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Broadcasting live video directly from mobile devices is rapidly gaining popularity with applications
like Periscope and Facebook Live. The Quality of Experience (QoE) provided by these services
comprises many factors, such as quality of transmitted video, video playback stalling, end-to-end
latency, and impact on battery life, and they are not yet well understood. In this paper, we examine
mainly the Periscope service through a comprehensive measurement study and compare it in some
aspects to Facebook Live. We shed light on the usage of Periscope through analysis of crawled
data and then investigate the aforementioned QoE factors through statistical analyses as well as
controlled small scale measurements using a couple of different smartphones and both versions,
Android and iOS, of the two applications. We report a number of findings including the discrepancy
in latency between the two most commonly used protocols RTMP and HLS, surprising surges in
bandwidth demand caused by the Periscope app’s chat feature, substantial variations in video
quality, poor adaptation of video bitrate to available upstream bandwidth at the video broadcaster
side, and significant power consumption caused by the applications.
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1 INTRODUCTION

Mobile live video broadcasting has become a very popular class of mobile applications over
the last couple of years with Periscope, Meerkat, and Facebook (FB) Live. They provide
a service that enables users to transmit live video to a large number of viewers with their
mobile devices. On its one year birthday, Periscope announced in March 2016 that their
users watch over 110 years of live video every day [22].

These live streaming systems can be very large scale and heterogeneous and consist usually
of a mixture of protocols and need to cope with varying bandwidth both at broadcaster and
viewer side. Another difference to traditional live streaming applications is that these services
allow users to give real-time feedback to the broadcaster. Therefore, they must provide
low enough end-to-end latency from camera to viewer’s screen to allow good interactive
experience.
A number of factors play a role in determining the quality of experience (QoE) of using

these applications. These factors include quality of transmitted video, video playback stalling
due to bandwidth fluctuations, delays and buffer sizing strategy, end-to-end latency, and
impact on battery life, and they are not yet well understood. In this article, we report on a
measurement study of mainly the Periscope service and application. We also contrast the
results to FB Live in some parts of the study.

We first measured Periscope in two ways: We crawled the ongoing live streams to analyze
the usage patterns of over 200K broadcasts and we recorded a few thousand viewing sessions
by automating the watching of Periscope broadcasts with an Android smartphone to examine
the different QoE factors. Then, we performed controlled experiments with both Periscope
and FB Live in order to understand the bitrate adaptation logic used by the applications when
broadcasting a live stream. Finally, we studied the application induced energy consumption
on a smartphone.
We made several interesting discoveries: 1) The Periscope application’s chat feature

appears to sometimes fiercely compete for bandwidth with the actual video stream because
of downloading of chatting users’ profile pictures. Because of this, there seems to be a
limit for the access network bandwidth below which startup latency and video stalling
start to increase and this limit is clearly higher than the video bitrate. 2) The delay of
viewers is highly influenced by the choice of protocol between RTMP and HLS to deliver the
stream and this choice depends on the popularity of the broadcast. 3) The video bitrate and
quality may exhibit significant short-term variations that can be attributed to extreme time
variability of the captured content. 4) Periscope applications seem to choose video bitrate
according to an estimate of the available bandwidth, whereas FB Live always streams at
the same target bitrate. The iOS version of the Periscope application appears to also react
to a situation where the bandwidth drops but not when it increases, while the Android
version does not react at all. 5) Both applications are power hungry, which is typical for such
applications using most of the power hungry components, such as camera, display, network,
and processors. With Periscope, the power consumption grows dramatically when the chat
feature is turned on while watching a broadcast, which is caused by the way it downloads
and displays profile pictures. Especially the bitrate adaptation results suggest that there is
plently of room to improve the QoE of these applications.

The rest of this article is organized as follows: In Section 2, we explain mobile live video
broadcasting and the two applications in detail. In Section 3, we analyze Periscope usage
patterns. In Sections 4 and 5 we analyze the QoE factors, such as video stalling, latency,
and video quality of Periscope in detail. In Section 6, we study the video bitrate adaptation
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logic of the two applications and in Section 7 we measure their power consumption. Finally,
we compare our work to related work in Section 8 before concluding in Section 9.

2 MOBILE LIVE VIDEO BROADCASTING

Many mobile live video broadcasting services have emerged in the last couple of years.
Among the most popular are Periscope and Facebook Live, which are the focus of our work
too. All the services enable users to broadcast live video using their mobile device for other,
mainly mobile users to view it. The audience may consist of thousands of viewers, which
differentiates them from video call applications and introduces extra challenges to the video
delivery system with respect to scalability.

Most of these applications, including Periscope and FB Live, include features that allow the
audience to give real-time feedback to the broadcaster. Hence, the end-to-end latency matters
for the overall QoE with the service, both from the broadcaster and viewer perspectives.
Another important QoE factor is of course video quality. As both the broadcaster and
viewer have wireless and possibly mobile connectivity, variations in the achievable upstream
and downstream data rates present a challenge and ideally the applications would support
adaptation of the video bitrate to match the achievable data rates in one way or another.

CDN 

streaming 
servers 

= video segments over HTTP 
= RTMP stream 

Fig. 1. Typical mobile live video broadcasting system.

Figure 1 illustrates a typical mobile live video broadcasting system. It consists of dedicated
stateful streaming servers (e.g., RTMP) in different geographic locations to which the
broadcasting clients transmit the live stream. The live stream then is either relayed frame by
frame to clients receiving it directly from the streaming server or packaged into video and
audio segments and delivered through a CDN using HTTP. The picture does not include the
real-time feedback from the clients, which may also be delivered through dedicated servers
(e.g., using Websockets) or with the help of a CDN.

Our measurements study focuses mainly on Periscope (Sections 3 to 5) but we also include
FB Live in the investigations of video bitrate adaptation and power consumption (Section
6). We next briefly describe how the two chosen applications work.

2.1 Periscope

Periscope allows both public and private broadcasting. Private streams are only viewable by
chosen users. The application supports using also a GoPro instead of the in-built camera of
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(a) Live feedback from viewers (b) List of ongoing broadcasts (c) Map of broadcasts

Fig. 2. Periscope screenshots.

the mobile device. Viewers can send text messages floating ”hearts” as real-time feedback to
the broadcaster, which is shown in Figure 2(a). The chat becomes full when certain number
of viewers have joined after which new joining users cannot send messages. Broadcasts can
also be made available for replay.
A user can discover public broadcasts in different ways. The application displays a list

of ranked broadcasts, as shown in the screen capture in Figure 2(b), and a few featured
ones. The user can also explore the map of the world in order to find a broadcast in a
specific geographical region or perform a search query. Figure 2(c) shows an example. The
map shows only a fraction of the broadcasts available in a large region and zooming in
reveals more broadcasts. Finally, with some application versions, it is possible to click on a
“Teleport” button to start watching a randomly selected broadcast.

Periscope uses two kinds of protocols for the video stream delivery: Real Time Messaging
Protocol (RTMP) using port 80 and HTTP Live Streaming (HLS) because RTMP enables
low latency (Section 4.5). The reason to use HLS may be related to scalability and/or
costs [36].
We investigated the IP addresses and hostnames of the servers used by Periscope in

more detail and discovered that the RTMP streams are always delivered from servers
running on Amazon EC2 instances. For example, consider an RTMP server running at
vidman-eu-central-1.periscope.tv. When we perform a reverse DNS lookup with the IP
address that the application obtained when resolving that hostname, we obtain a different
hostname revealing where the EC2 instance is located: ec2-54-67-9-120.us-west-1.compute.
amazonaws.com. HLS video segments are delivered by Fastly CDN. We have observed
segment durations between two to four seconds. RTMP streams use only one connection,
whereas HLS may sometimes use multiple connections to different servers in parallel to
fetch the segments, possibly for load balancing and/or resilience reasons. We study the logic
of selecting the protocol and its impact on user experience in Section 4. Public streams
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(a) Map of broadcasts (b) FB Live app screenshot of viewing a broadcast

Fig. 3. Periscope screenshots.

are delivered using plaintext RTMP and HTTP, whereas the private broadcast streams
are encrypted using RTMPS and HTTPS for HLS. The chat uses Websockets to deliver
messages.

2.2 Facebook Live

FB Live differs from Periscope in that it is an integral part of the Facebook application, not
a separate application. Discovering live Facebook broadcasts also differs from Periscope. The
mobile app does not have a map of world or show a list of ongoing live broadcasts, although
live broadcast map is available on a web page https://www.facebook.com/livemap/, which is
displayed in Figure 3(a). The usual way is through a notification that a friend or a followed
person is broadcasting live. The broadcasting user can set visibility of the broadcast to be
public or restricted only to friends, for instance. Similar to Periscope, the viewers can send
live feedback through chat messages and emoticons, as the screenshot in Figure 3(b) shows.

FB Live apparently uses the same two protocols than Periscope[17]. We cannot confirm this
through experiments because all the traffic is encrypted and the mobile app uses certificate
pinning which makes it impossible to use an SSL proxy to inspect the traffic. However,
viewing FB Live streams using a Web browser reveals that HTTP/2 is used to deliver the
stream traffic, which we did not observe with Periscope at the time of measurements. We
observed that FB Live mainly uses one second long video segments but we also noticed it to
sometimes use 2s segments.

3 OVERVIEW OF USER BEHAVIOR

We first wanted to learn about the usage patterns in mobile live video broadcasting services.
In this study, we focus only on Periscope. The application does not display a complete list
of broadcasts and the user needs to discover broadcasts in ways described in the previous
section. In late March of 2016, over 110 years of live video were watched every day through
Periscope [22], which roughly translates into 40K live broadcasts ongoing all the time. We
collected the data used in this analysis during the first half of 2016.

3.1 Data Collection

The Periscope app communicates with the servers using an API so that the communication
is protected by SSL. Hence, we set up an SSL proxy called mitmproxy [20] in between the
mobile device and the Periscope service as a transparent proxy. The proxy intercepts the
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Fig. 4. Map showing the top zones se-
lected for targeted crawl. Colour indi-
cates how many top zone lists of the
different crawls the zone appears in
(dark blue is one, dark red is all).
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Fig. 5. Cumulative number of broadcasts discovered as
a function of crawled areas (# of requests). Each curve
corresponds to a different deep crawl.

HTTPS requests sent by the mobile device and pretends to be the server to the client and
to be the client to the server. The proxy enables us to examine and log the exchange of
requests and responses between the Periscope client and servers. The Periscope iOS app uses
the so called certificate pinning in which the certificate known to be used by the server is
hard-coded into the client. Therefore, we only used the Android app in these experiments1.

To collect data about user behavior, we used Android emulators (Genymotion [7]) together
with the SSL proxy. We developed a so called inline script for the proxy that crawls
through the service by continuously querying about the ongoing live broadcasts. The script
takes advantage of Periscope API’s /mapGeoBroadcastFeed request which allows specifying
coordinates of a region to query for ongoing broadcasts. The script intercepts the initial
request made by the application after being launched and replays it repeatedly in a loop
with modified coordinates and writes the response contents to a file. The response to the
request includes also replayable already finished broadcasts by default but our script sets the
include replay attribute value to false so that we only discover live broadcasts. In addition,
the script intercepts /getBroadcasts requests and replaces the contents with the broadcast
IDs found by the crawler since previous request and extracts the viewer information from
the response to a file.
This approach presents some challenges: When specifying a large geographical region

in the request, the response only contains a subset of all the live broadasts within that
region and more broadcasts can be discovered by specifying a smaller region within the
large region. This behavior is visible to the user when exploring the map of the world and
zooming in. Hence, to find a large fraction of the broadcasts, the script must explore the
world by specifying small enough regions. In addition, Periscope servers use rate limiting so
that too frequent requests will be answered with HTTP 429 (“Too many requests”), because
of which our script needs to pace the requests. This obviously increases the completion time
of a crawl. The longer a crawl takes, the more broadcast information will be missed because
the sampling rate of a given region decreases accordingly.
To find a suitable tradeoff between number of regions to query and crawl time, we first

perform a deep crawl after which we select only the most active regions from that crawl
and query only them, which we call a targeted crawl. In deep crawl, the crawler zooms into
each region by dividing it into four smaller regions and recursively continues doing that

1At the time of writing this paper, also the Android app seems to have enabled certificate pinning.
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until it no longer discovers substantially more broadcasts. With this approach, we discover
1K-4K broadcasts per crawl2. Figure 5 shows the cumulative number of broadcasts found as
a result of crawls performed at different times of day. Figure 5(b) reveals that for all the
different crawls, half of the regions contain at least 80% of all the broadcasts discovered in
the crawl. We select those regions from each crawl, 64 areas in total, for a targeted crawl.
The regions are annotated in the map in Figure 4. We divide them into four sets assigned to
four different simultaneously running crawlers, i.e., four emulators running Periscope with
different user logged in (avoids rate limiting) that repeatedly query the assigned areas. Such
targeted crawl completes in about 50s. We performed four different 4h-10h long targeted
crawls started at different times of the day and only include information about broadcasts
that ended during the crawl, i.e. not having been seen during the last 60s of a crawl, in the
results, which gives us a total of roughly 220K distinct broadcasts. We call the resulting
data set crawl1.

3.2 Broadcast and Viewer Statistics

Figure 6 shows CDF plots of broadcast duration and average number of simultaneous viewers
during broadcasts captured in crawl1 (note: both variables use the same x-scale). The
duration was calculated by subtracting its start time, which is included in the broadcast
description, from the timestamp of the last observation of the broadcast by the crawler.
Most of the broadcasts last between 1 and 10 minutes and roughly half are shorter than
4 minutes. The distribution has a long tail with some broadcasts lasting for over a day.
Over 90% of broadcasts have less than 20 viewers on average but some attract thousands of
viewers. Over 10% of broadcasts have no viewers at all and over 80% of them are unavailable
for replay afterwards (replay information is contained in the descriptions we collect about
each broadcast), which means that they were never viewed by anyone. They are typically
much shorter than those that have viewers (avg durations 2min vs. 13 min) although some
last for hours and represent only about 2% of the total tracked broadcast time.
The local time of day shown in Figure 7 is determined based on the broadcaster’s time

zone. This means that it reflects local time of also those viewers located in the same time
zone. We can identify some patterns in the number of viewers: There is a low point during

2This number is much smaller than the assumed 40K total broadcasts but we miss private broadcasts and

those with location undisclosed.
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the early hours of the day, a peak in the morning, and an increasing trend towards midnight.
The existence of such patterns suggests that a relatively large number of viewers come from
a time zone that is the same than or nearby the broadcaster’s time zone, which makes sense
especially from possible language preference point of view (users can change the language
preferences in the app settings). Besides the difference between broadcasts with and without
any viewers, the popularity is only very weakly correlated with its duration.

4 PLAYBACK SMOOTHNESS AND LATENCY

We next investigate how smooth the video playback is, in other words how frequently the
video playback stalls because of empty playback buffer, and the latency perceived by users.
To this end, we made smartphones automatically view Periscope broadcasts one after another,
collected data during the viewing, and analyze the the collected data afterwards. We could
not do these experiments with FB Live because the app does not provide suitable means for
automatically discovering new broadcasts and the data collection is impossible without the
use of SSL proxy.

4.1 Measurement Setup

We automated the broadcast viewing process by leveraging the application’s ”Teleport”
button which takes the user directly to a randomly selected live broadcast. We developed a
script that sends tap events through Android debug bridge (adb) to click on the Teleport
button, wait for 60s, click on ”close”, click on ”home” button and then repeat the same process.
The script also captures all the video and audio traffic using tcpdump. We simultaneously
executed an SSL proxy script that dumped for each broadcast viewed a description and
playback statistics, such as delay and stall events, which the application reports to a server
at the end of a viewing session. These statistics are mainly useful for the RTMP streaming
sessions since the app only reports the number of stall events for the HLS sessions.
We used two different Android phones: Samsung Galaxy S3 and S4. The phones were

located at Aalto University and reverse tethered to the Internet through a USB connection
to a Linux desktop machine providing them with over 100Mbps of available bandwidth both
up and down stream. We imposed artificial bandwidth limits with the tc command on the
Linux host. Mainly for the sake of latency measurements, NTP was enabled on the desktop
machine and used the same server pool as the Periscope app. We recorded in total 4615
1-minute viewing sessions: 1796 RTMP and 1586 HLS sessions without a bandwidth limit
and 1233 sessions with different bandwidth limits. In order to understand whether we should
treat the data from the two different phones separately, we performed a series of Welch’s
t-tests to check whether the data sets differ statistically significantly. The results indicate
that besides video frame rate, there are no statistically significant differences between the
two datasets and we used data from both devices together in the analysis that follows.

In addition to the one-minute long viewing sessions, we recorded longer sessions with the
S4 phone in which the viewing stops only when broadcast ends or when 1h has passed. No
bandwidth limit was enforced. There are 1597 of these sessions and their average duration is
18 minutes. We use these only for the analysis in Section 4.4.

4.2 Protocol Selection and Client to Server Mapping

Since the choice of protocols between RTMP and HLS has an impact on the resulting latency
and possibly also on the amount of rebuffering experienced during playback, we first try to
understand the logic behind this choice as well as the client to server mapping.
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Publication date: September 2017.



Can You See What I See? Quality of Experience Measurements of Mobile Live Video
Broadcasting 1:9

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
stall ratio

fr
ac

tio
n 

of
 b

ro
ad

ca
st

s

(a) no bandwidth limiting

0.00

0.25

0.50

0.75

1.00

0.5 1 2 3 4 5 6 7 8 9 10 100
bandwidth limit (Mbps)

st
al

l r
at

io

(b) bandwidth limiting

Fig. 8. Analysis of the stall ratio for RTMP streams with and without bandwidth limiting.

Selection of viewer client’s protocol appears to be such that HLS is used only when a
broadcast is very popular. Looking at the average number of viewers of RTMP and HLS
stream suggests that HLS gets employed once the number of viewers grows beyond 100 or so,
which has also been observed in [36]. By examining the IP addresses from which the video
was received, we noticed that 87 different Amazon servers were employed to deliver the
RTMP streams. We could locate only nine of them using maxmind.com, but among those
nine there were at least one in each continent, except for Africa, which indicates that the
server is chosen based on the location of the broadcaster. In contrast, HLS streams were
delivered from only two distinct IP addresses. Their locations were somewhere in Europe and
in San Francisco. It appears that the RTMP stream gets repackaged and delivered to Fastly
CDN by Periscope servers, possibly the RTMP servers to which the video is transmitted
by the broadcaster in the first place. Our single vantage point for measurements explains
the difference in server locations observed between the protocols. As confirmed by analysis
in [36], the RTMP server nearest to the broadcasting device is chosen when the broadcast
is initialized, while the Fastly CDN server is chosen based on the location of the viewing
device.

4.3 Playback Stalling

To analyze playback stalling, we leverage the statistics that the app reports for RTMP
streams after playback, which include the number of stall events and the average stall time
of an event. For HLS streams, the app only reports the number of stall events. We calculate
the stall ratio for the RTMP streams by summing up stall time and dividing it by the
total stream duration that includes all the stall and playback time. We plot a CDF of the
results in Figure 8(a). The playback of most streams does not stall but a notable number
of streaming sessions have a stall ratio of 0.05-0.09, which in most cases corresponds to a
single stall event that lasts for 3-5 seconds.
To understand how an artificial rate limit changes the results, we compute the stall

ratio separately for experiments with different rate limits (100 means unlimited rate). The
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boxplots in Figure 8(b) demonstrate that there is a relatively small chance of experiencing a
stall event when viewing broadcasts with more than 2 Mbps of access network bandwidth,
which suggest that a vast majority of the broadcasts are streamed with a bitrate inferior to
2 Mbps. As for the broadcasts streamed using HLS, comparing their stall count to that of
the RTMP streams indicates that stalling is rarer with HLS than with RTMP, which may
be caused by a larger buffer size (one chunk duration minimum) used by the application
with HLS streams.

The average video bitrate is usually between 200 and 400 kbps (see Section 5), which is
much less than 2 Mbps. Hence, there is an extra source of traffic that increases the total
bandwidth demand so that stall events become more commonplace when the viewing device
has less than 2 Mbps of available access network bandwidth. With a closer look at the traffic,
we discovered that the chat feature is the most likely culprit, as enabling it clearly increases
the traffic volumes.

4.4 The Chat Effect

The JSON encoded chat messages are not causing the increase in bandwidth demand, as
they are received even when chat is turned off, but when the chat is on, continuous download
of images from Amazon servers emerges in the traffic. Figure 2(a) reveals the reason: The
app downloads profile pictures of chatting users and displays them next to their messages.
The pictures are small when shown on display but some are large when downloaded and
apparently downscaled afterwards on the mobile device. There are two kinds of profile
pictures used: Periscope and Twitter profile pictures and the latter kind appear to be already
downscaled at the server while the former are not.
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Fig. 9. Chat effect.

The profile picture downloading effect can be sizable. We happened to capture a case
where turning the chat on in the middle of viewing a broadcast caused an increase of the
aggregate data rate from roughly 500kbps to 3.5Mbps. The precise impact on bandwidth
demand depends on the number of chatting users, their messaging rate, the fraction of them
having a profile picture, and the format and resolution of profile pictures.

We analyzed the long viewing sessions in order to quantify the chat effect. We were able
to isolate the image downloads by filtering the recorded traffic with server name and content
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Fig. 10. The boxplots show that playback latency and join
time of RTMP streams increases when bandwidth is limited.
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type. We plot the CDF of download rates of the profile pictures and chat relative to the
video bitrate in Figure 9(a). The increase in traffic is only 10% for half of the broadcasts
when computed over the whole duration of viewed broadcasts. However, when we look at
the peak rates computed over window of 10 or 30 seconds, the results look more severe:
with half of the broadcasts, the 30s peak rate matches the video bitrate, hence effectively
doubling the bandwidth demand, and with 10s peak rate, the demand is tripled for more
than half of the broadcasts. This is problematic because the playback buffer size for live
streaming applications has to be relatively small so that latency does not grow too much,
which means that already a short-lived but severe competition for bandwidth by the image
downloading may cause the playback buffer to run dry.

We also noticed that some pictures were downloaded multiple times, which indicates that
the app does not cache them. We identified the redundant downloads by finding downloads
with the same HTTP entity tag (ETag) value, if it was enabled, or alternatively the same
MD5 digest. Figure 9(b) plots a CDF of the overhead caused by redundant downloads. Half
the broadcasts generate 20-30% of extra traffic because of this and for some the redundant
downloads multiply the download traffic by tens of times.

Fortunately, these chat related issues are easy to resolve by downscaling the profile images
already at server and by caching the images at the app.

4.5 Latency

The duration of each viewing session was exactly 60s from the moment the Teleport button
was pushed until terminating the viewing. We calculate the join time, also sometimes called
startup latency, by subtracting the sum of playback and stall time from 60s. The boxplots
in Figure 10(a) display the results for RTMP streams. In addition, we plot in Figure 10(b)
the playback latency, as reported by the app, likely equivalent to the end-to-end latency.
The y-axis scale was cut leaving out some outliers. Both increase when bandwidth is limited.
In particular, join time grows dramatically when bandwidth drops to 2Mbps and below,
partly because the app downloads the map of world to show where the broadcast about to
be watched is located when using the Teleport feature. The average playback latency was
roughly a few seconds when the bandwidth was not limited.
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We performed some experiments where we controlled both the broadcasting and receiving
client and captured both devices’ traffic. We noticed that the broadcasting client application
embeds NTP timestamps into the video data and that that these timestamps match very
closely the tcpdump timestamps in a trace of the broadcasting device’s traffic captured by
the tethering machine. Hence, we could calculate the delivery latency by subtracting the
NTP timestamp value from the time that the viewing client receives the packet containing
it for both types of streams. We calculate the average over all the latency samples for each
broadcast and plot the CDF of those average values in Figure 11. Only sessions that were
not bandwidth limited are included. The results clearly demonstrate the latency difference
between the two protocols. RTMP stream delivery is very fast happening in less than 300ms
for 75% of broadcasts on average, which means that the majority of the few seconds of
playback latency with those streams comes from buffering. In contrast, the delivery latency
with HLS streams is over 5s on average. The biggest contributor to the HLS latency is that
video is packaged into over 3 seconds long segments, which immediately adds 3s to the
latency, whereas RTMP delivers the video frame by frame. For a more detailed analysis of
the latency in Periscope, we refer the reader to [36].

5 AUDIO AND VIDEO QUALITY

5.1 Data Processing

For detailed analysis of audio and video quality, we use the pcap traffic from the Periscope
dataset that we used for playback smoothness and latency analysis (refer to Section 4.1).
We first reconstructed the video data of each session from the packet traces after which we
analyzed it using a variety of scripts and tools.

After finding and reconstructing the multimedia TCP stream using wireshark [38], single
segments are isolated by saving the response of HTTP GET request which contains an
MPEG-TS file [12] ready to be played. For RTMP, we exploit the wireshark dissector which
can extract the audio and video segments. We used the libav [19] tools to inspect the
multimedia content and decode the video in full.
We also focused on estimating the quality of the video by making use of the technique

described in [2], which provides an estimate of the Peak Signal-to-Noise Ratio (PSNR) for
the decoded AVC video signal. Such a value can be used as an indication of the quality of
the encoded video. More details are given in Section 5.3.
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5.2 Audio and Video Coding

Both RTMP and HLS communications employ standard codecs for audio and video, that
is, AAC (Advanced Audio Coding) for audio [14] and AVC (Advanced Video Coding) for
video [13]. In more details, audio is sampled at 44,100 Hz, 16 bit, encoded in Variable Bit
Rate (VBR) mode at about either 32 or 64 kbps, as shown in Figure 12, which seems enough
to transmit almost any type of audio content (e.g., voice, music, etc.) with the quality
expected from capturing through a mobile device.
Video resolution is always 320×568 (or vice versa depending on orientation). The video

frame rate is variable, up to 30 fps. Occasionally, some frames are missing hence concealment
must be applied to the decoded video. This is probably due to the fact that the uploading
device had some issues, e.g., glitches in the real-time encoding or during upload.
Fig. 13 shows the video bitrate, typically ranging between 200 and 400 kbps. Moreover,

there is almost no difference between HLS and RTMP except for the maximum bitrate which
is higher for RTMP. Analysis of such cases reveals that poor efficiency coding schemes have
been used (e.g., I-type frames only). In fact, in real applications rate control algorithms try
to keep its average close to a given target, but this is often challenging as changes in the
video content directly influences how difficult is to achieve such bitrate. To this aim, the so
called quantization parameter (QP) is dynamically adjusted [3]. More details about quality
will be given in the next section.

An interesting parameter for the HLS case is the segment duration. Figure 14 shows the
observed segment duration. The large majority of cases present segment lengths equal to 3.6
s. Such value corresponds to 108 frames at 30 fps. Some last less, which is what happens
when the duration of the video is not multiple of 3.6, but some last more than 3.6, indicating
that there could be some flexibility in deciding the segment length parameter.
Finally, we investigated the frame type pattern used for encoding. Most use a repeated

IBP scheme. Few encodings (20.0 % for RTMP and 18.4% for HLS) only employ I and P
frames only (or just I in 2 cases). After about 36 frames, a new I frame is inserted. Although
one B frame inserts a delay equal to the duration of the frame itself, in this case we speculate
that the reason they are not present in some streams could be that some old hardware might
not support them for encoding.

5.3 No-Reference Quality Assessment

To get a deeper insight in the quality of the video provided to the users, we implemented
the video quality estimation technique described in [2]. Although it is always difficult to
estimate the quality of video content without having the original uncompressed reference, as
in our case, such a technique relies on a statistical analysis of the quantized coefficients in
the decoded video blocks to determine the parameters of a probability distribution function
that models the original, not quantized, coefficients. Then, the difference between the energy
of the not quantized and quantized coefficients is estimated, determining a Mean Squared
Error (MSE) which is then converted in the more usual PSNR measure at the frame level.
PSNR is then averaged over the whole video segment to provide an indication of the quality
of the video compression process. Differently from a generic technique based, e.g., on simply
analyzing the quantization parameter as done in our previous work [29], such a technique
also considers the video content, allowing for more definitive conclusions about video quality
and its evolution over time.

Figure 15 shows the PSNR value as a function of the video bitrate for the case of the RTMP
and HLS protocols. The graphs are presented in the form of heatmaps instead of showing
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Fig. 15. PSNR as a function of the video bitrate for each session.
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Fig. 16. PSNR behavior over time: CDF for all sessions and two sample cases (first 500 frames)

the single points that correspond to each single session to avoid point superimposition that
would hamper readability. Also, note that for the HLS protocol, all segments belonging to a
session are considered together and represented by only one pair of bitrate and PSNR value.
In fact, the user is typically not aware of the fact that the content is served in a chunked
fashion, as it is played back continuously. From the graphs it can be surmised that there
is no significant variation between the two protocols. Both show that about 450 kbit/s is
a popular average bitrate for the sessions. Within that range, however, variations can be
significant, ranging from about 25 to 50 dB PSNR.

We also investigated the behavior over time of the quality through the PSNR value of each
single video frame. To this aim, we computed the standard deviation 𝜎PSNR of the PSNR
value over time for each session. Figure 16(a) shows the cumulative distribution function
(CDF) of the 𝜎PSNR value for the RTMP and HLS sessions. It is possible to notice that the
two types of sessions exhibit a significantly different behavior. Large variations (higher than
2 dB PSNR ) are present in only 10% of the cases for RTMP but in more than 30% for HLS.

An example of the behavior of the PSNR for two extreme cases (𝜎PSNR=0.41 dB and
4.66 dB respectively) as a function of time is shown in Figure 16(b) and 16(c). In the former
it is clear that there are significant quality variations over time. Visual inspection of some
sequences that exhibit a behavior similar to Figure 16(b) confirms that the quality variations
are significant and very noticeable. In Figure 17 we reported two sample pictures extracted
from the high-𝜎PSNR video for a “good” and “bad” frame that confirm such observation. The
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quality is, instead, much more stable for the video represented in Figure 16(c). The visual
analysis manually performed on some high-𝜎PSNR videos indicates that such short-term
quality variations can be very often attributed to the extreme time variability of the captured
content. For instance, shots are very unstable and sudden movements are very common since
devices are often held in hand by people doing other tasks, such as walking or moving in
general.

Regarding the video content, it is also interesting to note that, for the case of HLS sessions,
in each segment both the bitrate and the quality can vary significantly, as shown in Figure 18.
This is in agreement with Figure 16(a) where higher PSNR variability over the time span
of the session could be observed. Also, note the area of the graph at very low bitrate but
very high quality: that is typically a series or black or very dark frames, which are often
encountered in Periscope videos because the capture device might be moved, turned or
positioned in a way where the camera view is temporarily obstructed. Regarding the larger
variability of the segment bitrates, this could be caused by the fact that each segment is
probably processed and encoded independently. 95.4% of the segments are, in fact, do not
exhibit coding dependencies on the next segment in the same session, i.e., they end with a
P or I-type frame.

6 VIDEO BITRATE ADAPTATION

So far we have seen statistics about playback stalling, latency, and video quality but we
also wanted to understand in more detail where these statistics stem from. In particular, we
wish to know how the video bitrate is determined, which in turn affects also the playback
smoothness. It is difficult to conclude anything about the broadcaster’s connectivity and
its impact on the video bitrate using the data we have collected and studied so far. Hence,
we performed a limited set of controlled experiments with both Periscope and FB Live
specifically to reveal how the video encoding bitrate gets chosen at the broadcaster and
whether it is varied and according to which logic, i.e. what kind of video bitrate adaptation
is used. We mainly focus on the broadcaster side adaptation but we also briefly study the
viewer side.

(a) #36 (b) #142

Fig. 17. Sample frames from the “bad” se-
quence in Fig. 16(b), showing high and low
PSNR values.
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Fig. 19. Bitrates with constant upload rate limit.

6.1 Experiment Setup

We used two newer smartphones in these experiments, an iPhone SE (iOS 10.3.2) and
Samsung Galaxy S7 (Android 7.0). We used the latest Pericope and Facebook app versions
available at the time of writing this paper. We used Mac OS Internet sharing with Wi-Fi to
connect the phone. The tethering device was a Macbook Air which had a 100 Mbps wired
connection to the Internet. We used the Network Link Conditioner to enforce symmetric
rate limits upstream and downstream.
For experiments with Periscope, we varied the rate limit and streamed live video for

approximately one minute. The video being shot was the beginning of the movie called Big
Buck Bunny playing on a laptop screen. Afterwards, we replayed the video using a Web
browser on a desktop machine with again 100 Mbps Internet connection and recorded the
traffic using tshark. During replay, we also logged SSL key exchange information by setting
the SSLKEYLOGFILE environment variable, which enabled us to decrypt the traffic and
reconstruct the video data in the way we explain in Section 5.1.

With FB Live, we did live capturing of the broadcast instead of replaying. Our setup was
otherwise similar to the setup with Periscope except that a desktop machine was viewing
the stream live. We developed new scripts to reconstruct FB Live stream video and audio
from packet traces because a Chrome browser receives FB Live streams as fragmented MP4
(i.e., uses DASH) over HTTP/2 instead of MPEG-TS over HTTP/1.1 used by Periscope.

6.2 Broadcasting with Constant Available Bandwidth

We first take a look at the bitrate selection of the applications when there is constant amount
of bandwidth available. Figure 19 shows the results we measured. The Android version of
the Periscope application seems to choose the video bitrate rather conservatively, as we can
see from Figure 19(a). The two attribute values UploadRate and bps are embedded into the
video stream and the former seems to be the application’s estimate of the available amount
of bandwidth and the bps reflects the chosen target video bitrate, since the measured video
bitrate matches very well this attribute value. If this interpretation is accurate, the app
seems to systematically underestimate the amount of available bandwidth in this experiment
setup. The ratio of the chosen bitrate to the bandwidth estimate is consistently in between
0.4 and 0.5 except for the experiments with 2 Mbps available bandwidth, which suggests
that the video bitrate of slightly below 0.5 Mbps appears to be the maximum used by
the application. Results with iPhone plotted in Figure 19(b) indicate that the behavior is
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qualitatively similar to the Android app although the iPhone app appeared to underestimate
the bandwidth somewhat more than the Android app.
In addition to the systematic underestimation, both Periscope versions occasionally

underestimate the bandwidth with a large margin, which may be caused by other activity
that happens in parallel to the bandwidth estimation (no other apps were running). For
instance, we noticed that if we tried to broadcast right after launching the iPhone app in an
experiment where the bandwidth was limited below 0.5 Mbps, the app would systematically
report poor connectivity and refuse to begin broadcasting. This behavior is probably caused
by downloading recent broadcast information including their thumbnails shown on the front
page by the app upon startup, which is still ongoing while the bandwidth is being estimated.
To our surprise, the FB Live application does not seem to adjust the video bit rate

according to any bandwidth estimates. Instead, in our experiments, it always streamed
video with a target bitrate around 0.5 Mbps, except for some outliers, as is clearly visible
in Figure 19(c). While we viewed and recorded the broadcasts live, we observed playback
stalling when the there was insufficient amount of bandwidth available, i.e. limit was below
0.5 Mbps. Sometimes we noticed a ”spinning circle” and sometimes a large text announcing
”Live Video Interrupted.”
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Fig. 20. Coefficient of variation of video bitrate with constant upload rate limit.

We also computed the coefficient of variation of the video bitrate for both version of
the two applications and the different bandwidth limits (Figure 20). The most interesting
thing to note from Figure 20(a) is the difference between the Android and the iOS versions,
which suggests that the two versions may use a different encoding rate control strategy,
such as CBR for Android vs. constant QP for iOS. We will observe this difference also in
Figures 21(b) and 21(c).

6.3 Broadcasting with Changing Available Bandwidth

We next conducted experiments where the amount of available bandwidth changes during
the broadcast. We only used Periscope because we could not find any evidence of bitrate
adaptation with FB Live. Figure 21 shows bitrates per video segment of Periscope broadcasts
of the two first minutes of the same Big Buck Bunny video. After the first minute, the
bandwidth limit was changed from 0.5 to 1 Mbps or vice versa. We notice that the iOS
version of the application tries to adapt to the available bandwidth, whereas the Android
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Fig. 21. Video segment bitrates of Periscope broadcasts when upload rate limit changes in the middle of
the broadcast.

version does not. The iOS version only appears to react to a decrease in the amount of
available bandwidth but not noticeably to an increase of it. The bitrate is adjusted with
some delay to a decrease in the available bandwidth and in some cases the bitrate increases
afterwards again (bcast1).
With Android, the bitrate is essentially a flat line for all experiments we tried. The

experiment of which the results are plotted in Figure 21(c) played without problems because
the video bitrate chosen with 1 Mbps bandwidth limit was below the lower 0.5 Mbps limit
as well. However, when we reduced the bandwidth more dramatically to 0.3 Mbps after
the first minute of broadcasting, the bitrate remained the same but the delay started to
grow and not all the video was ever uploaded to the server. To a live viewer, such behavior
manifests as periodic playback stalling.
These results demonstrate that there are opportunities to improve the QoE in terms of

video quality playback smoothness by incorporating smarter bitrate adaptation logic into
these applications.

6.4 Viewer Side Bitrate Adaptation

On the viewer side, both applications use adaptive streaming protocols (HLS and DASH)
except for the low-latency RTMP streams of Periscope. However, we could not find multiple
representations of the video delivered using HLS with Periscope but we cannot say anything
conclusive about it. With FB Live, we observed roughly half of the times two different
video representations included in the MPD (bandwidth: 500000/250000, FBQualityLabel:
360p/240p) and half of the time only the higher quality one. We did not perform any
experiments where the viewer bandwidth is choked below that of the broadcaster’s upstream
bandwidth. Such a situation corresponds to a traditional case of bitrate adaptation when
streaming to a mobile device from a server, and the behavior of these adaptive streaming
protocols in such a situation is already fairly well understood.

7 POWER CONSUMPTION

Energy efficiency continues to be a major concern with smartphones. While they pack
an incredible amount of computing, communication, and sensing technology and power
today, the battery capacities have grown at a modest rate. Power consumption of a mobile
application or service is first and foremost a Quality of Experience factor as it directly
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Fig. 22. Power measurement setup.

affects the battery life of the device and, hence, recharging frequency. As our final set of
measurements, we studied the power consumption of Periscope and FB Live applications.

7.1 Measurement Setup

We connected a Samsung Galaxy S4 4G+ smartphone to a Monsoon Power Monitor [21]
in order to measure its power consumption as instructed in [35]. The mobile phone was
connected to the power monitor by bypassing the battery of the device. The voltage terminal
of the battery was covered with insulating tape and copper foil tape was used to allow
connecting the Monsoon Power Monitor device to the phone. The connection setup is
presented in Figure 22. We used the PowerTool software to record the data measured by the
power monitor and to export it for further analysis. This kind of setup is considered as the
gold standard in smartphone power measurements [35].
The screen brightness was full in all test cases and the sound was off. The phone was

connected to the Internet through non-commercial WiFi and LTE networks3.

7.2 Results

Figure 23 shows the results for Periscope app. We measured the idle power draw in the
Android application menu to be around 900 to 1000 mW both with WiFi and LTE connections.
With the Periscope app on without video playback, the power draw grows already to 1537
mW with WiFi and to 2102 mW with LTE because the application refreshes the available
videos every 5 seconds.

Playing back old recorded videos with the application consume an equal amount of power
as playing back live videos. The power consumption difference of RTMP vs HLS is also
very small. Interestingly, enabling the chat feature of the Periscope videos raises the power

3It is a full-fledged LTE network operated by Nokia. DRX was enabled with typical timer configuration.
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Fig. 23. Average power consumption with Periscope and idle device.

consumption to 2742 mW with WiFi and up to 3599 mW with LTE. This is only slightly
less than when broadcasting from the application. However, the test broadcasts had no chat
displayed on the screen.
We further investigated the impact of the chat feature by monitoring CPU and GPU

activity and network traffic. Both processors use DVFS to scale power draw to dynamic
workload [35]. We noticed an increase by roughly one third in the average CPU and GPU
clock rates when the chat is enabled, which implies higher power draw by both processors. As
we discovered in Section 4.4, the chat feature may increase the amount of traffic, especially
with streams having an active chat, which inevitably increases the energy consumed by
wireless communication. The energy overhead of chat could be mitigated by caching profile
pictures, downscaling them at the server, and allowing users to disable their display in the
chat.
The results of FB Live power measurements are presented in Figure 24. Recall that the

Facebook application logic is different from Periscope in that it does not display a list of
ongoing broadcasts, only gives notifications of your friends or those that you follow. Hence,
it also does not download periodic updates like the Periscope application does, which results
in significantly lower power consumption without video playback. In video playback, we did
not observe large variations between playing a recorded video or a live stream. Similarily to
Periscope, broadcasting a video consumes a lot of energy compared to the other scenarios.
The chat feature affects the power consumption much less than with Periscope even though
both apps show chat messages in the same way including the profile pictures. There were
also no noticeable differences between viewing a highly popular broadcast or one with only
a few viewers.

8 RELATED WORK

Many papers have been published on transmission of on-demand video over wireless networks,
too many to be cited here. Live streaming over wireless networks has also received a lot of
attention. Within that body of work, live video broadcasting or multicasting over wireless
networks is most related to this work. For example, SVC has been studied as a suitable
way to encode the video for broadcasting or multicasting in [10, 11, 15, 30, 39], to name a
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Fig. 24. Average power consumption with Facebook Live and idle device.

few, but only [30] considers mobile device as the source of video. In contrast to using SVC,
transcoding based approach has also been rather thoroughly examined [9, 25, 41]. Some
research has considered direct device-to-device communication [42].
QoE aspects of on-demand video streaming have been studied extensively. For example,

Shafiq et al. present results from a large scale measurement study of mobile video usage [27].
Krishnan et al. [16] study the effect of initial joining time and buffering events on the
engagement in watching videos. Dobrian et al. [5] provide some insights into mapping the
considered QoE metrics to user behavior through a utility function and present a predictive
model of Internet video QoE in their follow-up work [1]. A survey on QoE with adaptive
video streaming is presented by Seufert et al. [26].

As for smartphone power consumption, Tarkoma et al. provide a comprehensive survey on
the measurement techniques as well as approaches for power modeling and optimization[35].
Numerous papers have studied the effect of on-demand streaming to mobile device power
consumption. In comparison, relatively few have studied smartphone power consumption
while live streaming video [24, 28, 29, 33].

Live mobile video broadcasting has been studied from the human computer interaction,
particularly engagement, point of view [8, 32, 34, 37]. Even sociological aspects have been
investigated [31]. Yet, only a couple of technical measurement studies concerning existing
mobile live broadcasting applications and services exist so far. Most of the research has
focused on systems where the mobile device is only the receiver of the live streaming, like
Twitch.Tv [4, 23, 40] (although Twitch appears to be expanding towards mobile live video
broadcasting too), or other mobile VoD systems [18]. The recent work from Wang et al. [36]
and us [6, 29] are the first to present measurement studies of the anatomy and performance
of a popular mobile live video broadcasting applications. Compared to these papers, while
we build on our preliminary work, we also have dived deeper into the video quality aspects
by adding no-reference video quality assessment and experiments on bitrate adaptation,
investigated the Periscope chat effect in more detail, and included FB Live in those parts of
the study where possible.
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9 CONCLUSIONS

In this work we investigated different aspects of the quality of experience offered by two
popular live mobile streaming services, i.e. Periscope and FB Live. Our insights have been
derived from statistical analyses of data obtaining through crawling as well as experiments
using a few different mobile devices, using both the Android and iOS versions. Our study
focused mainly on aspects such as user behavior, playback smoothness and latency, quality
of the media content, bitrate adaptation and issues related to power consumption on mobile
devices. Some of the major results include: the relatively high difference in latency due to
the use of different protocols (RTMP and HLS) to serve the content to the final users, which
seems to be related to the number of users; the surprising surges in bandwidth demand for
the chat feature of the Periscope app; the significant quality of experience variations over
time for the users watching the video content; the generally poor adaptation strategies to the
available upstream bandwidth; the significant power consumption caused by the applications.
We hope that this research will help to shed more light in the complex field of live mobile
streaming that requires significant coordination between different domains of expertise (e.g.,
networking, multimedia, hardware) to achieve the best quality of experience.
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