide; d) intragranular  γʺ phases. 

3.7.4 Tensile properties of aged IN625 samples 

The tensile engineering stress-strain curves of three aged IN625 specimens at 

700 °C for 24 hours are illustrated in Figure 78, whereas the tensile properties of 

the LPBF aged samples compared to wrought IN625 are reported in Table 33. 
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Figure 78: Tensile stress curves of aged IN625 samples at 700 °C for 24 hours. 

The aged IN625 samples exhibited lower A, and higher YS and UTS than SHT 

IN625 samples. The difference can be mainly attributed to the precipitation of fine 

γʺ phases, as observed during TEε investigation. The tensile properties of aged 

samples showed lower YS and greater UTS than as-built state, whereas the two 

condition revealed similar A. 

Comparing the tensile properties of the LPBF aged IN625 samples to 

commercially available SHT wrought IN625, it is possible to note that the tensile 

properties are still superior to the minimum values, while the maximum values 

slightly exceed the tensile properties of LPBF SHT IN625 samples. 

Finally, the tensile test revealed a E of 200 ± 7 GPa, whereas the IMCE test 

estimated a value of 213 ± 6 GPa for the SHT IN625 state.  

In this case, the higher E of aged samples with respect to the SHT and as-built 

state derive from the precipiation of γʺ phases, as reported in the literature [133]. In 

fact, the formation of γʺ phases reduce the quantity of Ni, Nb, Al and Ti, involving 

a E variation.  
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Table 33: Comparison of tensile properties of as-built, SHT, aged IN625 samples 

built along the x-y plane. 

Inconel 625 sample E (GPa) YS (MPa) UTS(MPa) A (%) 

This study     

As-built 182 ± 13 783 ± 23 1041 ± 36 33 ± 1 

Solution-treated 181 ± 16 396 ± 9 883 ± 15 55 ± 1 

Aged 200 ± 7 722 ± 7 1116 ± 6 35 ± 5 

 

3.7.5 Tensile fracture surface of aged IN625 samples 

The tensile fracture surfaces of aged IN625 samples showed both brittle 

fractures showing secondary cracks (Figure 79a) and ductile fractures with fine 

dimples (Figure 79b).  

The presence of the brittle fractures can be associated with the presence of Cr-

rich M23C6 carbides along the grain boundaries as well as the formation of Nb-rich 

phases (probably Laves phases or δ phases) along the grain boundaries. Besides, 

the cracks formation could be caused by the presence of γʺ phases, as reported in 

the literature [132,134]. 
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Figure 79: SEM micrographs of aged IN625 tensile fracture surfaces: a) low 

magnification exhibiting mixed ductile and brittle fractures with secondary cracks; b) 

higher magnification exhibiting fine dimples as well as brittle fractures. 
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3.7.6 Microstructure evolution of IN625 sample aged at 800 °C 

The OM micrographs of aged samples at 800 °C for 2 hours (Figure 80a), 8 

hours (Figure 80b) and 24 hours (Figure 80c) exhibited grain shape and size similar 

to SHT condition. Differently, it is possible to note the formation of intergranular 

and intragranular precipitates.  
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Figure 80: OM images of aged samples at 800 °C for 2 hour (a), 8 hours (b) and 24 

hours (c) showing equiaxed grains and twin boundaries with some precipitates along and 

inside the grains; Kalling’s No.2 etchant was used. 

At higher magnified OM view, aged samples at 800 °C for 2 hours (Figure 81a) 

8 hours (Figure 81b) and 24 hours (Figure 81c) exhibited a gradual formation of 

inter/intragranular phases. The formation of phases was estimated by means of 

image analysis, obtaining 2.72 ± 0.59 %, 2.75 ± 0.24 %, 4.08 ± 0.51 % after heat 

treatment for 2 hours, 8 hours and 24 hours, respectively. 
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Figure 81: OM images of aged samples at 800 °C for 2 hour (a), 8 hours (b) and 24 

hours (c) showing a starting precipitation within the grains and along the grain 

boundaries; Kalling’s No.2 etchant was used. 

FESEM image of aged sample at 800 °C for 24 hours (Figure 82a) revealed a 

massive presence of inter/intragranular precipitates, the largest ones located along 

the grain boundaries. 

The intragranular areas showed acicular precipitates associated with δ phases 

indicated by arrow 1 in Figure 82b. Other elongated intergranular precipitates 

around 1-2 µm pointed out by arrow 2, revealed an enrichment in Nb and Mo 

coupled to a depletion of Cr with respect to the austenitic matrix, as highlighted by 

EDS results in Table 34, compatible with the formation of Laves phases. 

The  phases was generally longer along the intergranular areas (up to 3 µm) 
than intragranular ones (from nanometric up to 1 µm) as pointed out by arrows 1 in 

Figure xc. Besides, the very fine Nb,Ti-rich carbides of the SHT state can be still 
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observed. The presence of δ phases and Laves phases are compatible to the TTT 

diagram of IN625 alloys [5,15,39].  

These microstructural features can explain why the hardness of aged samples 

at 800 °C for 24 hours had a hardness improvement around 24 % with respect to 

the SHT state.  
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Figure 82: - FESEM images showing: (a) inter/intragranular elongated precipitates; (b) 
intragranular acicular  phases indicated by arrow 1 and intergranular elongated δaves 
phases indicated by arrow 2; (c)  phases indicated by arrows 1 and fine Nb,Ti rich εC 
carbides formed during the solution treatment; Kalling’s No.2 etchant was used. 

Table 34: EDS results of Laves phase and austenitic phase for the aged IN625 sample 

at 800 °C for 24 hours. 

 Laves phase (arrow 2) Austenitic matrix 
 Wt % At % Wt % At % 

Ni 61.7 64.3 63.4 64.6 
Cr 17.6 20.8 21.4 24.6 
Mo 10.3 6.6 9.2 5.7 
Nb 8.2 5.4 4.2 2.7 
Fe 0.8 0.8 0.7 0.7 
Co 0.2 0.2 0.3 0.3 
Ti 0.7 0.9 0.4 0.5 
Al 0.5 1.0 0.4 0.9 

 

3.7.7 Microstructure evolution of IN625 sample aged at 900 °C 

The SHT IN625 samples after ageing at 900 °C for 2 hours (Figure 83a), 8 

hours (Figure 83b) and 24 hours (Figure 83c) revealed equiaxed grains and twin 

boundaries, as previously observed for the SHT state. However, it is possible to 

note a progressive precipitation inside the grains and along the grain boundaries. 

 



3.7 Investigation on aged IN625 conditions 139 

 

 

 

 

Figure 83: OM images of aged samples at 900 °C for 2 hour (a), 8 hours (b) and 24 

hours (c) showing equiaxed grains and twin boundaries together with the formation of 

inter/intragranular phases; Kalling’s No.2 etchant was used. 
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In fact, thermal exposure at 900 °C gradually promoted the formation of 

inter/intragranular precipitates, as can be seen in Figure 84a (after 2 hours), Figure 

84b (after 8 hours), Figure 84c (after 24 hours). The fraction of phases was 

calculated 4.16 ± 0.11 %, 4.59 ± 0.36 %, 5.65 ± 0.39 % after heat treatment for 2 

hours, 8 hours and 24 hours, respectively. 
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Figure 84: OM images of aged samples at 900 °C for 2 hour (a), 8 hours (b) and 24 

hours (c) showing a starting precipitation within the grains and along the grain 

boundaries; Kalling’s No.2 etchant was used. 

FESEM image of aged sample at 900 °C for 24 hours (Figure 85a) revealed a 

massive presence of acicular δ phases, mainly located along the grains boundaries. 

Differently, from the previous case (aged at 800 °C for 24 hours), the δ phases had 

length up to 12 µm. Figure 85b reveals one of the intergranular acicular δ phases 

with size around 10 µm, indicated by arrow 1 in Figure 85b, whereas Figure 85c 

shows a small δ phase around 1.5 µm.  

Besides, intergranular precipitates around 2 µm, indicated by arrow 2 in Figure 

85b, can be also observed in Figure 85b. The EDS analysis (Table 35) revealed 

enrichment in Nb and depletion of Cr, compatible with the formation of Laves 

phases. Also at this temperature, the Nb,Ti rich MC carbides (formed during the 

solution treatment) were still visible. The presence of δ phases and Laves phases 

are compatible to the TTT diagram of IN625 alloys [5,15,39]. The coarse 

microstructure of this aged IN625 samples apparently explains why they underwent 

a hardness increment of only around 2 % with respect to the SHT state. 
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Figure 85: FESEM images of aged samples at 900 °c for 24 hours showing: (a) 

inter/intragranular elongated precipitates; (b) intragranular acicular  phases indicated by 
arrow 1 and intergranular elongated Laves phases indicated by arrow 2; (c) Intergranular 

acicular  phases and fine Nb,Ti-rich εC carbides; Kalling’s No.2 etchant was used. 
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Table 35: EDS results of Laves phase and austenitic phase for aged IN625 samples at 

900 °C for 24 hours. 

 Laves phase (arrow 2) Austenitic matrix  
 Wt % At % Wt % At % 

Ni 62.9 68.1 64.0 65.2 
Cr 9.6 11.7 20.8 23.9 
Mo 8.8 5.8 9.2 5.7 
Nb 16.5 11.3 4.1 2.6 
Fe 0.6 0.6 0.8 0.9 
Co 0.3 0.3 0.2 0.2 
Ti 0.9 1.3 0.5 0.6 
Al 0.4 0.9 0.4 0.9 

 

3.8 Tensile behaviour of as-built and heat-treated IN625 

samples  

The Ludwik-Hollomon equation has been used to study the flow curve in the 

uniform elongation stage, thus obtaining the strain hardening parameters for the as-

built, direct aged at 700 °C for 24 hours, SHT at 1150 °C for 2 hours, as well as 

aged at 700 °C 24 hours IN625 samples. The strain hardening stage, the K and n 

parameters together with the ratio between YS and UTS are given in Table 36.  

Table 36: Strain hardening parameters as calculated on IN625 samples for as-built 

(AB) direct aged (700 °C for 24 hours), SHT (1150 °C for 2 hours) and aged (700 °C for 

24 hours) IN625 samples. 
 

 

The direct ageing of the as-built material provides a reduction of the strain 

hardening region with respect to the as-built state. This can be assumed by the 

IN625 Samples YS/UTS K (MPa) n 

As-built 0.75 1408 ± 6 0.595 ± 0.004 

Direct aged 0.82 1285 ± 6 0.504 ± 0.005 

SHT 0.45 1861 ± 2 0.711 ± 0.001 

Aged 0.65 1853 ± 5 0.601 ± 0.002 
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increment of the YS/UTS ratio, by the slight reduction of the n-exponent and by the 

considerable reduction of the uniform elongation at break. The increase of YS/UTS 
ratio is caused by the marked improvement of the YS  (̴ 30%) and by the more 
limited increase in UTS (̴ 17%) with respect to the as-built state. Regarding the 

microstructural investigation reported above, such marked increase in the YS can 

come from the precipitation of the intergranular Cr-rich M23C6 carbides, Nb-rich 

phases along the grain boundaries and γ’’ phases. 

All these phases generate obstacles to dislocation motion, thus resulting in 

higher resistance for plasticity to occur. At the same time when the energy state for 

plasticity is obtained, these phases limited the capability of the material to deform 

in the plastic region, reducing the strain hardening region and elongation at break. 

This is also supported by the higher number of brittle features in the fracture surface 

of direct aged samples. Furthermore, it is interesting to note that the direct aged 

state revealed similar dendritic architectures and high dislocation density to as-built 

condition. As a result, these features do not take part to the modification of the 

tensile properties of the LPBF IN625. This is pointed out by the shape of the flow 

curve and the values of the n-exponent which resulted to be similar for both 

conditions.  

Differently, in the SHT condition the recrystallization, dissolution of the 

dendritic architectures and segregated elements, as well as the recovery of tangled 

dislocation lead to an evident alteration of the flow curve shape and of the n-

exponent with respect to the as-built and direct aged states. Regarding the plasticity, 

the SHT state reveals an expansion of the strain hardening region. This can be 

ascribed to the diversity between YS and UTS levels and by the striking increase in 

the n-exponent value and uniform elongation. These aspects are evident by 

confronting the SHT and as-built condition.  

Specifically, in this case, the YS level is remarkably reduced due to 

recrystalization and by the almost complete suppression of the tangled dislocations 

structure. Besides, both strength levels dropped off, with a ̴ η0% and a ̴ 15% 

reduction for YS and UTS, respectively.Furthermore, the solution treatment also 

increases the n-exponent, involving a total variation of the flow curve shape with 

respect to the as-built state. In fact, the microstructural modification triggered by 

solution treatment generates a more homogeneous material with a greater ability 

for plastic deformation, as indicated by the increase in maximal elongation at break. 

The enhancement of plastic behaviour is also evident by the higher amount of 

micrometric and sub-micrometric dimples revealed by the fracture surface 

observation, when compared to on the as-built samples. 
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Finally, ageing treatment after solutioning provides a YS level similar to the as-

built state and a UTS greater than those of the as-built condition, resulting in a 

YS/UTS ratio slightly lower than those of the as-built state. Also, in this case, the 

enhancement of the YS and UTS derived from the precipitation of grain boundary 

Cr-rich M23C6 carbides, Nb-rich phases and the homogeneous formation of the γ’’ 
phases. By contrast to the direct aged state, the elimination of dendritic structures 

and tangled dislocation structures promotes the capability of the materials to deform 

plastically. The carbides and γ’’ phases precipitation do not modify the shape of the 
flow curve and provide a limited decrease of the n-exponent and elongation.  

When confronting the direct aged and SHT and aged conditions, the significant 

microstructural difference that can be observed is the existence of the latter state of 

fine secondary carbides and homogenous γʺ phases precipitation. In fact, the 
solution treatment eliminate the segregation homogeneously the material, thus 

making available the elements for the phases formation. The formed phases give an 

actual strengthening effect without remarkable decrease the elongation. On the 

other hand, as for direct aged samples, brittle fractures of aged samples can be 

correlated to intergranular carbides or Nb-rich phases. It was therefore discussed 

that the modulation of microstructural features performing heat treatment of as-built 

LPBF IN625 involves a broad spectrum of possible mechanical behaviour 

influencing chiefly the YS, YS/UTS ratio, the strain hardening parameters and the 

ductility of the material. 

 

3.9 Conclusions  

This work started with the process parameters optimisation of LPBF IN625 

samples, investigating the effect of different laser power, scan speed and hatching 

distance on the densification and hardness levels, reaching relative density superior 

to 99.8 %.  

The microstructure of as-built LPBF IN625 (built using optimised parameters) 

revealed microstructure consisted of columnar grains and randomly equiaxed grains 

along the building direction (z-axis) and perpendicular to the building direction (x-

y plane), respectively. TEM images revealed very fine dendritic architectures 

(generally less than 1.5 µm) with a high density of dislocations due to the rapid 

cooling rates involved during the process. 

FESEM and TEM analyses seem to point out the existence of fine Nb-rich MC 

carbides (10-50 nm) within the dendritic cores. The as-built IN625 samples 
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exhibited higher mechanical properties than minimum values for as-rolled IN625 

alloy, showing mixed brittle and ductile fractures. Finally, also CTE and K were 

determined. 

Afterwards, the work was especially focused on studying the microstructural 

evolution of the LPBF IN625 alloy under different heat treatments, performing 

direct ageing treatments on as-built IN625 samples as well as ageing treatments on 

SHT IN625 samples at 1150 °C for 2 hours. Direct ageing and ageing at 600 °C up 

to 24 hours mainly revealed the presence of γʺ phases. Direct ageing and ageing at 

700 °C up to 24 hours chiefly promoted the formation of γʺ phases and M23C6 

carbides. Direct ageing or ageing at 800 °C and 900 °C up to 24 hours led to the 

formation of δ phases and Laves phases. All these heat treatments applied to as-

built or SHT IN625 samples did not alter the grains size. Differently, solutioning 

performed at 1000 °C and 1150 °C for different times resulted in dendritic 

architectures dissolution, recrystallisation and grain growth, exhibiting the presence 

of sub-micrometric carbides (20-400 nm). The different heat-treated IN625 

conditions were characterised by hardness test, OM and FESEM analyses. 

By these analyses, a direct ageing, a solutioning and an ageing condition were 

selected, in order to characterise in detail their microstructure by means of TEM 

analysis as well as their tensile properties. The direct aged IN625 at 700 °C for 24 

h showed a microstructure similar to as-built IN625 state. However, the heat 

treatment led to the generation of discoidal γʺ phases with size around 10-30 nm as 

well as the formation of elongated intergranular Cr-rich M23C6 carbides. These 

phases remarkable improved the tensile strengths and hardness of IN625 alloy, 

while the ductility decreased. Besides, by analysing the fracture surfaces was 

possible to note more brittle areas than as-built state. The SHT IN625 samples at 

1150 °C for 2 h revealed a microstructure made up of equiaxed grains (from 10 to 

90 micron) due to recrystallisation and grain growth. TEM analysis revealed a 

significant reduction of the dislocation density and the formation of 

inter/intragranular Nb,Ti-rich MC carbides around 20-400 nm.  

The dissolution of dendritic architectures together with the formation of 

equiaxed grains led to lower tensile strengths and greater ductility than as-built and 

direct aged states, showing both brittle and ductile fracture surfaces. Besides, SHT 

LPBF IN625 exhibited higher mechanical properties than minimum values of SHT 

wrought IN625 according to ASTM B443. 

The SHT IN625 samples were aged at 700 °C for 24 hours, promoted the 

formation of γʺ phases homogeneously scattered within the alloys and intergranular 



3.9 Conclusions 147 

 
Cr-rich M23C6 carbides. The presence of these precipitates involved higher tensile 

strengths and lower ductility than SHT state, while the fracture mechanism showed 

mixed brittle and ductile fractures. 

To sum up the tensile properties of the LPBF as-built and heat-treated IN625 

samples surpassed the minimum values reported in ASTM standard for Inconel 625. 

The only exception is for the directed aged condition that showed remarkable 

tensile strengths but slightly lower ductility than minimum values recorded in the 

ASTM standard.  

These results highlighted how it is possible to drastically modify the 

microstructure of LPBF IN625 alloy to create tailored microstructure and so 

determined mechanical properties for industrial application, exceeding the 

minimum requirements for traditional IN625 alloy reported in the ASTM standards. 
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Chapter 4 

Results and discussion of IN625 

produced by DED process 

This chapter is concerned with the study and development of IN625 alloy by 

means of directed energy deposition (DED) process. Firstly, it was characterised 

the starting powder, focusing on the powder particles in term of particle size 

distribution, morphology, chemical composition as well as residual porosity.  

Secondly, it was carried out a process parameter optimisation using different 

parameters for fabricating IN625 samples, in order to determine their impact on the 

densification level and hardness.  

Finally, it was studied the microstructure of the samples with the highest 

densification level. 

The main finding of this investigation was published in an international 

scientific journal [56]. 

4.1 DED Powder characterisation 

The gas atomised IN625 powder presented a significant number of almost 

spherical particles, including a few elongated and irregular particles, as illustrated 

in Figure 86a and 86b. Besides, observing the surface of some particles was also 

possible to distinguish satellite particles, as pointed out by arrows in Figure 86b. 
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Figure 86: FESEM images of the IN625 powder particles at different magnifications 

(a,b), in which some satellite particles are pointed out by the yellow arrows.  

The cross-section of powder particles (Figure 87a and 87b) mainly displayed 

spherical pores from 1 µm to 30 µm, some of which are indicated by red circles, 

obtaining a residual porosity of about 0.213 %. These spherical pores are commonly 

generated during the gas atomisation process, containing entrapped inert gas 

[46,80,90,135]. 
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Figure 87: OM micrographs of mounted and polished IN625 particles at different 

magnification (a, b), highlighting the existence of internal spherical pores, some of which 

are indicated by red circles. 

The EDS analysis of the powder revealed a chemical composition similar to the 

declared company data sheet and standard UNS N06625, also showing the presence 

of elements not determined in the data sheet, such as Al, Si, Mn, as reported in 

Table 37. The values of Ti and Nb obtained by EDS are marginally outside the 

requirements of the standard UNS N06625. However, it should be considered that 

EDS analysis does not allow a precise chemical composition quantification. 
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Table 37: EDS results of main chemical elements reported in weight percentage (wt 

%) for IN625 powder compared to company datasheet and standard UNS N06625. 

Element Company data sheet 
(wt %) 

EDS powder 
(wt %) 

UNS N06625 (wt 
%) 

Ni Bal. 66.1 58.0 min 
Cr 21.5 22.1 20.0-23.0 
Mo 9.0 8.6 8.0-10.0 

Nb + Ta 3.8 2.9 3.15-4.15 
Fe 1.4. 0.8 5.0 (max) 
Si 0.4. 0.4 0.5 (max) 
Ti -. 0.5 0.4 (max) 
Al - 0.3 0.4 (max) 
Mn -. 0.3 0.5 (max) 
C <0.03 -* 0.10 (max) 

*not detected by EDS analysis due to overestimation 

The particle size distribution of the DED powder revealed particle size with 

d(0.1), d(0.5) and d(0.9) of 81 µm, 110 µm, and 150 µm, as illustrated in Figure 88. 

After the application of ultrasonic vibration, the DED powder had essentially the 

same particle size distribution, thus indicating their low tendency to form 

aggregates. 

 

Figure 88: Particle size distribution of IN625 powder obtained by means of laser 

granulometry diffraction with and without ultrasonic vibration [56]. 
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Table 38 provides the values of the apparent density, flowability as well as 

skeletal density, and they can be compared to the determined values of LPBF IN625 

powder reported in paragraph 3.1. 

The apparent density revealed higher values than LPBF IN625 powder, which 

can be associated with its wider powder size distribution. In this case, it was 

possible to perform both Hall and Carney flowmeters, obtaining a Carney flow rate 

lower than LPBF IN625 powder, indicating a greater flowability.Finally, the 

skeletal density revealed values similar to the theoretical IN625 density, although 

the value was less than those of LPBF IN625 powder [3]. This slight difference is 

caused by a higher level of residual pores within the powder, as determined during 

the particle cross-section analysis, thus reducing the skeletal density. 

Table 38: Average value and standard deviation of Apparent density, Flowability and 

Skeletal density for DED IN625 powder[56]. 

IN625 

powder 

Apparent 

density [g/cm3] 

Hall flow 

rate 

[s/ 50g] 

Carney flow 

rate  [s/ 200g] 

Skeletal 

density 

[g/cm3] 

 4.63 ± 0.04 17.4 ± 1.4 12.3 ± 0.1 8.43 ± 0.02 

4.2 Process parameters optimisation 

Figure 89 reveals the hardness trend versus residual porosity of the samples 

built using different process parameters by DED process (reported in paragraph 

2.1.2). The graph shows a linear trend confirming the negative correlation between 

porosity and hardness, the lower the porosity the higher hardness, is obtained.  

For the employed parameters, the hardness had values between 200 and 225 

HBW, whereas the residual porosity modified from 0.11 % to 0.25 %. The 

determined hardness values of DED as-built samples are similar to the 

commercially available data of as-rolled IN625, with Brinell hardness between 175 

HBW and 240 HBW [37]. 
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Figure 89: Brinell hardness vs residual porosity for as-built IN625 samples produced 

by DED process using different process parameters.  

Differently, from the LPBF process, it was not possible to note some trends in 

residual porosity and hardness values vs. energy density. However, according to the 

data determined for the DED process (Table 39), the R9 samples produced with a 

laser power of 1800W, a scan speed of 13.3 mm/s and a powder flow rate of 5 g/min 

had the lowest porosity, 0.109 %. On the other hand, the sample R4 produced with 

a laser power of 2100W, a scan speed of 10.0 mm/s and a powder flow rate of 5 

g/min had the highest hardness, 225 HBW.  

Regarding all the samples built using different parameters, the variation in 

hardness can be associated with different residual porosity. However, the difference 

may also be correlated to different heating and cooling rates, which create a 

microstructure with larger dendritic structures or promoting the formation of a 

different concentration of phases inside the materials. 
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Table 39: Different process parameters and energy density used for producing IN625 

specimens with the correlate obtained residual porosity and hardness values [56]. 

Sample 
P 

[W] 
v 

[mm/s] 
Pf 

[g/min] 
ED 

[J/mm2] 

Residual 
Porosity 

[%] 

Brinell 
hardness 
[HBW] 

R1 2100 10.0 9 70.0 0.145 ± 0.015 214 ± 3 
R2 1800 13.3 13 45.1 0.160 ± 0.043 210 ± 2 
R3 2100 13.3 9 52.6 0.166 ± 0.032 212 ± 4 
R4 2100 10.0 5 70.0 0.125 ± 0.029 225 ± 3 
R5 2100 13.3 5 52.6 0.200 ± 0.037 215 ± 2 
R6 1800 16.7 13 35.9 0.168 ± 0.034 217 ± 3 
R7 1800 10.0 13 60.0 0.163 ± 0.033 216 ± 4 
R8 2400 16.7 13 47.9 0.175 ± 0.043 218 ± 4 
R9 1800 13.3 5 45.1 0.109 ± 0.012 221 ± 3 
R10 1800 16.7 9 35.9 0.199 ± 0.030 207 ± 5 
R11 2400 16.7 9 47.9 0.236 ± 0.051 201 ± 3 
R12 2100 13.3 13 52.6 0.233 ± 0.050 203 ± 3 
R13 2400 13.3 9 60.2 0.238 ± 0.440 204 ± 5 
R14 2400 13.3 5 60.2 0.154 ± 0.034 214 ± 4 
R15 1800 10.0 9 60.0 0.132 ± 0.018 217 ± 5 
R16 1800 10.0 5 60.0 0.152 ± 0.030 212 ± 4 
R17 2400 16.7 5 47.9 0.198 ± 0.027 209 ± 3 
R18 2400 10.0 13 80.0 0.145 ± 0.011 216 ± 3 
R19 2400 13.3 13 60.2 0.228 ± 0.071 208 ± 4 
R20 2100 16.7 5 41.9 0.144 ± 0.018 216 ± 3 
R21 1800 13.3 9 45.1 0.170 ± 0.041 211 ± 3 
R22 2100 16.7 13 41.9 0.142 ± 0.042 211 ± 5 
R23 1800 16.7 5 35.9 0.274 ± 0.072 199 ± 2 
R24 2400 10.0 9 80.0 0.225 ± 0.021 204 ± 3 
R25 2100 16.7 9 41.9 0.210 ± 0.012 208 ± 7 
R26 2400 10.0 5 80.0 0.193 ± 0.035 211 ± 3 

R27 2100 10.0 13 70.0 0.191 ± 0.055 213 ± 3 
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4.3 Investigation of defects of as-built IN625 samples  

Figure 90 reveals the optical micrographs of polished R9 and R23 IN625 

samples, which are the samples with the highest densification level and the samples 

with the highest residual porosity, respectively.  

For the R9 samples (Figure 90a) can be mainly detected spherical pores around 

3 µm, with the largest ones around 15 µm, whereas for the R23 samples (Figure 

90b) can be mainly observed spherical pores around 3 µm with the biggest ones 

around 30 µm.  

This kind of pores are indicated by red circles in Figure 90a and 90b, and their 

shape and size seem to indicate that they derive from the entrapped gas in the 

powders. 
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Figure 90: - OM micrographs of polished IN625 samples fabricated using different 

process parameters along the building direction showing: (a) R23 sample with the highest 

residual porosity and (b) R9 sample with the lowest residual porosity; both the 

micrographs exhibit different spherical pores, some of which are highlighted by red 

circles.  

4.4 Microstructure of as-built IN625 samples 

The following microstructure analyses were performed on R9 samples, which 

revealed the highest densification level. From Figure 91a, it is possible to 

distinguish the deposited layer boundaries (DLB), heat altered zone (HAZ), melt 

pool (MP) and areas with columnar dendrites (CDs). 

The DLB is positioned between two MPs along the building direction (z-axis), 

as highlighted by the dotted lines, while the heat altered zone exhibited slightly 

coarse microstructure. The directions of CDs stem from the orientation of the heat 

fluxes, which are closely associated with the building strategy, thus generating 

various orientated columnar grains. 

As evident in Figure 91b, the microstructure displayed the presence of PDAS 

and SDAS, and by means of OM investigation was determined PDAS values of 

around 10 ± 2 µm together with SDAS value of around 3.5 ± 0.8 µm. The 

dimensions of the dendrite architecture dimensions are similar to those determined 

by other research on IN625 and IN718 produced by DED processes [135,136].  
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Figure 91: Optical micrographs (a, b) of IN625 fabricated by DED process along the 

building direction at different showing: deposited layer boundaries (DLB), heat altered 

zone (HAZ), melt pools (MP),  columnar dendrites (CDs), primary dendrite arm spacing 

(PDAS) and secondary dendrite arm spacing (SDAS); mixed acids etchant was used [56]. 
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After mixed acids etching, FESEM image (Figure 92a) shows the dendritic 

architectures with PDAS and SDAS. At higher magnifications (Figure 92b and 

92c), small square voids along the dendritic and interdendritic regions, as pointed 

out by arrows 1 and 2, can be observed. These voids may be caused by the 

dissolution of small precipitates due to the used etchant. 
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Figure 92: FESEM images of IN625 fabricated by DED at different magnifications 

along the building direction showing: (a) PDAS and  SDAS; (b) square voids indicated by 

arrows 1 in the dendritic areas; (c) square voids indicated by arrow 2 in the interdendritic 

areas;  mixed acids etchant was used [56].  

After Kalling’s No.2 etching, Figure λ3a and λ3b reveal the presence of 

elongated and globular precipitates indicated by arrows 3 and 4, respectively. The 

EDS analysis (Table 40 and Figure 94) showed the elongated precipitates phases 

had an enrichment in Nb, Mo, Si together with Cr depletion, suggesting the 

formation of Laves phases due to eutectic reaction [5,29,137]. Likewise, the fine 

globular precipitates may be associated with the formation of Nb-rich MC carbides 

due to eutectic reaction [5,31,138].  

According to the literature, these two phases are commonly formed by eutectic 

reaction during the solidification of IN625 alloys [5,31]. The elongated Laves 

phases had length up to 10 µm, whereas the square carbides had sizes between 0.1 

µm and 1.0 µm. At higher magnification in Figure 93c, it is also possible to note 

some very fine (around 100 nm) ellipsoidal particles. The ellipsoidal precipitates 

could be identified as gamma double prime (γ") phases, although prolonged thermal 
exposure commonly forms them [5]. However, a possible theory is that the 

continuous heating flux of the DED process promotes the formation of γʺ phases. 
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Figure 93: FESEM images of IN625 fabricated by DED at different magnifications 

along the building direction showing: (a, b) Laves phases indicated by arrow 3, carbides 

indicated by arrow 4; (c) ellipsoidal precipitates indicated by arrow η. Kalling’s No.2 
etchant was used [56]. 
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Table 40: EDS results in weight percentage of austenitic matrix and Laves phase for 

the IN625 samples produced by DED [56]. 

Chemical composition [wt %] Ni Cr Nb Mo Fe Si Ti 

Austenitic matrix (1) 65.9 22.4 2.8 8.7 0.6 0.5 - 

Laves phases (2) 52.9 19.4 13.0 12.7 0.3 1.7 - 

 

  

  

Figure 94: FESEM images of IN625 fabricated by DED: a) microstructural image, b) 

Ni distribution map, c) Nb distribution map and d) εo distribution map; Kalling’s No.2 
etchant was used [56].  

4.5 XRD analysis on as-built IN625 samples 

The XRD diffraction patterns of as-built IN625 samples along the building 

direction (z-axis) and perpendicular to the building direction (x-y plane) are given 

in Figure 95. The XRD spectra revealed the presence of γ phase having a lattice 

parameter of around 3.59 Å. However, the Laves phases and Nb-rich carbides were 

not detected, probably their quantity is lower the threshold of the instrument. 
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The diffraction pattern interesting revealed a strong (111) orientation along the 

z direction, and a strong (200) orientation along the x-y plane, that can indicate a 

particular crystallographic texture as observed for Inconel alloys produced by LPBF 

or electron beam melting (EBM) processes [64,87]. 

 

Figure 95: XRD diffraction pattern of as-built IN625 sample along z-axis and x-y plane. 

4.6 Conclusions  

At the beginning of this work, it was studied the DED IN625 powder, and then 

it was performed a process parameter optimization in order to choose the correct 

process parameter to create dense samples. Finally, it was carried out a 

microstructural investigation on the optimised IN625 samples.  

The employed process parameters generated IN625 samples with a residual 

porosity from 0.11 to 0.25 %, with a hardness between 200 and 225 HBW. The 

obtained hardness values are compatible with the commercially available values of 

the as-rolled IN625 alloy. The OM and FESEM investigations proved that these 

high hardness values can be attributed to the fine microstructure attainable by DED 

process. The microstructure consisted of PDAS of 10 ± 2 µm and SDAS with a size 

of 3.5 ± 0.8 µm, together with the presence of Laves phases and carbides formed 

by eutectic reaction during the solidification process.  
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Chapter 5 

Results and discussion of HX 

produced by LPBF 

This chapter focuses on the microstructural and hardness investigation on 

Hastelloy X (HX) alloy processed by laser powder bed fusion (LPBF) using an 

EOSINT-M280 by GE AVIO s.r.l. 

At the beginning, it was studied morphology, size, particle size distribution, 

chemical composition as well as the microstructure of the starting gas atomised HX 

powder. Afterward, it was investigated the microstructure and hardness of as-built 

and SHT (abbreviated as SHT) HX samples in order to meet the industrial 

requirements for components that require high creep resistance. In this part of the 

work an optimised solution treatment was determined. 

The successive target of the current investigation was to study the 

microstructural evolution of SHT HX samples simulating possible thermal 

exposure for parts that work at relatively high temperature. Preliminary results of 

the previous studies were already published [139]. The as-built and SHT HX 

specimens exhibited large microcracks formed during the LPBF process owing to 

the low thermal shock resistance of the alloy. A similar microstructure with a high 

number of microcracks can reduce the mechanical properties and the fatigue life of 

the as-built HX components. 

In the light of the above, some as-built HX samples were hot isostatically 

pressed (HIPed) at Aubert & Duval facility in order to eliminate the microcracks 

inside the material. Afterward, GE AVIO s.r.l has performed low-cycle fatigue tests 

on some as-built and HIPed HX specimens to determine the detrimental effect of 

the microcracks inside the as-built material. Furthermore, the company has also 

conducted a study to eliminate the microcracks inside the as-built HX samples in 

order to reduce post-processing costs avoiding the HIP treatment.  

The microstructure of HIPed HX samples was studied and compared to as-built 

and SHT HX samples, showing a significant precipitation of carbides due to the 



164 Results and discussion of HX produced by LPBF 

 
slow furnace cooling. In order to reduce the carbides formation, different solution 

treatments were performed on HIPed HX samples, resulting in a microstructure 

similar to traditional SHT HX alloy, indicating that it was possible to generate HX 

components suitable for industrial applications by means of LPBF process followed 

by subsequent tailored post-processing.  

To sum up, the work can be divided into four parts: 

1) Study and characterisation of the starting HX powder. 

2) Microstructure and hardness characterisation of the as-built and different 

SHT HX samples. 

3) Study of the microstructure and hardness development of SHT HX alloy 

under specific thermal exposure. 

4) Study of the microstructure and hardness evolution of HIPed HX samples 

SHT at different temperatures and times. 

5.1 Powder characterisation 

The HX powder obtained by gas atomisation exhibited fairly spherical and 

regular particles together with some irregular particles and clusters as illustrated in 

Figure 96a and 96b.  
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Figure 96: (a, b) FESEM images of gas atomised HX powder showing spherical, 

irregular particles and clusters. 

The mounted and polished particles cross-section exhibited spherical and 

irregular particle sections (Figure 97a). At higher magnification (Figure 97b), it was 

possible to observe spherical pores inside the particles, the largest ones with a 

diameter of 2.5 µm, quantifying a residual porosity of 1.50 ± 0.30 % (using 200 

particles).  

These spherical pores may be attributed to the entrapped gas during the 

atomisation process [135]. The mounted and polished particles cross-section was 

etched with Kalling’s No.2 reagent revealing the very fine dendritic structures of 

the powder (Figure 97c and 97d). 
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Figure 97: OM images of mounted HX powder particles cross section polished at 

different magnification showing: (a, b) their morphology and size; (c, d) the dendritic 

structures after etching with Kalling's No.2 reagent. 
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The HX powder exhibited a particle size with d(0.1), d(0.5), and d(0.9) of 23.9 

µm, 34.8 µm and 52.2 µm, respectively and the curve of frequency (vol %) and 

cumulative frequency (vol %) are illustrated in Figure 98a and 98b.  

 

 

Figure 98: Particle size distribution of frequency (a) and cumulative frequency (b) of 

particle size distribution obtained by laser granulometry diffraction. 

The average apparent density for the SLM powder was 3.98 ± 0.02 g/cm3, 

whereas the flow rate obtained by Hall flowmeter was of 13.6 ± 0.4 s 50/g.  

The chemical composition was determined by ICP/OES and IGF analyses 

showing a good correlation with the chemical composition declared by the supplier 

and the chemical composition requirements according to the ASTM B435, as 

reported in Table 41. However, it is possible to see that the currently used HX 
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powder had other elements in trace such as V, Hf, Nb, Cu, etc. did not present in 

the ASTM B435 standard.  

Table 41: Chemical composition in weight percentage (wt%) of HX powder and 

solid samples determined by ICP/OES and IGF analyses compared to the supplier 

datasheet and the chemical composition requirements reported in the ASTM B435-06 

standard. 

Element 

Determined 

HX alloy 

(wt%) 

Determined 

HX Powder 

(wt%) 

Supplier 

datasheet (wt%) 
ASTM B435-06 

Ni Balance Balance Balance Balance 

Cr 21.40 21.70 20.50-23.00 20.50-23.00 

Fe 18.70 18.60 17.00-20.00 17.00-20.00 

Mo 9.35 9.20 8.00-10.00 8.00-10.00 

Co 1.85 1.82 1.50-2.50 0.50-2.50 

W 0.92 0.90 0.60-1.00 0.20-1.00 

Si 0.37 0.36 1.00 max 1.00 max 

V 0.01 <0.01 0.25 - 

Hf <0.01 <0.01 0.25 max - 

Nb <0.01 <0.01 0.25 max - 

Cu <0.01 <0.01 0.20 max - 

C 0.051 0.056 0.05-0.07 0.05-0.15 

P 0.008 0.008 0.015 max 0.04 max 

S 0.003 0.002 0.015 max 0.03 max 

O 0.008 0.017 0.015 - 

B 0.0016 0.0012 0.001 max - 
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5.2 Characterisation of as-built HX samples 

5.2.1 Residual Porosity and microcracks investigation  

The OM images of polished HX samples showed different microcracks and 

very fine isolated spherical pores for the x-y and z-y planes, derived from the LPBF 

process. The microcracks with a length up to 100 µm were randomly positioned 

along the x-y plane (Figure 99a), whereas they were mainly located along the 

building direction (z-y plane) as visible in Figure 99b.  

On the other hand, there were a few spherical pores with a diameter from sub-

micrometric size up to around 4 µm, as can be observed in Figure 99c and 99d. 

These spherical pores could be caused by the entrapped gas within the starting 

powder as observed previously in Figure 3b [53,90]. 
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Figure 99: OM images of polished as-built HX samples exhibiting microcracks and 

pores at different magnification along y-x plane (a, c) and z-y plane (b, d).  

The average value and standard deviation of residual porosity and cracking 

density of as-built HX samples determined by image analysis method are given in 

Table 42. The samples revealed a low level of residual porosity less than 0.5 % in 

both the planes (x-y and z-y). On the other hand, the average value of cracking 

density was slightly higher for the z-y plane than the x-y plane. 

Table 42: Residual porosity and cracking density of as-built HX samples along the x-

y and z-y planes. 

x-y plane Residual porosity (%)  0.28 ± 0.09 

z-y plane Residual porosity (%)  0.36 ± 0.13 

x-y plane Cracking density (mm/mm2)  2.40 ± 0.41  

z-y plane Cracking density (mm/mm2)  3.32 ± 0.52  
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5.2.2 Microstructural investigation of as-built HX samples 

After etching with kalling’s No.2 the Oε images (Figure 100a and 100b) show 

the microstructure of as-built HX samples. The melt pools created by the laser beam 

revealed a different shape between the x-y and z-y planes as pointed out by the 

yellow dash line in Figure 100a and 100b, respectively. The melt pools are not 

alienated due to the EOS scanning strategy, in which the laser beam is rotated of 67 

° before melting the subsequent layer of loose powder in order to reduce the 

anisotropic of the materials [56]. Figure 100c shows randomly orientated grains 

along the x-y plane highlighted by the red dash line, whereas Figure 100d reveals 

columnar grains along the building direction for the z-y plane, as pointed out by the 

red dash line.  

The columnar grains grow mainly along the <001> orientation due to 

epitaxially grown and heat flow dissipation along z-axis [55,66]. The microcracks 

mostly lie along the grain boundaries both along the x-y and along the z-y plane, as 

highlighted by yellow arrows in Figure 100e and 100f, respectively. The 

microcracks along the grain boundaries of LPBF-built HX alloys have been 

documented in other work [8,60].  

These microcracks may be generated by the segregation of elements such as Si 

and C along the grain boundaries leading to a reduction of the grain boundary 

resistance. Furthermore, C and Si could also promote the formation of carbides 

along the grain boundaries, triggering the microcracks formation. 
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Figure 100: OM images of as-built HX samples showing: a) melt pool contours 

(MPCs) along the x-y plane, b) melt pools contours (MPCs) along the z-y plane; SEM 

images showing: c) randomly orientated grains pointed out by red dash line along the x-y 

plane; d) columnar grains indicated by red dash line along the z-y plane; e) microcracks 

mainly located along the grain boundaries indicated by yellow arrows along x-y plane; f) 

microcracks primarily located along the grain boundaries indicated by yellow arrows 

along the z-y plane; Kalling's No.2 etchant was used. 

From the OM and SEM investigations can be concluded that the randomly 

orientated grains are the cross sectioned columnar grains along the x-y plane 

(perpendicular to the building direction) as graphically illustrated in Figure 101.  
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Figure 101: Graphically representation of the columnar grains along the z-y plane 

and the cross-sectioned columnar grain along the x-y plane. 

The melt pools (Figure 102a) consist of fine dendritic architectures as can be 

seen in FESEM images (Figure 102b and 102c). It was not possible to detect 

entirely formed secondary dendrites, due to the extremely rapid cooling rates of the 

process. The primary dendritic cellular and columnar architectures showed sub-

micrometric primary dendritic arm spacing (PDAS) of 0.60 ± 0.25 µm as shown in 

the magnified FESEM images in Figure 102c and 102d. 

The very fine primary dendritic size was also detected by numerous 

investigation on LPBF-built Ni-based superalloys, including Hastelloy X alloy 

[55,66,140]. The dendritic structures throughout exhibited nanometric precipitates 

with size from 30 to 250 nm and elongated bright phases along the interdendritic 

regions with a length generally up to 500 nm may be segregated elements. 

The smallest nanoprecipitates were generally located at the dendritic core 

whereas the largest ones were chiefly presented in the interdendritic regions. Due 

to the very fine dimensions of these precipitates, it was not possible to identify their 

nature through FESEM equipped with an EDS analysis and further investigation 

should be addressed.  

However, Tomus et al.[61] found that as-built HX alloy presented similar 

nanometric precipitates, and TEM analysis identified these precipitates as Mo-rich 

carbides, suggesting that they were Mo-rich M6C carbides. 

These results are consistent with the numerous works on the study of the 

microstructure of HX alloys produced by conventional technologies as well as by 
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T-T-T diagram of HX alloy [6,20,43]. In fact, only carbides are formed during short 

thermal exposure, whereas other phases such as σ (sigma) and µ (mu ) phases can 

be formed by prolonged thermal exposure [20,43]. 
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Figure 102: (a) OM image of as-built HX samples showing the melt pools created by 

the laser beam along the x-y plane; (b, c, d, e) FESEM images of as-built HX samples 

along the x-y plane at different magnifications showing: (b) melt pools contours (MPCs); 

(c) fine primary dendritic structure; (d) primary cellular dendritic structures with 

nanometric precipitates; (e) primary columnar dendritic structures with nanometric 

precipitates; Kalling's No.2 etchant was used. 

The PDAS can be associated with the cooling rates ( ) as demonstrated in the 

literature, so the average values of PDAS (reported above 0.60 ± 0.25 µm) was used 

to estimate the cooling rates using the following equation (1): [55] 

PDAS = a (-b)  (9) 

Where a and b are constants of the material, and for nickel-based superalloys, 

a ≈η0 m (K/s) and b = 1/3. In this way, it was estimated an average cooling rate of 
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around 6 105 K/s, that is coherent with other studies on Ni-based superalloys 

produced by LPBF process [55,88,140]. The microstructural investigation showing 

extremely fine dendrite architectures explain why as-built HX samples had a very 

high hardness of 235 ± 5 HBW and 97 ± 0.4 HRB with respect to the standard 

values of 86-88 HRB for SHT HX despite a large presence of microcracks [41]. 

5.2.3 XRD analysis of as-built HX state  

Figure 103 shows the XRD spectrum of as-built HX sample along the x-y plane 

exhibiting the presence of the γ-fcc phase, with a calculated lattice parameter of 

3.607 ± 0.007 Å. 

 

Figure 103: XRD spectrum of as-built HX sample along the x-y plane. 

From the spectrum is possible to note a very pronounced ɣ (200) texture for as-

built HX samples along the x-y plane that is congruent with other LPBF-built Ni-

based superalloys such as Inconel 718 and Inconel 625 [55,64]. In fact, the process 

involved the growth of columnar grains with (100) orientation along the building 

direction (z-axis), resulting in a strong (200) texture along the x-y plane as reported 

in the literature [64].  

For as-built HX state was not possible to reveal peaks of the Mo-rich M6C 

carbides observed previously in FESEM images, probably because below the 

sensitivity threshold of the instrument. The table with the lattice parameters of γ 
austenitic phase calculated for the different peaks is available in Appendix A.  
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5.2.4 TMA of as-built HX state 

Figure 104 reveals the CTE as function of the temperature for the as-built HX 

state. The CTE curve exhibited two deflections around 570 °C and 720 °C, which  

may be associated with the precipitation of carbides. The mean CTE of as-built HX 

samples was determined 14.7 10-6 °C-1 (at 538 °C) and 15.8 10-6 °C-1 (at 871 °C), 

whereas traditional sheets of HX have values of 15.1 10-6 °C-1 (at 538 °C) and 16.2 

10-6 °C-1 (at 871 °C) [3].  

 

Figure 104: Coefficient of thermal expansion (CTE) vs temperature of as-built HX 

sample. 

 

5.2.5 Solidification and microcracks formation discussion of as-
built HX samples 

As mentioned before, the as-built HX samples exhibited a significant number 

of nanometric Mo-rich M6C carbides (30-250 nm), while the elongated bright 

phases along the interdendritic areas could be segregated elements.  
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The solidification of Ni-based superalloys can explain the formation of these 

fine carbides. During the solidification, the high susceptibility to segregation 

elements (i.e. Mo, W, C, Si) are rejected from dendrite to interdendritic region. This 

phenomenon leads to a higher concentration of these elements in the interdendritic 

regions promoting the carbides formation. Furthermore, the presence of fine 

carbides inside the dendrite core can derive from the solute trapping caused by the 

very high cooling rates of LPBF, in which a part of the high susceptibility to 

segregation elements (also included C and Mo) are captured inside the dendrite 

[55,140]. However, the above discussion does not take into account that the laser 

beam has enough power to melt more than one layer of powder and that the material 

is subjected to continuous heating flow dissipation from the top to the bottom of the 

component during its fabrication. These subsequent remelting and resolidification 

together with thermal dissipation can promote the formation of new carbides. 

This hypothesis regarding the microstructure development triggered by 

subsequent thermal cycles is schematically proposed in Figure 105, and it is 

consisted with the literature about the rapid solidification on Ni-based superalloys 

by means of laser beam technologies.  

 

Figure 105: Schematic diagram of cellular dendritic structures of as-built HX 

samples. The black spherical circle represents the Mo-rich M6C carbides whereas the blue 

and dark blue areas represent the dendritic and interdendritic regions, respectively. 

Primary solidification showed a low fraction of carbides, the largest ones in the 

interdendritic areas. After more thermal cycle consisted of continuous remelting and 

resolidification coupled with continuous thermal flows dissipation the microstructure 

made up of a higher number of carbides with respect to the initial solidification.  

During the current investigation, it was shown that the as-built HX samples 

presented a large number of microcracks along the grain boundaries and a minor 

number of microcracks inside the grains. Both types of microcracks could be 
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promoted by a significant number of carbides, formed along the grain boundaries 

or within the interdendritic areas [8].  

According to the above discussion, a possible way to prevent the microcracks 

formation may be represented by the reduction of C and Si in the starting HX 

powder. Besides, the cracking density could also be reduced by increasing the 

concentration of solid solution elements together with the reduction of tramp 

elements [140]. In this way, it could be possible to develop an alloy with a higher 

ultimate tensile strength (UTS) with respect to the original alloy, reducing the 

possibility that the residual stresses surpass the UTS leading to a crack formation 

[140]. 

Finally, a process parameter optimisation can reduce the cracking density, 

although it was demonstrated that remain microcracks inside the material [59,140]. 

Besides, it should be taken into account that the variation of some parameters (e.g. 

scan speed) can reduce the build-up rate to an unacceptable level for the industrial 

processes. 

5.3 Solutionizing treatments optimisation  

5.3.1 SHT HX samples at 1175 °C for different times  

Figure 106 reports the Brinell hardness of as-built and SHT HX samples at 1175 

°C for different times. 

The as-built HX samples revealed a hardness of 235 ± 5 HBW due to its very 

fine dendritic structures. After a solutioning performed at 1175 °C for 15 minutes 

the hardness decrease at 185 ± 6 HBW, essentially due to the grain growth resulting 

in equiaxed grains with an ASTM grain size number G mainly of 6.0-6.5 (grain 

diameter from 37.8 µm to 44.9).  

After a solutioning at 1175 °C for 30 minutes, the hardness decreased further 

to 154 ± 4 HBW, exhibiting ASTM grain size number G mainly of 6.0-5.5 (grain 

diameter around 53.4-44.9 µm). 

By contrast for prolonged solutioning performed at the same temperature for 1 

hour and 2 hours, the Brinell hardness values were 148 ± 3 and 151 ± 2 HBW, 

respectively, showing very similar values to each other. Besides, for both the SHT 

HX states the ASTM  grain size G was chiefly of 5.5.-4.5 (grain diameter around 

53.4-75.5 µm). 
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The SHT HX samples for 1 and 2 hours revealed similar hardness and grain 

size, so the solutioning performed at 1175 °C for 1 hour was chosen as optimised 

condition to reduce the post-processing time, as stated in a previously published 

work [139]. For this optimised SHT condition it was also determined an 80.0 ± 0.5 

HRB.  

 

Figure 106: Brinell hardness of as-built HX samples and SHT HX samples at 1175 

°C for 15, 30 ,60 and 120 minutes. *All the SHT samples were water quenched. 

The solution treatments dissolved the dendritic structures, relief the residual 

stresses as well as led to the formation of small and large equiaxed grains. The 

mainly determined ASTM grain size number G and corresponding grain diameters 

for each SHT state are reported in Table 43. 

Table 43: The ASTM grain size number G and corresponding grain size of SHT HX 

samples. 

Heat treatment* ASTM Grain size No 

(G) 

grain diameters (µm) 

1175 °C 15 min 6.0 - 6.5 37.8- 44.9 

1175 °C 30 min 6.0-5.5 44.9- 53.4 

1175 °C 60 min 5.5 - 4.5 53.4- 75.5 

1175 °C 120 min 5.5- 4.5 53.4 – 75.5 

*All the samples were water quenched  
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The OM images of SHT HX samples heat-treated at 1175 °C for different times 

showing the effect of the recrystallization are displayed in Figure 107. 
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Figure 107: OM images of SHT HX samples at 1175 °C for different times: (a) 1175 

°C for 15 min; (b) 1175 °C for 30 min; (c) 1175 °C for 60 min; (d) 1175 °C for 120 min; 

Kalling's No.2 etchant was used. 

 

5.3.2 Microstructure investigation on optimised SHT condition 

The microstructure of SHT HX samples at 1175 °C for 1 hour exhibited the 

same level of porosity and cracking density of as-built condition. The microcracks 

were randomly orientated along x-y planes (Figure 108a) and they were orientated 

along the building direction (z-axis) for the z-y planes, as can be observed in Figure 

108b.  
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Figure 108: OM images of SHT HX samples at different magnification showing the 

microcracks orientation along x-y plane (a) and along the z-y plane (b). 

The measument of the residual porosity and craking density revealed similar 

values to as-built condition as reported in Table 44, demonstrating that the 

solutioning did not have a significant effect on pores and microcracks. 

Table 44: Residual porosity and cracking density of optimised SHT HX samples 

along x-y and z-y planes. 

x-y plane Residual porosity (%)  0.25 ± 0.06 

z-y plane Residual porosity (%)  0.31 ± 0.05 

x-y plane Cracking density (mm/mm2)  2.60 ± 0.60  

z-y plane Cracking density (mm/mm2)  3.32 ± 0.58 

 

The solution treatments involved the recrystallization triggered by high 

temperature and by high residual stresses led to the formation of equiaxed grains 

for both the planes (x-y and z-y) with the microcracks mainly located along the 

grain boundaries, as can be seen in Figure 109a and 109b. In this way, it was 

developed a more homogenous microstructure with more isotropic properties. At 

higher magnification view (Figure 109c and 109d), the OM images revealed the 

presence of very fine inter/intragranular precipitates with a fraction of 0.35 ± 0.10 

%. 
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Figure 109: OM images of optimised SHT HX samples at 1175 °C for 1 hour 

showing: (a, b) equiaxed grains along x-y and z-y planes, respectively; (c, d) equiaxed 

grains and fine precipitates along x-y and z-y planes, respectively. Kalling's No.2 etchant 

was used. 

The FESEM images (Figure 110a and 110b) of SHT HX samples exhibited 

very fine inter/intragranular carbides, with size from sub-micrometric up to around 

1-1.5 µm. These carbides were enriched in Mo as highlighted by EDS results in 

Table 45, suggesting that they were Mo-rich M6C carbides. The results are coherent 

with the literature, since a temperature of 1175 °C for a short time can only promote 

the formation of Mo-rich M6C carbides[6,20].  

It was interesting to note that these micrometric Mo-rich M6C Carbides (1.0-

1.5 µm) were not detected during the previous FESEM investigation on as-built HX 

samples, so that they may be originated during the heat treatment due to the 

formation of secondary carbides otherwise due to the grown of previously formed 

carbides. 
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Figure 110: FESEM images of optimised SHT HX samples along x-y plane showing: 

(a) the grain boundaries of equiaxed grains and M6C carbides; (b) showing fine 

inter/intragranular M6C carbides; Kalling's No.2 etchant was used. 
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Table 45: EDS results of the γ austenitic matrix and εo-rich M6C carbide for 

optimised SHT HX sample. 

Element γ austenitic matrix Mo-rich M6C carbide 

 wt (%) at (%) wt (%) at (%) 

Ni 43.2 44.8 29.8 33.4 

Cr 19.6 23.1 18.8 23.8 

Fe 17.6 19.2 12.8 15.1 

Mo 11.4 7.2 31.1 21.4 

Co 1.9 2.0 1.8 2.0 

W 5.4 1.8 4.6 1.6 

Si 0.9 1.9 1.1 2.7 

Total 100.0 100.0 100 100 

 

However, the high number of large microcracks drastically reduce the 

mechanical properties and fatigue life of these components, so other process should 

be performed in order to eliminate or reduce the number of microcracks. 

5.3.3 XRD analysis of optimised SHT HX state 

Figure 111 reveals the XRD spectrum of the optimised SHT HX (at 1175 °C 

for 1 hour) exhibited the only presence of the γ phase with a calculated γ phase 

lattice parameter of 3.599 ± 0.004 Å. The table with the lattice parameters of γ 
austenitic phase calculated for the different peaks is available in Appendix A.  
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Figure 111: XRD spectrum of optimised SHT HX samples showing the peaks of γ 
austenitic phase. 

5.3.4 TMA of optimised SHT HX state 

Figure 112 displays the CTE as function of the temperature for the SHT HX 

state. The graph exhibited two deflections around 600 °C and 780 °C that may be 

correlated to the precipitation of carbides.  

The CTE differences between the as-built and SHT HX samples can be 

associated with different microstructural features and the C available inside the 

matrix to form carbides. The mean CTE of SHT HX samples was determined 15.0 

10-6 °C-1 (at 538 °C) and 16.4 10-6 °C-1 (at 871 °C), whereas traditional sheets of 

HX have a value of 15.1 10-6 °C-1 (at 538 °C) and 16.2 10-6 °C-1 (at 871 °C) [3]. 

The value of LPBF-SHT HX alloy is very similar to traditional SHT HX alloy, 

probably due to a similar grain size and microstructure. 
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Figure 112: Coefficient of thermal expansion (CTE) vs temperature of SHT HX sample. 

 

5.3.5 SHT HX samples at 1066 °C for 1 hour  

It was also performed a preliminary study performing a solution treatment at 

1066 °C for 1 hour, which promoted a recrystallization with small grains without 

eliminating the presence of the melt pools contours (Figure 113a and 113b).  

It was not possible to attribute a precise ASTM grain size number G caused by 

the difficulty to identify all the grain boundaries (in contrast to the HX samples 

heat-treated at 1175 °C) and by the presence of melt pool contours that could be 

exchanged as grain boundaries. However, using the apparent grain size could be 

estimated a grain size mainly between 10 and 50 µm along x-y plane.  

The fine inter/intracarbides formed during the heat treatment were enriched in 

Mo and W with respect to the γ matrix (see EDS in Table 46), suggesting the 

formation of Mo-rich M6C carbides. The largest carbides (around 3 µm) were 

mainly located along the grain boundaries or the microcracks (Figure 113c and 

113d).  

The hardness was 210 ± 5 HBW slightly inferior to the as-built condition 235 

± 5 HBW due to the dissolution of the dendritic architectures and an initial 

recrystallization. However, a similar microstructure with small grains and large 
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precipitates is not desirable to work at high temperature, so this heat treatment was 

not considered for subsequent investigation. 
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Figure 113: OM images of SHT HX samples at 1066 °C for 1 hour along x-y plane 

showing (a, b) melt pool countours (MPCs) and a starting recrystallization; FESEM 

images showing (c, d) Mo-rich M6C carbides mainly located along the grain boundaries 

and cracks. Kalling's No.2 etchant was used. 

Table 46: EDS results of the γ austenitic matrix and εo-rich M6C carbides for SHT HX 
samples at 1066 °C for 1 hour. 

Element γ austenitic matrix Mo-rich M6C carbide 

 
wt (%) at (%) wt (%) at (%) 

Ni 42.2 44.1 31.4 35.9 

Cr 20.0 23.5 16.4 21.3 

Fe 17.5 19.2 13.6 16.4 

Mo 11.8 7.5 24.1 16.9 

Co 1.7 1.8 1.3 1.5 

W 5.9 2.0 11.6 4.2 

Si 0.9 1.9 1.6 3.8 

Total 100.0 100.0 100.0 100.0 
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5.4 Microstructural evolution of SHT HX samples under 

thermal exposures 

5.4.1 Hardness investigation of SHT HX heat-treated at 745 °C and 

788 °C for different times  

The Brinell hardness of optimised SHT HX samples under specific thermal 

exposure is reported in Figure 114. The heat-treated samples at 745 °C and 788 °C 

for 3 hours improved the hardness up to 177 ± 6 HBW and 171 ± 2 HBW, 

respectively with respect to the 148 ± 3 HBW of SHT condition. Besides for the 

heat-treated HX samples at 745 °C and 788 °C for 6 hours were obtained a hardness 

value of 185 ± 6 HBW and 182 ± 2 HBW, respectively. For prolonged thermal 

exposure at 745 °C and 788 °C for 200 hours, the hardness increased at 237 ± 3 

HBW and at 233 ± 4 HBW, respectively.  

 

 

Figure 114: Brinell hardness of SHT samples and heat-treated HX samples for 

different times at 745 °C (SHT + 745 °C represented with red colour) and 788 °C (SHT + 

788 °C associated with blue colour). 
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5.4.2 Microstructural investigation of SHT HX heat-treated at 745 
°C for different times  

A thermal exposure at 745 °C up to 200 hours did not alter the grain size with 

respect to SHT condition, showing an extensive phases precipitation involving a 

hardness increment. The heat-treated SHT HX samples at 745 °C for 3 hours 

exhibited the formation of intergranular Cr-rich M23C6 carbides at the grains 

boundaries as can be seen in Figure 115a.  

The FESEM images (Figure 115b and 115c) show the Cr-rich M23C6 carbides 

predominantly formed along the grains boundaries creating a continuous film of 

carbides of 200-400 nm.  

The Mo-rich M6C carbides formed during the LPBF process or during the 

solutioning treatments were also presented, since the temperature was not high 

enough to dissolve Mo-rich M6C carbides, although they were not detected during 

this investigation.  
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Figure 115: Microstructure of SHT +745 °C 3 h HX sample showing:(a) OM image 

of equiaxed grains with M23C6 carbides at grain boundaries; (b, c) FESEM images 

exhibiting M23C6 carbides along the grain boundaries. 

The heat-treated SHT HX samples at 745 °C for 6 hours revealed a similar 

microstructure to the previous one as can be seen in Figure 116a, 116b and 116c. 

The micrographs exhibited continous films of Cr-rich M23C6 carbides along the 

grain boundaries with a thickness around 200-400 nm (the same of the previous 

condition).  
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Figure 116: Microstructure of SHT +745 °C 6 h HX sample showing:(a) OM image 

of equiaxed grains with M23C6 carbides at grain boundaries; (b, c) FESEM images 

exhibiting M23C6 carbides along the grain boundaries. 
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After a prolonged thermal exposure at 745 °C for 200 hours, the microstructure 

revealed a significant presence of precipitates inside the grains and along the grain 

boundaries as illustrated in Figure 117a. 

The morphology of these precipitates can be observed in FESEM images 

(Figure 117b), showing micrometric size 1-2 µm and elongated particles up to 5 

µm. The shape and morphology of these precipitates can be attributed both σ and µ 
phases that are both rich in Mo and Cr with a low level of Ni and Fe as revealed by 

EDS results reported in Table 47.  

According to the T-T-T diagram and the literature on HX alloys, a similar 

thermal exposure could mainly promote the σ phase formation [6,20].  

 

 

Figure 117: (a) OM image of SHT + 745 °C 200 h HX sample showing equiaxed 

grains with a significant fraction of precipitates; (b) FESEM image of SHT + 745 °C 200 

h HX sample showing the precipitates morphology. 
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Table 47: EDS values of γ austenitic matrix and precipitates of prolonged heat-

treated HX samples at 745 °C for 200 h. 

 γ austenitic matrix Precipitates 

Element wt (%) at (%) wt (%) at (%) 

Ni 47.3 47.1 27.9 30.2 

Cr 22.3 25.1 22.9 28.0 

Fe 19.3 20.2 13.6 15.5 

Mo 7.8 4.8 29.5 19.5 

Co 2.2 2.1 1.5 1.6 

W 0.9 0.3 2.6 0.9 

Si 0.2 0.4 1.8 4.1 

Total 100.0 100.0 100.0 100.0 

 

5.4.3 XRD analysis of heat-treated SHT at 745 °C for different 
times 

Figure 118 compares the XRD spectra of SHT HX sample heat-treated at 745 

°C for 3, 6 and 200 hours, along the x-y plane.  

The three samples revealed only the presence of γ austenitic phase with a lattice 

parameter of 3.600 ± 0.001 Å for SHT + 745 °C 3 h, 3.603 ± 0.002 Å for SHT + 

745 °C 6 h and 3.586 ± 0.003 Å for SHT + 745 °C 200 h.  

The prolonged heat-treated HX samples exhibited a lower lattice parameter 

than other conditions that can be attributed to a solution elements depletion due to 

a large formation of precipitates. For the short thermal exposures at 745 °C, the 

carbides could not be detected because below the sensitivity threshold of the 

instrument or due to the peaks overlap with the γ matrix. The table with the lattice 

parameters of γ austenitic phase calculated for the different peaks is available in 

Appendix A. 
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Figure 118 : XRD spectra of SHT HX samples heat-treated at 745 °C for 3,6 and 200 

hours showing the peaks of γ austenitic phase. 

5.4.4 Microstructural investigation of SHT HX heat-treated at 788 
°C for different times  

The heat treatment performed at 788 °C up to 200 hours did not alter the grain 

size with respect to the SHT HX state.  

The heat-treated SHT HX samples at 788 °C for 3 hours exhibited a very similar 

microstructure to SHT HX samples heat-treated at 745 °C for 3 hours, showing the 

formation of intergranular Cr-rich M23C6 carbides at the grain boundaries, as can 

be seen in Figure 119a.  

The FESEM images (119b, and 119c) revealed larger continuous film of Cr-

rich M23C6 carbides with a thickness around 600-800 nm with respect to 200-400 

nm of SHT heat-treated samples at 745°C for the same time. However, it should be 

noted that the temperature was not high enough to dissolve inter/intragranuler M6C 

carbides detected in the SHT state.  
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Figure 119: Microstructure of SHT +788 °C 3 h HX samples showing:(a) OM image 

of equiaxed grains with M23C6 carbides at grain boundaries; (b, c) FESEM images 

exhibiting M23C6 carbides along the grain boundaries. 
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From the images in Figure 120a, 120b and 120c the heat-treated SHT HX 

samples at 788 °C for 6 hours exhibited a similar microstructure to the previous 

one, showing the precipitation of countinous film of Cr-rich M23C6 carbides mainly 

located along the grain boundaries with a thickness around 600-800 nm (the same 

of the previous condition).  
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Figure 120: Microstructure of SHT +788 °C 6 h HX samples showing:(a) OM image 

of equiaxed grains with M23C6 carbides at grain boundaries; (b,c) FESEM images 

exhibiting M23C6 carbides along the grain boundaries. 

The microstructure of SHT HX samples heat-treated at 788 °C for 200 hours 

were similar to SHT HX sample heat-treated at 745 °C for 200 hours, revealing a 

large presence of inter/intragranular precipitates as shown in Figure 121a. The 

morphology of these precipitates can be observed in FESEM image (Figure 121b), 

showing micrometric size 1-2 µm and elongated particles up to 5 µm (the same size 

of SHT + 745 °C 200 h HX samples).  

Also in this case, the shape and morphology of these precipitates can be 

attributed both σ and µ phases that are both rich in Mo and Cr with a low level of 

Ni and Fe as revealed by EDS results (Table 48), suggesting the formation of σ 
phase [6,20].  
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Figure 121: (a) OM image of SHT + 788 °C 200 h HX samples showing equiaxed 

grains with a significant fraction of precipitates; (b) FESEM image of SHT + 788 °C 200 

h HX sample showing the precipitates morphology. 

Table 48: EDS results of SHT heat-treated at 788 °C for 200 h HX samples. 

 γ austenitic matrix Precipitates 

Element wt (%) at (%) wt (%) at (%) 

Ni 46.1 46.2 35.0 38.6 

Cr 22.1 25.0 18.5 23.0 

Fe 19.1 20.1 15.5 18.0 

Mo 8.6 5.3 18.2 12.3 

Co 1.9 2.0 1.7 1.9 

W 1.8 0.6 9.9 3.5 

Si 0.4 0.8 1.1 2.6 

Total 100.0 100.0 100 100 
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5.4.5 XRD analysis of heat-treated SHT at 788 °C for different 
times 

Figure 122 compares the XRD spectra of SHT HX sample heat-treated at 788 

°C for 3, 6 and 200 hours along the x-y plane.  

Also in this case, the three samples exhibited only the presence of γ phase with 

a lattice parameter of 3.598 ± 0.002 Å for SHT + 745 °C 3 h, 3.598 ± 0.002 Å for 

SHT + 745 °C 6 h and 3.593 ± 0.001 Å for SHT + 745 °C 200 h.  

The microstructure of prolonged heat-treated samples showed a significant 

number of precipitates that could take part of the solute elements such as Cr and 

εo to form σ or µ phases, resulting in a reduction of the lattice parameters with 

respect to the SHT HX samples.  

On the contrary, the HX samples heat-treated at 788 °C for short times showed 

a similar lattice parameter to SHT HX samples.The presence of carbides along the 

grain boundaries could not be detected by means of XRD analysis, probably due to 

below the sensitivity threshold of the instrument, otherwise, due to the peaks 

overlap with the γ matrix.  

The table with the lattice parameters of γ austenitic phase calculated for the 
different peaks is available in Appendix A. 
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Figure 122: XRD spectra of SHT HX samples heat treated at 788 °C for 3, 6 and 200 

hours showing the peaks of γ austenitic phase. 

5.4.6 Characterisation of extracted carbides form SHT HX samples 
heat-treated at 745 °C and 788 °C 

The extracted carbides of SHT samples heat-treated at 745 °C for 6 hours (SHT 

+ 745 °C 6 h) and heat-treated samples at 788 °C for 6 hours (SHT + 788 °C 6 h) 

were filtered using a glass fiber filter and subsequently observed at SEM in Figure 

123a and 123b, respectively.  

The SEM images revealed the aggregation of extremely fine carbides and the 

EDS analysis determined a very high enrichment of Cr inside the carbides, 

indicating the formation of Cr-rich M23C6 carbides for both the samples. The EDS 

results are reported in Table 49 revealed a good correlation between the two results. 

It should be noted that Si was not determined since the carbides were deposited on 

a glass fiber filter. 
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Figure 123: SEM images of extracted carbides from: (a) SHT + 745 °C 6 h HX 

samples and (b) SHT + 788 °C 6 h HX samples; the extracted carbides were deposited on 

a glass fiber filter. 

Table 49: EDS results on Cr-rich M23C6 carbides for extracted carbides form SHT + 

745 °C 6 h and SHT + 788 °C 6 h HX samples. 

Element SHT + 745 °C 6 h SHT + 788 °C 6 h 

 Cr-rich M23C6 carbides Cr-rich M23C6 carbides 

 
wt (%) at (%) wt (%) at (%) 

Ni 7.5 8.1 4.9 5.4 

Cr 56.2 68.4 56.0 69.8 

Fe 4.1 4.6 4.2 4.8 
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Mo 24.8 16.3 23.3 15.8 

Co - - 0.1 0.1 

W 7.4 2.6 11.5 4.1 

Si* - - - - 

Total 100.0 100.0 100.0 100.0 

*Si was not determined to avoid overstimation due to the glass fiber filter. 

5.4.7 XRD spectra of extracted carbides of heat-treated SHT HX 
samples 

The XRD spectra of the extracted carbides of SHT HX samples heat-treated at 

745 °C for 6 hours (SHT + 745 °C 6 h) and 788 °C for 6 hours (SHT + 788 °C 6 

hours) are displayed in Figure 124. The extracted carbides exhibited peaks of Cr-

rich M23C6 carbide, a less marked presence of Mo-rich M6C carbides as well as 

peaks attributed to residual aggregates of γ matrix. All these identified phases have 

a fcc crystal structure.  

Using the peaks of Cr-rich M23C6 carbides was determined a lattice parameter 

of 10.709 ± 0.014 Å for SHT + 745 °C 6 h state and 10.721 ± 0.013 Å for SHT + 

788 °C 6 h HX state. The Cr-rich M23C6 carbide has a characteristic lattice 

parameter from 10.50 to 10.70 Å, although its lattice parameter can be modified by 

other elements which take part in the carbide formation such as Fe, Mo and W [3]. 

It was demonstrated that the M23C6 carbide could also have a higher lattice 

parameter of 10.70 Å, depending on the chemical composition of the alloy, which 

makes available the elements to the carbides formation. For instance, it was found 

that Cr-rich M23C6 carbide enriched in W had a lattice parameter of 10.869 Å[141]. 

The presence of Cr-rich M23C6 after ageing treatments is congruent with other 

studies on HX alloy [6,20].  

Furthermore, the XRD spectra highlighted some peaks of Mo-rich M6C 

carbides with a lattice parameter of 11.044 ± 0.027 Å (SHT + 745°C 6 h state) and 

a lattice parameter of 11.042 ± 0.012 Å (SHT + 788 °C 6 h state), compatible with 

the lattice parameter of Mo-rich M6C carbide reported in the literature [3,43,117]. 

The presence of Cr-rich M23C6 carbides was further supported by EDS results, 
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whereas during the SEM investigation no Mo-rich M6C carbides were detected, 

probably due to the very low number of this type of carbide. These Mo-rich M6C 

carbides could be carbides formed during the solution treatments or carbides formed 

during the subsequent thermal exposure at 745 °C and 788 °C. The table with the 

values of all lattice parameters determined by the peaks of Cr-rich M23C6 and Mo-

rich M6C carbides is available in Appendix A.  

 

Figure 124: XRD spectra of extracted carbides from SHT HX samples + 745 °C 6 h 

and SHT HX samples + 788 °C for 6 h. 

5.5 Characterisation of HIPed HX samples  

5.5.1 Microstructural characterisation of HIPed HX samples 

The HIP treatment performed at 1160 °C for 4 hours at 103 MPa eliminated all 

the microcracks and also reduced the porosity level with respect to the as-built and 

SHT conditions as visible in Figure 125a and 125b. Besides, the values of residual 

porosity and cracking density are reported in Table 50.  
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Figure 125: OM images of HIPed HX samples along x-y and z-y planes showing (a, 

b) grain boundaries (GBs) and very small spherical pores. 

Table 50: Residual porosity and cracking density of HIPed HX samples along x-y 

and z-y planes. 

x-y plane Residual porosity (%)  0.05 ± 0.01 

z-y plane Residual porosity (%)  0.06 ± 0.02 

x-y plane Cracking density (mm/mm2)  0 

z-y plane Cracking density (mm/mm2)  0 

 

The HIPed samples revealed a greater hardness than the SHT condition with a 

hardness of 159 ± 3 HBW and 84 ± 1 HRB. These hardness values derived from a 
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microstructure consisted of equiaxed grains with a large presence of 

inter/intragranular carbides (Figure 126a and 126b).  

The ASTM grain size number G was mainly 4.5-5.5 (grain diameters from 53.4 

to 75.5 µm) for both x-y and z-y planes, leading to the formation of an isotropic 

material. The determined grain size of  HIPed samples was similar to the optimised 

SHT HX samples (1175 °C 1 h). At higher magnifications (Figure 126c and 126d), 

it was possible to see that the globular intragranular carbides were scattered 

throughout the austenitic matrix with a total carbides fraction of 7.23 ± 0.80%. 
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Figure 126: OM images of HIPed HX samples showing (a, b) equiaxed grains along 

x-y and z-y planes respectively; (c, d) the carbides along the grain boundaries and within 

the grains along x-y and z-y planes, respectively. Kalling's No.2 etchant was used. 

The FESEM images (Figure 127a and 127b) revealed the morphology of these 

carbides. According to the literature, the elongated shape of the intergranular 

carbides (with a length up to 15 µm) could be attributed to Cr-rich M23C6 and Mo-

rich M6C carbides formation, whereas the intragranular globular carbides (with a 

size around 1.5-2.5 µm) could be associated with the formation of Mo-rich M6C 

carbides [6,141]. In fact, the slow HIP cooling rate could initially promote the 

formation of M6C carbides and then at a lower temperature the formation of M23C6 

carbides, as can be deducted by the T-T-T diagram of Hastelloy X [20]. 
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Figure 127: FESEM images of HIPed HX samples showing: (a) equiaxed grains with 

carbides along the grain boundaries and inside the grains; (b) the morphology of the Mo-

rich M6C and Cr-rich M23C6 carbides; Kalling's No.2 etchant was used. 

5.5.2 Characterisation of extracted carbides from HIPed HX 
samples 

In order to confirm the formation of these carbides, the extracted carbides of 

the HIPed samples were analysed by means of SEM+EDS and XRD analyses. The 

SEM images (Figure 128a and 128b) exhibited residual aggregate particles of 

austenitic matrix, together with Mo-rich M6C carbides and elongated Cr-rich M23C6 

carbides, as also supported by EDS results in Table 51. The EDS results revealed 

no trace of Si and W inside the austenitic matrix due to these elements were 

consumed to form the carbides. 
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Figure 128: SEM images showing: (a) residual of austenitic matrix; (b) Mo-rich M6C 

carbides and Cr-rich M23C6 carbides. 
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Table 51: EDS results of austenitic matrix, a Mo-rich M6C carbide and a Cr-rich 

M23C6 carbide. 

 
Aggregate of γ 

austenitic matrix 

Mo-rich M6C 

carbide 

Cr-rich M23C6 

carbide 

Element wt (%) at (%) wt (%) at (%) wt (%) at (%) 

Ni 46.9 37.9 14.8 19.6 9.2 9.3 

Cr 23.2 21.1 11.6 17.4 56.1 64.6 

Fe 18.9 16.0 5.0 6.9 6.3 6.7 

Mo 3.1 1.5 50.0 40.4 21.8 13.7 

Co 2.4 1.9 0.7 0.9 0.3 0.4 

W - - 14.7 0.9 4.4 1.4 

Si - - 3.1 8.5 1.9 4.0 

Total 100.0 100.0 100.0 100.0 100.0 100.0 

 

5.5.3 XRD spectra of HIPed HX samples and extracted carbides  

The XRD spectra of HIPed HX sample (along the x-y plane) and extracted 

carbides are displayed in Figure 129. The XRD spectrum of the HIPed sample 

revealed the γ phase with a lattice parameter of 3.608 ± 0.003 Å and a peak of Mo-

rich M6C carbide.  

The XRD spectrum of extracted carbides showed the presence of Mo-rich M6C 

carbides with a lattice parameter of 11.049 ± 0.011 Å and Cr-rich M23C6 carbides 

with a lattice parameter of 10.748 ± 0.025 Å, revealing a good correlation with the 

literature [3,43,117,141]. The table with the values of lattice parameters of M23C6 

is available in Appendix A.  

As observed before, the extracted carbides were attacked to aggregated 

particles of γ phase, so some peaks could be associated with the presence both of 
carbides and γ phase, as indicated in the spectrum. The XRD analysis confirmed 
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the presence of both Mo-rich M6C and Cr-rich M23C6 carbides found during the 

SEM investigation of extracted carbides.  

The table with the values of all lattice parameters determined by the peaks of 

Cr-rich M23C6 and Mo-rich M6C carbides is available in Appendix A.  

 

 

Figure 129: XRD diffraction patterns of HIPed HX sample (along x-y plane) and 

extracted carbides from HIPed samples. 

5.5.4 TMA of HIPed HX state 

Figure 130 shows the CTE as function of the temperature for the HIPed HX 

state. The CTE did not exhibit relevant deflections as previously observed for as-

built and SHT HX samples. 

A possible explanation for this phenomenon is that the HIPed samples showing 

a large number of carbides have lower C inside the matrix and along the grain 

boundaries with respect to the as-built and SHT condition, avoiding the formation 

of a large number of carbides during thermal exposure at high temperature. 
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The average CTE of HIPed HX sample was determined 15.8 10-6 °C-1 (at 538 

°C) and 17.6 10-6 °C-1 (at 871 °C), whereas traditional sheets of HX have a value of 

15.1 10-6 °C-1 (at 538 °C) and 16.2 10-6 °C-1 (at 871 °C) [3].  

The higher mean CTE of HIPed HX samples with respect to all the other 

conditions and traditional sheets of HX alloy may be explained by means of the 

microstructure of HIPed samples. In fact, these samples exhibited a large presence 

of Mo-rich M6C and Cr-rich M23C6 carbides, involved a depletion of Mo, W, Cr in 

the austenitic matrix, leading to a CTE improvement. This hypothesis is supported 

by other work that studied the effect of Mo and W in solid solution on CTE [142].  

 

Figure 130: Coefficient of thermal expansion (CTE) vs temperature of HIPed HX sample. 

 

5.6 HIPed+SHT HX samples  

5.6.1 Solutionizing treatment optimisation on HIPed HX samples 

In order to reduce the number of carbides, it was performed a solution treatment 

at 1175 °C for different times obtaining a hardness reduction as can be seen in 

Figure 131.  
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The HIPed HX samples revealed a hardness of 159 ± 3 HBW, whereas after a 

solutioning performed at 1175 °C for 15 minutes the hardness slightly decreased at 

155 ± 4 HBW, essentially due to the carbides dissolution. 

For prolonged solutioning at 1175 °C for 30, 60 and 120 minutes the hardness 

remained almost unchanged with a value of 154 ± 4 HBW, 154 ± 3 HBW and 153 

± 3 HBW, respectively. 

 

Figure 131: Brinell hardness values of HIPed and HIPed+SHT samples at 1175 °C 

for 15, 30, 60 and 120 minutes.  

From the hardness measuraments, it was chosen as optimised condition the 

HIPed samples followed by solutioning at 1175 °C for 30 minutes. This optimised 

HIPed+SHT condition revealed a HRB of 81 ± 1. 

5.6.2 Microstructural investigation of optimised HIPed+SHT HX 
samples 

The HIPed+SHT HX samples are crack-free as can be seen in Figure 132a and 

132b. The values of residual porosity and cracking density for different planes are 

reported in Table 52, showing values similar to the HIPed HX state.  

After etching with kalling’s No.2 the microstructure exhibited equiaxed grains 

with ASTM grain size G mainly between 4.5 and 5.5 (corresponding to a grain 
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diameter from 53.4 to 75.5 µm) for both x-y and z-y planes as can be observed in 

Figure 132c and 132d.  

Besides, the OM images (Figure 132e and 132f ) exhibited the presence of small 

inter/intragranular Mo-rich M6C carbides, whereas the solution treatment would 

seem almost completely to dissolve the elongated Cr-rich M23C6 carbides. A 

carbides fraction of 0.65 ± 0.15 % was determined. 
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Figure 132: OM images of HIPed+SHT samples (at 1175 °C for 30 minutes) at 

different magnifications showing (a, b) the very few pores along x-y and z-y planes, with 

inset of a spherical pore; (c,d) the equiaxed grains and carbides along x-y and z-y planes; 

(e, f) the formation of carbides inside the materials; the samples was etched with 

Kalling’n No.2 reagent. 

Table 52: Residual porosity and cracking density of HIPed+SHT HX samples along 

x-y and z-y planes. 

x-y plane Residual porosity (%)  0.04 ± 0.01 

z-y plane Residual porosity (%)  0.06 ± 0.02 

x-y plane Cracking density (mm/mm2)  0 

z-y plane Cracking density (mm/mm2)  0 

The size of the inter/intragranuler Mo-rich M6C carbides was generally around 

1.0 with the largest ones around 2.0-2.5 µm, as can be observed in Figure 133a and 

133b. The results of EDS analysis performed on the austenitic matrix and on the 

Mo-rich M6C carbides are reported in Table 53.  
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Figure 133: FESEM images of optimised HIPed+SHT samples at (1175 °C for 30 

min) showing (a, b) very fine inter/intragranular Mo-rich M6C carbides, where a 

intragranular Mo-rich M6C carbides is indicated by the yellow arrow 1; Kalling's No.2 

reagent was used. 

Table 53: EDS results of γ austenitic matrix and εo-rich M6C carbide for optimised 

HIPed+SHT HX sample. 

Element γ austenitic matrix Mo-rich M6C carbide 

 
wt (%) at (%) wt (%) at (%) 

Ni 45.6 45.8 28.0 32.1 

Cr 22.3 25.2 19.6 25.3 

Fe 19.2 20.2 11.4 13.7 

Mo 9.2 5.6 32.6 22.8 
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Co 2.1 2.1 1.4 1.6 

W 1.3 0.4 6.0 2.2 

Si 0.3 0.7 1.0 2.3 

Total 100.0 100.0 100 100 

 

This microstructure has a less supersaturation of C with respect to the as-built 

and SHT samples as can be assumed by a higher fraction of micrometric (1.0-2.5 

µm) M6C carbides. Therefore, the microstructural evolution of these heat-treated 

samples is expected to be similar to traditional SHT HX alloys [6,20,43,44] 

5.6.3 XRD spectrum of optimised HIPed+SHT HX state 

Figure 134 reveals the XRD spectrum of optimised HIPed+SHT HX samples 

exhibited the peaks of γ phase with a lattice parameter of 3.θ08 ± 0.00η Å together 
with a peak associated with the presence of Cr-rich M23C6 carbides, suggesting that 

after the solution treatment a small fraction of this type of carbide remained along 

the grain boundaries.  

However, the microstructure of HIPed+SHT samples did not reveal elongated 

or film of Cr-rich M23C6 carbides, so only a discrete number of fine Cr-rich M23C6 

did not degenerate the ductility. The table with the lattice parameters of γ austenitic 
phase and Cr-rich M23C6 carbides calculated for the different peaks is available in 

Appendix A. 
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Figure 134: XRD spectrum of optimised HIPed+SHT HX samples. 

 

5.6.4 TMA of optimised HIPed+SHT HX state 

Figure 135 shows the CTE as function of the temperature for the HIPed+SHT 

HX state. The CTE curve presented two deflections around 600 °C and 780 °C as 

previously observed for the SHT HX samples.  

These deflections may be associated with the precipitation of carbides. The 

average CTE of HIPed+SHT HX samples was determined 15.1 10-6 °C-1 (at 538 

°C) and 16.1 10-6 °C-1 (at 871 °C), whereas traditional sheets of HX have a value of 

15.1 10-6 °C-1 (at 538 °C) and 16.2 10-6 °C-1 (at 871 °C) [3]. The average CTE of 

HIPed+SHT HX and traditional SHT HX alloy are similar to each other since they 

have a similar grain size and microstructure. 
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Figure 135: Coefficient of thermal expansion (CTE) vs temperature of HIPed+SHT 

HX sample. 

 

5.6.5 HIPed and subsequent solutionizing treatment at 1066 °C for 

1 hour 

The HIPed samples were solutionized at 1066 °C for 1 hour in order to study 

the microstructure for a lower solution temperature with respect to 1175 °C 

(temperature recommended for HX alloy), resulting in a microstructure similar to 

HIPed samples, as can be seen in Figure 136a and 136b. The size of intragranular 

Mo-rich M6C carbides was around 1.5 µm with elongated intergranular Cr-rich 

M23C6 carbides up to 15 µm (Figure 136c and 136d).  

It could be concluded that a heat treatment performed at 1066 °C for 1 hour was 

not sufficient to dissolve the Cr-rich M23C6 carbides, although this type of carbides 

exhibited a starting size reduction. Furthermore, the negligible impact of this 

solution treatment was also proved by hardness test that revealed Brinell hardness 

value of 160 ± 3 HBW, very similar to HIPed samples with a value of 159 ± 3 

HBW.  
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Figure 136: (a, b) OM images of HIPed+SHT samples at 1066 °C for 1 hour 

exhibiting equiaxed grains and carbides along x-y plane; (c, d) FESEM images of 

HIPed+SHT samples at 1066 °C for 1 hour showing the morphology and size of Mo-rich 

M6C carbides. Kalling's No.2 etchant was used. 

The Table 54 reported the EDS values of austenitic matrix and Mo-rich M6C 

carbides.  

Table 54: EDS results of γ austenitic matrix and εo-rich M6C carbides for 

HIPed+SHT HX sample at 1066 °C for 1 hour. 

Element γ austenitic matrix Mo-rich M6C carbide 

 
wt (%) at (%) wt (%) at (%) 

Ni 46.1 46.5 26.8 31.0 

Cr 21.8 24.8 16.9 22.2 

Fe 18.5 19.5 11.6 14.2 

Mo 9.8 6.1 37.2 26.4 

Co 2.4 2.4 1.6 1.8 

W 1.3 0.4 4.8 1.7 

Si 0.1 0.3 1.1 2.7 

Total 100.0 100.0 100 100 
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5.7 Conclusions   

Overall, at the beginning, the HX powder was characterised to identify its 

shape, morphology, chemical composition as well as the flowability.  

Afterward, the study of as-built HX samples revealed a microstructure made up 

of columnar grains along the building direction and randomly orientated grains 

perpendicular to the building direction, exhibiting throughout all the material a 

significant number of microcracks mainly located along the grain boundaries.  

A theory has been proposed to explain the solidification of the as-built HX 

samples and the formation of the microcracks. Besides, some hypotheses to reduce 

the cracking density were given. 

In order to obtain a microstructure with equiaxed grains different solution 

treatments were performed, leading to a microstructure with equiaxed grains and 

small Mo-rich M6C carbides. In this way, it was possible to choose a tailored 

temperature and time as optimised SHT condition.  

Afterward, the microstructure evolution of SHT HX samples was studied under 

thermal exposures at 745 °C and 788 °C for short and prolonged times, using 

temperature, in which HX components may be subjected as the cross ducts in the 

high-temperature gas-cooled reactor (HTGR).  

The thermal exposures promoted the formation of Cr-rich M23C6 carbide films 

along the grain boundaries of the equiaxed grains due to a high supersaturation of 

C. These Cr-rich M23C6 carbide films have a harmful effect on the ductility and 

creep resistance. Besides, prolonged aged HX samples revealed micrometric phases 

that may be identified as σ and µ phases.  

The second part of this work instead was focused on reducing the cracking 

density of as-built HX samples using the HIP treatment. The microstructure of the 

HIPed HX samples was studied demonstrating the presence both of Mo-rich M6C 

carbides and Cr-rich M23C6.  

Finally, different solution treatments were carried out on the HIPed HX 

samples, allowing the determination of an optimised solution treatment 

(HIPed+SHT condition), resulting in a microstructure without microcracks similar 

to the traditional SHT HX alloys. 

These results proved that LPBF-built HX alloy after a HIP treatment combined 

with a solution treatment could generate crack-free components with grain size and 

inter/intracarbides similar to traditional commercially available SHT HX alloys. 
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Chapter 6 

Overall Conclusions and future 

works 

In this thesis, two Ni-based superalloys were built by LAM processes. IN625 

alloy fabricated by LPBF and DED and HX alloy produced by LPBF. 

The results showed that IN625 had wide process window parameters to obtain 

dense IN625 samples for both processes. Therefore, it was possible to select 

appropriate process parameters in order to have a high build-up rate.  

Afterwards, it was shown the microstructural evolution of the LPBF IN625 

alloy under different heat treatments, showing the tensile properties of as-built and 

selected heat-treated IN625 conditions. All the tensile properties resulted to be 

superior to the minimum required values in the ASTM standard for wrought IN625 

alloy, indicating their possible application for industrial production.  

However, the only exception was the direct aged state revealed slightly lower 

ductility but also remarkable higher tensile strengths than data reported in the 

ASTM standard, due to the presence of γʺ phases and carbides, coupled with very 

fine dendritic microstructures.  

Finally, for LPBF HX alloys, both the chemical composition and process 

parameters must be carefully designed, in order to avoid the formation of 

microcracks during the LPBF process. However, the work presented in this thesis 

demonstrated that whether microcracks occur during the process, a HIP treatment 

could be used to close them. Besides, a subsequent tailored solutioning treatment 

could generate a microstructure similar to SHT wrought HX alloys used for high-

temperature applications. In this way, it is possible to recover the components 

reducing the number of defective parts for industrial applications. 

The results showed that LAM techniques can be widely used to produce Ni-

based superalloys, after appropriate post-processing. Therefore, the research should 

investigate more in details new post-processing tailored for LPBF materials.  
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Finally, future works should also focus on the mechanical properties at high 

temperature as well as study fatigue properties of Ni-based superalloys produced 

by LAM techniques. 
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Appendix A 

Table A1. As-built HX sample (γ phase) 

2theta d (Å) h k l a (Å) 

43.480 2.079 1 1 1 3.596 

50.494 1.808 2 0 0 3.611 

74.334 1.275 2 2 0 3.607 

90.083 1.088 3 1 1 3.613 

Average a (Å) 3.607 ± 0.007 

 

Table A2. Optimised SHT (1175 °C 1 h) HX sample (γ phase) 

2theta d (Å) h k l a (Å) 

43.592 2.075 1 1 1 3.593 

50.708 1.799 2 0 0 3.598 

74.467 1.273 2 2 0 3.601 

90.339 1.086 3 1 1 3.602 

Average a (Å) 3.599 ± 0.004 

 

Table A3. SHT + 745 °C 3 h HX sample (γ phase) 

2theta d (Å) h k l a (Å) 

43.486 2.079 1 1 1 3.600 

50.622 1.801 2 0 0 3.602 

74.491 1.272 2 2 0 3.598 

90.355 1.086 3 1 1 3.600 

Average a (Å) 3.600 ± 0.001 
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Table A4. SHT + 745 °C 6 h HX sample (γ phase) 

2theta d (Å) h k l a (Å) 

43.442 2.075 1 1 1 3.604 

50.572 1.798 2 0 0 3.605 

74.388 1.271 2 2 0 3.603 

90.300 1.085 3 1 1 3.602 

Average a (Å) 3.603 ± 0.002 

 

Table A5. SHT + 745 °C 200 h sample (γ phase) 

2theta d (Å) h k l a (Å) 

43.715 2.068 1 1 1 3.582 

50.872 1.793 2 0 0 3.586 

74.745 1.269 2 2 0 3.588 

90.696 1.082 3 1 1 3.590 

Average a (Å) 3.586 ± 0.003 

 

Table A6. SHT + 788 °C 3 h sample (γ phase) 

2theta d (Å) h k l a (Å) 

43.548 2.076 1 1 1 3.595 

50.680 1.799 2 0 0 3.598 

74.484 1.272 2 2 0 3.599 

90.384 1.085 3 1 1 3.600 

Average a (Å) 3.598 ± 0.002 
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Table A7. SHT + 788 °C 6 h sample (γ phase) 

2theta d (Å) h k l a (Å) 

43.546 2.076 1 1 1 3.595 

50.683 1.799 2 0 0 3.598 

74.503 1.272 2 2 0 3.598 

90.382 1.085 3 1 1 3.600 

Average a (Å) 3.598 ± 0.002 

 

Table A8. SHT + 788 °C 200 h sample (γ phase) 

2theta d (Å) h k l a (Å) 

43.573 2.075 1 1 1 3.593 

50.736 1.797 2 0 0 3.595 

74.640 1.270 2 2 0 3.592 

90.605 1.083 3 1 1 3.593 

Average a (Å) 3.593 ± 0.001 
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Table A9. Extracted M6C carbides (in blue) and M23C6 carbides (in red) of 

SHT + 745 °C 6 h HX sample 

2theta d (A) h k l a (Å) 
33.371 2.682 4 0 0 10.727 
37.556 2.392 4 2 0 10.697 
39.909 2.256 4 2 2 11.053 
41.199 2.189 4 2 2 10.721 
42.400 2.129 5 1 1 11.064 
43.956 2.057 5 1 1 10.691 
46.537 1.949 4 4 0 11.026 
48.085 1.890 4 4 0 10.691 
50.358 1.810 5 3 1 10.707 
54.059 1.694 6 2 0 10.716 
56.183 1.615 5 3 3 10.711 
64.559 1.442 7 3 1 11.075 
70.250 1.338 8 0 0 10.706 
72.704 1.299 8 2 0 10.712 
75.214 1.262 6 6 0 10.707 
76.830 1.239 7 5 1 10.732 
81.670 1.178 9 1 1 10.728 
88.300 1.105 7 7 1 10.999 

M23C6 average value (Å) 10.709 ± 0.014 
M6C average value (Å) 11.044 ± 0.027 

 

Table A10. Extracted M6C carbides (in blue) and M23C6 carbides (in red) of 

SHT +788 °C 6 h HX sample 

2theta d (A) h k l a (Å) 
33.371 2.682 4 0 0 10.727 
37.414 2.401 4 2 0 10.737 
39.980 2.252 4 2 2 11.035 
41.199 2.189 4 2 2 10.721 
42.400 2.121 5 1 1 11.064 
43.790 2.065 5 1 1 10.729 
46.430 1.953 4 4 0 11.050 
47.925 1.896 4 4 0 10.725 
50.331 1.811 5 3 1 10.713 
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51.191 1.782 6 0 0 10.694 
54.137 1.692 6 2 0 10.702 
56.214 1.634 5 3 3 10.718 
57.000 1.614 6 2 2 10.704 
64.859 1.436 7 3 1 11.029 
70.044 1.342 8 0 0 10.734 
72.565 1.301 8 2 0 10.730 
75.052 1.264 6 6 0 10.726 
76.770 1.240 7 5 1 10.739 
81.828 1.176 9 1 1 10.711 
87.806 1.110 7 7 1 11.048 

M23C6 average value (Å) 10.721 ± 0.013 
M6C average value (Å) 11.042 ± 0.015 

 

Table A11. HIPed HX samples, γ phase in black and M6C carbides in blue 

2theta d (Å) h k l a (Å) 

42.434 2.127 5 1 1 11.054 

43.366 2.084 1 1 1 3.610 

50.471 1.806 2 0 0 3.612 

74.311 1.275 2 2 0 3.606 

90.183 1.087 3 1 1 3.606 

Average a (Å) for γ phase 3.608 ± 0.003 

 

Table A12 Extracted M6C carbides (in blue) and M23C6 carbides (in red) of 

HIPed HX sample  

2theta d (Å) h k l a (Å) 
32.347 2.764 4 0 0 11.057 
35.346 2.536 3 3 1 11.056 
37.363 2.404 4 2 0 10.751 
39.903 2.257 4 2 2 11.055 
41.128 2.192 4 2 2 10.739 
42.4340 2.127 5 1 1 11.054 
43.516 2.077 5 1 1 10.794 
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46.410 1.954 4 4 0 11.055 
49.454 1.841 6 0 0 11.045 
50.175 1.816 5 3 1 10.744 
54.939 1.669 6 2 2 11.073 
59.699 1.547 7 1 1 11.048 
64.731 1.438 7 3 1 11.049 
64.901 1.435 6 4 2 10.739 
69.569 1.350 7 3 3 11.048 
69.763 1.346 8 0 0 10.771 
72.505 1.302 8 2 0 10.738 
72.705 1.299 8 2 0 10.712 
74.287 1.275 7 5 1 11.044 
78.837 1.213 9 1 1 11.048 
87.806 1.110 7 7 1 11.048 
88.117 1.107 9 3 3 11.017 
90.680 1.083 8 6 2 11.040 

M6C average value (Å) 11.049 ± 0.011 
M23C6 average value (Å) 10.748 ± 0.025 

 

Table A13. Optimised HIPed+SHT (1175 °C 30 min) condition, γ phase in 

black and M23C6 carbides in red.  

2theta d (Å) h k l a (Å) 

43.424 2.081 1 1 1 3.615 

43.800 2.064 5 1 1 10.727 

50.531 1.804 2 0 0 3.608 

74.335 1.275 2 2 0 3.605 

90.180 1.087 3 1 1 3.606 

Average a (Å) 3.608 ± 0.005 
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