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Abstract 

Space mission engineering has always been recognized as a very challenging 

and innovative branch of engineering: since the beginning of the space race, 

numerous milestones, key successes and failures, improvements, and connections 

with other engineering domains have been reached. Despite its relative young age, 

space engineering discipline has not gone through homogeneous times: alternation 

of leading nations, shifts in public and private interests, allocations of resources to 

different domains and goals are all examples of an intrinsic dynamism that 

characterized this discipline. The dynamism is even more striking in the last two 

decades, in which several factors contributed to the fervour of this period. Two of 

the most important ones were certainly the increased presence and push of the 

commercial and private sector and the overall intent of reducing the size of the 

spacecraft while maintaining comparable level of performances. A key example of 

the second driver is the introduction, in 1999, of a new category of space systems 

called CubeSats. Envisioned and designed to ease the access to space for 

universities, by standardizing the development of the spacecraft and by ensuring 

high probabilities of acceptance as piggyback customers in launches, the standard 

was quickly adopted not only by universities, but also by agencies and private 

companies. CubeSats turned out to be a disruptive innovation, and the space 

mission ecosystem was deeply changed by this. New mission concepts and 

architectures are being developed: CubeSats are now considered as secondary 

payloads of bigger missions, constellations are being deployed in Low Earth Orbit 

to perform observation missions to a performance level considered to be only 

achievable by traditional, fully-sized spacecraft. 



CubeSats, and more in general the small satellites technology, had to overcome 

important challenges in the last few years that were constraining and reducing the 

diffusion and adoption potential of smaller spacecraft for scientific and technology 

demonstration missions. Among these challenges were: the miniaturization of 

propulsion technologies, to enable concepts such as Rendezvous and Docking, or 

interplanetary missions; the improvement of telecommunication state of the art for 

small satellites, to enable the downlink to Earth of all the data acquired during the 

mission; and the miniaturization of scientific instruments, to be able to exploit 

CubeSats in more meaningful, scientific, ways. With the size reduction and with 

the consolidation of the technology, many aspects of a space mission are reduced 

in consequence: among these, costs, development and launch times can be cited. 

An important aspect that has not been demonstrated to scale accordingly is 

operations: even for small satellite missions, human operators and performant 

ground control centres are needed. In addition, with the possibility of having 

constellations or interplanetary distributed missions, a redesign of how operations 

are management is required, to cope with the innovation in space mission 

architectures. 

The present work has been carried out to address the issue of operations for 

small satellite missions. The thesis presents a research, carried out in several 

institutions (Politecnico di Torino, MIT, NASA JPL), aimed at improving the 

autonomy level of space missions, and in particular of small satellites. The key 

technology exploited in the research is Artificial Intelligence, a computer science 

branch that has gained extreme interest in research disciplines such as medicine, 

security, image recognition and language processing, and is currently making its 

way in space engineering as well. The thesis focuses on three topics, and three 

related applications have been developed and are here presented: autonomous 

operations by means of event detection algorithms, intelligent failure detection on 

small satellite actuator systems, and decision-making support thanks to intelligent 

tradespace exploration during the preliminary design of space missions. The 



Artificial Intelligent technologies explored are: Machine Learning, and in particular 

Neural Networks; Knowledge-based Systems, and in particular Fuzzy Logics; 

Evolutionary Algorithms, and in particular Genetic Algorithms. The thesis covers 

the domain (small satellites), the technology (Artificial Intelligence), the focus 

(mission autonomy) and presents three case studies, that demonstrate the feasibility 

of employing Artificial Intelligence to enhance how missions are currently operated 

and designed. 
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Chapter 1 

Introduction 

The last two decades have been interesting times for space missions and have 

seen a dedicated effort among the major players in the space domain to design and 

develop unmanned mission ideas and concepts that are more challenging than ever. 

Thanks to the consistent successes of great interplanetary and Earth orbiting 

missions, space engineering has been pushing the boundaries for constant 

improvement, envisioning everyday increasingly daring missions. The traditional, 

monolithic, high-performance spacecraft have not been the only category of space 

systems influenced by this push in innovation and in ambition: smaller satellites 

have been gaining traction, thanks to newly developed technologies and to a 

consolidation of the present state of the art. Small satellites, nanosatellites, 

CubeSats, are experiencing a renovated and never-before-seen interest and 

exploitation, thanks to the game-changing characteristics that this type of space 

systems possess. The effort in using smaller satellites is common and shared among 

the major agencies and industries in the world panorama. 

Since 2013, ESA has initiated seven different CubeSat projects for low-cost In-

Orbit Demonstration (IOD) of innovative miniaturized technologies within the 

framework of Element 3 of the General Support Technology Programme (GSTP). 

The first technology IOD CubeSat to be launched, a 3U CubeSat called GOMX-3, 

was deployed from ISS in October 2015 and has been a complete success over its 

1-year lifetime in Low Earth Orbit (LEO) until re-entry. Other IOD CubeSats in 

development are planned for launch in 2017 and 2018. Additional design effort has 

been spent at ESA to study the applicability of small satellites for interplanetary or 
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lunar missions. These concepts are mostly based on mother-daughter architectures 

where the mothercraft transports the CubeSats to a target destination, deploys them 

locally to perform their mission, and provides data relay support back to Earth for 

TT/C and payload data downlink, enabled by a bi-directional inter-satellite link.  

NASA has been following a similar approach, by studying the potential 

exploitation of small satellites, for supporting flagship missions in the Solar System. 

Moreover, concepts based on the CubeSat technology have been appearing even for 

planet-based missions, such as the Mars Helicopter concept or a Europa under-ice 

explorer. 

Moreover, with the ongoing development of miniaturized solar array drive 

assemblies for relatively high power steerable solar arrays, high delta-V Electric 

Propulsion subsystems, and deep space X-band transponders with high gain antenna 

reflectarrays, stand-alone interplanetary CubeSat missions are also being 

considered, based on 12U CubeSat form factor and exploitation of piggyback 

launch opportunities to near-Earth escape, thus opening up the potential for truly 

low-cost space exploration. 

Thanks to the efforts in technology miniaturization, thanks to the appearance 

of radiation-hardened COTS and tighter system integration, significant reductions 

in space and launch segment costs of entry-level spacecraft are enabled. 

Unfortunately, the operations costs do not scale down with spacecraft size/mass. 

For certain kinds of missions, especially in a mother/daughter architecture, the 

CubeSat can reach complexity levels comparable to those of the mothership, if 

classical operational approaches are used. Moreover, due to limitations in the 

telecommunication windows and timings of interplanetary missions, Earth-based 

control and monitoring may be infrequent for small spacecraft. Limitations in the 

data rate available (constrained most of the times by the distances, the system sizes 

involved, and the available power on board) and the consequent costs of more 

performant ground systems (to overcome the lower onboard performances), add 

further complexity and limitations to a typical small satellite mission. It becomes 

evident that, to achieve truly low-cost ambitious small satellite missions, a high 

degree of onboard autonomy will be required to ensure the missions is executed 

despite limited ground contact and with a reduced mission operations centre. 

Finally, aiming at innovating and improving the operations architecture is a must 

when considering constellation missions composed by tens or hundreds of small 

satellites. 
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Thanks to the faster development cycles of COTS components and weaker 

quality- and reliability-oriented approaches, small satellites are often employing 

high computational capabilities within low power consumption and small form 

factors. This enables advanced and computationally-intensive autonomy 

approaches to be run onboard, compared to larger missions. 

1.1 Thesis Objectives 

The objective of the research presented in this thesis is the following: 

Exploring the role and capabilities of Artificial Intelligence based 

algorithms, to significantly increase the mission and system autonomy 

of Small Satellite missions, investigating the feasibility of using these 

algorithms by implementing and testing working prototypes. 

To this purpose, Artificial Intelligence approaches and algorithms can be 

implemented into space missions with the objective of enhancing the autonomous 

decision-making capabilities of the space segment in terms of: 

• Emulation of the expert knowledge required for mission operations 

• Execution of tasks that cannot be defined during the development of the 

spacecraft 

• Optimization of onboard resources and execution of specific tasks 

thereby ultimately leading to a reduction in operations costs for future small 

missions through smaller operations teams and less frequent usage of large, deep 

space, ground station network antennas. The presented research focused on 

identification and application of Artificial Intelligence algorithms to enable smart 

payload operations planning, fault detection, and, targeting the preliminary design 

phase of a mission, intelligent spacecraft design. 

This being said, it is important to consider that the thesis developed is presented 

as a conclusion of an Aerospace program: the thesis and the research work 

performed did not have the objective of determining which, among the available 

Artificial Intelligence algorithms, is the best candidate to perform the automation 

of a certain type of operations. Instead, the research is meant to be considered as a 

feasibility study for developing AI-based solutions to real operations problems. 

Additional studies and comparisons will have to follow in order to assess whether 

the proposed algorithms are in fact the best options to solve the problem addressed 
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in the case studies. Moreover, chosen candidates will have to be compared in future 

works with other, non-AI-based algorithms. 

The target spacecraft platform used in the thesis is constituted by a group of 

heterogenous spacecraft categories that are commonly known as Small Satellites, 

Nanosatellites, CubeSats and so on. Despite these category labels carry very precise 

meaning and represent distinct typologies of space systems, for the purpose of 

easiness of reading, and given the fact that no substantial change happens when 

switching among the aforementioned categories when dealing with mission 

autonomy, the following statement holds true throughout the whole thesis: 

Small Satellite, Nanosatellite, CubeSats, Microsatellites and other 

similar terms are used interchangeably and identify a common category 

of spacecraft that encompasses several accepted categories, provided 

that all of them used refer to spacecraft of limited mass and dimension, 

and characterized by substantially different architectures and features 

with respect to traditional missions. 

1.2 Thesis layout 

The thesis follows a straightforward layout, presenting the category of space 

systems that serves as basis for the work, the domain (the software) that is object of 

improvement, the functionalities to be implemented (autonomous operations) and 

the technology that enables these improvements (Artificial Intelligence). Finally, 

case studies demonstrate the findings of the research. 

 
Figure 1 Thesis structure. Bigger circle represents the main conceptual 

sections of the thesis. 
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Chapter 2  

 Chapter 2 provides an overview of Small Satellites, and presents an historical 

overview of the most important Small Satellite missions. Moreover, a sub-category 

of the Small Satellites is presented, that acquired significant industrial interest in 

the last decades: CubeSats. Of this type of standardized spacecraft, the most 

important details are covered: the standard, the deployer technologies, and a market 

and diffusion analysis are presented. Finally, Chapter 2 presents some examples of 

the most striking and interesting Small Satellites and CubeSat missions over the 

years. 

Chapter 3 

Chapter 3 is about software, both ground-based and flight software. Overview of 

the most common approaches and functionalities present in space software are 

presented. The subject of space software is certainly vast: the presented concepts 

serve as a summarization of the different aspect to be considered during the design 

of space software. The chapter is not meant to include every possible aspect of 

software design approaches. 

Chapter 4 

Chapter 4 is the first of the two major chapters of this thesis, and introduces the 

concept of Mission Autonomy. The Chapter discusses about the need of improving 

Mission Autonomy on modern spacecraft, presents key terminology used 

throughout the thesis and discusses about past practices and current standards of 

autonomous operations on spacecraft. Finally, it presents the various issues that are 

currently driving the development on Mission Autonomy: control and operation 

management of big constellations, interplanetary missions performed with Small 

Satellites and unreliable ground support. 

Chapter 5 

The focus of Chapter 5 is on Artificial Intelligence. When dealing with these 

innovative algorithms in a new context, it is important to cover history and 

characteristics of the most dominant algorithms developed so far, even if not yet 

adapted for space applications. Chapter 5 defines Artificial Intelligence as a 

concept, and defines the State of the Art for this technology, from three different 

perspectives: by Algorithm (discussing the various algorithms that populate the 

domain of Artificial Intelligence), by application (presenting particular cases in 

which Artificial Intelligence plays a relevant role), and by open-source products 
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(listing the open-source technologies, frameworks and software that can be used to 

develop Artificial Intelligence applications, both for space or other domains). The 

chapter then focuses on three category of algorithms that were used in the case 

studies of the thesis: Machine Learning, and in particular Neural Networks, Expert 

Systems, and in particular Fuzzy Logics, and finally Evolutionary Algorithms, in 

particular Genetic Algorithms. 

Chapter 6, 7 and 8: The Case Studies 

Chapter 6, 7 and 8 present three case studies developed for this research: 

respectively Event Detection, Failure Detection and Tradespace Exploration. The 

Event Detection case is developed using Neural Networks: an algorithm and an 

innovative training approach is presented to be used during interplanetary missions 

on a comet / asteroid, enabling detection of impact events or spontaneous gas 

emissions. The Failure Detection case presents the use of Expert Systems to detect 

failures that happen on a common actuator of a Small Satellite, Magnetic Torquers. 

The presented approach performs considerably well on this category of 

components, but is at the same time easily re-configurable to work on other types 

of actuators or sensors of a spacecraft. Finally, the Tradespace Exploration case 

presents the use of Genetic Algorithms exploited to support decision makers (in this 

application, mission designers) in performing a very fast analysis on all the possible 

alternate solutions for the design of a specific mission.



 

Chapter 2 

Small Satellites 

2.1 Small Satellites and smaller systems 

“Small Satellites” is term that defines a category of space systems, in particular of 

satellites. Although the term is not standardized and different interpretation of it 

exist, it is traditionally associated with systems of limited dimensions and mass 

inferior to 1000 kilograms.  

Table 1 Small Satellites and related categories 

Space agencies Classification Mass [kg] 

European Space Agency (ESA) [1] 
Small 
Mini 
Micro 

350 - 700 
80 - 350 
50 - 80 

Airbus Defence and Space [1] 
miniXL 
Mini 
Micro 

1000 - 1300 
400 - 700 
100 - 200 

National Aeronautics and Space 

Administration (NASA) [2] 

Minisatellite 
Microsatellite 
Nanosatellite (CubeSat) 
Femto- and Picosatellite 

100 - 180 
100 - 100 

1 - 10 
< 1 
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Most widely accepted [3] 

SmallSat 
MiniSat 
MicroSat 
NanoSat 
PicoSat 
FemtoSat 

500 - 1000 
100 - 500 
10 - 100 

1 - 10 
0.1 - 1 
< 0.1 

Refer to 1.1 for the interpretation of “Small Satellite” throughout the presented 

research. Different entities (being them space agencies or companies) implement 

their own classification based on satellite dimension, and most of them overlap, as 

summarized in Table 1 [4]. 

Despite the lack of fully standardized classification, the majority of the entities 

in the space industry agree on common aspects: 

• Substantial changes in the architecture, design and implementation of 

satellites take place when the mass involved is less than 1000 kg 

• When distinguishing the various types of satellites, the mass 

classification is one of the most useful [4] 

From an historical point of view, from the launch of the first satellite (the 

Sputnik-1, launched in 1957 with a mass of 84 kg) the size trend of satellites has 

moved towards bigger, more complex, redundant and better performing systems. 

This trend has been evident in several categories of satellites, from Earth 

observation ones to geostationary telecommunication satellites. With the advent of 

small satellites, and in particular of nano-satellites, the proportion between the 

different categories of launched systems have shifted considerably. Market 

predictions for nano- and micro-satellite launches show a sustained growth in the 

number of satellites launched (Figure 2). Nonetheless, the small satellite trend is 

clear and showing defined growth. 
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Figure 2 Nano- and Microsatellite launch history and forecast at 2015 (1 - 

50 kg) – Credits SpaceWorks® 

The evolution and diffusion of small satellites as major actor in the field of 

space missions have been possible also thanks to the improvements and 

advancements in electrical and mechanical miniaturization, that made possible the 

development of payloads and platforms that perform in a similar way to their bigger 

counterparts found in traditional assets. Antennas, cameras, spectrometers and so 

on, are example of the quality (and reduced sizes) reached in the last decades by 

these complex technologies [5]–[8]. Another important factor that led to the 

adoption of the small satellite category worldwide, is the great success this 

technology obtained in the educational sector. Thanks to the much more affordable 

costs and more agile development times and approaches, small satellites programs, 

teams and mission have begun to appear in different institutions: ESA ([9], [10]), 

NASA ([11]–[13]) among agencies, and several universities (Politecnico di Torino 

[14], University of Montpellier-2 [15], and more [16]).  

2.2 CubeSats 

Categorizing satellites by mass is not the only way, as other means (such as mission 

objectives, launch orbits and so on) could re-arrange the satellite database in other, 

still meaningful ways. Often times, categorizing satellite systems in different ways 

produces overlapping representations of the satellite missions ecosystem. A well-

known example of this phenomenon is constituted by CubeSats (Figure 3). 
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Figure 3 CubeSat spacecraft. The three winners of first ESA Fly Your 

Satellite! competition: OUFTI-1, e-st@r-II, AAUSAT-4. Credits ESA 

CubeSats are a category of space systems developed according to an open-

source standard, proposed for the first time in 1999 by professors Jordi Puig-Suari 

of California Polytechnic State University and Bob Twiggs of Stanford University 

[17]. The objective behind the definition of the standard was to create a spacecraft 

system concept that would not only allow university groups to rapidly design and 

develop a small space project, but also would ensure that the chances of being 

accepted on traditional launchers as a secondary payload were maximised. To reach 

stable rates of acceptance among launch providers, the standard was designed to 

cover not only the space system itself, but also its interfaces with the launcher, via 

the design of a deployment system able to guarantee safeness for the other, most of 

the times more expensive and demanding, spacecraft on the launcher. In the initial 

vision, the CubeSat development would require less than 100.000$ to build for each 

One Unit (1U), allowing in addition a short duration of the launch procurement 

phase. In general, time and cost of the development can vary significantly 

depending on several factors, among which institution carrying out the project, 

budget and quality level are the most influencing ones. As introduced above, the 

CubeSat spacecraft encompass different size and mass categories, starting from the 

nanosatellite one to the microsatellite one. 
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2.2.1 Overview 

The CubeSat platform is envisioned as a miniaturised satellite based on a 

standardized unit of mass and volume. A CubeSat spacecraft has the following 

characteristics in its base form, that is the 1U configuration: 

• Dimension of 10 x 10 x 10 cm 

• Mass up to 1.33 kg (originally 1 kg until 2009) 

• Modularity 

• Standardized requirements 

Furthermore, the standard foresees additional spacecraft, with increasing sizes, 

in the factors of 1.5U, 2U, 3U, 4U, 6U, 8U and 12U. 

2.2.2 The Standard 

The CubeSat standard defines several characteristics of this category of space 

systems [17]: 

• Interfaces 

• Requirements (General, mechanical, electrical, operational, testing) 

• Tolerances and dimensions 

• Waiver forms and acceptance checklists 

• Deployer characteristics 

These characteristics are peculiar, and tend to be rigorously applied for each 

spacecraft in the category. In some cases, depending on the market availability of 

the deployers, some parameters are revised for each spacecraft, reducing the 

standardization of the CubeSats.  

In general, it is possible to highlight some interesting features and requirements 

dictated by the CubeSat Design Specification. 
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Table 2 Extract of interesting CubeSat requirements from CDS rev. 13 

Req. N. Category Description 

3.1.3 General No pyrotechnics shall be permitted 

3.1.6 General 
Total stored chemical energy will not exceed 100 Watt-
Hours 

3.2.10 Mechanical The maximum mass of a 1U CubeSat shall be 1.33 kg 

3.2.10.1 Mechanical 
Note: Larger masses may be evaluated on a mission to 
mission basis 

3.2.17 Mechanical 
The 1U, 1.5U and 2U CubeSats shall use separation 
springs to ensure adequate separation 

3.3.9.1 Electrical 
The CubeSat will have one RF inhibit and RF power 
output of no greater than 1.5W at the transmitting 
antenna’s RF input 

3.4.4 Operational 

All deployables such as booms, antennas and solar 
panels shall wait to deploy a minimum of 30 minutes 
after the CubeSat’s deployment switch(es) are activated 
from P-POD ejection 

Several characteristics are still applicable through the majority of the developed 

and launched CubeSats projects. 

Budget CubeSats are typically missions that are designed and developed 

allocating budgets lower than those allocated in traditional systems, both for 

educational projects and for commercial or scientific missions. Standardization, 

simplicity in the design, reduced and more agile project management and quality 

assurance efforts, agile approaches to testing, verification and validation, and 

ultimately limited or no built-in redundancy are causes and consequence of the 

different approaches. 

Launch Traditional satellites are launched into space by dedicated launches. 

On the other hand, CubeSats exploit their reduced dimensions to secure most of the 

times launches as secondary payloads, the so-called piggybacking. 
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Design Thanks to the reduced complexity and standardization of CubeSats 

projects, less formal design approaches can be employed, and the size and 

scheduling of the involved teams is often reduced. An increased trend in reducing 

the documentation packages is also observable. 

Modularity One of the key characteristics of the CubeSat ecosystem is the 

modularity of the technology: several components can be “assembled” to enable 

functionalities on the platform, resembling a plug-and-play design. This modularity 

extends to the modularity of the units, where bigger CubeSats can be composed 

almost by putting together smaller units (Figure 4). 

 

Figure 4 CubeSat modularity is by design one of the key characteristics of 

the platform. Credits RadiusSpace 

COTS A consequence of the trend of reducing costs and extending the reach 

of the CubeSat standard, is that COTS components have started to populate the 

majority of educational projects and many of the commercial / scientific ones. 

Using this type of technology enables low-cost and short implementation cycles, 

with the added benefit of using latest commercial and industrial grade components. 

Reduced requirements for reliability of these space systems make the use of non-

space-qualified components possible. 

Risk CubeSat projects are traditionally characterized by a higher accepted 

technical risk, that is traded either for a lower cost, a faster implementation, a more 

favourable approach to innovation, or a combination of these elements. Risk 

mitigation approaches, even if reduced and more agile, is spreading also in the 

CubeSat environment. 
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Market and competition Thanks to the compatibility with non-space-qualified 

technologies, the CubeSat ecosystem is vibrant with numerous companies 

providing services and products for the mission designers and developers. This 

competitive environment is beneficial to the CubeSat technology, as the effects of 

this competition is the continuous innovation and improvement of the available 

technology. 

2.2.3 The Deployers 

As with the evolution of the market and the availability of CubeSat components, 

the CubeSat deployment technology has seen an increase in the number of available 

options [4]. 

Poly-Picosatellite Orbital Deployer (P-POD) It is the original standardised 

deployer, developed by California Polytechnic State University (Figure 5). 

 

Figure 5 P-POD CubeSat deployer. Credits CalPoly 

ISIS Picosatellite Orbital Deployer (ISIPOD) European launcher adapter 

developed by ISIS – Innovative Solutions In Space. 

Japanese Experiment Module Small Satellite Orbital Deployer (J-SSOD) 

Provides a reliable small satellite launching capability to the International Space 

Station (ISS). The deployer is handled by the Japanese Experiment Module Remote 

Manipulator System (JEMRMS), which provides containment and deployment 

mechanisms for several individual small satellites. The J-SSOD platform is 

transferred by crew-members into the vacuum of space through the Japanese 

Experiment Module (JEM) airlock for JEMRMS retrieval, positioning and 

deployment. The J-SSOD uses a full airlock cycle, with two deployers, to launch a 

total of 6U. 
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NanoRacks CubeSat Deployer (NRCSD) It is the first commercial device to 

deploy CubeSats into orbit from the ISS. It also uses the JEMRMS, but the NRCSD 

uses two airlock cycles, each one holding eight deployers, each one holding 6U, for 

a total of 96 Units deployable. 

Tyvak Deployers RailPOD Mk.II, NLAS Mk.II, 12U Dispenser, are three 

deployment solutions developed by Tyvak Inc. Mass optimized and support up to 

12U  CubeSats. 

2.2.4 The Evolution 

The CubeSat ecosystem has been object of a distinct evolution in the last two 

decades, and is interesting to report the status of the technology as of March 2017 

(Figure 6). Nanosatellites, despite with some deviation, have maintained the 

expected forecasts made concerning the adoption of this disruptive technology. 

Biggest contributions to the increase of the numbers have been private companies 

and educational projects, as seen in Figure 7. 

 

 

Figure 6 Nano- and Microsatellite launch history and forecast at 2017 (1 - 

50 kg). Credits NanoSats.eu 
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Figure 7 Repartition of the CubeSat projects among organization types. 

Credits NanoSats.eu 

Concerning the diffusion of the CubeSat platform in the world, the repartition 

sees countries that have already developed a stable space program lead the chart. 

Despite this, the CubeSat technology has been fundamental in enabling access to 

space for those countries that did not launch any satellite yet (Figure 8). 

 

Figure 8 Repartition of the CubeSats per developer nation. Credits 

NanoSats.eu 
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As introduced above, one of the key features of CubeSats is the modularity: it 

is possible to design the space systems in different sizes. Interestingly, the four 

major sizes (1U, 2U, 3U and 6U) are also the most common choices, with 1U and 

3U platforms leading the choice for mission developers (Figure 9). This might be 

due to concurrent reasons: 

• Smaller platforms (1U) often involve lesser costs and more launch 

availability, therefore enabling more and more entities to develop their own 

mission 

• Increased sizes enable more complex and more performing platforms and 

payloads. In this sense, 3U and 6U CubeSats are the preferred choice when 

performances requirements are stringent. 

 

Figure 9 Nanosatellite types are not equally chosen by the mission 

designers. Credits NanoSats.eu 

Despite the high adoption rate, the CubeSat platform is not exempt of problems 

during the mission: due to the selection of COTS components, to the agile 

development and testing cycles, the failure rate of CubeSat missions is higher with 

respect to the traditional ones [18], [19]. Nonetheless, numerous CubeSats have 

been performing successful operations in orbit (Figure 10). 
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Figure 10 Nanosatellite operational status [16]. Credits NanoSats.eu 

2.3 Application scenarios 

2.3.1 Historic Small Satellite Missions 

Several missions could be cited among the set of historical Small Satellite missions. 

Here a few important missions are presented. 

First CubeSats were launched in 2003 from Plesetsk, Russia, and placed in a 

sun-synchronous orbit. They were the Danish AAU CubeSat and DTUSat, the 

Japanese XI-IV and CUTE-1, the Canadian Can X-1 and the US Quakesat. CUTE-

1, after at least 9 operational years in orbit, is, among other examples (such as Swiss 

Cube) one of the longest operating CubeSat mission ever deployed. 

SMART-1 was a Swedish-designed, European Space Agency satellite that 

orbited around the Moon in a mission that lasted 3 years, from the launch in 2003. 

The acronym stood for Small Mission for Advanced Research in Technology-1. 

The satellite was used a technology demonstrator for the Hall-effect thruster and 

other technologies. 

PROBA series, are ESA operated satellites designed to host scientific 

experiments and technological demonstrations. Payloads included hyperspectral 
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instrument and a black and white camera with a miniaturised telescope. Launched 

up to 2017 are the PROBA-1, PROBA-2 and PROBA-V. 

IPEX is a CubeSat developed and launched by NASA JPL with the objective 

of validating autonomous operations for onboard instrument processing and 

product generation. The CubeSat is the first, and probably only, CubeSat 

implementing state of the art level of autonomy on board. In addition, the CubeSat 

carried the Continuous Activity Scheduler Planner Execution and Re-planner, to 

enable mission replanning [20], [21]. 

2.3.2 Interplanetary CubeSats 

The evolution of space systems has progressed without interruption since the 

Sputnik-I satellite was launched. Improvement in the technologies, in the design 

and fabrication processes, advancements in the scientific research, innovative 

mission concepts enabled by successfully reaching previous mission objectives, can 

be all seen as reasons for the advancement in the performances of the spacecraft 

platforms and payloads. Some trends are interesting: mission lifetime has, on 

average, increased through the years (Figure 11); spacecraft bus mass has increased, 

while payload mass has remained constant (Figure 12). In general, the increased 

bus mass is connected to higher requirements for mission lifetime, radiation 

shielding and/or redundancies integrated in the platform. When considering the 

trends of the various subsystems technologies, the trend is reversed: newer 

subsystems would perform better and with a lower mass (normalized) with respect 

to older counterparts [22]. 

 
Figure 11 Evolution of mission lifetime. Credits DLR 
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Figure 12 Evolution of Bus and Payload Mass. Credits DLR 

This trend is observable also in payload dimensions, where the miniaturization 

is also playing an important role. Amazingly, as a consequence of the trend, a new 

category of payloads has started to be considered in mission concept formulation 

and design: nanosatellites as payloads of flagship, interplanetary missions. 

Thanks to the increased capabilities of nanosatellites and to their reduced mass 

and volume, several innovative mission concepts have begun to appear. The key 

factor in these mission concept is that a flagship spacecraft would carry one or more 

CubeSats during an interplanetary mission, to fulfil additional mission objectives 

and enabling new concepts of operations, by releasing the nanosatellites in situ once 

the mothership has reached its destination. Example of these concepts are: 

AIM mission and its CubeSats to Didymos Binary Asteroid (cancelled) [23]: 

a spacecraft would release up to 6U total of CubeSats in situ at the Didymos 

asteroid, to perform technological and/or scientific objectives, either by supporting 

the main mission or by fulfilling additional goals 

CubeSats to Europa: NASA is considering new CubeSat concepts to be 

deployed to Europa by the Europa Clipper mission [24]. The mission concepts 

involving CubeSats will have to face interesting design problems: Europa world is 

considered a potential candidate to host extra-terrestrial life, and therefore 

contamination will have to be avoided by performing severe sterilization to the 

CubeSat platforms.  
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MarCO CubeSats, that will be released by the Insight mission to Mars during 

the interplanetary transfer from the Earth. The objectives of the CubeSats will be to 

monitor and record the Entry, Descent and Landing (EDL) telemetry of the Insight 

probe, and to relay that information back to Earth. Given the high amount of escape 

velocity, MarCO CubeSats will not be inserted into Martian orbit [25]. 

 

Figure 13 Artist rendering of two 3U CubeSats to Europa. Credits NASA 

JPL 

Interplanetary CubeSats are not only those that are directly released in situ by 

a mothership. Several concepts have appeared where the CubeSats are released on 

a transfer orbit by the launcher or by the mothership, and the orbit insertion is 

performed directly by the CubeSats themselves. Examples of these types of mission 

concepts are the Exploration Mission 1 (EM-1) secondary CubeSat payloads, that 

will be released on a Moon transfer orbit by the first mission of the Space Launch 

System (SLS) [26]: 

Bio Sentinel, carrying live organisms in a deep-space mission to assess how 

they will survive throughout its 18-month mission duration. The Bio Sentinel 

mission aims at assessing the risks involved with radiation exposure on humans, to 

prepare radiation protections for future missions. 

NEA Scout will perform reconnaissance of an asteroid, taking pictures and 

observing its position in space. The data collected will enhance the current 
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understanding of asteroidal environments and will yield key information for future 

human asteroid explorers [27]. 

Lunar Flashlight will look for ice deposits and identify locations where 

resources may be extracted from the lunar surfaces. It will use lasers to reflect 

sunlight and illuminate permanently shadowed craters at the lunar poles. A 

spectrometer will then observe the reflected light to measure the surface water ice. 

The EM-1 mission (and the SLS in general) will deploy 13 6U CubeSats. 

2.3.3 Earth Orbiting Constellations 

Another fundamental aspect of the CubeSat ecosystem is that they enable the design 

and deployment of mission architectures involving a great number of spacecraft for 

a considerably smaller budget when compared to traditional assets and 

constellations. In addition, the availability of components enables mass production 

strategies that are currently not considerable when dealing with bigger systems1. 

Interesting cases of CubeSat constellations are here presented that are currently 

disrupting the spacecraft and the space data market. 

PlanetLabs is a constellation of CubeSat to be deployed to LEO, designed for 

Earth Observation (EO). It is constituted of several 3U CubeSats that are usually 

deployed on piggyback launches [28]. The company exploits the great scalability 

of the CubeSat technology to perform unprecedented EO, with over a hundred 

satellites in operations. In 2017, the company performed a record-breaking launch 

of 88 satellites [29]. 

Planetary Resources is an American company focused on advancing humanity 

technology level to enable asteroid mining, to exploit the incredible amount of 

resources that are available in these celestial bodies. Initially aiming at performing 

asteroid mining operations, the company has recently secured launches for the 

Arkyd-100 series of space telescopes [30]. 

Spire Global is an American company whose aim is to deploy a CubeSat 

constellation, initially thought to be made of 125 satellites, that host a GPS radio 

occultation payload and a AIS signal tracking payload [31], [32]. 

                                                 
1 Possibly the sole case of medium-sized satellite constellation up to 2017 is OneWeb 

constellation. 
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OneWeb is one of the most ambitious constellation projects that are currently 

under development. It features a total of 648 operational satellites in 18 orbits at 

1200 kilometres of altitude. Each small satellite will weigh between 175 and 200 

kg in mass. The mission objectives are to provide internet broadband connectivity 

with a worldwide coverage [33]. 

2.3.4 Other relevant cases 

These concepts are not always adhering to the Small Satellite or CubeSat standards, 

but are nonetheless interesting as they share a similar philosophy: reducing sizes to 

enable new mission architectures. 

Mars Helicopter, a concept developed by NASA JPL, highly resembles the 

CubeSat form factor. The helicopter would be used to pinpoint interesting targets 

on the Martian surface, effectively tripling the rover driving speed [34]. 

Copernicus Master Small Sat is a competition introduced in 2017 by the AZO 

organization, for the design, development and launch of a Small Satellite to support 

Sentinel satellite missions. 

KickSat 1 was an innovative CubeSat mission released for crowdfunding on 

Kickstarter in 2011, with the aim of releasing hundreds of sprites (small chipsats 

equipped with a radio, solar cells, and microprocessor), that would beacon 

customized messages defined by the crowdfunders [35]. The satellite failed to 

deploy the sprites. 

Mars and Lunar Penetrators are concepts of ground-penetrating systems 

intended to be released as impactors on a re-entry trajectory towards a celestial 

body, with the aim of penetrating the surface and to study the underlying substrate. 

Concepts were formulated both for the Moon and for Mars missions [36]. 





 

Chapter 3 

Space Mission Software 

3.1 Overview of Flight Software 

A spacecraft Flight Software (FSW) is generally designed to perform very specific 

(and often mission-unique) functions, and, on the other hand, it has to satisfy very 

diverse, and often competing, needs. Throughout the years, the FSW has become 

the traditional interface between the GS and the spacecraft, and with the arrival of 

new technologies, new functionalities of the FSW have also to be implemented. 

In general, a typical FSW will have the following functionalities. 

Command & Data Handling related functions:  

• Executive and task management 

• Time management 

• Command processing 

• Engineering and science data storage and handling 

• Data monitoring 

• Fail safe and safe mode 

• Failure Detection, Isolation and Recovery 

Attitude and Orbit Control related functions: 

• Attitude determination and control 

• Orbit determination and navigation 
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• Orbit management 

• Propulsion 

Other bus related functions: 

• Communication management 

• Electrical power management 

• Thermal management 

Payload related functions: 

• Payload data commanding 

• Payload data management 

• Payload calibration 

It has to be noted that the different algorithms constituting the FSW might be 

physically located in different subsystems: the AOCS software might run in the 

AOCS board, the COMSYS software on the COMSYS board and so on, depending 

on the location of the different microprocessors or microcontrollers. 

3.1.1 Command and Data Handling 

The C&DH for typical small satellite missions, especially for CubeSat, traditionally 

features standardized characteristics. Among these, an Operating System (OS), that 

has the objective of handling the low-level interfaces with typical components of a 

processing board: storage, RAM and ROM, interrupts, and so on. Typical OS for 

Small Satellites and CubeSats are: Linux, RTEMS, VxWorks, FreeRTOS, Salvo 

[37]. The OS software is generally divided into layers (Figure 14). In order to 

streamline the process of development of Small Satellite projects, the mission 

developers are moving towards coding applications in the higher layers of the 

architecture, leaving lower level coding to the Original Equipment Manufacturer 

(OEM). The C&DH middle to higher layers include decision-making algorithms, 

time management, command processing, engineering and science data storage, and 

higher-level communication functions. In general, C&DH is the coordinating core 

of all the on-board processing, apart from some localized data management.  

Data is managed and stored on specific memories, that in the C&DH for Small 

Satellites assume the form of SD and microSD cards, that are now reaching very 

promising levels of performance, storage capacity and reliability: extended 

temperature ranges, radiation and magnetic field resistance. 
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Typical programming languages for the highest level of a CubeSat FS are: 

• C, C++: traditionally one of the most used programming languages for 

embedded applications, thanks to the extreme control available to 

ensure efficiency and to predict performances, while still maintaining 

good readability 

• Python: especially suited for CubeSat applications, features rich library 

availability, and is one of the most immediate languages to learn. This 

is beneficial especially for low-budget, educational projects, where 

training of the personnel (or students) must be performed as quickly as 

possible. Drawback of using Python, as with other garbage-collected 

languages such as Java, is the presence of fairly unpredictable latency 

peaks, that make the use of these languages less indicated for Hard RT 

applications. 

 

Figure 14 Example of Operating System layers: core Flight Software. 

Credits NASA 

3.1.2 Other software 

Payload and Instrument processing software 

Often distributed in several processors and controllers in the spacecraft, this type of 

software has usually very specific applications and is rarely reused among different 
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spacecraft with different payloads. Autonomy enhancing algorithms have 

interesting applications in this category, both from a data reduction perspective and 

from an event detection one. 

Failure Detection algorithms 

The type of algorithms involved with monitoring of failures is traditionally highly 

distributed, with detection of errors performed locally, with increasing 

centralization of the computation the higher the level of abstraction of the 

reasoning. Fault correction is typically centralized and abstracted, in order to deal 

with different and multiple types of failures in similar ways. 

Microprocessors and other computing units 

On a typical spacecraft, several computing units might be present: systems-on-

chip, microcontrollers and microprocessors might be spread in several boards or 

subsystem of a spacecraft, effectively achieving a distributed architecture. In 

general, few units assume a leading role in managing the whole spacecraft: common 

architectures employ as much as three units for general management, scheduling 

and so on. Other chips usually perform very specialized tasks and their reach on 

other subsystems is very limited. These types of computing unit usually employ 

low-level programming languages, such as Assembly. Examples of such 

applications can be microprocessors to manage the peripherals of a 

telecommunication board, microcontrollers to pre-process instrument data, and so 

on. 

3.2 Overview of the Ground Software 

Since the beginning of the space era, several iconic tasks and actions have been 

performed by the Mission Control centre, before the spacecraft started to be capable 

enough to substitute it: planning and scheduling, communication link 

establishment, science data management, calibration, Health and Safety 

verification. 

These functions were so important that the MC quickly became involved with 

the highest responsibilities for managing the spacecraft and its activities, yet relying 

on the space segment to provide most of the information needed to perform the MC 

duties. In general, when designing spacecraft operations, it is important to consider 

all the functions that will have to be performed, irrespective of the location (GS or 

SS) that will execute them. 
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3.2.1 Planning and Scheduling 

Planning and Scheduling (P&S) is one of the most important tasks when operating 

a space mission: the generation of detailed desired optimized timeline of spacecraft 

activities. These activities can sometimes be based on complex modelling of the 

spacecraft environment and of the expected behaviour: examples of these are the 

Hubble Space Telescope and the Kepler mission. Once the schedule is defined, it is 

uploaded to the spacecraft and executed in a time-tagged way. In general, the 

definition of the activities is performed not only for the nominal path, but alternate 

branches of off-nominal conditions are also foreseen and generated. Interestingly, 

the definition of the timeline of operations is a process as time-dependent as the 

execution of the operations itself: in certain cases, the look-ahead period can reach 

several months to one year. Historically, long term operations definition is 

performed to constrain the choice of medium-term to immediate operation 

definition in given periods of the mission (Sun-Earth-Spacecraft geometry is an 

important factor [23]). On the medium term, events such as the South Atlantic 

Anomaly entry/exit or similar events are accounted for. On the short term, final 

detailed scheduling to precision of seconds is defined using the most accurate 

available data. The process of operation definition has traditionally been very 

iterative. A considerable progress has been made with the intent of making this 

process more flexible and efficient, yet some inefficiencies and complex modelling 

are unavoidable. 

3.2.2 Command Loading 

Command loading is one of the fundamental functions that most, if not every, 

spacecraft mission has performed at least once. In general, this activity has become 

straightforward. It consists in converting the P&S outputs into specific commands 

understandable by the spacecraft FSW. Automation is increasing in this domain. 

3.2.3 Science Scheduling and Support 

Science activities execution is traditionally constrained on the spacecraft, while a 

consistent amount of work is required to plan the scheduling and for the support 

activities: highly specific mission and science instrument activities that may include 

calibration, management and direction of operations. Calculations to support the 

definition of these activities can take a big amount of human resources. 
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3.2.4 Failure Detection 

When a spacecraft encounters issues on board, the systems engineers on ground 

must perform a diagnosis using the telemetry downlinked to ground. In these cases, 

operations personnel must either rely on their skills and experiences, or use tools to 

support the failure mitigation task. One of the main results of employing advanced 

tools is that they vastly improve the speed at which the failure identification is 

performed. Artificial Intelligence, performing pattern recognition, is one of the best 

candidate for this type of task. 

3.2.5 Data Analysis, Calibration, and Processing 

In general, nearly all spacecraft engineering analysis and calibration functions have 

been performed on ground. These include attitude-sensors alignment and 

polynomial calibrations, battery depth of discharge and state-of-charge analysis, 

communications margins evaluations and so on. There does not seem to be a clear 

cost difference if these functions are performed on ground or on board. In addition, 

science data processing and calibration have been nearly exclusively a ground 

system responsibility for two main reasons: limited on-board computational 

capabilities of rad-hard processors and a bias in the scientific community that 

insisted on having all the scientific data downlinked to ground. There is still a strong 

opinion that science data might not be processed as thoroughly on board as it is on 

ground, and that science data users often process the same data multiple times using 

different algorithms, calibrations and so on, even years later after the data were 

downlinked. 

It is still advisable to design missions with autonomy levels that do not force 

the science users to rely on decision taken only on-board, but rather offer the option 

to receive processed data or instead the complete set of acquired data. 

3.3 Flight vs Ground Design 

Autonomy level are steadily increasing thanks to improved and more reliable flight 

system hardware capabilities (computational power, hardware input/output 

handling, storage capacity, and so on), and to innovative approaches to the design 

of the FSW architecture (object-oriented design, expert systems, remote agents and 

so on). Moreover, specific approaches and operations that were intended explicitly 

for the Ground Segment are now moving towards the Space Segment: engineering 

data analysis and calibration, science processing and calibration. The result is that 
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spacecraft have more and more the capability of taking advantage of the strengths 

inherent of a RT software system in direct contact with the flight hardware. 

The most striking characteristics of the FSW with respect to its ground 

operation counterpart are: 

• Reaction times 

• Completeness 

• No delayed information 

Only the FSW of a spacecraft directly located in situ at the mission can instantly 

access flight HW measurements, process the information and act in real-time. 

An example might be obtained considering the AOCS: only the on-board 

computer has complete and immediate access to the spacecraft status in realtime, 

obtaining critical information well before a ground-based operator could. 

On the other hand, previous approaches have assigned more importance to the 

Ground Segment of a space mission, thanks to more powerful ground computers 

that have allowed the Mission Control to execute complex schedule optimization 

algorithms using highly complex predictive models. Even if the computational 

power of both the ground-based systems and the spacecraft ones is increasing, and 

somewhat narrowing, improvement potentialities exist also on the Ground Segment 

[38], [39].





 

Chapter 4 

Mission Autonomy 

4.1 The problem of Autonomy 

Since the beginning of the space age, a trend has become evident: with the 

improvement of the experience and the technology associated with a mission, came 

the desire and the need of more sophisticated mission. New instruments and 

payloads are being developed, with increasing capabilities of data collection. In 

addition, new worlds, new science, and new phenomena to observe are appearing 

on the horizon. The new scientific goals and objectives often require multiple 

coordinating spacecraft to make simultaneous observations, or to detect events 

without ground intervention. This increase in the demands for new spacecraft has 

led to intense research and development efforts for the software applications and 

processes that are used during a space mission, both on ground, in the Mission 

Control centre, and on-board, integrated into the Flight Software. 

One of the key drivers for enhancing the capabilities of spacecraft for remote 

and complex missions has also been the fact that human exploration missions have 

received a setback, due to increased security standards in the design directions [40]. 

It is currently not advised to consider human exploration in certain kinds of mission, 

for example mission to asteroids. In addition, several issues impede the deployment 

of astronauts even in less exotic mission concepts: long mission timelines due to 

the distances involved, or the radiation environment. More and more, there is an 

evident necessity to develop unmanned missions with respect to manned ones. 
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The present chapter present and discusses Mission Autonomy and its 

management. On-board autonomy management addresses all the aspects of the 

functions performed by the spacecraft that give the capability to fulfil mission 

objectives (by performing certain operations) and to survive critical situations 

without relying on ground segment intervention. 

4.2 Key concepts: Automation, Autonomy, Autonomicity 

Before proceeding, it is important to understand the differences between 

automation, autonomy and autonomicity, as these concepts are used in space 

engineering, but they have very different applications and characteristics. These 

concepts refer to actions executed without any human intervention from the 

beginning to the end. Automated processes follow, in a step-by-step fashion, a 

routine that replaces manual processes and that might still involve human 

cooperation. Autonomy, on the other hand, involves operations that have the goal 

of emulating human thought processes, rather than just substituting them [41]. 

Autonomic processes, at last, involve processes in the area of self-awareness and 

self-management. 

An example of automatic process, related to spacecraft operations, would be a 

spacecraft that turns on a payload and performs initial checks, in a series of 

operation steps. In general, on-board procedures could be assimilated into the 

automatic operations label. Another example would be a process that regularly 

extracts from the data storage a set of telemetry parameters, performs a standard 

statistical analysis of the data, outputs in report form the results of the analysis and 

generates appropriate alerts of identified anomalies. Moreover, an automatic 

process performs no independent decision-making based on real-time events, and a 

human operator is required to respond to the outcome of the routine [42]. 

An example of autonomous process on ground would be a program that 

monitors the spacecraft position in the orbit, determines when the communication 

is possible, determines which files to uplink and sends them, accepts downlinked 

data, verifies them and request retransmission if necessary. A flight software 

example would be a software that, by processing the data obtained by a IR camera, 

senses that there is a forest fire in the area observed by the satellite, and decides to 

allocate more observation time to that particular area, instead of continuing the 

observation plan [21].  
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Key characteristics of autonomic traits are linkable to reflexes found in nature, 

and to spontaneous behaviours. In particular, four properties related to self-

management are assimilable to autonomic computing: 

• Self-configuring 

• Self-healing 

• Self-optimizing 

• Self-protecting 

These four traits are often associated to four properties: 

• Self-aware: internal capabilities and state of the managed components 

or equipment are known to the system 

• Self-situated: the system has awareness of the external environment and 

context 

• Self-monitor and self-adjust: through monitoring sensors, actuators and 

control loops 

Table 3 How the three levels are defined among different entities 

Intelligent 

Machine 

Design 

Future 

Communication 

Paradigms 

DARPA/ISO’s 

autonomic 

information 

assurance 

NASA’s 

science 

mission 

Self-

directing 

and self-

managing 

system 

potential 

Reflection 
Knowledge 
plane 

Mission plane Science Autonomous 

Routine 
Management 
control plane 

Cyber plane Mission Self-aware 

Reaction Data plane 
Hardware 
plane 

Command 
sequence 

Autonomic 

Machines infused with Artificial Intelligence, to autonomously operate in their 

specified environment, are traditionally constituted by three layers of behaviours: a 

top level one, linked to reflection; a middle level, enabling reasoning routines; and 

a bottom one, enabling reactions. At the reaction level, no learning occurs, but 



36 Mission Autonomy 

 
immediate responses are performed as a reaction to state information coming from 

sensors. The routine level is where evaluation and planning are performed. Receives 

inputs from sensors and both from the reaction and the reflection level. At last, the 

reflection level receives no sensor input and has no output to actuators: receives 

inputs from the reasoning level and the reaction level, and performs reasoning about 

the state of the machine itself. 

4.3 Autonomy versus Costs of Missions 

Another direct effect of implementing more sophisticated mission operations 

management software (either on-board or on ground) can be highlighted analysing 

the costs of the mission, both in the total amount directly impacting the budget, and 

on the repartition of the costs in the various activities. All the main space agencies 

have allocated significant efforts in reducing the human-supervised operations in 

favour of automating spacecraft functions. The current approach, both for designs 

and methodologies, involves spacecraft downlinking their mission data (both health 

keeping and payload) to Mission Control for processing, and Mission Control 

centres uplinking commands to the spacecraft. As the complexity and number of 

spacecraft increase, it takes a proportionately large number of personnel to control 

the spacecraft [42]. 

Table 4 Example of spacecraft constellation and the relative human 

resources needed for control. WMAP: Wilkinson Microwave Anisotropy 

Probe, NMP: New Millennium Program; MC: Magnetotail Constellation 

Mission Year 
Number of 

spacecraft 

Operators needed 

with current 

technology 

Current 

people 

per S/C 

Goal 

people 

per S/C 

WMAP 2000 1 4 4 - 

Iridium 2000 66 200 3 - 

GlobalStar 2000 48 100 2 - 

NMP ST5 2007 3 12 - 1 

MC 2012 30-40 120-160 - 0.1 
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Table 4 illustrates some constellations (proposed or flown) and compares the 

amount of HR needed to operate the mission with present technology and future 

technology [43]. Missions capable of fulfilling the desired science objectives will 

obtain the operator-to-spacecraft ratio objectives only if designed to operate without 

constant control and commanding by MC. The amount of HR considered in the last 

column of the table will require substantial development effort in the autonomy 

segment of the mission. In general, it is expected that, for multi-spacecraft missions, 

featuring tens or hundreds of satellites, operations will be impossible to be carried 

out without near-total mission autonomy. 

4.4 History of Autonomy Features 

4.4.1 Up to 1980 

This period saw the first efforts into standardizing FSW, and the appearance of the 

first automatic actions performed by a spacecraft. In particular, earliest efforts in 

automating operations came on the HEAO series of spacecraft, with some 

automatic functions such as pointing control, limited failure detection, stored 

commanding and telemetry generation. Additional commanding capabilities 

included the now standard absolute-timed, relative-timed and conditional 

commands. Limit checking as FDIR was also implemented, with automatic mode 

transition to pre-programmed safe modes. On the Solar Maximum Mission (SMM), 

an embryo of autonomous target identification and acquisition capability was 

implemented, that would be later refined into Hubble Space Telescope (HST). 

SMM processing algorithms could detect solar flares, and re-program spacecraft 

pointing to observe the phenomenon. This characteristic was also present in the 

Orbiting Solar Observatory-8, launched in 1975: it could steer its payload platform 

independently to perform observation of its targets. 

The evolution of on-board pointing capabilities can be seen just by looking at 

the pointing independence of the two spacecraft, HEAO-1 and HEAO-2: the first 

one relied on attitude reference updates every twelve hours based on ground attitude 

determination. The follow-on spacecraft, two years later, already possessed the 

capability to compute its own attitude reference update, based on ground-supplied 

guide-star reference information, a capability also implemented in SMM. HEAO-2 

could, in addition, periodically go through a weekly target list. 
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4.4.2 1980-1990 Spacecraft 

The 1980 saw the launch of larger, more expensive and more sophisticated 

spacecraft. Among these, some famous spacecraft such as the HST and Compton 

Gamma Ray Observatory (CGRO) were actually launched in the 1990s, but were 

scheduled to be launched earlier. 

HST featured automatic safe mode options and improved FDIR checks; and the 

first appearance of “message based” architecture between two processors, that 

would coordinate when searching a new observation target. Moreover, it has to be 

noted that many of the advanced FDIR functions of the HST were added to the 

spacecraft after launch, in response to problems experienced inflight. 

 

Figure 15 Hubble Space Telescope. Credits NASA 

Another exemplar mission was the Extreme Ultraviolet Explorer (EUVE), that 

featured innovative telemetry monitoring capability and autonomous generation of 

commands. In addition, the spacecraft was integrated with a predecessor of a true 

event-driven operation reasoning engine. 
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4.4.3 1990-2000 

The spacecraft developed in this decade were characterized by HW and SW 

enhancements: on-board computers were more powerful, more RAM and more 

storage was available on-board, and on the software side new higher-level 

languages (as C, C++ and Ada) and floating-point arithmetic allowed the FSW to 

assume characteristics comparable to those of ground software. 

Autonomy advancements featured better interconnection between different 

processing units and different SI in the spacecraft. Moreover, the decoupling of the 

science and communications scheduling introduced further flexibility in spacecraft. 

Additional features concerned the telemetry definition tasks, that are now 

configurable directly by table uplink, and this allows to reprogram the spacecraft 

telemetry without changing the FSW. Advanced decision-making was also 

implemented thanks to the introduction of Boolean logics to correctly isolate 

failures (Landsat-7). In these years, spacecraft such as Deep Space One (DS-1) were 

launched and later integrated with Remote Agents, responsible for multitasking, 

P&S and model-based FDIR [44]. 

4.4.4 2000s 

Among the new capabilities implemented on spacecraft in the 2000s, true lost-in-

space capabilities can be highlighted, along with even more improved model-based 

failure detection. In general, the trend observed is moving towards the 

implementation of SI acting as spacecraft controllers themselves, deciding 

autonomously the science schedule with respect to planned and unplanned 

observations. 

Additional experiments in autonomous formation flying have been performed. 

4.4.5 Current and Future Spacecraft 

Spacecraft under development (such as the James Webb Space Telescope), are 

implementing advanced features such as on-board event-driven scheduling, with a 

flexible implementation that allows to move through observation targets as soon as 

they are available, without forcing any observation if anomalies or unfavourable 

conditions appear. 

Developments in spacecraft constellation and formation flying are currently 

driving the effort in mission autonomy research. Another important driver is the 
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independence of SIs with respect to the spacecraft pointing. Finally, innovative, AI-

driven small spacecraft are being flown [20], [45]. 

4.5 ESA Autonomy Design Guidelines 

The design and implementation of autonomy features on-board is yet to become 

standardized. On the other hand, guidelines and requirements that cover the 

autonomous operability of a spacecraft have been already laid by ESA, and are 

available to the spacecraft manufacturers [46]. 

In general, the design of the on-board autonomy should take into account high-

level operations characteristics such as: 

• Maximum level of mission outage that is considered acceptable 

• Ground Control Station access durations and timings 

• Maximum period of ground segment outage to be foreseen 

Certain values, characteristics of each mission, should be defined when 

designing a space mission: 

• An autonomy duration, that is the time the spacecraft can continue 

operations without instructions from ground 

• A storage duration, that is the maximum time interval that the spacecraft 

can continue storing new mission data, without downlink and 

subsequent erase 

• A maximum time during which the spacecraft can autonomously 

manage its operations in the presence of a single failure. It also includes 

the time spent by the Mission Control to detect, identify and plan the 

recovery action for the failure 

• The design of the spacecraft behaviour in the presence of a failure shall 

take into account a minimum reaction time of the Mission Control 

• The Mission Control, through defined Ground Control Stations, should 

be able to override any on-board autonomous function. 

When designing the autonomy features of a spacecraft, several application 

scenarios must be considered: nominal operations, off-nominal operations and data 

management autonomy. 
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4.5.1 Nominal mission operations autonomy levels 

During the execution of nominal mission operations, four levels of autonomy have 

been defined: 

• Execution mainly under real-time ground control 

• Execution of pre-planned mission operations on-board 

• Execution of adaptive mission operations on-board 

• Execution of goal-oriented mission operations on-board 

These autonomy level, and their features, are summarized in the following 

table. 

Table 5 Mission execution autonomy levels 

Level Description Functions 

E1 

Mission execution under ground 
control; limited on-board capability 
for safety issues 

Real-time control from ground 
for nominal operations 
Execution of time-tagged 
commands for safety issues 

E2 
Execution of pre-planned, ground-
defined, mission operations on-board 

Capability to store time-based 
commands in an on-board 
scheduler 

E3 
Execution of adaptive mission 
operations on-board 

Event-based autonomous 
operations 
Execution of on-board 
operations control procedures 

E4 
Execution of goal-oriented mission 
operations on-board 

Goal-oriented mission re-
planning 
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4.5.2 Mission data management autonomy 

Concerning mission data management, the following autonomy levels have been 

defined: 

• Essential mission data used for operational purposes can be stored on-

board 

• All mission data can be stored on-board (science data and housekeeping 

data) 

The following table summarizes the details of these autonomy features. 

Table 6 Mission data management autonomy levels 

Level Description Functions 

D1 

Storage on-board of essential mission data 
following a ground outage or a failure 
situation 

Storage and retrieval of 
event reports 
Storage management 

D2 

Storage on-board of all mission data, i.e. the 
space segment is independent from the 
availability of the ground segment 

As D1 plus storage and 
retrieval of all mission 
data 

 

4.5.3 Fault management mission autonomy 

Failures are a fundamental aspect of each space mission, and the correct 

management of expected and unexpected failures is often the line between a 

successful mission and an unsuccessful one. Generally speaking, the approach 

towards the management of failures is the Failure Detection, Isolation and Recovery 

(FDIR) approach. In this scope, failures are managed in the following way: 

• They are detected (on-board or on ground) and are reported to the 

relevant subsystems/systems and to the Mission Control 

• They are isolated, that is the propagation of the failure among other 

components/subsystems/systems is inhibited 

• The functions affected by the failure are recovered, to allow for mission 

continuation 
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The following autonomy levels have been defined: 

• Autonomy to safeguard the space segment or its sub-functions 

• Autonomy to continue mission operations 

These levels are described more into details in the following table. 

Table 7 Failure management autonomy levels 

Level Description Functions 

F1 

Establish safe space segment 
configuration following an on-
board failure 

Identify anomalies and report to 
ground segment 
Reconfigure on-board systems to 
isolate failed equipment or 
functions 
Place space segment in a safe 
state 

F2 

Re-establish nominal mission 
operations following an on-board 
failure 

As F1, plus reconfigure to a 
nominal operational configuration 
Resume execution of nominal 
operations 
Resume generation of mission 
products 

 

4.6 The need of Autonomy 

The potentialities of Small Satellites are clear, and several innovative mission 

architectures could be enabled by the diffusion and adoption of this category of 

spacecraft. Unfortunately, as introduced earlier, there are several mission-level and 

system-level issues that impede the capabilities of small spacecraft especially when 

applied to complex mission architectures, both interplanetary and Earth-based. The 

main issues are presented in the following sections. 
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4.6.1 Multi-spacecraft missions with respect to Monolithic missions 

For certain types of scientific or technological goals and objectives, implementing 

a constellation with respect to a monolithic architecture can bring several 

advantages: 

• Risk spreading among several assets, preserving the chances of 

fulfilling the mission in case an instrument or system fails 

• Performing multiple observations, either in controlled formation flying 

or in an uncontrolled swarm, of a mission target at the same time from 

multiple locations 

• Distributing different payloads among different spacecraft allows to 

reduce the complexity and size of each asset 

• Replacing an instrument by launching a new spacecraft into an existing 

constellation or swarm 

Missions are currently being planned and proposed that consider tens and 

hundreds of assets in the space segment. In order to avoid excessive cost of 

operations, the most promising way is to reduce the operators-to-spacecraft ratio. 

An important conclusion can be drawn from the last statement: mission operations 

design, and the operators themselves, need to work at a higher level of abstraction 

and be able to monitor and control multiple spacecraft simultaneously. 

Another benefit of increasing the level of autonomy on a spacecraft is that 

several subsystem sizes can be reduced, as the performances needed to fulfil the 

mission might be reached by a synergy of several spacecraft, instead of allocating 

all the performance on a single one. Among the subsystems that are affected by the 

autonomy of the space segment is the communication system: introducing higher 

autonomy features enables the reduction of the downlinked data. Command and 

Data Handling (C&DH) is another affected subsystem: the increase of the acquired 

data would require additional on-board storage. This requirement can be mitigated 

by enhancing the autonomy level, and implementing algorithms that analyse, 

choose and discard non-meaningful scientific and mission data. On the other hand, 

the C&DH will be affected by enhancing the on-board autonomy by a likely 

increase in the computational power requirements of the subsystem. 
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4.6.2 Big Distances, Low Data Rates and Communications Delays 

Another key reason to implement advanced mission autonomy software is the fact 

that, for certain types of missions, the communication between the MC and the 

spacecraft takes minutes, if not hours. In these architectures, the mission risks 

increase because the monitoring of the spacecraft cannot be performed in real-time 

(or near real-time). 

On the same side, another issue impedes the correct fulfilment of space 

missions: for those mission whose objectives are to study randomly appearing 

events (for example a comet plume, or a forest fire), the decision time for a human 

operator is often too long to update correct observation commands to the spacecraft. 

In this case, the communications delays might be small, but decision-making delays 

are added, and the result is still a poorly performing mission. Autonomy can play 

an important role in these cases, because it enables real-time decision-making and 

a corresponding action can be taken to observe the desired phenomenon. Challenges 

in this application include the definition of rules to manage the observation 

schedule, to understand whether it’s more important to interrupt current objective 

(to perform the observation of the newly appeared event) or to ignore the event and 

continue with the objective in place. An example of this feature is the Swift mission, 

for which one of the instruments has software functions that determine whether a 

new observation has high priority, and if so, commanding of the spacecraft can be 

executed to continue the observation. 

At last, large communications latencies are also problematic for failure 

management: long delays would introduce high uncertainties about the current 

status of a spacecraft, putting at risk the success of the mission, but also 

complicating the response of human operators, that would have to take decisions 

without knowing into details the situation. 

4.6.3 Variable Ground Support 

Traditional mission design involves carefully planned Ground Segment resource 

allocation, that allows the mission to be controlled and managed smoothly. This is 

not always the case: one key example being the category of university CubeSats, 

especially educational, low-budget projects. In this case, often times the required 

Ground Control Centre is not available, has poor performances, or there are not 

enough operators to guarantee a high percentage of presence during satellite passes. 

A high level of autonomy on the spacecraft would allow the mission to continue 
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without interruption for long periods of time, determining on its own the best 

strategies to acquire new data, and to downlink the stored data once a passage is 

available. 

Additionally, there might be missions where complete autonomy may not be 

the best solution, or that different periods may require different levels of autonomy. 

In this scenario, adjustable autonomy can be implemented. The adjustment can be 

performed autonomously by the system, depending on the conditions, or on request 

by the MC to help the spacecraft accomplish current objectives, or to override the 

on-board intelligence to perform manual commanding. With adjustable autonomy, 

it is mandatory to have a well-designed Ground Segment and a robust operation 

management to work flawlessly with the on-board software. 



 

Chapter 5 

Artificial Intelligence 

5.1 What is Artificial Intelligence 

Artificial Intelligence is a branch of Computer Science that has gained enormous 

popularity in the last decade, thanks to the many successful applications developed. 

The term was coined just after the second World War II, in 1956 [47]. Currently, 

the field is composed by a great variety of subfields, ranging from learning and 

sensing the stimuli, to specific activities, such as playing games, proving 

mathematical theorems, writing or even driving and diagnosing diseases. Artificial 

Intelligence is a universal field, as universal is the range of human activities. 

5.1.1 Definitions of Artificial Intelligence 

The definitions of this field of computer science are numerous, due to the fact that 

the field has evolved quickly through the years, and defining with a univocal set of 

words a field this vast is certainly open to opinions and different point of view. In 

the literature, eight typical definitions are accepted, each one carrying slightly 

different meaning and emphasizing certain aspects of the field. An interesting table 

is provided in [47], and is presented here entirely: 
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Table 8: Definitions of Artificial Intelligence 

Thinking Humanly 

“The exciting new effort to make 
computers think …machines with 

minds, in the full and literal sense.” 
(Haugeland, 1985) 

“[The automation of] activities 
that we associate with human thinking, 
activities such as decision-making, 
problem solving, learning …” 
(Bellman, 1978) 

Thinking Rationally 

“The study of mental faculties 
through the use of computational 
models” (Charniak and McDermott, 
1985) 

The study of the computations that 
make it possible to perceive, reason, and 
act.” (Winston, 1992) 

Acting Humanly 

“The art of creating machines that 
perform functions that require 
intelligence when performed by 
people” (Kurzweil, 1990) 

“The study of how to make 
computers do things at which, at the 
moment, people are better.” (Rich and 
Knight, 1991) 

Acting Rationally 

“Computational Intelligence is the 
study of the design of intelligent 
agents.” (Poole, 1998) 

“AI… is concerned with intelligent 
behaviour in artefacts.” (Nilsson, 1998) 

 

5.1.2 The various philosophies of Artificial Intelligence 

These definitions highlight four approaches for implementing an intelligent system. 

Acting humanly 

Traditionally, designing machines to emulate human way of acting imply giving 

the machine at least one of the following characteristics: 

• Natural language processing – enabling successful communications 

• Knowledge representation – storing knowledge 

• Automated reasoning – answering questions and drawing new conclusions 

• Machine learning – adapting to new situations 
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• Computer vision – perceiving objects 

• Robotics – manipulating objects and moving 

Several competitions and tests are held every year in which machines compete in 

disciplines involving one or more of the listed categories. Moreover, a rigorous and 

widely famous test on machine capabilities of emulating humans is the Turing test, 

designed by A. M. Turing. 

Thinking humanly 

This is an approach to develop Artificial Intelligence focused on defining and 

implementing the way humans think: the cognitive modelling. This approach is 

driven by an interaction between computer models from AI and experimental 

techniques from psychology. Additional effort is put also on emulating the 

reasoning steps, not only reaching a predefined reasoning output from certain 

conditions. In general, cognitive science is based on experimental studies 

performed on real humans or living beings. 

Thinking rationally 

The approach is driven by logic type of reasoning. Artificial Intelligence designed 

on this philosophy aims at solving problems using a logical approach, implementing 

solutions that aims at decomposing and solving the problems using logical 

reasoning. This approach has two drawbacks: 

• The link between informal knowledge and formal representation by logical 

notation is not always easy to obtain and define 

• The number of steps to be taken by a computer problem is not directly 

related to the execution time and to the computational resources needed, as 

even simple problems can hinder the computational resources if no guidance 

is provided to identify the correct initial actions to take 

Acting rationally 

Computer programs developed with this philosophy are expected to operate without 

external control, sense their surroundings, adapt and create and follow goals. A 

rational agent constantly aims at achieving the best results, or, in case of uncertain 

conditions, the best expected outcome. In general, rational agents will tend to 

execute actions defined by either inferences or other kinds of reasoning. Among the 

qualities needed for an agent to act rationally one can include those needed to 

successfully pass the Turing Test, knowledge representation and reasoning. When 

compared to the other approaches, two better qualities characterize the rational 

agent approach: 
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• Generality: this approach encompasses more possible mechanisms to 

achieve rationality with respect to the “laws of thought” 

• More compliant with scientific procedures and development, as the 

approach is formally defined and completely general 

5.2 Brief history of Artificial Intelligence 

 

Figure 16: History of Artificial Intelligence 

The rise of AI as a distinct field in CS was not characterized by a linear progression: 

instead, after an initial positive reception by the scientific community, the field had 

to face several problems that highlighted the limitations of both the State of the Art 

(SoA) algorithms and of the computer machines that were available at the time. 

Despite this tormented start, AI is now unmistakeably recognized as one of the most 

prominent fields in CS: it is therefore useful to recall all the key steps in the 

evolution of the field. 

1943-1955, the Preludium 

The two professional figures widely recognized as the fathers of AI were the 

neuroscientist Warrant McCulloch and the mathematician Walter Pitts, with a work 

that is now indicated as the ancestor of AI: the proposal of a model of artificial 

neurons in which each unit can be in the states of “on” and “off”, where the “on” 

state occurs after a sufficiently strong stimulation by the neighbour neurons. The 

results come after considering three main contributions: the fundamentals of 

physiology and the study of the functions of neurons in the brain; Russel’s and 

Whitehead’s formal analysis of propositional logic and Turing’s theory of 

computation. Further works by McCulloch and Pitts on the field of network learning 

introduced a simple rule to update the connections between neurons, the Hebbian 

learning, which has been a pioneering model for years. The exemplar work in the 

early developments of AI were made by Alan Turing, that introduced the Turing 

Test, machine learning, genetic algorithms, and reinforcement learning concepts. 
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1956, the Birth 

The key event in the history of AI can be identified in the workshop organized in 

Dartmouth in the summer of 1956, in which 10 selected researchers participated in 

two months period of research on the topics of AI. In this workshop, embryo 

applications were developed and presented, including what can be considered the 

first reasoning program capable of thinking non-numerically. Although the 

workshop itself did not hold significant progresses in the field of AI, it served as a 

fruitful start of the collaborations that led the AI development scene in the following 

two decades. Starting from this event, two key and distinct characteristics of AI 

development were made evident: the aim of AI researchers of duplicating human 

faculties such as creativity, self-improvement and language use; and the research 

on methodologies that focus on building machines that will function autonomously 

in complex, changing environments. 

1952-1969, the Inflation 

The era of computers was at its beginnings, machines and programming tools were 

still limited and the functions they could perform were basic, especially in the 

earlier years of this period. Nonetheless, AI researchers were constantly confronted 

with the idea that computers could never be programmed to do certain tasks. One 

after another, the researchers could implement most challenges that were posed in 

those years. Interesting applications of those years were the General Problem 

Solver, a program designed to implement the “thinking humanly” approach, that 

could solve problems in a way similar to that used by humans. Applications for 

playing checkers were also developed using AI. Key advancement in the 

programming tools available at the time was the invention of the language Lisp, 

that will be the leading programming language for AI for the next 30 years. Initial 

demonstration of self-learning programs was also realized during this period. 

Concepts such as Adalines neural networks and perceptrons were also introduced. 

1966-1973, the Scepticism 

Initial successes came abundant as the AI research carried on. Despite this 

promising evolution, the development of AI-based applications soon encountered 

key issues that characterized those years: AI systems were performing very well in 

specific but rather simple examples, while they would fail poorly when tested on 

wider or more complex problems. In particular, a very challenging aspect was the 

fact that most of early AI programs would fail in solving problems they knew 

nothing about. One key example can be traced to machine translation efforts, that 

showed how knowledge and understanding of the speech context is mandatory to 
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perform an accurate translation, and implementing those traits in a translator 

program turned out to be more difficult than what had been predicted. Another 

misconception that arose in those years was based on the fact that problem size was 

irrelevant: a program able to solve a small but generic problem, was thought to be 

able to solve more extended and vast problems as well, the difference being only in 

the hardware that was running the algorithm. Scaling up to larger problems was 

believed to be only an issue of more performing hardware and memories. 

Furthermore, intrinsic limitations on the basic structures of earliest AI development 

limited the performances of those algorithms. 

1969-1979, a New Hope 

The research carried on in the previous years was focused on what have been called 

“weak methods”, as, despite being general, they do not show the same type of 

performances with smaller or bigger problems, therefore showing scaling issues. 

The solution to this issue was found to implement more powerful, specific methods 

that allow more versatile reasoning. A few examples appeared in this period, such 

as the DENDRAL program, that was able to determine the molecular structure only 

by considering the outputs of a mass spectrometer. This program represented the 

first knowledge-intensive system: its behaviour was originated from a large 

quantity of special-purpose rules. Another notable project has been HPP, the 

Heuristic Programming Project that was exploring the feasibility of expert systems 

and their application in other fields of human expertise. In this sense, the research 

was directed towards medicine and diagnosis. With a program made of about 450 

rules, the performances of this expert system could be compared to those of an 

expert physician, while reliably being better of a junior doctor. Notable at this time 

was also the introduction of uncertainty during problems solving. 

1980-present, the Widespread Adoption 

The adoption of AI algorithms by companies worldwide saw both promising and 

cautious times: the years after 1980 were surely considered a positive period for AI 

applications: these allowed several companies to save great amounts of capitals, 

and each of the leading CS companies had their own AI research team, with a 

consequent investment in AI industry that rose to reach billions of dollars by 1988. 

Examples of this effort were realized in the field of expert systems, vision systems, 

robots and specialized hardware and software. 

At the same time, the back-propagation algorithm (invented in 1969 by Bryson and 

Ho) came back in fashion and was applied to many learning problems, from 

computer science to psychology. Several interesting results were obtained thanks 
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to this training algorithm, and these successes contributed to create the third distinct 

approach to the study and development of AI applications. 

At last, the evolution of the research around AI separated into two distinct efforts: 

researching on effective network architectures and algorithms, and research on 

reaching precise modelling of the biological neurons and their group architectures. 

The latest direction of development of AI are towards an embrace of the scientific 

methodology that is the standard in other research fields. AI research must now 

undergo rigorous empirical experiments, and the results must be analysed 

statistically for their importance. Shared repositories of test data and code made it 

possible to replicate experiments with ease. 

This, coupled with refinements on the tools available to the AI researchers (such as 

the Bayesian networks and improved training algorithms) allowed AI algorithms to 

reach significant results in fields traditionally dominated by statistics, pattern 

recognition, machine learning and so on. 

1995-present, towards Skynet 

Huge successes in the various fields of AI have contributed to the affirmation of 

this branch of CS. Despite these successes, in the latest years, a particular research 

effort has taken back momentum and is now expanding: the strive towards the 

“whole agent”. Furthermore, previously isolated fields of AI have now been joined 

together, comparing and sharing each other’s results: it is a fact that sensory systems 

(vision, sonar and speech recognition) cannot deliver reliable information about the 

environment. For this reason, reasoning and planning systems must be able to 

handle uncertainty. In addition, another consequence of the agent perspective is that 

AI has been drawn into much closer contact with other fields, such as control theory 

and economics, that also deal with agents. 

More exotic research directions (that, on the other side, share similar intents with 

initial efforts in AI research) are considering the emulation of the human-level 

intelligence, or more in general the development of an Artificial General 

Intelligence, that would implement an universal algorithm for learning and acting 

in any environment. 

Finally, in recent years, an important paradigm shift has begun to appear: thanks to 

the increased availability of data, scientists and researchers are becoming less picky 

about the choice of the algorithm, with respect to careful definition and construction 

of the datasets involved in the application. Examples of this can be found in 
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linguistic (trillions of English words), in pattern recognition (billions of images 

found in the internet), in genetics (billions of base pairs of genomic sequences). 

Researches like these highlight the possibility that the current problem of AI is the 

way all the knowledge needed in an application is expressed, and that this problem 

can be solved by improving the data used and then the learning method used, rather 

than hand-crafting the knowledge into the problem. This type of approach is 

suitable in different fields, but holds less value in field of application where the 

datasets available are more limited in size. 

5.3 The basis of Artificial Intelligence 

The definition and establishment of Artificial Intelligence as a prominent field in 

Computer Science is the result of an evolution of ideas, viewpoints and 

methodologies that started out earlier in the human history with respect to the 

invention of computers. In general, the path that led to the definition of Artificial 

Intelligence as a discipline can be described under several different lights: in any 

case, four distinct incentives and pushes can be identified in the areas of philosophy, 

mathematics, economics and neuro-science. 

Table 9: Foundations of Artificial Intelligence 

Philosophy 

Earliest records of automating 

human reasoning date back to Aristotle 

(III B.C. century) that formulated a 

methodology to rule the rational sphere 

of the mind. He developed an informal 

system of syllogisms for proper 

reasoning, which allowed to obtain 

definitive conclusions given initial 

premises. After him, the mechanization 

of the thinking act was explored by Lull 

(XIV century), that envisioned 

reasoning carried out by a mechanical 

artefact; Hobbes (XVI century) 

proposed to treat reasoning as 

numerical computation. Continuing, 

Mathematics 

The advance in mathematics was 

one of the key stepping stones of the 

definition of the foundations of AI. In 

particular, the three essential fields that 

can be linked to AI are logic, 

computation and probability. Each one 

of these fields has its own origins and 

main exponents (Boole, Frege, Tarski). 

The development and definition of the 

first algorithms (Euclid, III B.C. 

century) is a citation that has to be done 

as well as the first works on proving 

which mathematical problems could or 

could not be proved (Gödel, XX 

century) and more generally the effort 
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several philosophical currents can be 

linked to the origins of AI, among 

which are: rationalism, dualism, 

materialism, empiricism, and so on. In 

general, the typical questions of the 

philosophic effort can be identified in: 

- do formal rules to obtain valid 

conclusions exist? 

- what constitutes the mind and the 

physical brain? 

- where does knowledge come from? 

- how is knowledge translated into 

action? 

to characterize which functions are 

computable (Turing, XX century). 

Moreover, tractability problems and 

NP-completeness are surely subjects 

that are involved with the development 

of AI. Relevant questions: 

- Are there, if any, formal rules to draw 

valid conclusions? 

- What can and what cannot be 

computed? 

- How do we deal with uncertain 

information? 

Economics 

The field of economics is a 

relatively recent one when compared 

with philosophy and mathematics, yet 

it held very important results that 

fostered the development of the AI 

discipline: the mathematical theory of 

preferred outcomes (or utility); the 

decision theory, that combines 

probability theory with utility theory 

and later on the game theory. Of 

paramount importance are also the 

operation research and the Markov 

decision processes. 

Some of the fundamental questions of 

the field, related to AI: 

- how should we make decisions to 

improve the outcomes? 

- how can we change these decisions 

when the outcomes are evaluated in the 

far future, or when boundary conditions 

vary? 

Neuroscience 

Neuroscience is involved with 

studying the brain, which is the main 

element of the nervous systems in 

human beings. Despite the majority of 

the brain’s characteristics and functions 

are yet to be discovered, several 

advancements were made in the study 

of localized areas of the brain 

responsible for specific cognitive 

functions (Broca, XIX century). On the 

other side, the study of the brain nerve 

cells, the neurons, was carried out after 

a staining technique was invented that 

allowed the observation of individual 

neurons in the brain (Golgi, XIX 

century). Furthermore, after the 

invention of the 

electroencephalograph, the 

measurement of intact brain activity 

could begin. Recent developments of 

functional magnetic resonance imaging 

are providing neuroscientists with 
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incredibly detailed images of the brain 

activity. One of the most promising 

conclusions of this discipline is that a 

collection of simple cells can lead to 

thought, action and consciousness 

(Searle, XX century). The leading 

question that is having its effects on AI 

development is: 

- how do brains process information? 

Psychology 

The early advancements on 

experimental psychology began with 

rigorously controlled experiments on 

human beings (Helmholtz, Wundt, XX 

century). Another effort was led by the 

behaviourism movement, that aimed to 

study only objective measures of the 

stimuli given to an animal and the 

resulting actions. The definition of the 

brain as an information-processing 

device, and the involvement of the 

perception as a form of unconscious 

logical inference can be traced back to 

the end of XIX century. Further 

developments were made towards the 

definition of what is known as a 

knowledge-based agent, which 

possesses three characteristic traits: a 

stimulus is translated into an internal 

representation, the representation is 

processed by cognitive functions to 

derive new internal representations, 

and these are translated back into 

action. The leading question related to 

AI in the field of psychology is: 

Computer Engineering 

The missing piece so far in the 

development and spreading of AI is a 

type of technology that allows the 

implementation of the AI algorithms. 

The selected choice has obviously been 

the computer, despite calculating 

devices were invented before the 

computer, but were overcome by the 

adoption of the computer. On the other 

side, the software side of computer 

science, several developments were 

essential for the diffusion of AI: 

programming languages, operating 

systems and tools. 

The main driver in this area has 

been: 

- how can we build an efficient 

computer? 
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- how do humans and animals think and 

act? 

Control theory and cybernetics 

Several examples of early control 

theory are spread throughout history, 

starting from water clocks with 

regulators (II B.C. century), to self-

regulating feedback control systems 

(steam engines governor, Watt, XIX 

century). Control theory has been 

introduced by Wiener, that also 

speculated on creating artificially 

intelligent machines by the use of 

homeostatic devices, implementing 

appropriate feedback loops to achieve 

stable adaptive behaviour. Latest 

development in control theory have all 

aimed at reaching the maximization of 

an objective function over time (see 

stochastic optimal control). For this 

reason, the advancements in control 

theory can often times be placed side 

by side with advancements in AI. 

Calculus and matrix algebra, the tools 

of control theory, lend themselves to 

systems that are describable by sets of 

variables, whereas AI was founded in 

part as a way to escape from these 

perceived limitations. The tools of 

logical inference and computation 

allowed AI researchers to consider 

problems such as language, vision and 

planning that fell completely outside 

the control theorist’s view. Leading 

research vision: 

Linguistics 

Linguistics also played a major 

role in the development of AI, mostly 

because it provided the missing link 

between human language and 

computers, with theories such as 

computational linguistics or natural 

language processing and knowledge 

representation. 

The understanding of human 

language turned out to be a joint effort 

between understanding the subject 

matter, the context and the structure of 

sentences. Furthermore, the link 

between language and thought has been 

considered very important: 

- How does language relate to thought? 
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- how can artefacts operate under their 

own control? 

 

5.4 State of the Art 

Identifying the SoA for the broad field of AI is certainly not a trivial task, and the 

search must take into account the speed with which these algorithms and their 

applications are evolving. 

5.4.1 What belongs to Artificial Intelligence 

One of the most striking characteristics of the field of AI is the ever-present 

evolution in the algorithms and applications that can be considered part of the field. 

In this section, a summary of the major algorithms of Artificial Intelligence are 

presented. In general, when a research field is so vast and with so many different 

applications, it’s difficult to include all the known algorithms in a concise summary. 

The idea is to describe the constellation of the elements in this research field by 

highlighting first the different algorithms and how they are grouped, and then by 

citing the most promising and interesting applications that are solved with the use 

of AI. 

5.4.2 State of the Art by algorithm 

Problem-solving 

The category of algorithms that have the purpose of solving problems can be 

grouped together, as they represent a set of general-purpose algorithms that search 

for a solution to problems that, in this case, have as solutions a fixed sequence of 

actions: in general, the representation of the problem could involve branching in 

order to recommend different actions depending on the situation. 

Solving problems by searching 

This category of algorithms includes the searching strategies: defining the 

different methods to explore and move through a tree that represents and describe 

the problem itself. Examples of algorithms in this category include the breadth-first 

search, where all the nodes at a given depth in the search tree are expanded before 

any nodes in the next level are. Drawbacks of these methods are that memory 
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requirements are usually a great concern and execution times are often not practical. 

On a similar note, depth-first search suffers from similar issues and are both not 

optimal search methods. A decent solution is represented by iterative deepening 

search, which tries to combine the benefits of breadth- and depth-first searches: this 

method is the preferred uninformed search method when the search space is large 

and the depth of the solution is not known. More exotic searching is represented by 

the bidirectional search, where two searches are performed, one from the root node 

and one backwards from the goal. An improvement over uninformed search is to 

perform informed searches, when possible. The improvement comes from the fact 

that evaluating the current state allows to introduce efficiency in the exploration: 

best-first search is one example, greedy variant introduces a choice based on 

preferring the expansion of the node closest to the goal, considering that that node 

will be the most likely to lead to a solution. The currently most widely known form 

of best-first search is the A* search, that combines the information of the cost to 

reach the node and the cost to get from the node to the goal. Memory bounded 

versions of the introduced algorithms exists as well (recursive best-first search and 

simplified memory-bounded A*). 

Beyond classical search 

An evolution and a differentiation with respect to traditional search models is 

represented by the category of algorithms that do not implement systematic 

searches of all the possible paths. They have two key advantages: small amount of 

memory and perform quite well in large or infinite state spaces. Local search 

algorithms are an example, and are useful for solving optimization problem where 

the intent is to obtain the best state given by optimizing an objective function. 

Traditionally these algorithms involve analysing the shape of the objective 

functions to find the global minimum (or maximum), avoiding local extremes and 

plateaux, and coping with ridges (which are traditionally very difficult to deal with 

for local search algorithms). Hill climbing and its variations are an example. To 

overcome the problems of avoiding local extremes, an algorithm that combines the 

processes of Hill climbing and the exploration properties of a random walk is 

Simulated annealing, that introduces the concept of temperature while performing 

gradient descent. Beam searches introduces the characteristics of exploring more 

than one generated state, while keeping a connection between the searches, and 

passing useful information between them. 

A particular case of stochastic beam search is defined by Genetic Algorithms: 

they aim at emulating the dynamics of populations of individuals, implementing the 
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survival of the fittest law of nature. In particular, the search for an optimal solution 

is done by encoding the single solution as a single individual: it will then evolve in 

successive generations of the population, converging to the optimal solution. 

Behaviours such as reproduction, mutations, parenthood, natural selection and 

elitism are defined and are essential for the success of the algorithm. 

A note to these algorithms: it must be said that the strategies can vary when we 

deal with problems in which the agent possesses sensors, and the strategies are 

different in the case of a fully observable world, a partially observable one, and a 

non-observable one. 

Adversarial search 

One of the key characteristics of Adversarial Search problems is that they deal 

with competitive environments, such as games. Most of the times, real-life games 

are quite difficult, if not impossible, to solve completely. One of the most important 

reasons is because of the dimension of the problem. The average branching factor 

of chess is 35, with games that can reach 50 moves per player. In such cases, 

defining the optimal move is unfeasible. Several techniques exist to facilitate the 

decision during games, such as pruning, that allows the algorithm to ignore portions 

of the search tree, evaluation functions to approximate the true utility of a state 

without a complete search, and strategies to deal with imperfect information. 

Famous algorithms in this case are minimax for decision making, alpha-beta 

pruning for removing large parts of a search tree, and in some cases, table lookup 

for games states which solutions are known a-priori thanks to human knowledge 

and experience. Even in this case, distinctions are possible when we consider games 

ruled by chance or not, and games where the information is perfect or imperfect. 

Constraint satisfaction problem 

A more efficient approach for solving specific problems is known as Constraint 

Satisfaction Problem (CSP) and involves a type of problems that is defined by 

setting constraints to the characteristic variables, and that is solved when each 

variable has a value that satisfies all the constraints on the variables. With respect 

to traditional state-space search, the algorithms that solves CSPs involve two 

possible actions: search, similar to traditional state-space problems, and do a 

specific type of inference, that is propagate the constraints: this means exploiting 

the constraints to reduce the number of values that a specific variable can assume. 

Several types of inference techniques exist to check the consistency of the 
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constraints, common ones being node, arc, path and k-consistency. Searches can be 

performed tracking backwards (backtracking) and methods exist to choose the best 

variable to explore during a backtracking search. 

Knowledge, reasoning and planning 

The group of algorithms that aim to solve problems by using reasoning on an 

internal representation of knowledge is constituted by knowledge-based agents. 

This type of agents represents an evolution to what described earlier, as they operate 

exploiting logic, seen as a general class of representations to support knowledge-

based agents.  

Logical agents and First-order logic 

Logical agents are a category of agents that use formal logic to take decisions 

and perform actions in their world. Logic is the key element in the behaviour of the 

agent, and is characterized by the presence of a syntax, semantics, knowledge-base, 

and an inference procedure.  

First-order logic is a type of logic that is inherently more powerful than 

propositional logic. In this case, the types of problems that can be solved are more 

complex and can be solved more efficiently with respect to propositional logic. In 

general, developing a knowledge base in first-order logic requires a careful process 

of analysing the domain, choosing a vocabulary, and encoding the axioms required 

to support the desired inferences. 

Classical planning and complex planning 

Planning systems are problem-solving algorithms that operate on explicit 

propositional or relational representations of states and actions. One of the most 

famous algorithms is PDDL, the Planning Domain Definition Language, that 

describes the initial and goal states as conjunctions of literals, and actions in terms 

of their preconditions and effects. Planning graphs are often used to contain 

supersets of all the literals or actions that could occur, and yield useful heuristics 

for state-space and partial-order planners. There is no consensus on which planning 

algorithm is currently the best, yet cross-fertilization between algorithms has yield 

successful progresses. 

Complex planning introduces the concepts of scheduling and of resource 

constraints, which are not considered in classical planning. Strategies such as 

hierarchical task network planning are used to infuse advice in the agent by domain 



62 Artificial Intelligence 

 
designers in the form of high-level actions. Extensions of this theory comprise 

online planning and multi-agent planning. 

Uncertain knowledge and reasoning 

Dealing with uncertainty is one of the pillars of modern agent design: an agent 

needs to handle uncertainty, both in case of partial observability, or non-

determinism, or a combination of the two. When we analyse the approaches of 

agents described earlier, a few drawbacks are highlighted: when a logical agent has 

to consider every logically possible explanation for the observations, the belief-

state representations become large and complex; on the same side, a correct 

contingent plan that handles every eventuality can grow large and is daunted by 

several low-probability events; when no plan is definable to pursue a goal, an action 

is still required to the agent. 

Dealing with Uncertainty 

When dealing with uncertain reasoning, especially in complex problems, it is 

mandatory to define a way to quantify the uncertainty level. For this, probability 

comes into play with a way of summarizing the uncertainty level. Once a 

description of the uncertainty is obtained, the subsequent actions consist in defining 

agent preferences (what to do with respect to probability) and which utility is 

reached once a preferred action is taken. The fundamental idea of decision theory 

is that “an agent is rational if and only if it chooses the action that yields the highest 

expected utility, averaged over all the possible outcomes of the action” (Maximum 

Expected Utility, MEU). Bayesian Networks represent a very effective way to 

represent uncertain knowledge. They are a directed acyclic graph whose nodes 

correspond to random variables, with each node storing a conditional distribution 

for the node. Inference algorithms exist to calculate the probability distribution of 

a set of query variables, given a set of evidence variables. 

Introducing the concept of time when dealing with uncertain reasoning requires 

the introduction of more versatile reasoning tool, that have been widely used in the 

last decades: the Markov processes and models. Inference models need to be 

updated to take into account the dynamic environments. Powerful algorithms to 

consider are also Kalman Filters, Dynamic Bayesian Networks, particle filtering 

and more. 
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Decision making, simple and complex cases 

Decision making is a process that combines having information of the 

environment (thanks to probability representation) and information on the obtained 

utility of a certain action (thanks to utility theory). In general, different types of 

tools are available, but most promising ones are Multi-Attribute Utility Theory and 

Decision Networks. Finally, Expert Systems include utility information and have 

additional capabilities when compared with pure inference systems. On the other 

hand, the problem of decision making is much more complex when we deal with 

sequential decision problems, that are a category of problem in which the agent’s 

utility depends not only on the outcome of a single decision, but on the sequential 

outcomes of more decision actions. When the problem can be described as a 

sequential decision problem for a completely observable, stochastic environment 

with a Markovian transition model and additive rewards is called Markov Decision 

Process (MDP) and they became one of the most important algorithms to date. A 

variation to MDPs occurs when the environment is not fully observable, thus 

encountering the Partially Observable MDPs. 

Learning 

The concept of learning is one of the fundamental aspects of AI, and defines a 

category of algorithms that are known as Machine Learning. Learning means that 

the performance of an agent will improve on future actions after observing the 

surrounding world. There are three key reasons for why a developer would prefer 

learning algorithms over hard-coded software: first, not every situation the agent 

will be in can be predicted by the designer; second, changes over time are difficult 

to predict; third, for certain problems, the direct implementation of a solver 

algorithm is too hard and automatic learning represent the only viable solution to 

the implementation of an agent. In general, four topics are shared among different 

learning algorithms and problems: there is a component of an algorithm to be 

improved; the agent possesses prior knowledge; data is represented in a specific 

way; a feedback action provides guidance during learning. When a specific 

algorithm needs to learn from its surrounding world, three main learning algorithms 

are available to the designer, and will be discussed later: reinforcement learning, 

supervised learning, unsupervised learning. 

Learning from examples 

Among the algorithms that can learn from examples, decision trees can be cited. 

When learning from examples, one question appears soon: when an algorithm 
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learns something, how can we be sure that our learning algorithm has produced a 

hypothesis that will predict the correct value for previously unseen inputs? How 

many elements in the dataset do we need to get a good hypothesis? What hypothesis 

space should we use? An interesting principle of computational learning theory 

states as follows: “any hypothesis that is seriously wrong will almost certainly be 

found out with high probability after a small number of examples, because it will 

make an incorrect prediction. Thus, any hypothesis that is consistent with a 

sufficiently large set of training examples is unlikely to be seriously wrong: that is, 

it must be probably approximately correct”. Algorithms built on this principle are 

called Probably Approximately Correct Learning (PAC-learning). Classification 

algorithms (linear, linear with regressions, linear with hard threshold, and so on) 

can be considered. 

An exemplar category of algorithms that exhibit learning characteristics are the 

Artificial Neural Networks (ANN). The algorithm aims at representing the 

functional behaviour of biological neurons, translating their functions into 

computational units, the artificial neurons. A simple mathematical model for a 

neuron will be described later. When the artificial neurons are grouped together, a 

network is defined. Several types of networks exist, such as feed-forward, recurrent, 

single- or multi- layer, networks, and so on. Learning, which will be dealt with later, 

is performed by applying training algorithms on a dataset. 

Several other algorithms exist: Nearest Neighbour Models, Support Vector 

Machines, Ensemble Learning. 

Several other methods consider prior knowledge during learning: in this case, 

the effects of knowledge representation and learning are joined together. Current-

best-hypothesis search and Least-commitment search are examples of these 

algorithms. Efforts are also being spent in developing methodologies to extract 

general knowledge from specific examples. Several different types of learning have 

been developed, including Explanation-based learning, Relevance-based learning, 

Knowledge-based inductive learning, Inductive logic programming. 

Learning probabilistic methods 

Learning by using statistical methods can be done in several different ways, 

and the methods that fall under this category can be theoretically simple or very 

complex. A few examples are: Bayesian learning, Maximum a posteriori, 
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Maximum-likelihood and by using non-parametric models. The majority of the 

algorithms in this category fall under the unsupervised learning strategies. 

Reinforcement learning 

The fundamental concept behind reinforcement learning is that, providing the 

agent with a feedback about how good (or bad) were the decisions he took, will 

eventually improve its decision-making capabilities. This type of feedback is 

identified as a reward, or reinforcement, and can be given either at the end of a 

series of actions or more frequently. Two main philosophies exist when considering 

reinforcement learning, passive and active reinforcement: in the first, the agent’s 

objective is to compute each states’ utility, while in the latter the agent must 

determine which actions to take. In general, anyway, the methodology used to 

design an agent is tied to the information that needs to be learned. In the case of the 

passive reinforcement learning, the utilities can be computed by using Direct utility 

estimation, Adaptive dynamic programming, Temporal-difference.  

Communicating, perceiving, and acting 

When dealing with the problem of acquiring knowledge, the most powerful 

ability that an agent can possess is the ability to understand natural language, as the 

majority of the information currently stored in computer is expressed in this form 

of language. 

Understanding natural language 

In this sense, n-gram models represent a quite effective methodology to 

represent and learn the letter and words in a natural language. Smoothing of the n-

gram models is a process that allows to avoid the limitations of the training dataset: 

above all, the backoff model is one of the better performing. 

Machine reading holds a predominant spot in this section: the intent is to build 

a system to extract knowledge from written text that can work with no human input 

of any kind: a system that could define and fill in its database. In general, it is 

necessary to define not only a system to parse and grasp the knowledge, but also to 

explore the actual human behaviour. Several algorithms have been used so far for 

different problems related to this problem: treebank is useful to learn a new 

grammar, CYK algorithm can learn sentences in a context-free language, lexicalized 

PCFG allows us to represent connections between words that are more frequent wrt 



66 Artificial Intelligence 

 
others. The same algorithms and concepts can also be applied to speech recognition 

problems. 

Perception 

Perception is a fundamental field for computer science and in particular for 

applications that interact with an environment, be it the real one or a virtual one. 

The basic concept behind perception is that a device, known as sensor, execute a 

measurement of the surrounding environment and provides it as an input to an 

agent. Sensor is used here as a broad term, not linking the meaning to a complexity 

threshold, but to the fact that any information is collected, manipulated and shared. 

By intrinsic nature, a sensor that observes the real world will create a distorted 

perception of the environment. This fact could be false when considering virtual 

sensors. Once the external world is sampled, it is necessary to perform post-

processing to extract meaningful information: the type of algorithms used at this 

point can vary, for example in the case of object recognition algorithms such as 

Scale Invariant Feature Transform, Histogram of Gradient orientations, and 

Neural Networks can be used. Algorithms might increase in complexity when 

specific portions of an object need to be characterized as well, for examples arms 

and legs in the human body. 

Complex systems 

When the problem to be solved involves the development of a system that 

actively performs actions, we are dealing with complex systems, of which robotics 

is a category. Traditionally, the base definition of a complex system is a system that 

possesses three characteristic traits: sensors, actuators and a brain, or controller. 

The diversification of the complex systems is astonishing: manipulators, humanoid 

robots, UAVs and planes, spacecraft. 

5.4.3 State of the Art by application 

A small set of applications that notoriously implement some form of AI are 

presented here. As for the previous list, a comprehensive list is difficult to produce 

and would become outdated very quickly in this ever-changing environment. 

Nonetheless, it is interesting to recap some of the main contribution of AI in key 

example applications. 

Autonomous planning and scheduling – Space Agencies (NASA, ESA, 

JAXA) have since long dealt with autonomy and the problem of enabling the 
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spacecraft (especially interplanetary probes) with decision-making capabilities. In 

the last two decades, a couple of applications were embedded on NASA spacecraft: 

REMOTE AGENT featured autonomous execution plans, deriving them from high-

level goals sent from ground. NASA invested further research on goal-generation 

capabilities, developing CASPER, which enabled the spacecraft with decision 

making capabilities, goal generation, real-time scheduling, repairing and 

optimization [38]. 

Fault Detection, Isolation and Recovery – Fault Detection systems have been 

developed using several categories of AI algorithms, ranging from model-based 

applications (which can be considered on the border of AI), to Fuzzy Logics and 

Neural Networks [48]. 

Game playing – The art of gaming has always been a field where AI research 

has been focused on, since the earliest decades of the diffusion of these algorithms. 

Traditionally, each game saw the development of a specific tailored algorithm, and 

the common long-term goal has always been to challenge and beat the world top 

players in each discipline. IBM’s DEEP BLUE has set a keystone event in the game 

of chess, beating world champion Garry Kasparov in an exhibition match. Games 

such as Scrabble, Go and Jeopardy all saw the top players being beaten by AI in the 

following years, with Go and Jeopardy games being one of the most challenging 

efforts because of game complexity and size of possibilities during the game. 

Logistic planning – AI applications for logistics planning and scheduling in 

transportation have been developed both for civilian and military cases, with an 

emblematic case being the use of the Dynamic Analysis and Replanning Tool, used 

by DARPA to plan starting points, destinations, routes and conflict resolutions of 

people and cargo. The improvement in the definition of these plans was so 

significant that the time for the generation of these plans was reduced from weeks 

to hours, with incredible increase of savings. 

Machine translation – Language translation has seen a dramatic improvement 

in the quality of the translations after specific AI algorithms have been developed 

and used. Teams of researchers are able to develop high-performance translators 

just by having deep notions of statistics and machine learning algorithms, without 

knowing the languages themselves. The program uses a statistical model built from 

example translations and from examples of texts totalling trillions of words. 

Moreover, applications such as Skype Translator or Google Translate are making 

extensive use of AI algorithms and the results are outstanding. 
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Medical research – Machine Learning, Markovian Decision Processes, Expert 

Systems are only a few examples of performing algorithms in the field of medicine: 

they are used to implement “whole agents”, such as Watson from IBM, or to solve 

specific problems such as cancer/gene researches, image changes assessment, and 

more [49]. 

Robotic vehicles – The SoA for civilian robotic vehicles (cars, trucks) has 

considerably improved in the last decade. Several car manufacturers are now testing 

their autonomous vehicles on roads open to normal civilian traffic (Tesla, Google, 

Volvo cars, Scania trucks) [50]–[54]. Concerning non-civilian robotic vehicles, 

companies are developing interesting applications for quadruped robots (Boston 

Dynamics, DARPA). Excellent examples of applications are also to be found in 

interplanetary robotics systems, such as NASA Mars Science Laboratory [55]. 

Robotics – Research applications have differentiated into various fields, 

encompassing aerial, terrestrial and underwater robots: examples are found in the 

heavy industry, in paralyzed people aids, computer vision and so on. Other 

applications involved are the Touring Problems, VLSI layouts, Automatic 

Assembly Sequencing and so on. 

Spam fighting - when dealing with online spammers, a static programming 

approach is not flexible and agile enough to keep pace with the evolution of the 

spammers algorithms. 

Speech recognition – current advancements in speech recognition are proven 

by the fact that AI-enabled computers are now performing better than humans in 

recognizing the words in a speech. 

5.4.4 State of the Art by Open Source products 

Open Source approach has become nowadays a fundamental key to the 

advancement of international research, as open source programs and libraries 

allows the researchers to focus on their research application, with respect to focus 

on the development of the learning technology to be used. 

Python-based open source, deep learning tools 

TensorFlow – one of the most performant machine intelligence software 

libraries available. Developed by Google engineers and researchers, is used for 

numerical computation using data flow graphs. 
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Pylearn2 – a machine learning research library. Designed to make machine 

learning research easy, development status is on-hold. 

Theano – Python library to design, optimize and evaluate mathematical 

expressions involving multi-dimensional arrays. Supports several frameworks. 

Blocks – Theano framework to build and train neural networks. 

Lasagne – Another famous Theano framework to build and train neural 

networks. 

Matlab-based open-source, deep learning tools 

DeepLearnToolbox – Matlab toolbox for Deep Learning. 

Deep Belief Networks – Matlab code for training Deep Belief Networks. 

Deepmat – Matlab based deep learning algorithms 

MatConvNet – Matlab toolbox to implement Convolutional Neural Networks 

(CNNs) for computer vision applications. 

Matlab Deep Learning – standard Matlab documentation on deep learning. 

C/C++-based open-source, deep learning tools 

CUV library – C++ framework with python bindings for easy use of Nvidia 

CUDA functions on matrices. 

OpenNN – An open source class library written in C++, which implements 

neural networks 

Eblearn – C++ machine learning library for energy-based learning, 

convolutional networks, vision/recognition applications. 

CXXNET – Fast, efficient and lightweight C++/CUDA framework with 

friendly to python/Matlab interface for training and prediction. 

The software list is not comprehensive of all the development and product 

efforts in the different available languages. Updated information can be found at 

[56]. 
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5.5 Bringing Artificial Intelligence to space 

5.5.1 Selection of CubeSat compatible algorithms 

Artificial Intelligence categories, algorithms and disciplines are numerous, and 

several approaches could be used to tackle specific problems. One of the questions 

that arises in this situation is how do we choose among the variety of available 

algorithms? Is there some kind of preliminary cut-off that severely limits the 

applicability of certain algorithms in space missions, and in particular in small 

satellite ones? Is this cut-off applying to CubeSat-vs-Traditional platforms or to 

Spacecraft-vs-Ground categories? One of the striking features of CubeSats 

platforms is the extensive use of COTS. Among these, the selection of computing 

units available is united by a peculiar characteristic: the average performance of 

COTS processors is considerably higher than the average rad-hard solution found 

in spacecraft. However, despite the average performances, interesting solutions 

from the rad-hard domain are also appearing, and this makes the separation between 

COTS and rad-hard processors somewhat smaller when interpreted from a 

performance point of view [57]. Even if from a cost perspective the comparison 

might still be unfair, the performance difference, at a first glance, does not seem to 

drive the selection of available algorithms. Another comparison that can be made 

is between the average computing power available on CubeSats and the average 

computing power of ground-based systems. Ground-based computers, especially 

those traditionally used for Artificial Intelligence algorithm development, benefit 

of elements that are not included in spacecraft computing units: Graphics 

Processing Units (GPU). These types of computing units are designed to perform 

intensive jobs, exploiting the parallelism in their architecture, that allows to 

optimize the workload in a great number of parallel threads. These type of devices, 

when compared to CPUs, trade a vastly improved computational power for 

demanding tasks with a greatly increased power consumption. AI applications 

developed on ground make use of clusters of GPUs, which is obviously not 

achievable on a spacecraft. This is most likely the first cut-off concerning the usage 

of AI algorithms but in principle this cut-off does not exclude certain algorithms 

from being applied: the result is that, in order to apply algorithms that are power-

intensive on ground, a modification in their architecture must be envisioned for the 

space segment. Examples of these modification can be a reduction in size of a 

Neural Network, or an optimization of the training dataset used by the application. 
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5.5.2 Mapping Artificial Intelligence algorithms to fields of 

application 

Given a particular problem to solve, or an application to develop, several different 

algorithms that are considered AI could be applied, and the solutions obtained with 

these different algorithms would likely be similar, or at least comparable. In fact, 

striking distinctions in terms of performances, computational cost and other 

parameters (very important when applying the technology to a space mission) 

would likely be discovered and evaluated later in the process of exploring the 

feasibility of applying a specific algorithm to the problem. A mapping between the 

three applications presented in the thesis and potential AI algorithms that could 

provide a solution to it are shown in Figure 17. 

 

Figure 17 Mapping between applications presented in the thesis and 

potential Artificial Intelligence algorithms to solve those problems 

Given the enormous availability of algorithms, the mapping does not aim at 

being exhaustive: provides a small view on known algorithms that are most likely 

to return interesting results and performances. 

5.6 Machine Learning algorithms and Neural Networks 

Definitions of Machine Learning started as early as 1959, with Arthur Samuel 

defining ML as: 

“field of study that gives computers the ability to learn 

without being explicitly programmed” 

This is the prelude to an incredibly vast, and ever growing, world [58]. Figure 

18 attempts at presenting an overview of all the algorithms that can be qualified as 

ML. As any type of mapping of a complex world, there are some imperfections. 
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Some methods could be represented by more than one category, for example, but 

in general, grouping the different methods by similarity in terms of functionality is 

one of the most effective approaches. The map presented is not meant to be 

exhaustive. 

 

Figure 18 Machine Learning algorithm map, grouped by type. Credits 

Brownlee. 
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As it can be imaged, such an enormous availability of algorithms that fall under 

the category of ML, implies that peculiar problems encountered during a space 

mission, such as event detection, image classification or mission replanning could 

be solved by applying many, or many combinations, of the ML algorithms 

presented in the image. 

5.6.1 Neural Networks Principles 

The chosen family of algorithm to perform event detection on a spacecraft has been 

Artificial Neural Networks. Before digging into the characteristics and different 

types of algorithms that fall under the ANN category, it is important to state some 

of the characteristics that made ANN a good candidate for this type of problems: 

• Generalization: a trained network can provide good results even on 

never-before-seen inputs, provided that they are similar to those the 

network has been trained on 

• Experience: a network, similarly to human behaviours, is able to learn 

thanks to the knowledge that is fed into it 

• Ability to deal with linear and non-linear functions, and has multi-

variable capabilities 

• Robustness in presence of noise, disturbances and degradation. 

Generally, the performance of a network degrades gracefully under 

adverse operating conditions 

• Performances can be better than a human counterpart, even if the 

knowledge with which the network is trained comes from the human 

expert 

As with other types of AI, training and execution of ANN does not follow 

traditional approaches, and the definition of the application behaviour is not 

implemented through conventional programming. 

ANNs have been introduced with the intent of modelling the processing 

capabilities of biological nervous systems: millions of interconnected cells, each 

one of them being a complex machine in which incoming signals are collected, 

processed and routed in several directions (the neuron). From a computational 

speed point of view, the common neuron is thousands of times slower than our state 

of the art electronic logic gate: despite this, the human brain is able to achieve 

complexity of problem solving that is yet unmatched by computers. 
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5.6.1.1 Biological Model 

There are several differences between the biological neuron and the computing 

unit known as neuron used in ANN. 

 

Figure 19 Biological model of a neuron. Credits Rojas 

Figure 19 shows the basic model of the biological neuron: it is composed of 

three main elements: dendrites, cell body and axon. Dendrites collect signals from 

the nearby neurons and send their signals to the body of the cell. If the sum of the 

received signals is greater than a threshold value, the neuron produces a signal that 

is transmitted along the axon to the next neuron. 

 The neuron, seen as the fundamental unit of ANNs, is modelled taking 

inspiration by the biological neuron, but is characterized by simplification that 

make the unit more efficient from a computational point of view. 

 

Figure 20 The artificial model of a neuron, seen as a computing element. 

Credits Rojas 
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Figure 20 shows the structure of an artificial neuron with n inputs. Each input 

channel i can transmit a real value xi. A primitive function f computed in the body 

of the abstract neuron can be selected arbitrarily. Usually the input channels are 

associated to a weight, that means that the incoming information is multiplied by a 

weight that somehow defines how “important” that information is compared to the 

others. The collected signals are integrated at the neuron and f is evaluated. ANNs 

are in this sense a network of primitive functions, even if different models of ANNs 

differ mainly in the assumptions about the functions used, the pattern of connection, 

and the information transmission timing. The aggregating function g is usually the 

addition. 

5.6.2 Network architectures 

Several types of ANN exist, and a list is presented here: 

Feedforward The earliest appearance of ANN, and the network with the most 

basic behaviour: the information moves only in the forward direction, from the 

input nodes, through the hidden nodes, to the output ones. There are no cycles or 

loops in the network. 

Convolutional networks are a subset of Feedforward networks in which the 

connectivity pattern between neurons is inspired by the organization of visual 

cortex in animals, where neurons are placed in a way that responds to the different 

overlapping regions that compose the visual field. 

Recurrent Differently from FFNs, Recurrent Neural Networks (RNNs) are 

characterized by bi-directional flow of information. Connections are directed from 

input layers to output layers, but reverse-direction connections are also present. 

RNNs can be used as general sequence processors. 

Dynamic These types of networks include time-dependent behaviour such as 

transient phenomena and delay effects. The network exhibits memory, that is its 

response depends not only on the present input, but also on the history of the input 

sequence. System identification can be performed with this type of ANN. 

Radial Bases Functions are a type of ANNs that uses Radial Basis Functions 

(RBFs, a function that has a distance criterion with respect to centre reference) as 

activation functions. The basic idea behind RBF networks is that a predicted target 

value of an item is likely to be similar to other items that have close values of the 

predictor variables. 
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Modular Biological studies have shown that the human brain is characterized 

not by a single, huge, network, but as a collection of small networks, in which 

several small networks cooperate or compete to solve problems. 

Cascading networks have the peculiarity of modifying their architecture during 

training, starting with a minimal network and adding new hidden units one by one, 

as training progresses. Once a new hidden unit has been added to the network, its 

input-side weights are frozen. This unit then becomes a permanent feature-detector 

in the network, available for producing outputs or for creating other, more complex 

feature detectors. 

Neuro-fuzzy is a combination of ANN and Fuzzy Inference System (FIS). 

Embedding a FIS in a general structure of an ANN has the benefit of using available 

ANN training methods to find the parameters of a fuzzy system. 

5.6.3 Network training 

One of the peculiar characteristics of ANNs is that they can be trained to mimic 

model behaviours: the weights that multiply each input signal will be updated until 

the output from the neuron is similar to the model used as a reference during the 

training. Generally speaking, training is an adaptive algorithm that is used to match 

the output of an ANN to a reference model. The algorithm iteratively compares the 

output of the network to the model, and by applying a corrective action on the 

network weights and biases, the output is adapted to match the desired one. The 

training is generally based on previous experience, although methods that modify 

the parameters of the network exist. Three types of learning algorithms have been 

developed. 

Supervised learning denotes a method in which some input vectors (training 

data, that are composed by input object and matched desired output) are collected 

and presented to the network. The output computed by the network is observed and 

the deviation from the expected output is measured. Weights are corrected 

according to the magnitude of the error, depending on the learning algorithm. In 

general, every time a network is trained, different solutions can be obtained, due to 

different initial weight and bias values, different initialization, and different 

separation of the input data in the training, validation and test datasets. It will be the 

type of training used in the case studies presented in the thesis. 
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Unsupervised learning is a type of learning that does not foresee a reference 

to evaluate the quality of the training step by step. Since the examples fed to the 

network are unlabelled, the training obtained might differ from a human-based 

interpretation of the problem. 

Reinforcement learning is conceptually similar to the supervised learning, 

with the only difference that input/output pairs are not presented to the network, but 

instead a reward (or penalty) is obtained with respect to the actions taken. Typically, 

reinforcement learning is a technique useful in solving control optimisation 

problems, that is the problem of recognizing the best action in every state of the 

system, optimizing some objective function. 

Among the different training algorithms available, the three most common ones 

(that are also those available on Matlab®) are: 

Levenberg-Marquardt back-propagation It is a network training function 

that updates weight and bias values. Like the quasi-Newton methods, the 

Levenberg-Marquardt algorithm was designed to approach second-order training 

speed without having to compute the Hessian matrix, which is approximated [59]. 

The Levenberg-Marquardt algorithm is very simple but robust 

Bayesian regularisation back-propagation It is a network training function 

that updates the weight and bias values according to Levenberg-Marquardt 

optimisation. It minimises a combination of squared errors and weights, and then 

determines the correct combination so as to produce a network that generalises well. 

The function can train any network as long as its weight, net input, and transfer 

functions have derivative functions. It also modifies the linear combination so that 

at the end of training the resulting network has good generalisation qualities [60]. 

Scaled conjugate gradient back-propagation It is a network training function 

that updates weight and bias values according to the scaled conjugate gradient 

method. The function can train any network as long as its weight, net input, and 

transfer functions have derivative functions. Back-propagation is used to calculate 

derivatives of performance with respect to the weight and bias variables. The scaled 

conjugate gradient algorithm is based on conjugate directions, but this algorithm 

does not perform a line search at each iteration [61]. It is faster with less memory 

employed than previously methods. It is the training algorithm employed in the case 

studies presented in the thesis. 



78 Artificial Intelligence 

 
Given a specific training algorithm, two approaches exist that regulate how the 

data is fed to the training algorithm: in offline training (or batch), the complete 

dataset is fed to the training algorithm; in online training, the training algorithm 

updates the weights and biases of the network every time a new sample is fed to the 

training algorithm. Typically, online training is characterized by a slower 

convergence speed, also because of likely timings limitations in acquiring new 

samples. On the other hand, they are particularly useful when the memory available 

on the application does not allow to store complete datasets, but instead each sample 

used in the training must be forgotten before a new sample can be obtained and 

used. 

5.7 Knowledge-based Engineering and Expert Systems 

The section deals with knowledge-related algorithms and applications. The term 

knowledge itself denotes familiarity, awareness, understanding of a process or a 

situation, such as facts, information, descriptions or skills, which are acquired 

through experience or education, by perceiving, discovering, or learning [62]. 

 

Figure 21 Definition of "knowledge" by Merriam-Webster English 

dictionary 

Knowledge can be considered a “tangible” concept, in the light of designing space 

missions and space mission applications, especially when developing an application 

that makes use of a translation to machine code of the knowledge that a domain 

expert would use to solve the application underlying problem. 

This is the case of Knowledge-based Engineering (KBE) and specifically of 

Knowledge-based Systems (KBS). This term denotes a design approach and 
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philosophy, and a corresponding type of systems, that use expert knowledge as a 

fundamental pillar. The main difference between a KBS and a conventional 

application can be found in their structure, where the two roles of domain 

knowledge and general application software are distinctly separated. On 

conventional programs instead, the two layers are often joined and no distinction 

can be easily observed in the code structure. The main consequence of this 

distinction is that the knowledge base, that collects all the rules and concepts that 

define the behaviour of the application, can be updated by domain experts without 

having to coding into details the program structure, because the programming 

expertise required for knowledge updating is consistently smaller [63]. 

5.7.1 Knowledge Based Systems 

 

Figure 22 Basic Knowledge Based System architecture 

A typical architecture for a KBS is shown in Figure 22, and will be described 

in the following sections. Generically speaking, the Knowledge Base (KB) is 

responsible of storing the knowledge in the system, and the Inference Engine (IE) 

is responsible of defining how to apply the knowledge. 

5.7.1.1 Knowledge Base 

The Knowledge Base is the portion of the algorithm that has the purpose of 

storing the diverse forms of knowledge: rules and facts are examples. Rules might 

be complex, and facts can be organized in complex structures that include attributes 

and relationship between entities. 

An example of rule, very common and probably the simplest one, is the so-

called production rule: 

if <condition> then <conclusion> 
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One of the advantages of storing knowledge in the form of production rules is 

that they can often be expressed in a form that closely resembles natural language, 

as opposed to computer language. Facts, in a similar approach, are also stored in 

the KB. They can be categorized into different types: static facts, made available 

and fixed in time; transient facts, made available when the system is executing; 

derived facts, that are generated as a result of applying a rule. With respect to 

traditional programming, storing hundreds or thousands of facts and rules into a 

KBS is easier: rules and fact are represented explicitly and can be changed at will. 

The paradigm changes completely when the knowledge handled by the system is 

characterized by some degree of uncertainty. Several types of uncertainties exist: 

• Uncertain evidence 

• Uncertain connection between evidences and conclusions 

• Value values 

5.7.1.2 Inference Engine 

Inference Engines vary greatly according to the type and complexity of the 

knowledge they deal with. Two types of inference engines can be identified: 

• Forward Chaining, or data-driven 

• Backward chaining, or goal-driven 

A KBS that employs the data-driven mode uses the available information (the 

facts) and generates as many derived facts as it can. Outcomes of this process can 

be either satisfying or not, as the output is often unpredictable and the system might 

generate innovative solutions to a problem or wasting time generating irrelevant 

information. A typical usage of the data-driven is for problems of interpretation 

where data must be analysed. A goal-driven system, on the other hand, is 

appropriate when a more focused solution is required. The process employed by a 

goal-driven IE is to start from the given goal and trying to trace the information 

back to the current status of the application (therefore generating the plan), or 

assessing that no possible path is obtainable from the given goal back to the current 

status. 

5.7.2 Expert Systems 

Expert Systems (ES) are a type of KBS designed to manage and use expertise in a 

particular, specialized, domain. An ES is intended to act as a human expert who can 

be consulted on a range of problems that fall within his or her domain of expertise. 
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Typically, the user of an ES will enter into a dialogue in which he or she describes 

the problem (such as the symptoms of a fault) and the ES offers advice, suggestions 

or recommendation. In other applications, the ES is directly configured by the 

expert to act automatically, replacing the expert in taking actions driven by the 

stored knowledge. Additionally, depending on the application, the ES might be 

required to justify the current line of actions: an Explanation Module is often added 

to the ES to help with this purpose. 

When an ES is programmed but no knowledge is stored, it is called Expert 

System Shell: in principle, it should be feasible to develop an ES shell, build up a 

KB, effectively obtaining an ES. However, all domains are different, and it is 

difficult to build a shell that adequately handles the various applications. Generally 

speaking, ES shells are not suited for embedded applications. 

5.7.3 Fuzzy Logics 

Fuzzy Logics address a specific source of uncertainty: the vagueness of the 

information. Developed in 1975 by Zadeh [64], builds on his theory of fuzzy sets 

developed in 1965 [65], with the objective of performing computation with 

linguistic variables and values, that are not unambiguously correlated to specific 

values. The result is that, by using the Fuzzy Logic theory, systems can be designed 

to operate basing themselves on values such as “big”, “small”, “enough” and so on. 

5.7.3.1 Crisp and Fuzzy Sets 

Fuzzy Sets carry a very distinct meaning with respect Crisp Sets. An example of 

Crisp Set would be a variable that qualitatively measures a temperature value on a 

spacecraft component. If a hypothetic control logic is set to three different actions 

depending on the temperature being defined as high, medium or low, a Crisp Set 

would be defined in the following way: 

• T > 50°C is high 

• 10°C < T < 50°C is medium 

• T < 10°C is low 

Each boundary is considered strict: if a temperature is high, then it cannot be 

nor medium nor low. In this example, a high temperature might trigger a completely 

different control action with respect to a medium one, and no distinction might be 

implemented between a temperature of 51°C or one of 150°C, as they would both 

be considered high. 
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Fuzzy Sets are a mean of reducing how strict these boundaries are. The theory 

of Fuzzy Sets expresses imprecisions quantitatively by introducing characteristic 

membership functions that can assume values between 0 and 1 corresponding to 

degrees of membership of a variable value to a condition, from being “not a 

member” to a “full member”. The degree of membership is sometimes called the 

possibility that a certain value is described by the membership function. The key 

differences between a Crisp and a Fuzzy set are: 

• An element has a degree of membership in the range [0,1] 

• Membership to one Fuzzy Set does not preclude membership to another 

In the temperature example, the fuzzy theory terminology is configured as 

follows: 

• Fuzzy statement: “temperature is low” 

• Fuzzy set: low temperatures 

• Fuzzy variable: temperature 

• Membership function: how the degree of membership to the fuzzy set 

is evolving with the measured temperature 

5.7.3.2 Fuzzification 

To recall the earlier example on temperature, a temperature of 150°C could be 

considered 0.99 high, and 0.01 medium, while a temperature of 51°C could be 

considered 0.30 high and 0.70 medium. The process of deriving these possibility 

values for a given value of the variable is called fuzzification. 

 
Figure 23 Examples of membership functions. Credits MathWorks 
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Examples of membership functions are shown in Figure 23: they can assume 

different shapes, and the most suitable shape of the membership functions and the 

number of the fuzzy sets depend on the particular application. 

5.7.3.3 Defuzzification 

When designing an application that employs a Fuzzy Logic -based algorithm, 

after defining the input variables and their membership functions, it is necessary to 

continue the design process downstream to the output of the application. When a 

control action or a decision is computed using Fuzzy Logic, the value of the action 

will still be expressed in fuzzified values. In order to compute back a crisp, clear 

value, the next process to perform is the defuzzification. Defuzzification takes place 

in two steps: 

• Adjusting the fuzzy sets in accordance with the calculated possibilities. 

Several rules exist to process the various membership functions 

(Larsen’s product operation rule is one, in which membership functions 

are multiplied by their respective possibility values [66]). The effect is 

to compress the fuzzy sets so that the peaks equal the calculated 

possibility values. Alternative approaches are also present. 

• Using methods to correlate the fuzzified values to a crisp value. 

Methods applicable are Mean of Maximum (MOM) method, Centre of 

Gravity (COG) Method, Height Method (HM) or Lookup Table [67] 

(Figure 24). Other common method of defuzzification is Sugeno 

method [68]. 

 

Figure 24 Example of MOM and COG methods for defuzzification 
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5.8 Evolutionary Algorithms 

Evolutionary Algorithms (EA) are a category of Artificial Intelligence used to 

perform metaheuristic optimization. Metaheuristic can be defined as “a common 

but unfortunate name for any stochastic optimization algorithm intended to be the 

last resort before giving up and using random or brute-force search. Such 

algorithms are used for problems where you don’t know how to find a good 

solution, but if shown a candidate solution, you can give it a grade” [69]. The main 

inspiration for EA comes from genetics and natural selection [70] and at least four 

categories can be identified that belong to EA: 

Genetic Algorithms (GA) by far the most diffused category of EA. Algorithm that 

treats the solution of a problem as individuals, and obtains optimal solution by 

applying operators such as recombination and mutation. 

Evolutionary Strategies (ES) are a type of algorithm that reaches optimal solutions 

by applying mutation and selection operators [71], and can be successfully 

employed even with populations numbers as low as two individuals. The selection 

of individuals is performed only on fitness rankings and not on the actual fitness 

values. 

Evolutionary Programming (EP) is another common EA [72], and is based on 

defining a program whose numerical parameters are subject to evolution. It is harder 

and harder to distinguish from ES. 

Genetic Programming (GP) is an optimization method that treats the solution to 

a particular problem as computer programs, traditionally represented in memory as 

tree structures. At each node of the tree there is an operand that executes 

mathematical expressions. 

In general, EA perform well approximating solutions to all types of problems 

because they are not tailored to assumptions about the function shape to be 

explored. 

As with Machine Learning, the number of algorithms gravitating into the domain 

of Evolutionary Algorithms is enormous, with hundreds of algorithms and even 

more variations (Figure 25). 
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Figure 25 Non-comprehensive map of Evolutionary Algorithms and their 

variants 

The case study presented in this thesis, that shows an application of EA, will 

implement Genetic Algorithms, since they are the most common type of EA and 

the methodology fits well in the design problem. 

5.8.1 Genetic Algorithms 

Genetic Algorithms are the most used and known type of Evolutionary Algorithm, 

to the point that the whole category is sometimes confused with GA. They owe their 

diffusion to the numerous field of application they’ve found: parameters 

optimization, financial prediction, scheduling, telecommunication, computer 

drawing, datamining, bioinformatics and so on. 

GAs are powerful search algorithms: they explore the solution space quickly in 

search of optimal solutions [73]. GAs encode the decision variables (or input 

parameters) of the problem into an array that represent a full solution [74]. Each 

array assumes the characteristics of a chromosome and represents an individual 

solution among the population. The position in the chromosome of each gene is 

called locus, while its value is called allele. There are two encoding classes: 

genotype and phenotype. Genotype denotes the ensemble of all the genes of an 

individual, while the phenotype denotes the group of all the visible features and 

characteristics of the individual. A fitness function is the “grading system” that is 
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used to evaluate the fitness of an individual in the problem considered. Unlike other 

optimization techniques, the fitness function of GAs may be defined in 

mathematical terms, or as a complex computer simulation, or even in terms of 

subjective human evaluation. Operators are used to regulate the evolution of the 

population. The three genetic operators commonly used are: selection, crossover, 

mutation [75]. 

Selection operator is used to generate a parent population which favours good 

individuals. There is a selection pressure that rules the selection schemes: it’s 

defined as the ratio between the probability of selection of the best individual to 

that of an average individual. There are two basic types of selection schemes: 

proportionate and ordinal methods [76]. Proportionate selection choses individuals 

by comparing the fitness values, while ordinal selection selects the individual by 

comparing the order in which they appear when the population is ranked. Several 

methods exist to perform the selection, and the tournament is one of the most 

common: two (or more) individuals are randomly chosen and compared to each 

other; the best is placed into the parent population. Other selection methods are 

roulette wheel (each individual has a chance of being selected proportional to its 

fitness), stochastic universal sampling (the probability is proportional to the fitness, 

but an equally space pointer is used). 

Crossover operator is used to generate offspring from parents, and it can 

operate in different way depending on which type of strategy is chosen: single point 

crossover selects a locus on both parents’ chromosomes and swaps the strings after 

the locus; two-point is similar to the former, but selects two loci in the strings and 

swaps only the middle portion; uniform and half uniform uses a fixed mixing ratio 

between two parents: unlinked single- and two-point crossover, the uniform 

crossover enables the parent chromosomes to contribute at the gene level instead 

than the segment level; three parent uses three randomly chosen parents and 

generates offspring by comparing a gene in two parents, and selecting the gene in 

the same locus from the third parent if the first two are different from each other. 

Mutation operator is used to alter an individual, by changing the value of one 

or more (but a limited number with respect to the total gene number) optimization 

variable in a random way. It is typically applied with a low probability (up to 5%) 

and it does not have a great influence on the performance. It is useful to avoid the 

issue of having the population stuck on a local minimum. 
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5.8.2 Design Suggestions and Improvements 

GAs behaviour and optimization performance can be improved by implementing 

variations in the traditional functioning of the algorithm. Elitism can be added, to 

preserve the best individuals of a population and to replace the worst individuals of 

the following generation to preserve a good solution; extended random 

initialization: performing several random initializations until a significant solution 

is found or a maximum number of tries is reached, to assure the presence of good 

individuals in the initial population (a portion of the population can be still 

initialized randomly only once, to preserve diversity); mass mutation, to ensure that 

the diversity of the population stays high, by discarding most of the old individuals 

and replacing them with random new ones. 

There are additional things to consider when dealing with GA design: practical 

suggestions that help to avoid common mistakes. Designing appropriate encoding 

schemes is useful: representation by binary codes, real-values and program code 

are available, and the length of an individual can be constant or change. Experience 

suggests to prefer identical genotypes and phenotypes, and fixed length individuals. 

Critical attention must be placed in designing the fitness function. Tournament 

selection is perceived as one of the most effective selection methods. Tournament 

selection with a tournament size of 2 individuals is advisable. Building-blocks 

crossover (that does not interrupt a good inter-gene linkage) is especially advised if 

the evaluation of the fitness function is computationally expensive, otherwise a one- 

or two-point crossover is a good approach, provided that the crossover probability 

is set to be relatively high. When crossover or mutation operators generate 

infeasible solution (because of constraints) the two approaches are to apply a 

penalty or to repair them: repairing the individuals is advisable unless the 

development of the function is difficult. Finally, the application of population-

sizing models is suggested.





 

Chapter 6 

Case Study: Event Detection with 

Neural Networks 

Neural Networks can be used for different types of applications, and each 

category of NN excel in one or more specific domain. This chapter focuses on 

performing Event Detection (ED) during the mission: the applications presented 

here refer to detection of external mission events. Event detection, in particular 

external events related to payload observation, is a fundamental characteristic of 

highly autonomous spacecraft. 

6.1 Background 

In the previous chapter of this thesis, several applications of Artificial Intelligence 

to increase the mission autonomy have been introduced, and it was shown how 

enhanced autonomy could specifically benefit the nano- and small-satellite 

missions. Making the spacecraft autonomous is a topic of paramount importance 

especially for missions beyond LEO, where the current limited autonomy 

capabilities are a severe stopper for the diffusion of nanosatellite interplanetary 

missions. Examples of these missions are those targeted to the Moon, Near Earth 

Asteroids (NEAs), Mars and Jupiter, with his satellite Europa. These destinations 

have already been chosen by space agencies as ideal candidates for CubeSats and 

nanosatellites missions that will reach them in the near future as a secondary 

payload of traditional flagship missions. Moreover, CubeSat missions have been 

proposed and are being developed by NASA and ESA as part of their space 
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exploration programs. A perfect example of this commitment is the deployment of 

thirteen spacecraft by the Orion vehicle during the Exploration Mission 1 (EM-1), 

scheduled for launch in 2018 to the Moon by NASA [77]. The deployment orbit of 

the CubeSats will be a lunar transfer orbit from which they will start their own 

independent missions, most of which have either scientific or technological 

objectives. ESA has already started studies to deploy CubeSats in the vicinity of the 

Didymos binary asteroid as secondary payload of the Asteroid Impact Mission 

(AIM) spacecraft within the NASA/ESA Asteroid Impact & Deflection Assessment 

(AIDA) mission. The CubeSats, named COPINS (CubeSat Opportunity Payload 

Intersatellite Network Sensors), will pursue technological and scientific objectives 

and will use the Aim spacecraft as a relay to send housekeeping and payload data 

to Earth. Despite this mission being cancelled by ESA at the end of 2016 [78], 

another interplanetary CubeSat mission is being developed on the traces left by the 

AIM/COPINS study: M-ARGO, Miniaturised Asteroid Remote Geophysical 

Observer, a stand-alone deep space CubeSat system for low cost science and 

exploration missions [79]. Objective of this mission is a rendezvous with a NEO 

for physical characterization and resource assessment. Another example is the first 

CubeSat mission to Mars, MarCO, that will be part of the InSight mission of 

NASA/JPL. MarCO aims at testing telecommunications capabilities from deep 

space [6]. These nanosatellites will face new challenges with respect to current LEO 

missions, such as surviving in deep space environment, communicating to Earth 

from longer distances, and using their own propulsion systems. In addition, a 

paradigm shift is required when taking into account the operation design, as most 

GCS are not adequate to receive signals from space from a multitude of spacecraft, 

and no line-of-sight periods will occur depending on the specific mission. 

Taking into account the emerging needs of new nanosatellites missions, the 

application presented in this case study aims at supporting the development of more 

autonomous spacecraft, able to decide and execute tasks independently from ground 

control and from mothership authority. The presented algorithm forms the 

foundation for event-based autonomous operations. This case study presents an 

activity whose objective was to design an algorithm to enable spacecraft with event 

detection capabilities, with the intent of performing autonomous mission 

operations. The key reference mission is AIM/COPINS and the event to be detected 

is the impact event on the asteroid. In particular, two different applications are here 

presented: 

• Detecting the impact event, that is the change in surface characteristics 

of the observed area 



Case Study: Event Detection with Neural Networks 91 

 

• Detecting a plume event, identifying the direction towards which the 

plume is expanding 

The problem behind this application is in practice an image change detection 

problem, that can be treated in several ways. Many image/feature recognition 

algorithms exist, and they are becoming more and more useful in various 

applications, both in the industrial and in the scientific field. A distinction can be 

made between algorithms that use an a priori knowledge of the features to be 

identified, and those that use statistical or other methods to perform the detection, 

i.e. without initial training. Among the former category a few examples of 

applications are: convolutional neural networks for crater detection [80], and faces 

identification [81]; random forest classifiers for space image processing [82] [83]; 

adaptive background subtraction for video surveillance [84]. Among the latter, 

interesting examples are: visual salience maps to model visual attention [85] [21], 

unsupervised neural networks for fault diagnosis [86], pixel comparison for medical 

diagnosis [49] and change detection in overhead images [87]. 

The use of Artificial Intelligence algorithms is usually computationally 

expensive: the aforementioned examples involve complex operations or use 

datasets containing thousands of samples. For this reason, exploiting AI capabilities 

on-board a small spacecraft, where the computational power is low, requires the 

implementation of algorithms that are specifically designed to have a limited impact 

on the processing resources [88]. The presented application is specifically 

developed with this precise objective: avoiding the computational resources 

overhead due to the huge size of datasets commonly used in classification problems 

with NN, by developing a custom-designed network and innovative training 

approach. 

6.2 Reference Missions 

For the intended type of application, two reference missions were considered: a 

mission that involves an interplanetary CubeSat that performs observations on an 

asteroid on which there will be an impact event, and an interplanetary mission to a 

comet, on which events such as plumes and gas ejections can happen. 

6.2.1 Impact Mission 

One of the reference mission for this research was given by COPINS, which 

was a secondary payload of the ESA AIM mission. AIM was one of the two 
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spacecraft of the AIDA joint effort of ESA and NASA, aiming to perform an 

asteroid characterization and redirection experiment. ESA was providing the 

monitoring/observing spacecraft (AIM), while NASA was supposed to launch the 

impactor probe (DART) that would collide with the secondary body of the system 

[89]. The COPINS mission consists of multiple CubeSats (up to two 3U platforms) 

carried to the asteroid by AIM, which will deploy the nanosatellites at 10 km from 

the secondary body surface, up to one month before the impact of DART. The 

objectives of the CubeSat mission are to provide scientific support to the AIM 

primary mission, either by repeating one or more of the main spacecraft's 

measurements, by performing additional science measurements, or by recording 

and taking pictures of the impact event. In addition, the CubeSats will also perform 

technological demonstrations, such as satellite interlink communication. The 

communications of the COPINS with Earth are relayed through the AIM spacecraft. 

The architecture of this mission is definitely complex, as numerous challenging 

elements are included in the scenario: four or more satellites joint operations, inter-

satellite links, limited data rates, and peculiar environment (for example, low and 

irregular gravity field, which makes the orbit control critical). Given the complexity 

of the mission architecture and concept of operations, increasing the COPINS 

autonomy would be beneficial to the entire mission, and for this reason this mission 

has been chosen as a test case for the developed algorithm. For the purpose of the 

research, it is assumed that the COPINS’s payload objective is to detect the impact 

of DART on Didymoon (the secondary body of the Didymos binary system, other 

times referred to as moonlet) and to determine the changes in the physical properties 

of the asteroid surface. Since the COPINS-Earth communication is characterised 

by the fact that the main spacecraft serves as relay, the amount of data that can be 

sent to Earth by COPINS and the possibility to command COPINS from Earth are 

both affected by the availability of AIM. The autonomous detection of the impact 

event would enable: 

• To implement switching between operative modes. Switching between 

a hypothetical basic operative mode to the science operative mode could 

be performed with enhanced flexibility and increased reliability, 

without relying on commands from ground. The post-impact operations 

would start autonomously. 

• To prioritise downlinked data. Given the limited data rate available for 

the downlink, the pre-selection of payload data would avoid sending 

meaningless information to ground in favour of data related to the 

completion of scientific objectives. 
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Figure 26 AIM and COPINS Design Reference Mission. Credits ESA 

6.2.2 Comet Mission 

Second reference mission used in this thesis is a hypothetic mission to a comet-like 

body of the solar system. These bodies are known to be the potential source of jets 

and plumes, as demonstrated in several occasions to date (Figure 27, Figure 28).  

 
Figure 27 Jets emitted by comet 67P. Source ESA 
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Figure 28 Plumes emitted by Enceladus, a moon of Saturn. Source ESA 

The origin of these events can be of various nature, and among the known 

causes are solar activity [90] or man-made impacts [91]. For the purpose, also in 

this mission the CubeSats are considered deployed directly in situ by a mothership. 

6.3 Neural Network architecture selection 

When designing a network for an event detection case study, several factors 

must be taken into account. In the presented case study, main driver is the 

computational cost needed to train and run the algorithm, as it will be implemented 

on the embedded processor of a nanosatellite with limited resources. The three 

criteria considered are reported in Table 10. 

Table 10 Criteria for network architecture selection 

Criterion Value 

Training performance High 

Execution performance High 

Network complexity Low 
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6.3.1 Impact Event detection network 

For the application of ED, a simple feed-forward architecture is chosen, as 

shown in Figure 29. The parameters of the network are presented in Table 11. 

 

Figure 29 Feed-forward network architecture 

Table 11 Network parameters 

Parameter Value 

Architecture Feed-forward (FF), one Hidden Layer (HL) 

Dataset element type Image 

Dataset element dimension 100x100 pixel 

Hidden layer size 10 neurons 

Output layer size 2 neurons 

Training algorithm Scaled Conjugate Gradient (SCG) 

Threshold function Symmetric sigmoid 

 

The final number of layers and neurons per layer is the result of the analysis 

performed over a set of possible network architectures. To select the most 

performing network, a statistical analysis over all the possible architectures 

compatible with the main requirement (compatibility with the CubeSat C&DH 

performances) was performed. In particular, networks with one or two hidden layers 

were tested, up to a maximum number of neurons of 15 for the first layer, and of 10 
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for the second layer. Figure 30 shows the average performance of each network 

cluster for a two-hidden layer architecture: each dot represents the average of 

architecture performance in function of number of neurons in the second layer. The 

average is calculated over 4500 simulations (300 simulations for number of neuron 

in the first layer, spanning from 1 to 15). The result of the analysis confirms that for 

a binary classification problem, networks with one hidden layer show the best 

performances on average [92]. Figure 31 illustrates performances of networks with 

a single hidden layer in function of the number of neurons in the layer in the form 

of boxplots. Boxes represent data from second and third quartile, while whiskers 

cover data in first and fourth quartile. Samples are considered outliers when their 

distance is greater than 1.5 times the interquartile range, and they are represented 

as dots. The red line represents the performance median. For each architecture, 300 

simulations have been run. From this graph, it is possible to deduct that networks 

with more than 4 neurons are suitable for the final architecture, as boxes are 

condensed into the median line. 

  

Figure 30 Performance trends for networks with two hidden layers. Each 

dot represents a cluster of networks with 1 to 15 neurons in the first layer, and 

the X-axis number of neurons in the second layer. 

The number of 10 neurons for the hidden layer size was chosen as a good 

compromise between complexity of the network and associative memory [93]. As 
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the learning ability of a network increases with number of neurons, a margin was 

taken to consider inherent uncertainty of early mission design stage, thus selecting 

10 neurons instead of 5, which is the minimum acceptable number. 

 

Figure 31 Average performances with respect to network architecture. 

Each box plot is the result of 300 network initializations. Red line represents 

the median, box lines represent first and third quartiles. When no box is 

drawn, all data except the outliers are collapsed in the median value. Outliers 

represent samples that lie further than 1.5 times the interquartile range. 

6.3.2 Obtaining additional information from the detection 

When developing an event detection application, objectives must be defined to 

correctly select the network to be used. In particular, as seen above, when the aim 

is to correctly identify just the appearance of the phenomenon, small networks are 

performing already interestingly. When additional information must be extracted, 

bigger networks must also be considered. Among the interesting information that 

can be obtained when detecting an impact or a plume event, is the direction towards 

which this jet is moving. An interesting future study can be correlating the size of 

the network with the resolution of the direction towards which a plume has been 
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expelled. For the applications considered, networks with a total number of 100 

neurons where used. In general, no optimization was performed on the networks 

presented for this second application. 

6.4 Event modelling 

The asteroid impact sequence needed to be modelled in order to develop and test 

the ANN algorithm. 

6.4.1 Asteroid impact modelling 

The Didymos binary system is modelled as defined in the literature by the Didymos 

Reference Model [94]. The main body is represented as a fairly regular spheroid of 

roughly 800m in diameter, while the secondary body (of which no radar or optical 

images are available to date) is modelled as a bumpier, rubble-pile like body, 

elongated in the direction towards the main body of the system (Figure 32). 

 

Figure 32 Asteroid modelling 

The impact event is modelled according to information found in literature [89]. 

A spacecraft of the size of DART has been included in the simulation to collide 

with Didymoon at the speed of 7 km/s. All the modelling has been realized using 

the open software blender® (Figure 33). 
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Figure 33 Impact on the secondary body 

An overview of the impact location, observed from two different capturing 

points, is shown in Figure 34. 

 

Figure 34 Impact location, as seen from two different observation points 

6.4.2 Plume event modelling 

The shape and the plume event have also been modelled in blender®. The 

characteristics of the object as matched to resemble common rubble-pile asteroids. 
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The asteroid is set on a slow rotation on all the three axes, and the jet is emitted 

from a randomly chosen location on the asteroid surface (Figure 35). 

 

Figure 35 Asteroid modelling and plume event 

To further validate the methodology, a plume event detection has been 

simulated on comet 67P model (Figure 36). The intent, in this second case, was to 

train a network for a real-life mission: for the Rosetta mission, actual images of 

plumes are available. 

 

Figure 36 Plume event simulated on the comet 67P 

6.5 Innovative Training Approach 

One of the fundamental steps in the design of an ANN is the definition of the 

training strategy, which heavily affects the robustness and reliability of the network 

[88]. 
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The ANN algorithm presented required the definition of a special training 

approach, given the peculiar application under study. 

Objective of the algorithm is the identification of an event that will occur on an 

asteroid (or comet) at a certain time in the future. Table 12 summarises the main 

mission data from which requirements and constraints for the design and 

implementation of the ANN have been derived.  

Table 12: mission inputs for the ANN definition 

Event to be 

detected 

Impact of DART on secondary body (Didymoon) 

of the Didymos binary system; plume emission event 

on asteroid or comet  

Event detection 

instrument 

Optical camera (the algorithm is also compatible 
with IR cameras) 

Event Time Within one month from deployment of COPINS at 
the asteroid (exact time will be unknown until in situ); No 
predictions are available on the next plume event 

Info Both Didymoon and the target asteroid/comet have 
never been observed, and no images are available nor will 
be before in situ 

 

From the information summed up in Table 12, it is evident that the ANN cannot 

be trained on ground using actual images of the celestial bodies, as they do not exist 

(concerning the comet 67P model, the application is developed forcing the 

acquisition of the pictures in situ). Using a training dataset extrapolated from 

models of the asteroid would be risky, as the network would get trained on a specific 

shape of the asteroid that might result different from the actual shape: the possibility 

exists that the impact will not be identified due to incorrect training of the algorithm. 

Moreover, several conditions will likely be different from those simulated on 

ground, especially with regards to the surface features (for example areas of 

different composition) and light/shadowed areas (for example different crater 

patterns).  
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The proposed solution for the training task takes into account the mission 

scenario and concept of operations. As the spacecraft will reach its final orbit before 

the event to be detected, it is possible to define a sequence of manoeuvres and 

operations that allow the spacecraft to construct the training dataset directly in-situ, 

either acquiring pictures of the foreseen impact area on Didymoon, or collecting 

pictures of the comet prior to plume events. 

Since the network employed in the algorithm performs pattern recognition, it is 

mandatory to differentiate between more than one class in the dataset. In particular, 

in order to detect an impact event with a pattern recognition algorithm, two classes 

of images must be used during training: images taken before the event, and images 

representing the event itself, in order to correctly train the network. The impact 

images must be artificially created in situ before the event occurs, employing an 

algorithm described in the next paragraph. 

For a feed-forward network, considering the connections from the input to the 

hidden layer, they are directly mapped to the input data: in this sense, for an image, 

each pixel would be directly assigned to several weights. This means that, during 

the training to identify the event, the weights need to be raised for the pixels that 

would change during the event. This operation is done automatically during the 

training. In the proposed case studies, the only missing piece is indeed the collection 

of post-event images to construct a two classes dataset for the training. 

6.5.1 Impact event training 

For the impact event, since the coordinates of the impact on the asteroid are 

known, it is possible to artificially super-impose a pattern of debris-like shapes to 

force the weights update in particular areas of the image, as shown in Figure 37. As 

shown in [89] the physical properties of asteroid’s surface upper layer strongly 

influence the characteristics of ejecta. Shape, opacity and granularity of the overlay 

are chosen accordingly to information found in literature to reflect the dynamics of 

the event to be observed. Two geometries, rectangular and truncated cone, were 

considered to assess the role of overlay shape in the algorithm performance. 
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Figure 37 Directing the neuron training with pseudo-random colouring of 

the impact location: rectangular and truncated cone shapes 

The effect is that the training algorithm will detect the differences in the 

modified area of the image, and the resulting weights and biases will be arranged 

in a way to favour the identification of changes in that particular area. This 

operation is effortless from the computational point of view, as the pattern can be 

super-imposed by using simple scripts, and it does not take into account the 

underlying image, resulting in a very fast operation. Figure 38 and Figure 39 

demonstrate the validity of the approach, plotting the weights of the network after 

training. Figure 38 shows that the training assigns higher weights to the impact area, 

with a direct match between the overlay shape and weights. An interesting result is 

shown in Figure 39, where another neuron of the same network is considered. In 

this case, the training assigns high weights to a specific vertical zone of the camera 

field of view. This result shows that different neurons of a network can be trained 

in different ways by the training algorithm, while maintaining the desired 

performances. 
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Figure 38 Trained network, input to hidden layer weights of a simple 

neuron. Darker pixels correspond to lower weights. Direct match between 

overlay and weights. 

 

Figure 39 Trained network, input to hidden layer weights of a single 

neuron. darker pixels correspond to lower weights. Interesting outcome of the 

training. 

6.5.2 Plume event training 

For the plume event, since the coordinates are not known a-priori, the training 

approach must consider a set of probable locations. The overlay approach is 

performed for several directions of generation of a plume. Moreover, as the comet 

body is rotating in the camera frame, the generalization must be carried out both for 

the plume direction and for the rotational state of the body underneath (Figure 40). 
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Figure 40 Examples of 67P images with an artificial plume overlay 

The result of the training can be validated even before testing the performances 

of the network by displaying the weights final value. In this case, as for the impact 

event, the result clearly shows the correct training: it is interesting to notice how, 

given a set of single-plume images, the final weights are defined in a configuration 

that includes all the training images used. The result appears as a corona of high 

weights around the asteroid shape (Figure 41). 

 

Figure 41 Trained weights for the plume detection problem. The uniform 

grey areas around the centre of the image are a result of having removed 

constant lines throughout the dataset 
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6.6 Results 

6.6.1 Performance considerations 

In order to foresee the implementation of the algorithm on an embedded 

processor, it is mandatory to address the performance concerns that are typically 

raised when considering ANN. The algorithm has been designed keeping in mind 

the computational cost: computational complexity of the Scaled Conjugate 

Gradient algorithm is evaluated at ����√��, where N is the training image 

matrices’ rank and k is the condition number [95]. Worst case for �� is the image 

pixel total count, and for k is ��10��. The training process takes less than 5 seconds 

(valued considering the results of 10000 training sessions) and the resulting ANN 

executes in 0.02 seconds on a laptop with a core of 2.5GHz. The required RAM has 

been estimated in less than 1 MB. These values are compatible with the intended 

application of this algorithm, taking into account that state of the art processors on 

COTS on-board computers for nanosatellites feature 1GHz clock speed and exceed 

256 MB of RAM. An estimate of the execution times on a typical nanosatellite 

processor is 12.5 seconds for training and 0.05 seconds to process a single image. 

6.6.2 Impact Event Detection 

The impact event has been simulated and tested from two capturing points 

(depending on the position and orientation of the observing spacecraft around the 

asteroid). In the first point, both bodies of the asteroid binary system are in the field 

of view of the satellite, with the main body in the background (Figure 42). In the 

second case, only the moonlet is in the field of view of the satellite, with the dark 

sky in the background (Figure 43). For both cases, a video of the impact has been 

realized, with a framerate of 25 frames per second. Frames of the post-impact 

evolution were then selected for the testing of the algorithm. The algorithm has 

been developed and tested in a Matlab/Simulink® environment, by using datasets 

generated via the blender® asteroid model. 
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Figure 42 Impact event from first capturing point 

 

Figure 43 Impact event from second capturing point 

Four simulations have been run, changing the point of view of the impact from 

space and the shape of the overlay pattern representing the impact effect on the 

asteroid surface used in the ANN training process (Table 13). 
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Table 13 Mission scenarios parameters and results 

Simulation # Background Training shape Result 

1 Body Rectangular Success 

2 Body Truncated cone Success 

3 Sky Rectangular Success 

4 Sky Truncated cone Success 

The simulations show the effectiveness of the ANN developed, as the images 

are correctly classified by the algorithm in the appropriate categories (Figure 44 and 

Figure 45). 

 

Figure 44 Impact event, dark sky in the background. Continuous line: 

impact detected; dashed line: no detection 

 

Figure 45 Impact event, main body in the background. Continuous line: 

impact detected; dashed line: no detection 

Furthermore, given the fact that the algorithm will run on board a spacecraft, it is 

important to test the algorithm against the disturbances due to the pointing errors 

that may arise during the mission. In particular, it must be guaranteed that the 

algorithm does not trigger false positive or fails to detect the event in case of images 

with different framing. The algorithm has been tested changing the orientation of 
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the camera on board the satellite. The range of the oscillation tested is ±12 degrees, 

with steps of 1 degree in the up-down pointing. To overcome the issue of 

oscillations affecting the detection of the impact event, the solution implemented 

includes images with different framing in the training dataset. In this case, the 

network is trained to compensate for the pointing uncertainties (Figure 46 and 

Figure 47). 

 

Figure 46 Robustness to imprecisions in camera pointing. Continuous line: 

impact detected; dashed line, no detection 

 

Figure 47 Robustness to imprecisions camera pointing (cont.). Continuous 

line: impact detected; dashed line: no detection 

The algorithm obtains an average detection performance of over 98% in all the 

four event cases. Figure 48 depicts the confusion matrices for simulations 2 and 4 

as defined in Table 13. For each matrix, the Output Class represents the decision 

taken by the algorithm, while the Target Class is the correct decision for each image. 

Class 1 represents the impact case, and Class 2 represents the non-impact case. The 

green quadrants represent images correctly classified. The red quadrants represent 

false positives and false negatives. Grey boxes show the classification performance 

for each class. The overall performance of the algorithm is given in the blue boxes. 
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Figure 48 Confusion matrices for one body and two bodies simulations 

with disturbances. Class 1 represents the impact event, Class 2 represents the 

no-impact images 

6.6.3 Plume event detection 

The plume ED problem was constituted by a dataset of 1600 images used during 

training, divided in the following way: 98% for training, 1% for validation and 1% 

for testing. An additional dataset composed of 400 images was used for testing, and 

the ANN performance was measured on the test dataset. Figure 49 shows the 

confusion matrix for the 67P plume event. 

 
Figure 49 Confusion matrix for plume event on comet 67P 
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The algorithm has then been validated by evaluating its performance on real 

images taken by the Rosetta mission, showing plume events as experienced by the 

spacecraft. The detection of the events was successful, as seen in Figure 50. 

 

Figure 50 Detection of plume events: real images taken by the Rosetta 

mission 

6.6.4 Review 

The applications presented in this chapter provide clear examples of both the 

usefulness and the applicability of NN in the domain of event detection for space 

applications. On the other hand, the decision on which architecture is the most 

efficient and effective in performing different tasks needs to be object of further, 

deeper, investigation. Despite this, some insights can be already drawn from the 

research performed, and this can help towards the objective of pre-selecting NN 

architectures in relation with the problem to be solved. Finally, it has to be noted 

that the purpose of this thesis was mainly to perform feasibility analysis: for this 

reason, a comparison between the detection capabilities of NN and other ML 

algorithms needs to be performed. If the usefulness and performances of heavy 

architectures (such as Convolutional NN used to solve image classification 

problems) is well established, the research on NN for space applications, and in 

particular for embedded ones, needs to be expanded to reach a similar level of 

heritage. 

The following table summarizes the capabilities of ANN to perform Event 

Detection. 
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Table 14 Summary of FF ANN algorithms characteristics when applied to 

ED. 

Review 

Parameter 

Comments 

Benefits Training-defined Behaviour – The behaviour of the system 
can be implemented to match the desired outcomes by training, 
and not by hard-coded programming. 

Robustness – The algorithm is, in most cases, inherently 
robust to disturbances, provided a correct training has been 
performed. The complexity of performing a correct training 
with respect to defining a robust algorithm in a theoretical way 
is reduced. 

Limitations Architecture – The size and complexity of each element of 
the dataset requires different solutions in the selection of the 
algorithm architecture. Event detection on an image of 
100x100 pixels can be performed with small FF networks. 
Higher resolutions images require the use of other types of 
ANN (e.g. Convolutional NN). 

Applicability Scope – FF ANN are suitable for pattern recognition. 
Applications such as sensor monitoring (where a time-
dependent behaviour is present) are better solved with other 
ANN architectures (e.g. NARX). 



 

Chapter 7 

Case Study: Failure Detection with 

Expert Systems 

7.1 Background 

The topic of failure detection on Small Satellites is certainly vast and would 

require a complete PhD thesis on its own. This chapter deals with the problem of 

detecting failures on components of the AOCS by using a domain of AI called 

Expert Systems (ES). In particular, the specific category of ES here presented is 

that of the Fuzzy Logics, and the actuator to which the algorithm is applied are the 

Magnetic Torquers (MT). The presented case study can be considered a feasibility 

study, but already demonstrates two results: 

• The Fuzzy Logics are powerful and can be configured to perform failure 

detection 

• The expert knowledge is effectively represented by the FL and the 

functioning of the algorithm represents the reasoning that the expert 

would perform 

7.2 Reference Mission 

The reference mission for the presented Case Study is a nanosatellite mission 

developed by the CubeSat Team at Politecnico di Torino, called 3-STAR. The main 

objective of this program is to provide educational and hands-on experience to the 
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numerous students participating in the team. The technological objective of the 

mission will be performing stereoscopy experiments from space, possibly testing 

and validating inspection algorithms to be later reused in other nanosatellites 

missions. In addition to the main mission objectives, 3-STAR will be used as a 

validation platform for different technologies currently being developed in the 

team’s facilities. Among these, Artificial Intelligence (AI) based Autonomous 

Command and Data Handling System (A-C&DH) and Attitude Determination and 

Control System (A-ADCS) will be included [96]. The satellite is envisioned to be 

a 3U CubeSat, featuring a commercial bus platform developed and sold by one of 

the major companies (Tyvak Int., Clyde Space, GomSpace, and so on) and will 

likely feature as payload one or more cameras, and an in-house developed 

COMSYS board, either as main telecommunication unit or as a redundant one with 

respect to the platform one. As of June 2017, the mission and preliminary system 

design has just begun, thanks to the new students of the CubeSat Team. No 

additional information is available at the moment. Given the direction of FSW 

development taken in the past years, the FSW will be developed in Python, with 

additional libraries developed in C/C++ for performance reasons. 

7.3 Fuzzy Logics Application 

The FL application developed for this case study aims at detecting the failures of a 

specific set of actuators (the Magnetic Torquers) of a 3U CubeSat spacecraft. The 

purpose of the application is to demonstrate the feasibility, and similar detections 

can be performed on other sensors or actuators of a spacecraft, provided the failures 

to be detected are modelled and their behaviour is known. Generally speaking, it is 

possible to develop additional rules for unknown behaviours. 

7.3.1 Magnetic Torquer Modelling 

Magnetic Torquers are a very common and reliable actuator used to control attitude 

for LEO CubeSats as they are cheap, they consume a low amount of power and are 

typically low weight. They are typically employed in two configurations: coil 

(Figure 51) and rod (Figure 52). 
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Figure 51 Magnetic torquer example: coil configuration 

 

Figure 52 Magnetic torquer example: rod configuration 

They exploit the interaction between the Earth Magnetic Field (EMF) and the 

magnetic field generated by the MT. 
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Figure 53 Representation of the resultant force due to magnetic field 

interaction 

The interaction between the EMF and the magnetic dipole moment generates 

the control torque (Figure 53), and can be modelled as follows: 


������� � �� � �� 

where Tcontrol is the 3x1 control torque vector, mb is the 3x1 magnetic torque 

dipole moment and Bb is the 3x1 EMF vector expressed in body axis. 

It is possible to evaluate the dipole moment m as 

� � ����� 

where N is the number of coils, I the current flowing in them, A the area 

inscribed by the coils and na the unit vector perpendicular to the plane of the coils. 

The main specification for a MT is usually the maximum dipole moment, which is 

a function of the number of coils, the amount and direction of the current that flows 

into the coils, and the area of the MT. 

7.4 Failure Modelling 

In order to design a Failure Detection algorithm for a certain application, the 

dynamics and behaviour need to be available during the design. Available is an 

intended vague term, because of the different approaches that can be taken, 

depending on whether the application involves NN or FL or other AI algorithms. In 

particular: 

• The dynamics of the failures need to be known and modelled in order 

to define the rules for a FL application 
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• The dynamics of the failures need to be reproducible in order to 

correctly train a NN application 

The two approaches can overlap, and in general it is considerable as a requisite 

to have the data concerning some example of the failures to deal with detection 

applications. 

Despite the MT being a reliable hardware, they can be subject of failures and 

these events have very peculiar and recognizable characteristics. MT can fail in four 

different ways (Figure 54): 

• Float: the output of the failure is zero 

������ � 0 

 

• Hard-Over (HO): the output assumes a ramp characteristic, until 

saturation value is reached 

��� �  !"�#   
%"&'!"&�(�

0 < & < &*��+���,��& ≥ &*��+���,��
 

 

• Lock-in-Place (LIP): the output is stuck to a value different than zero 

�./0 � 1(�%&"& 

 

• Loss of Efficiency (LOE): the behaviour remains similar to unaffected 

MT, but a lower efficiency causes the output to be reduced 

�.�2 � � ∙ �45*,�54 , 0 < � < 1 
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Figure 54 Failure modelling, output of the control command to the MT. 

Clock-wise, starting from top-left: float, lock-in-place, hard-over, loss of 

efficiency 

The simulation of the failures was performed by setting the actuator output to 

match the characteristic failure. Several simulations were run, with a random 

initialization of the characteristic variables in order to ensure generality of the 

applied approaches. 

7.5 Rules definition 

As shown in 5.7, FL work by extending the classical logic in the continuous 

interval. To perform this, a set of rules and sets of input and output variables must 

be defined. One of the most striking characteristics of an AI application, is the fact 

that its behaviour can be defined, or taught, without actually coding it in the 

application. For ES, the knowledge of the expert involved in the design is translated 

into executable code. 

7.5.1 Input and Output Variables and their membership functions 

Five input variables were defined in the application, and are intrinsic variables that 

characterize the problem under analysis: 

• MT current: the value of the current that flows into the MT. This value 

is straightforward to obtain, as the Analog-to-Digital Converter (ADC) 

current sensor is a common component 
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• Derivative of MT current: the value of the derivative of the MT current. 

Another straightforward value to obtain, as it can be simply obtained by 

sampling two consecutive times the current value 

• Double Derivative of MT current: the double derivative of the MT 

current. As with the current derivative, to obtain this value two 

consecutive measures of the derivative of the current are needed 

• Error: the difference between the commanded value and the measured 

value. Another easily obtainable value, as the commanded value is 

known (the controller is responsible of commanding the current value) 

and the measured value is known (by the ADC sensor) 

• Estimated LOE: the value of the estimated loss of efficiency times the 

commanded current value minus the measured current value. 

7%&��"&78 9�: � � ∗ <��==��454 − <=5�*+�54 

This is the less simple variable to obtain: k can be iteratively estimated 

by comparing the commanded value to the measured one. If, for 

example the ratio, is constant, the Estimated LOE can be obtained. 

These five variables are able, along with the output variables and the 

corresponding rules, to define an Expert System able to correctly identify which 

type of failure is present on the torquers. 

 

Figure 55 Input variables and their membership functions 

For the presented five variables, appropriate membership functions (Figure 55) 

must be defined for the evaluation of the input variables. In general, for this 

application, some soft constraints can be guessed by the domain expert, by iterative 

reasoning about the dynamics of the problem. Output variables, for this particular 

application, do not need to be de-fuzzified (Figure 56). 
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Figure 56 Output variables: de-fuzzification is not needed, as the failure 

identifier is an integer number 

The following membership rules have been defined: 

• current: negative (less than -0.01), zero (between -0.01 and 0.01), 

positive (greater than 0.01) (Figure 57) 

• current derivative: monitored only when zero (between -0.00003 and 

0.00003) 

• error: monitored only when zero (between -0.2 and 0.2) 

• current second derivative: monitored only when zero (between -0.01 

and 0.01) 

• estimated LOE: monitored only when zero (between -0.00002 and 

0.00002) 

 

Figure 57 Membership function for the current input variable 

7.5.2 Rules  

The following paragraphs emulate a possible way to define the membership 

functions and the subsequent rules. 

For a Hard-Over failure, that is constituted by a linear trend of the current value, 

the derivative of the current is constant. Since each HO failure can be characterized 

by a different constant value of the derivative, this particular variable is not 
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meaningful. Continuing, since the derivative is constant, the second derivative must 

be zero. This reasoning is meaningful: it means that the fuzzy set will have to 

monitor the second derivative and to be able to distinguish between a zero and a 

non-zero value. A possible rule can also be defined: if the second derivative is not 

zero, then the failure can probably be a LOE (where the current value and their 

derivative is changing over time). 

After this reasoning, the Hard-Over behaviour is still undefined: the second 

derivative must be zero, but this is not sufficient to correctly identify the HO. 

Another rule defined for the HO is obtained by checking that the value of the current 

derivative is not zero. If it is zero, then we would be in presence of a Lock in Place 

failure (derivative being zero means the output current is constant). 

Continuing with these types of reasoning lead to a set of rules and a set of 

membership functions that completely represent the expert knowledge on the 

problem in a computational form. 

With just a set of five rules, the complete set of failures of the MT can be 

detected. The rules are: 

• if the current is zero AND the current derivative is zero AND the error 

is NOT zero AND the estimated LOE is not zero then failure is float 

• if current is NOT zero AND the current derivative is zero AND the 

error is NOT zero AND the estimated LOE is NOT zero then the failure 

is lock in place 

• if current derivative is NOT zero AND the error is NOT zero AND the 

current second derivative is zero AND the estimated LOE is NOT zero 

then failure is hard-over 

• if the error is NOT zero AND estimated LOE is zero then failure is loss 

of efficiency 

• if the error is zero then NO failure is present 

It has to be noted that, for this specific case study, the number and the 

complexity of the rules is low: for different applications, more complex and more 

numerous rules can be expected. 
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7.6 Results 

At each sampling step of the on-board software, it is possible to obtain all the five 

input variables (except for the starting steps where no derivatives exist), and at each 

step it is possible to evaluate all the defined rules in the system (Figure 58). 

 

Figure 58 Rule evaluation and failure detection: hard-over detected 

Simulations that iterate the appearance of failures in the system (injecting the 

failure by overring the output of the current sensor), and the behaviour of the 

detection with the FL has been evaluated. The system is able to correctly identify 

all failures. Instabilities are present in the final output and they are due to the fact 

that sometimes, for certain values and certain types of failures, the commanded 

value is coincident with the measured (faulty) one. This causes instantaneous shifts 

to the status of no failure, and therefore instabilities in the detection. However, this 

is not an issue, as the detection of a failure can take place in several steps, and 

therefore basic filtering can be applied. A typical FSW runs at a speed of 2Hz or 

more, therefore commanding a different value of the current at each step: filtering 

over a period of a couple of seconds does not alter the quality of the detection and 

allows to remove the instabilities due to the phenomenon described earlier (Figure 

59). 

 

Figure 59 Output of the Expert System: from the left, unfiltered, basic and 

medium filters applied. Each step represents a different value of the output 

variables, therefore represents a different failure detected 
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7.6.1 Review 

The applications presented in this chapter deal with a well-known domain of 

spacecraft engineering: failure detection. Several algorithms categories can be used 

to solve the problem of detecting failures in actuators and sensors. Neural Networks 

are an example of algorithm category that can be used. A first conclusion that can 

be drawn when comparing NN with ES, is the increased computational cost of NN. 

The following table summarizes the capabilities of Expert Systems to perform 

Failure Detection. 

Table 15 Summary of ES algorithms characteristics when applied to FDIR 

Review 

Parameter 

Comments 

Benefits Knowledge Implementation – The knowledge transfer from 
an operator to the program can be performed in a structured 
way, without hard-coded programming of the behaviour of the 
system. 

Performances – Simple ES obtain high detection rates even for 
complex problems such as failure detection. 

Computational Costs – With respect to other algorithm 
domains (such as ANN), ES are able to reach high detection 
rates by requiring considerably smaller computational costs. 

Limitations Scalability – ES implemented via FL are ideal for small 
problems, such as actuator monitoring. Increasing the 
architecture of the detection problem, the number of rules can 
considerably increase. Other types of ES need to be considered 
in this case. 

Applicability Scope - Applicability of ES is vast, and applications are 
appearing in many engineering domains. 





 

Chapter 8 

Case Study: Tradespace 

Exploration with Genetic 

Algorithms 

8.1 Background 

The purpose of multi-attribute tradespace exploration is to capture decision-

makers preferences and use them to generate and evaluate a multitude of system 

designs, while providing a common metric described in a stakeholder friendly 

language. To achieve this, the Multi Attribute Utility Theory (MAUT) is employed 

for the aggregation of the preferences from all the stakeholders. MAUT is widely 

used in the fields of economics, decision analysis, and operational research. It 

postulates that people make decisions based on value estimates of personally-

chosen reference outcomes. Decision-makers interpret each outcome in terms of 

some internal reflected value, or utility, and they act in order to maximize it. In the 

case of multiple attributes, an elegant and simple extension of the single attribute 

utility process can be used to calculate the overall utility of multiple attributes and 

their utility functions [97], [98]. There are two key assumptions for using this 

approach: 

• Preferential independence, that means the ranking preference of a pair 

of attributes is independent with respect to the other ones 
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• Utility independence, or the independence of preference intensity, that 

means that the “shape” (shown in Figure 60) of the utility function of a 

single attribute is independent of the value of the other attributes.  

 

Figure 60 A few examples of utility function. Credits MIT 

The non-linear behaviour of the utility functions is strongly related to the 

uncertainties of the outcomes of the decision process. This is caused by the non-

linear evaluation of benefits and by the experts’ attitude with respect to risky 

scenarios. If the above assumptions are satisfied, then the multiplicative utility 

function can be used to aggregate the single attribute utility functions into a 

combined function according to 

?@�A� � B ?CD@D�AD� E F
G

DHF
 (1) 

• I is the solution to I E 1 � ∏ I�, E 1  K,HL   and −1 < I < 1 I M 0 

• N�O�, N,�O/� are the multi-attribute and single attribute utility 

functions, respectively. 

• N is the number of attributes. 

• �, is the multi-attribute scaling factor from the utility interview 

The values of each ki give a good indication of the importance of each attribute 

(i.e. a kind of weighted ranking) and are bounded between 0 and 1. The scalar K is 

a normalization constant that ensures the multi-attribute utility function has a zero 

to one scale [99]. Despite the attractiveness of an axiomatically-based decision 

model, empirical evidence shows that people do not obey expected utility theory in 

daily decision-making due to systematic biases in their thinking. For this reason, 

the logic flow of the method involves the definition of stakeholder attributes, 
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context variables and design variables [100]. Once those elements are defined is 

possible to develop system performance and value models, aiming to evaluate the 

multi attribute utility and the costs involved in the project life cycle. 

When applying the MAUT to a particular problem, the effects on the utility 

given by the different attributes are highlighted. In this case, a Multi Attribute 

Tradespace Exploration (MATE) analysis is obtained. Given the complexity and 

the variety of different possible choices during the conceptual phase of a space 

mission, this technique is particularly suitable for assuring that all the various 

options have been considered, including programmatic and technical aspects, such 

as manufacturability, assembly, operations, and physical architecture choices. 

 

Figure 61 MATE logic flow 

Once all the aspects involved in the MATE are defined, it is possible to develop 

a code which automatically explores the tradespace and gives as final output the 

best choices with respect to all the involved stakeholders needs (Figure 61). Several 

options exist to explore the tradespace: depending on the analysis models and 

design variables, a specific exploration methodology may be required. 

In literature, several applicable exploration methodologies have been studied: 

complete exploration of all the problem solutions, optimization with Simulated 

Annealing techniques [101], Normal-Boundary Intersection [102], Nelder-Mead 

Simplex [103], Artificial Intelligence with Particle Swarm Optimization [104], and 

Genetic Algorithms [105]. It is evident that a bigger size of the tradespace requires 

a guided exploration to avoid excessive computational effort and avoid any loss of 

solution candidates. 
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8.2 Reference Mission 

The trade-off capabilities of the MATE methodology and the exploration powers 

of GA show very promising results when applied to the design of CubeSat missions, 

especially thanks to the peculiarities of the CubeSat standardized design. The 

reference mission considered in the research presented consists of one or more 

CubeSats employed as secondary payloads of a flagship mission. They will be 

deployed during mission operations in situ. The objectives of the CubeSat mission 

are to provide scientific support to the mothership, either by repeating one or more 

of the main spacecraft's measurements, or by supporting the science goals by 

performing additional measurements. In addition, the CubeSats can also perform 

technological demonstration. Since the CubeSats are secondary payloads, 

constraints imposed by the flagship mission have been considered: maximum 

occupied volume, maximum single satellite size and weight, specified interfaces 

and operational requirements. A space mission concept that can be cited as a 

reference is the CubeSat Opportunity Payload Intersatellite Network Sensor 

(COPINS) mission [106]. The mission is the same as that considered in Chapter 

6.2. 

When considering the conceptual design of similar missions, it is evident that 

several different architectures and systems designs are possible, and they can all 

potentially satisfy the stakeholders of the mission. For example, a CubeSat mission 

composed of 6 single unit CubeSats could provide similar results to a mission 

composed of two 3-unit CubeSats, depending on the design. This is because the 

only volume requirement considered in the case study is that the CubeSats shall 

occupy a total of 6 units, with dimensions of a single satellite up to 3 units. The 

same concept applies to other characteristics of the mission and the system, such as 

the mission timeline, the scenario, the mission phases, operation strategies and 

more. It is evident how a methodological approach should be used in exploring all 

the different design choices, in order to come up with a mission baseline that 

provides the best utility and biggest contribution to the results of the main mission. 

For this reason, a Matlab(®)/Simulink(®) algorithm has been designed to 

explore all the different mission architectures and concepts of operations that can 

be generated. In particular, the solutions generated by the algorithm should 

represent as closely as possible a complete mission concept. With this objective in 

mind, the computational problem becomes complex, due to the presence of a high 

number of design variables and the selection of components available. The design 
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vector dimension can reach sizes of more than 30 design variables, adding up to a 

solution space in the order of billions of different architectures. It is therefore 

unfeasible to evaluate all the possible solutions [107]. 

8.3 Genetic Algorithms for Tradespace Exploration 

In real world applications, most of the optimization problems involve more than 

one objective to be optimized. These objectives are often conflicting, i.e., maximize 

performance, minimize cost and maximize reliability. When this happens, a single 

extreme solution would not necessarily satisfy all the objective functions and the 

optimal solution for one objective may not be the best solution for other objectives. 

Therefore, different solutions will produce trade-offs between objectives and a set 

of solutions is required to represent the optimal solutions group. The trade-off curve 

reveals that considering the extreme optimal of one objective (for example, costs) 

might require a compromise in other objectives (for example, spacecraft reliability). 

The solution to this problem can be found among the pareto-optimals. A pareto-

optimal is an optimal solution with respect to all objectives that cannot be improved 

in any objective without worsening another one. The set of all feasible solutions 

that are non-dominated by any other solution is called the pareto-optimal or non-

dominated set; the values of objective functions related to each solution of a pareto-

optimal set, evaluated in the objective space, is called pareto-front. 

8.3.1 Intelligent exploration 

In complex problems, such as the conceptual design of a space mission can be, the 

number of solutions that form the design space can reach. It is therefore mandatory 

to exploit structured and efficient ways to explore the design space and evaluate the 

solutions, in order to keep the computational cost and the exploration duration 

acceptable. Depending on how the problem is constructed in the first place, several 

different exploration methods exist, that can move through the space both in case 

of a continuous space and in the case of a discrete one. Examples of these methods 

can be genetic algorithms for discrete problems, or simulated annealing for 

continuous ones [73], [108], [109]. The present work explores the use of genetic 

algorithms (GA), performing an exploration type called guided random search 

[110]. These types of algorithms are inspired by the selection process of nature, 

which causes the stronger individuals to survive in a competitive environment. In 

nature, each member of a population competes for food, water and territory, and 

also strives for attracting a mate. It is obvious that the stronger individuals have a 

better chance for reproduction and creating offspring, while the weaker performers 
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have lesser chances of producing offspring. Consequently, the ratio of the strong or 

fit individuals will increase in the population, and overall, the average fitness of the 

population will evolve over time. Offspring created by two fit individuals (parents) 

has a potential to have a better fitness compared to both parents: the resulting 

individual is called super-fit offspring. By this principle, the initial population 

evolves to a better suited population to their environment in each generation [111].  

8.3.2 Population dynamics 

In genetic algorithms, each solution of the problem is represented by a set of 

parameters known as genes, and these are joined together in a genome. A genome, 

which describes an individual, evolves through iterations called generations. The 

dynamics of each individual inside the population are ruled by a function that 

evaluates how well the considered individual performs in the environment it is in. 

The mentioned function is called fitness or objective function. Finally, during the 

various iterations, a selection of the parents for reproduction and recombination is 

applied [112]. The main objective of selection operator is to pick the fit solutions 

and eliminate the weak individuals. In the reproduction phase, the two parents 

identified by the selection operator recombine to create one or more offspring with 

the crossover operator. There are several different crossover operators in the 

literature, although the underlying mechanics is similar: selecting two strings 

chromosomes from the mating pool and exchanging some portion of these two 

strings in order to create new individuals. The purpose of this operator is to perform 

a rapid exploration of the search space. Another operator that can be applied is the 

mutation operator. It is applied to individual solutions after reproduction: one or 

more genes are randomly changed in an individual, after a selection has been 

applied. The mutation operator usually affects small portions of the population. The 

aim of this operator is to maintain the diversity of the population and to increase the 

possibility of finding the global optimum. To sum up, the selection operator selects 

and maintains the good solutions; the crossover recombines the fit solutions to 

create fitter offspring and the mutation operator randomly alters one or more genes 

in the offspring with the intent of maintain the evolution dynamic. The next section 

will cover in details the problem setup: in particular, the characteristics of the 

individuals will be described, highlighting how these form the Design Vector (DV), 

and how the genetics algorithms are employed to explore the tradespace. 
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8.4 Algorithm Design 

8.4.1 Architecture 

 

Figure 62 The implemented algorithm consists in combining Genetic 

Algorithms with Multi-Attribute Tradespace Exploration. Solution 

generation, requirements management and post-processing design and 

visualization are also performed. 

Figure 62 shows the architecture of the implemented solution. At each algorithm 

iteration, a population of individuals is selected and evaluated. As specified earlier, 

each individual carries information concerning mission architecture aspects, system 

design and components. Once the current population is generated, the fitness of 

each individual is evaluated: this can be thought as evaluating the utility of the 

corresponding mission concept. During the utility evaluation, high-level 

requirements are also verified, and the individuals that violate any requirements are 

penalized, receiving an utility score of zero. By design, GA select the most fit 

individuals by using a tournament selection: this process guarantees the correct 

elimination of the individual that violates the requirements and of the unfit 

individuals. Finally, once the optimization has selected the most fit individuals, 

additional post-processing algorithms are executed, to finalize the design and to 

generate data products comparable with those generated during a CD session by the 

domain experts. 
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8.4.2 The Design Vector 

The DV is the vector that describes a specific solution and that contains all the 

information needed to define a particular mission concept. It is composed of 36 

variables that store information about several aspects of mission architecture and 

system design. 

The DV structure was defined by analysing the mission goals and by selecting 

both mission and system technical domains that are critical during the preliminary 

design of a space mission. 

Table 16 Design Vector attributes categories 

Design Vector 

Categories 

Parameters Equipment Number of 

Parameters 

Autonomy Goal definition, event reaction, 
data selection, knowledge from 
measurements, failure 
detection, isolation and 
recovery 

- 6 

Communication 
Architecture 

Percentage of data rate used, 
number of antennae, Earth 
communication 

Radio, 
Antenna 

5 

On Board 
Processing 

Command and Data Handling 
architecture, radiation 
tolerance 

Processor 
Family 

3 

Primary Payload Camera technology, spatial 
resolution, optics volume, 
maximum frames per second, 
number of sensors 

Camera 6 

Secondary 
Payload 

- Any in the 
databases 

1 
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Guidance, 
Navigation, 
Control 

Trajectory planning, attitude 
determination performance, 
attitude control performance, 
position determination 
performance, position control 
performance 

Sensors and 
actuators 

7 

Data Acquisition Data acquisition strategy - 1 

Operations Lifetime, 
mothership/daughtership 
interactions 

- 2 

Orbit 
Architecture 

Altitude, inclination, formation 
flying, constellation 

- 4 

CubeSat 
Number 

Number of CubeSats 
considered 

- 1 

Objectives 
Accomplished 

Each scientific / technological 
objectives 

- n 

 

Table 16 shows a summary of all the categories that were included in the DV. 

The first column shows the category, while the second and third one list all the 

different parameters that were included in each category. Finally, the last column 

condenses the information in a number, which represents the total number of 

parameters for each category. 

8.4.3 The Algorithm 

The key part of the research relies on the algorithm that, from the definition of the 

DV, creates each solution during the exploration. 

The approach used involves GA to solve an integer problem: each parameter in 

the DV is associated to an integer that represents the number of alternatives for the 

specified parameter. The number of possible alternatives is defined by each domain 

expert. For example, the event reaction parameter in the Autonomy category has a 

value of 3 associated with it: this means it can assume three different configurations, 
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as specified by the Flight Software Engineer: no event reaction is planned; 

meaningful events are detected and then mission control is informed; meaningful 

events are detected and mission re-planning is executed. 

For the parameters in the third column, the approach is similar but each 

parameter corresponds directly to an equipment category. For this, a CubeSat 

component database was implemented. Four mandatory parameters were included 

for each component in the database: mass, power, cost and size. Other parameters 

were added, and are especially useful since they can be later used to verify the 

compliance to the requirements, or to compute the fitness value. For example, the 

Camera parameter can assume a value from 1 to 4 that corresponds to a specific 

COTS equipment found in the database: a CMOS camera; a basic spectrometer; a 

high-performance spectrometer; a CCD camera. 

Custom population creation, cross-over and mutation functions were designed 

to support the presented setup. Creation function initializes every individual of the 

population, picking a random integer value constrained from 1 to the maximum 

value for each DV variable. Single point crossover has been chosen as crossover 

function. Mutation function affects only a small number of individuals in the 

generation, and for these, only one gene is re-initialized to a random value, as 

constrained by the DV. 

Lastly, the fitness of each individual of the population is computed using (1). 

8.4.4 The optimizer 

As introduced earlier, genetic algorithms are the key technology used to explore the 

tradespace. The configuration of the algorithm was as follows: initial population 

was set at 540 individuals, crossover fraction was set at 0.95 (meaning that to the 

remaining 0.05 the mutation operator was applied) and the elite population fraction 

was set at 0.35 (Figure 63). The selection was made with tournaments. Infeasible 

solutions, for example those that violated the requirements, were discarded and the 

population was re-initialized randomly for the removed individuals. 
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Figure 63 Optimization process: evolution in time of the population. The 

improvement of the utility with the increase of the generation number is 

shown. 

Several configurations have been tried, since optimal initial configurations for 

GA are highly dependent on the problem analysed. The details are summarized in 

Table 17: the table shows both the final values selected for the simulations, and the 

ranges that were used when defining the optimal values. 

 

Table 17 - Genetic Algorithms configuration parameters 

Configuration parameters Value Explored values 

Population size 540 individuals 180, 360, 540, 720, 
1000 

Crossover fraction 0.95 0.75, 0.9, 0.95, 0.99, 
1 

Mutation fraction 1 – crossover fr. 0, 0.01, 0.05, 0.1, 
0.25 
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Elite population fraction 

(paretofraction) 
0.35 0.1, 0.35, 0.5 

Selection Tournament - 

Requirement violation approach Individual 
removal 

- 

 

Population size has been chosen to be 15 times the number of variables in the 

DV, as a balance between smaller populations (increase in the convergence speed) 

and bigger ones (higher chances of having more optimal solutions in the initial 

population) [113]. Crossover fraction was chosen at 0.95: this choice resulted in a 

greater effect of the reproduction dynamics with respect to the mutation ones. 

Mutation fraction was chosen to be 0.05, thus applying the mutation function only 

to the population that did not reproduce. Elite population was set at 0.35, meaning 

that the 35% of the new generation is formed by individuals picked from the old 

generation. The selected value ensures a balance between effectiveness of the 

search (lower elite population fractions) and survival of fit individuals (higher elite 

population fractions). 

8.5 Results 

The investigation on methodologies to improve and automate the space mission and 

spacecraft design is a vast effort, branching out into many fields of science and 

engineering. The proposed research obtains several important results towards the 

design of space missions that provide higher utility to the stakeholders, by being 

more optimized and not bound to the stagnancy of conservative mission design 

approaches. These improvements are obtained through innovations in three aspects 

of the mission design: 

• exploring the alternative concepts thoroughly and more efficiently 

thanks to the MATE and GA approach 

• considering the availability of certain highly standardized components 

thanks to the component database included in the algorithm architecture 

• ensuring effective final solutions that comply with high-level 

requirements 
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Furthermore, domain experts and mission designers obtain significant 

improvement to the mission design process, thanks to the decision-making support 

and the post-processing algorithms that emulate CD sessions. 

8.5.1 Efficient tradespace exploration  

Depending on the dimension of the design vector and the ranges of the considered 

variables, the number of solutions forming the tradespace can well surpass the order 

of billions. In the presented case, 36 variables add up to more than 1017 different 

solutions. When, for each solution, a utility function must be evaluated, it is evident 

that the problem becomes computationally expensive. 

The use of guided random search strategies, implemented with GA, allows the 

exploration and the discovery of the optimal solutions without evaluating the fitness 

function for all the individuals, but only for a restricted set. Figure 64 shows several 

plots of a limited set of the solution space for this problem, that give a glimpse of 

the shape of the whole tradespace. As shown in the figure, the MATE and GA 

implementation optimizes the search to define the pareto front for the analysed 

problem. 

 

Figure 64 Solution spaces (100k points): from the left, cost-size-utility, size-

utility and cost-utility plots 

 

8.5.2 Impact of the CubeSat database integration 

The integration of a component database in the architecture infuses the obtained 

solutions with information regarding parameters such as power consumption, sizes, 

performances and so on. The knowledge on these parameters would traditionally be 

acquired later during the design process. 
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Figure 65 3U internal configuration 

With this approach, instead, as the GA creates new individuals, it defines specific 

hardware configurations. This enables interesting analysis once the solution is 

selected in the final iteration. The possibilities opened by this implementation are 

numerous, and here the most promising ones are reported: 

• mission and system budget definition (mass, link, power, delta-V) 

thanks to the definition of the component list and mission architecture 

• optimization of the internal configuration: the component list includes 

information on volumes and specific component requirements, such as 

positioning inside the spacecraft (Figure 65 shows a 3U CubeSat 

configuration obtained by the algorithm) 

• detailed design: by defining a power budget and a list of operative 

modes, the solar panel and battery sizing can be automatically computed 

(Figure 66 shows examples of solar panel design) 

8.5.3 Requirements compliance 

Thanks to the capability of the GA optimization to handle DV composed by a high 

number of variables, it is possible to increase the number of variables representing 

mission and system level aspects, directly matching them with high-level mission 

and system requirements. This approach ensures that the corresponding design 

produced by the algorithm is compliant with the requirements specified. This is 

done by setting the solution individual fitness value to zero if the one or more 
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requirement is not met. In this way, selection dynamics will remove the unwanted 

solution. 

 

Figure 66 Solar panels configuration: example outputs 

Another important but less evident result of enforced requirement compliancy 

is related to the biased attitude of human experts towards computer generated 

solutions, especially when artificial intelligence is involved. In this way, the 

obtained solutions are more likely to be accepted by the engineers involved in the 

early design phase. 

8.5.4 Algorithm performance comparisons 

Table 18 - Algorithm performance comparison 

 

Algorithm Problem Size

Considered 

Time 

Complexity 

Average 

Execution 

Time 

Pareto 

Front 

Found 

Monte Carlo 8*1016 O(N*f) Undefined No 

GA 8*1016 O(n*G*f) 1 hour Yes 

Non-Guided 

Exploration 
8*1016 O(N*f) 1.8*1010 hours Yes  

CD Inherently 
smaller 

- 1-2 weeks No 



140 Case Study: Tradespace Exploration with Genetic Algorithms 

 
The application of MATE analysis to engineering problems requires the 

implementation of an explorer that navigates the solution space, and depending on 

the dimension of the problem and the explorer design, obtaining the pareto front 

can be expensive, both from a computational cost and time perspective. Table 18 

presents a comparison with other methods used to explore a tradespace. The 

algorithms explored are: Monte Carlo method, GA, Non-Guided exploration 

(where every single solution of the tradespace is evaluated) and CD. The CD 

approach is reported for additional comparison with traditional methodologies for 

space mission preliminary design. The tradespace size is also presented to offer a 

comprehensive view of the comparison. In particular, for CD sessions, the solution 

space defined by experts is smaller than the one implemented on a computer 

simulation: considered solutions are biased towards previous experience, 

preferences of the experts, adversity towards innovation and bias towards safer 

solutions. Moreover, not only the generation of a proper tradespace is challenging 

for a human expert, but this space will be biased towards the preferences of the 

expert himself, instead of reflecting the stakeholders’ goals. Time Complexity 

column describes the complexity of the algorithm from an execution time 

perspective, using the common Big O representation. N represents the solution 

space size, f the complexity of the fitness function, n the max number of generations 

for the GA, and G the GA population size. 
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8.5.5 Review 

The application presented in this chapter explores the concept of autonomy in a 

different way: the use of AI to solve the problem of preliminary mission design, 

and in particular to quickly and efficiently explore the set of possible alternatives 

to mission design that can be generated from the stakeholder analysis. In addition, 

a clear benefit of implementing AI in this type of problems, is that the solutions are 

generated without traditional biases that would affect human designers. The 

evaluation of solutions is also performed considerably quicker with respect to 

traditional preliminary design generation. The following table summarizes the 

capabilities of GA to perform Multi-Attribute Tradespace Exploration. 

Table 19 Summary of GA algorithms characteristics when applied to 

MATE 

Review 

Parameter 

Comments 

Benefits Unbiased exploration - solutions are discovered and analysed 
without interference with previous knowledge or 
methodologies, even those that would be hardly detectable by 
human operators. 

Analysis speed – solutions are processed and analysed much 
faster with respect to a human operator. 

Traceability – solutions are directly originated and evaluated 
from the stakeholders’ needs 

Limitations Discreet optimization – solutions are defined as vectors of 
integers: in this perspective, dealing with continuous problems 
requires a modified approach 

Applicability Scope – GA as engine for performing MATE can be employed 
not just in the space mission analysis domain, but in other fields 
of engineering. 





 

Chapter 9  

Conclusions 

The thesis presents the results of three years of PhD research on Mission 

Autonomy for Small Satellite missions. In particular, the key focus of the research 

was exploring the capabilities and potentialities of Artificial Intelligence to 

innovate and improve the autonomy level of the future missions, both interplanetary 

and Earth orbiting. Several reasons motivate the selection of the domain, the 

methods, and the case studies, and they can be understood considering the 

background of the research group this research was carried out in. 

The domain: Small Satellites 

CubeSats were born in 1999 as an educational tool, to ease the process with 

which students could acquire spacecraft engineering experience and perform space-

related practical research. Now, in 2017, after almost 20 years, CubeSats have 

definitely evolved towards becoming a fully capable space systems category: 

scientific, technological and innovative missions are now designed with CubeSats 

playing the main role. Small Satellites, the bigger counterpart of CubeSats, have 

somehow lead the way, thanks to an easier transition from the world of flagship, 

expensive and performant spacecraft, to the world of miniaturized, multiple and 

flexible ones. After 20 years, the overall picture of the health and status of the 

technology is clear: spectacular adoption rates, world-wide participation with 

spacecraft developed and launched by many countries (of some of them, CubeSats 

represented the first and only affordable and feasible way to start a national space 

program). Small Satellites have, from the beginning, always been characterized by 
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solid organizations of the industries involved in their design and development, 

probably thanks to an easier adaptation of standard procedures and methods to the 

smaller class of spacecraft. CubeSats, on the other hand, have experienced tough 

problems due to inherently less experienced players involved: reduced reliability, 

lower-quality components used, more agile and less controlled development 

processes, are all causes of the sustained failure rates for this type of technology. 

Moreover, several problematic points have, since the beginning, affected the 

spacecraft category and impeded a complete adoption: the slow evolution and 

improvement of telecommunication systems, propulsion systems and overall 

materials and components have played a big role in stopping some interesting 

concepts from becoming a reality in the early years. 

In the last decade, the panorama has changed: technology has evolved, and 

more daring missions have been proposed and are now under development, with 

improved payloads, communication technologies and propulsion systems. For these 

missions, the CubeSat standard and, in general, the modified approach to small 

spacecraft and mission design, have a noticeable effect most of the domains 

involved. One key area is left behind: operations do not seem to scale by scaling 

the technology, and little effort has been spent into disrupting and innovating how 

operations are designed and managed for small satellite missions. Nevertheless, 

Small Satellites platforms are the best candidate to demonstrate new concepts for 

mission operations, as they possess the required flexibility and they welcome 

innovative technologies (even if with a suboptimal TRL). Moreover, the category 

of small satellites was selected thanks to a higher average computational capability 

and to development approaches more comparable with traditional embedded 

approaches. 

The focus: Mission Autonomy  

The presented work focused on improving the operation architecture and 

management of Small Satellite missions, both Earth based and interplanetary. The 

main reason for this choice is that operations have not been object of extensive 

research such as other areas in a small satellite mission, and there have been many 

possibilities of improvement. Among the operations, focusing on Mission 

Autonomy was a straightforward choice, as the state of the art is currently aiming 

at streamlining operations design around the highest possible level of autonomy, as 

specified by ECSS. To date, very few examples of autonomous spacecraft have 
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flown. The present work, in addition, aims at raising awareness on the topic of 

Mission Autonomy and innovative operations design. 

The proposed algorithms described in the thesis bring many advantages, 

impacting different segments of the mission architecture. As far as the space 

segment is concerned: 

• Autonomous Event Detection allows for the design of complex 

operations during the mission. Furthermore, payload data downlink will 

benefit thanks to the fact that only the highest priority images are 

selected and sent to Earth, reducing the quantity of downlinked data and 

improving its quality. In the ground segment, a reduced and improved 

data flow allows for more agile resource allocations. These advantages 

are mission specific, but could be easily generalised for other 

applications 

• Intelligent Failure Detection, Isolation and Recovery is another step in 

the direction of more reliable, performing and autonomous missions. As 

with Event Detection, increasing the performance of failure detection 

system could enable not only more efficient ground operations (as the 

operators are supported in taking decisions concerning failures) but also 

to enable innovative recovery actions or to exploit the system 

capabilities to fail operationally 

The last case study presented aims at improving another area of mission design 

and development: the preliminary design: 

• Supporting decision makers in their activities (be them mission design, 

or operations) is certainly welcomed. One of the key area where the 

presented thesis focused was on the design of small satellite missions, 

and in particular on automating tasks that are currently performed by 

domain experts, such as component database search and spacecraft 

configuration assessment. Given the standardization available for this 

category of spacecraft, the autonomation potential in the preliminary 

design phase is extremely high, and the result of this effort is that less 

errors affect the design of a mission, especially in a phase where the 

uncertainty about the system is high. Costs will also benefit from this 

automation, as correcting design errors further down the design process 

is costly and not efficient. 
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The technology: Artificial Intelligence 

Artificial Intelligence is certainly a hot topic in research in these years: 

applications in medicine, image recognition, security, natural language processing, 

and more, are appearing and they are drastically changing the way we approach and 

solve problems. Most importantly, they are performing pretty well and the future 

improvements are promising. Space engineering is not immune to the diffusion of 

AI, and the research is embracing AI for several different applications, from failure 

detection and prognosis, to mission replanning, to spacecraft design, to payload data 

processing and big data analysis, and the list continues. The thesis, and the related 

research performed, wanted to serve as a first effort in exploring the capabilities of 

AI for several different applications. The results presented in the case study chapters 

are promising: applications compatible with the capabilities of Small Satellites can 

be developed and they greatly improve the way missions are managed, resulting in 

faster mission success and more reliable mission operations. Among the case 

studies presented, AI algorithms were developed reusing known literature, but an 

adaptation of the methodologies had to be envisioned to make the technology 

suitable for a space mission, especially from the flight software point of view. The 

innovative training algorithm developed under this research is an example of 

adaptation that was necessary, yet that produced promising results. 

In conclusion, it has been proven that the proposed applications and 

methodologies are effective in improving the management and the design of Small 

Satellite mission operations, and that the presented case studies can be adapted both 

for Earth orbiting and for interplanetary missions. Future space missions will make 

extensive use of Artificial Intelligence, and the thesis aims at being one of the first 

step in that direction.



 

References 

[1] R. Sandau, “Status and trends of small satellite missions for Earth 
observation,” Acta Astronaut., vol. 66, no. 1, pp. 1–12, 2010. 

[2] NASA, “Small Spacecraft Technology State of the Art,” no. February, pp. 
1–197, 2014. 

[3] J. R. Wertz, D. F. Everett, and J. J. Puschell, Space mission engineering : the 

new SMAD. Microcosm Press, 2011. 

[4] R. Mozzillo, “Technologies and methodologies for CubeSat performances 
improvement,” Politecnico di Torino, 2016. 

[5] A. Babuscia et al., “CommCube 1 and 2: A CubeSat series of missions to 
enhance communication capabilities for CubeSat,” IEEE Aerosp. Conf. 

Proc., 2013. 

[6] J. Schoolcraft, A. Klesh, and T. Werne, “MarCO : Interplanetary Mission 
Development on a CubeSat,” in AIAA SpaceOps Conference, 2016, pp. 1–8. 

[7] Planet Labs, “Planet Labs Specifications : Spacecraft Operations & Ground 
Systems,” 2015. 

[8] Oerlikon Space, “The Optel 02 Model Optel 02 Terminal Specifications.” 

[9] “Fly Your Satellite! CubeSats phoned home / CubeSats - Fly Your Satellite! 
/ Education / ESA mobile.” [Online]. Available: 
http://m.esa.int/Education/CubeSats_-
_Fly_Your_Satellite/Fly_Your_Satellite!_CubeSats_phoned_home. 
[Accessed: 05-Jun-2017]. 

[10] “CubeSats - Fly Your Satellite! / Education / ESA.” [Online]. Available: 
http://www.esa.int/Education/CubeSats_-_Fly_Your_Satellite. [Accessed: 
05-Jun-2017]. 

[11] A. Heiney, “Project ELaNa: Launching Education into Space,” 2015. 
[Online]. Available: https://www.nasa.gov/content/about-elana. [Accessed: 
05-Jun-2017]. 

[12] E. Mahoney, “NASA’s CubeSat Launch Initiative,” 2015. [Online]. 



148 References 

 
Available: 
https://www.nasa.gov/directorates/heo/home/CubeSats_initiative. 
[Accessed: 05-Jun-2017]. 

[13] “THE CUBESATS OF SLS’S EM-1 - Explore Deep Space.” [Online]. 
Available: http://exploredeepspace.com/news/the-cubesats-of-slss-em-1/. 
[Accessed: 05-Jun-2017]. 

[14] R. Mozzillo, L. Franchi, L. Feruglio, F. Stesina, and S. Corpino, “CUBESAT 
TEAM OF POLITECNICO DI TORINO : PAST, PRESENT AND 
FUTURE,” in 1st Symposium on Space Educational Activities, 2015, no. 1. 

[15] “ROBUSTA - eoPortal Directory - Satellite Missions.” [Online]. Available: 
https://directory.eoportal.org/web/eoportal/satellite-missions/r/robusta. 
[Accessed: 05-Jun-2017]. 

[16] “Nanosatellite Database.” [Online]. Available: www.nanosats.eu. 
[Accessed: 28-Jun-2016]. 

[17] CalPoly, “Cubesat design specification, rev 13,” The CubeSat Program, 

California Polytechnic State University. p. 42, 2014. 

[18] M. Langer and J. Bouwmeester, “Reliability of CubeSats – Statistical Data, 
Developers’ Beliefs and the Way Forward,” in AIAA/USU Conference on 

Small Satellites, 2016. 

[19] G. Obiols Rabasa, “Methods for dependability analysis of small satellite 
missions,” Politecnico di Torino, 2015. 

[20] S. Chien, J. Doubleday, K. Ortega, and D. Tran, “Onboard autonomy and 
ground operations automation for the Intelligent Payload Experiment (IPEX) 
CubeSat Mission,” 2012. 

[21] S. Chien, J. Doubleday, D. R. Thompson, and K. L. Wagstaff, “Onboard 
Autonomy on the Intelligent Payload EXperiment ( IPEX ) Cubesat 
Mission : A pathfinder for the proposed HyspIRI Mission Intelligent Payload 
Module,” 2012. 

[22] S. Stellmann, D. Schubert, and A. Weiss, “Historical evolution of space 
systems,” in 60th International Astronautical Congress, 2009, pp. 1–12. 

[23] J. Naudet et al., “AIM: A SMALL SATELLITE INTERPLANETARY 
MISSION,” in 4S Symposium, 2016. 

[24] “News | JPL Selects Europa CubeSat Proposals for Study.” [Online]. 



References 149 

 
Available: https://www.jpl.nasa.gov/news/news.php?feature=4330. 
[Accessed: 06-Jun-2017]. 

[25] “MarCO CubeSat.” [Online]. Available: 
http://www.jpl.nasa.gov/cubesat/missions/marco.php. [Accessed: 16-Jun-
2016]. 

[26] “Exploration Mission 1 Secondary Payloads.” [Online]. Available: 
https://www.nasa.gov/content/exploration-mission-1-secondary-payloads. 
[Accessed: 07-Jun-2017]. 

[27] L. McNutt, L. Johnson, P. Kahn, J. Castillo-Rogez, and A. Frick, “Near-
Earth Asteroid (NEA) Scout,” in AIAA SPACE 2014 Conference and 

Exposition, 2014. 

[28] W. Marshall and C. Boshuizen, “Planet Labs’ Remote Sensing Satellite 
System,” AIAA/USU Conf. Small Satell., 2013. 

[29] “Planet Launches Satellite Constellation to Image the Whole Planet Daily.” 
[Online]. Available: https://www.planet.com/pulse/planet-launches-
satellite-constellation-to-image-the-whole-planet-daily/. [Accessed: 08-Jun-
2017]. 

[30] “Technology | Planetary Resources.” [Online]. Available: 
http://www.planetaryresources.com/technology/#technology-services. 
[Accessed: 08-Jun-2017]. 

[31] “Constellation of small satellites set to improve the skill of weather forecasts 
| Spire.” [Online]. Available: 
https://spire.com/company/insights/news/constellation-small-satellites-set-
improve-skill-w/. [Accessed: 08-Jun-2017]. 

[32] “Lemur-2 - Gunter’s Space Page.” [Online]. Available: 
http://space.skyrocket.de/doc_sdat/lemur-2.htm. [Accessed: 08-Jun-2017]. 

[33] “Home - OneWeb | OneWorld.” [Online]. Available: http://oneweb.world/. 
[Accessed: 08-Jun-2017]. 

[34] L. A. Young et al., “Experimental Investigation and Demonstration of 
Rotary-Wing Technologies for Flight in the Atmosphere of Mars,” in the 

58th Annual Forum of the AHS, 2002, no. Table 1. 

[35] “KickSat -- Your personal spacecraft in space! by Zachary Manchester — 
Kickstarter.” [Online]. Available: 
https://www.kickstarter.com/projects/zacinaction/kicksat-your-personal-



150 References 

 
spacecraft-in-space. [Accessed: 08-Jun-2017]. 

[36] S. Hatton, Proceedings of the 12th Reinventing Space Conference. . 

[37] J. Marshall, A. Cudmore, G. Crum, and S. Sheikh, “Big Software for 
SmallSats: Adapting cFS to CubeSat Missions,” in AIAA/USU Conference 

on Small Satellites, 2015. 

[38] C. Chouinard, R. Knight, G. Jones, and D. Tran, “An ASPEN Application : 
Automating Ground Operations for Orbital Express.” 

[39] G. Rabideau, R. Knight, S. Chien, A. Fukunaga, and A. Govindjee, “Iterative 
repair planning for spacecraft operations using the ASPEN system,” Int. 

Symp. Artif. Intell. Robot. Autom. Sp., vol. 440, p. 99, 1999. 

[40] R. Sterritt and M. Hinchey, “Engineering Ultimate Self-Protection in 
Autonomic Agents for Space Exploration Missions,” in 12th IEEE 

International Conference and Workshops on the Engineering of Computer-

Based Systems (ECBS’05), pp. 506–511. 

[41] E. Vassev and M. Hinchey, Autonomy requirements engineering for space 

missions. Springer, 2014. 

[42] W. Truszkowski et al., Autonomous and Autonomic Systems: With 

Applications to NASA Intelligent Spacecraft Operations and Exploration 

Systems. London: Springer London, 2010. 

[43] C. Rouff, “Autonomy in Future Space Missions,” 2002. 

[44] N. Muscettola, P. Nayak, B. Pell, and B. Williams, “The New Millennium 
Remote Agent: To Boldly Go Where No AI System Has Gone Before,” Artif. 

Intell., vol. 102, no. 1–2, pp. 1–39, 1998. 

[45] R. Sherwood, S. Chien, and D. Tran, “Next generation autonomous 
operations on a current generation satellite,” in 5th International Symposium 

on Reducing the Cost of Spacecraft Ground Systems and Operations, 2003. 

[46] European Cooperation for Space Standardization - ECSS, “ECSS‐E‐ST‐70‐
11C - Space segment operability,” no. July, 2008. 

[47] S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach, 3rd 
edition,” Prentice Hall, 2009. 

[48] P. M. Frank and B. Köppen-Seliger, “New developments using AI in fault 
diagnosis,” Eng. Appl. Artif. Intell., vol. 10, no. 1, pp. 3–14, 1997. 



References 151 

 
[49] M. J. Dumskyj, S. J. Aldington, C. J. Dore, and E. M. Kohner, “The accurate 

assessment of changes in retinal vessel diameter using multiple frame 
electrocardiograph synchronised fundus photography.,” Curr. Eye Res., vol. 
15, no. 6, pp. 625–32, Jun. 1996. 

[50] Boscove, “Computer assisted vehicle service featuring signature analysis 
and Artificial Intelligence,” 4,796,206, 1989. 

[51] G. Weiss, “Multiagent systems: a modern approach to distributed artificial 
intelligence,” no. 3. Massachusetts Institute of Technology, p. 619, 2001. 

[52] Tesla, “Autopilot | Tesla.” [Online]. Available: 
https://www.tesla.com/autopilot. [Accessed: 13-Jan-2017]. 

[53] Volvocars, “Autonomous driving explained | Volvo Cars,” 2016. [Online]. 
Available: http://www.volvocars.com/intl/about/our-innovation-
brands/intellisafe/autonomous-driving/this-is-autonomous-driving. 
[Accessed: 13-Jan-2017]. 

[54] Scania, “Autonomous transport systems 2016 | Scania Group.” [Online]. 
Available: 
https://www.scania.com/group/en/section/pressroom/backgrounders/autono
mous-transport-systems-2016/. [Accessed: 13-Jan-2017]. 

[55] A. M. S. Martin, S. W. Lee, and E. C. Wong, “The Development of the Msl 
Guidance , Navigation , and Control System for Entry , Descent , and 
Landing,” AAS, pp. 529–546, 2012. 

[56] C. Gulcehre, “Deep Learning - Software Links.” [Online]. Available: 
http://deeplearning.net/software_links/. [Accessed: 28-Mar-2017]. 

[57] Gaisler, “LEON4.” [Online]. Available: 
http://www.gaisler.com/index.php/products/processors/leon4. [Accessed: 
22-Jun-2017]. 

[58] J. Brownlee, “A Tour of Machine Learning Algorithms.” [Online]. 
Available: http://machinelearningmastery.com/a-tour-of-machine-learning-
algorithms/. [Accessed: 21-Jun-2017]. 

[59] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the 
Marquardt algorithm,” IEEE Trans. Neural Networks, vol. 5, no. 6, pp. 989–
993, 1994. 

[60] D. J. C. MacKay, “Bayesian Interpolation,” Neural Comput., vol. 4, no. 3, 
pp. 415–447, May 1992. 



152 References 

 
[61] M. F. M?ller and M. Fodslette, “A scaled conjugate gradient algorithm for 

fast supervised learning,” Neural Networks, vol. 6, no. 4, pp. 525–533, Jan. 
1993. 

[62] “Knowledge | Definition of Knowledge by Merriam-Webster.” [Online]. 
Available: https://www.merriam-webster.com/dictionary/knowledge. 
[Accessed: 20-Jun-2017]. 

[63] A. A. Hopgood, Knowledge-Based Systems. CRC Press, Inc, 1993. 

[64] L. A. Zadeh, “The concept of a linguistic variable and its applications to 
approximate reasoning I,” Inf. Sci. (Ny)., vol. 8, no. 4, pp. 199–249, 1975. 

[65] L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, Jun. 1965. 

[66] C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part 
II,” IEEE Trans. Syst. Man. Cybern., vol. 20, no. 2, 1990. 

[67] Y. Bai and D. Wang, Advanced Fuzzy Logic Technologies in Industrial 

Applications. Springer, 2006. 

[68] H. T. Nguyen, N. R. Prasad, C. L. Walker, and E. a Walker, A First Course 

in Fuzzy and Neural Control. 2003. 

[69] S. Luke et al., Essentials of Metaheuristics Second Edition. 2015. 

[70] C. W. Ahn, “Practical genetic algorithms,” Stud. Comput. Intell., vol. 18, pp. 
7–22, 2006. 

[71] J. Figueira, S. Greco, and M. Ehrgott, Multiple Criteria Decision Analysis: 

state of the art surveys. Springer, 2005. 

[72] P. S. Oliveto, J. He, and X. Yao, “Time Complexity of Evolutionary 
Algorithms for Combinatorial Optimization: A Decade of Results,” Int. J. 

Autom. Comput., vol. 4, no. 3, pp. 281–293, 2007. 

[73] T. W. Manikas and J. T. Cain, “Genetic Algorithms vs . Simulated 
Annealing : A Comparison of Approaches for Solving the Circuit 
Partitioning Problem,” 1996. 

[74] C. W. Ahn, Advances in evolutionary algorithms : theory, design and 

practice. Springer, 2006. 

[75] R. Rojas, “Genetic Algorithms,” Neural Networks, pp. 429–450, 1996. 

[76] T. Back, “Selective pressure in evolutionary algorithms: a characterization 



References 153 

 
of selection mechanisms,” in Proceedings of the First IEEE Conference on 

Evolutionary Computation. IEEE World Congress on Computational 

Intelligence, pp. 57–62. 

[77] D. Pierce and A. Petro, “NASA Perspectives on Cubesat Technology and 
Highlighted Activities,” 2016. 

[78] Jam Woerner, “ESA COUNCIL AT MINISTERIAL LEVEL 2016: 
SUCCESS, TINGED WITH A BIT OF DISAPPOINTMENT,” Journal of 

Fusion Energy, 04-Dec-2016. [Online]. Available: 
http://link.springer.com/10.1007/s10894-015-0034-1. [Accessed: 16-Jun-
2017]. 

[79] R. Walker, D. Koschny, and C. Bramanti, “Miniaturised Asteroid Remote 
Geophysical Observer (M-ARGO): a stand-alone deep space CubeSat 
system for low- cost science and exploration missions,” 2017. 

[80] J. P. Cohen, H. Z. Lo, T. Lu, and W. Ding, “Crater Detection via 
Convolutional Neural Networks,” in 47th Lunar and Planetary Science 

Conference, 2016. 

[81] S. Singh and M. Singh, Progress in pattern recognition. Springer, 2007. 

[82] A. Criminisi, “Decision Forests: A Unified Framework for Classification, 
Regression, Density Estimation, Manifold Learning and Semi-Supervised 
Learning,” Found. Trends® Comput. Graph. Vis., vol. 7, no. 2–3, pp. 81–
227, 2011. 

[83] S. Chien et al., “Onboard Autonomy on the Intelligent Payload EXperiment 
CubeSat Mission,” J. Aerosp. Inf. Syst., no. March, pp. 1–9, 2016. 

[84] C. Stauffer and W. Grimson, “Learning Patterns of Activity Using Real-
Time Tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 
747–757, 2000. 

[85] C. Koch and S. Ullman, “Shifts in Selective Visual Attention: Towards the 
Underlying Neural Circuitry,” in Matters of Intelligence, Dordrecht: 
Springer Netherlands, 1987, pp. 115–141. 

[86] J. F. Martins, V. F. Pires, and A. J. Pires, “Unsupervised neural-network-
based algorithm for an on-line diagnosis of three-phase induction motor 
stator fault,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 259–264, 2007. 

[87] W. Lafayette, C. Clifton, C. Sciences, and W. Lafeyette, “CERIAS Tech 
Report 2003-45 Change Detection in Overhead Imagery Using Neural 



154 References 

 
Networks by Christopher Clifton Information Assurance and Security,” 
2003. 

[88] L. Feruglio and S. Corpino, “Neural networks to increase the autonomy of 
interplanetary nanosatellite missions,” Rob. Auton. Syst., vol. 93, pp. 52–60, 
2017. 

[89] P. Michel, A. Cheng, M. Küppers, and P. Pravec, “Science case for the 
Asteroid Impact Mission (AIM): A component of the Asteroid Impact & 
Deflection Assessment (AIDA) mission,” Adv. Sp. Res., vol. 57, pp. 2529–
2547, 2016. 

[90] F. Nimmo, J. R. Spencer, R. T. Pappalardo, and M. E. Mullen, “Shear heating 
as the origin of the plumes and heat flux on Enceladus,” Nature, vol. 447, 
no. 7142, pp. 289–291, May 2007. 

[91] M. F. A’Hearn, M. J. S. Belton, W. A. Delamere, and J. Kissel, “Deep 
Impact: excavating comet Tempel 1.,” Science, vol. 310, no. 5746, pp. 258–
64, Oct. 2005. 

[92] A. A. Hopgood, Intelligent systems for engineers and scientists. CRC Press, 
2012. 

[93] K. Lee, “Theoretical study of information capacity of Hopfield neural 
network and its application to expert database system,” Iowa State 
University, 1991. 

[94] ESA, “ASTEROID IMPACT MISSION: DIDYMOS REFERENCE 
MODEL,” 2014. 

[95] J. R. Shewchuk, “An Introduction to the Conjugate Gradient Method 
Without the Agonizing Pain,” 1994. 

[96] L. Franchi, L. Feruglio, R. Mozzillo, and S. Corpino, “Model predictive and 
reallocation problem for CubeSat fault recovery and attitude control,” Mech. 

Syst. Signal Process., vol. 98, pp. 1034–1055, 2018. 

[97] R. de Neufville, “Measurement of Utility,” Appl. Syst. Anal. Eng. Plan. 

Technol. Manag., 1990. 

[98] R. de Neufville, “Multiattribute Utility,” Appl. Syst. Anal. Eng. Plan. 

Technol. Manag., 1990. 

[99] A. M. Ross and D. E. Hastings, “The Tradespace Exploration Paradigm,” 
INCOSE Int. Symp., vol. 15, no. 1, pp. 1706–1718, 2005. 



References 155 

 
[100] B. A. Corbin, “The Value Proposition of Distributed Satellite Systems for 

Space Science Missions,” Massachusetts Institute of Technology, 2015. 

[101] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated 
Annealing,” Sci. New Ser., vol. 220, no. 4598, pp. 671–680, 1983. 

[102] I. Das and J. E. Dennis, “Normal-Boundary Intersection: A New Method for 
Generating the Pareto Surface in Nonlinear Multicriteria Optimization 
Problems,” SIAM J. Optim., vol. 8, no. 3, pp. 631–657, Aug. 1998. 

[103] D. M. Olsson and L. S. Nelson, “The Nelder-Mead Simplex Procedure for 
Function Minimization,” Technometrics, vol. 17, no. 1, p. 45, Feb. 1975. 

[104] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” 
Proc. Sixth Int. Symp. Micro Mach. Hum. Sci., pp. 39–43, 1995. 

[105] J. D. Schaffer, “Multiple objective optimization with vector evaluated 
genetic algorithms,” 1st Int. Conf. Genet. Algorithms, no. JANUARY 1985, 
pp. 93–100, 1985. 

[106] P. Abell et al., “Asteroid Impact & Deflection Assessment ( Aida ) Mission,” 
no. May, 2012. 

[107] E. Riddle, “Use of optimization methods in small satellite systems analysis,” 
Proc. AIAA/USU Conf. Small Satell., pp. 1–8, 1998. 

[108] Gwo-Ching Liao and Ta-Peng Tsao, “Application of a fuzzy neural network 
combined with a chaos genetic algorithm and simulated annealing to short-
term load forecasting,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 330–
340, 2006. 

[109] B. Corbin and T. Steiner, “Multidisciplinary System Design Optimization 
for a Distributed Solar Observation Constellation!,” 2014. 

[110] J. Sobieszczanski-Sobieski, A. Morris, and M. van Tooren, Multidisciplinary 

Design Optimization Supported by Knowledge Based Engineering. 2015. 

[111] N. Srinivas and K. Deb, “Muiltiobjective Optimization Using Nondominated 
Sorting in Genetic Algorithms,” Evol. Comput., vol. 2, no. 3, pp. 221–248, 
Sep. 1994. 

[112] A. Jafarsalehi, P. M. Zadeh, and M. Mirshams, “Collaborative Optimization 
of Remote Sensing Small Satellite Mission using Genetic Algorithms,” 
Trans. Mech. Eng., vol. 36, no. 2, pp. 117–128, 2012. 



156 References 

 
[113] S. Gotshall and B. Rylander, “Optimal population size and the genetic 

algorithm,” Proc. Genet. Evol. Comput. Conf., pp. 1–5, 2000. 



 

 

Appendix A – Interesting images 

acquired through the research 

 

 

Figure 67 Plume events: detection of upper or lower direction 
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Figure 68 Plume events: detection of four directions 

 

Figure 69 Plume events: detection of eight directions 
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Figure 70 Impact sequence on an asteroid, simulation with dark sky in the 

background 

 

 

Figure 71 Impact sequence on an asteroid, simulation with main body in 

the background 
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Figure 72 Early experimentations with Neural Networks: cats are 

recognized as fully pictured asteroid. The picture right from the cat is wrongly 

classified. 

 

 

Figure 73 Experimenting with the overlay training methodology described 

in the thesis 
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Figure 74 67P plume events as modelled on blender® 

 

 

 

Figure 75 67P plume events as photographed by the Rosetta mission 



 

Appendix B - Asteroid modelling on 

blender® 

The first operation performed was the creation of a cube, from the submenu 

"create". 

 

Figure 76 Asteroid Modelling: creation of the starting cube 

In Blender, each object has its own reference axes, so there is no need to create 

a special coordinate system. 

The next step is to add the "Modifiers" from the corresponding submenu. After 

selecting "Add Modifiers" the first of them will be "Subdivision Surface". Soon 

after, under the heading "Subdivision", the values "View" and "Render" will be 

brought to the upper limit, i.e. six. The result of this operation is shown in Figure 

76. 
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Figure 77 Asteroid Modelling: Subdivision Surface Modifier 

 

Figure 78 Asteroid modelling: texture 

Next, the "Smooth" button under "Shading" in the left submenu "Tools" has been 

selected. 



164 Appendix B - Asteroid modelling on blender® 

 
The second modifier added, always in the same way, is "Displacement". It 

allows the introduction of the ripples on the surface in question, according to a user-

determined texture, using the “Add Texture” command. The selected texture is 

shown in Figure 78. It is possible to choose additional parameters to customize in 

the sub-menu "Texture". To create the more precise geometries, selecting 

"subsurface" with the right mouse button individual faces of the intermediate solid 

can be selected and, using Tab and G keys, deformed at will. To have a greater level 

of detail, it is advisable to add another level of subsurface, setting the value of 

"View" and "Render" on two. Eventually, the asteroid was put into rotation around 

its axis through a 500 frames animation. 

 

Figure 79 Asteroid modelling: editing the geometry 

 

Figure 80 Asteroid modelling: final result 

The plume can be added by creating a reference plane on which is to be placed 

the source point. This done, the values shown in Figure 81 were inserted in the 

"Particle" submenu. 
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Figure 81 Plume modelling parameters 

On completion of modelling, we can add a light via the "Lamp" submenu. 

The emission of the plume starts at frame 150 and ends at 180 (despite the 

emitted particles continue to be still visible for 200 frames). 


