

Doctoral Dissertation

Doctoral Program in Aerospace Engineering (29th Cycle)

Artificial Intelligence for Small

Satellites Mission Autonomy

By

Lorenzo Feruglio

Supervisor:

Prof. S. Corpino

Doctoral Examination Committee:

Prof. Franco Bernelli Zazzera, Referee, Politecnico di Milano
Prof. Michèle Roberta Jans Lavagna, Referee, Politecnico di Milano
Prof. Giancarmine Fasano, Referee, Università di Napoli Federico II
Prof. Paolo Maggiore, Referee, Politecnico di Torino
Prof. Nicole Viola, Referee, Politecnico di Torino

Politecnico di Torino
2017

Declaration

I hereby declare that, the contents and organization of this dissertation

constitute my own original work and does not compromise in any way the rights of

third parties, including those relating to the security of personal data.

Lorenzo Feruglio

 2017

* This dissertation is presented in partial fulfilment of the requirements for

Ph.D. degree in the Graduate School of Politecnico di Torino (ScuDo).

A mia mamma, mio papà, mio fratello.

Grazie per esserci sempre stati,

per essere stati delle guide incredibili.

Grazie

Acknowledgment

I would like to acknowledge and thank a great number of people: not everyone can be

included here, but I’m sure the people I would like to thank already know I’m grateful to

them.

Valentina, the road will be long, but you already gave me the spark to start what I’ve

always wanted to do. Thank you my little strawberry.

My supervisor, Sabrina, for giving me the freedom to explore, even if the navigation

was in uncharted territories. That has been a nice roaming, and was only the prelude to

something bigger!

My team, in general, for sharing with me years (from 2009!!) of successful and

unsuccessful trials and errors, and motivating research.

Raffaele, Fabio, Gerard, Fabrizio, for spending time on a bunch of electronics boards

for so many years: it was worth the ride!

My mentor in the US, Alessandra, for giving me the chance to visit a wonderful

research centre, and for the time spent working together there.

The two satellites that flew in orbit, one in 2012 (e-st@r-I) and the other one in 2016

(e-st@r-II) and is still there: you give me huge chances to brag about the amazing things

I’ve had the joy to be part of. Eh, my codes have been in orbit two times already!

Loris and Giorgio for starting the new adventure together and believing in this.

Loris, Martina, Raffaele, Daniele, Christian, Christopher and Pietro for making the

workplace a lovely place to spend time at. I haaaaaaaaaaaaaloveaaaaate you guys ;)

At last, my other dear friends: Stefano, Francesco, Paolo, Gabriele: I’ve shared

so much with you and I have no intention of stopping.

Abstract

Space mission engineering has always been recognized as a very challenging

and innovative branch of engineering: since the beginning of the space race,

numerous milestones, key successes and failures, improvements, and connections

with other engineering domains have been reached. Despite its relative young age,

space engineering discipline has not gone through homogeneous times: alternation

of leading nations, shifts in public and private interests, allocations of resources to

different domains and goals are all examples of an intrinsic dynamism that

characterized this discipline. The dynamism is even more striking in the last two

decades, in which several factors contributed to the fervour of this period. Two of

the most important ones were certainly the increased presence and push of the

commercial and private sector and the overall intent of reducing the size of the

spacecraft while maintaining comparable level of performances. A key example of

the second driver is the introduction, in 1999, of a new category of space systems

called CubeSats. Envisioned and designed to ease the access to space for

universities, by standardizing the development of the spacecraft and by ensuring

high probabilities of acceptance as piggyback customers in launches, the standard

was quickly adopted not only by universities, but also by agencies and private

companies. CubeSats turned out to be a disruptive innovation, and the space

mission ecosystem was deeply changed by this. New mission concepts and

architectures are being developed: CubeSats are now considered as secondary

payloads of bigger missions, constellations are being deployed in Low Earth Orbit

to perform observation missions to a performance level considered to be only

achievable by traditional, fully-sized spacecraft.

CubeSats, and more in general the small satellites technology, had to overcome

important challenges in the last few years that were constraining and reducing the

diffusion and adoption potential of smaller spacecraft for scientific and technology

demonstration missions. Among these challenges were: the miniaturization of

propulsion technologies, to enable concepts such as Rendezvous and Docking, or

interplanetary missions; the improvement of telecommunication state of the art for

small satellites, to enable the downlink to Earth of all the data acquired during the

mission; and the miniaturization of scientific instruments, to be able to exploit

CubeSats in more meaningful, scientific, ways. With the size reduction and with

the consolidation of the technology, many aspects of a space mission are reduced

in consequence: among these, costs, development and launch times can be cited.

An important aspect that has not been demonstrated to scale accordingly is

operations: even for small satellite missions, human operators and performant

ground control centres are needed. In addition, with the possibility of having

constellations or interplanetary distributed missions, a redesign of how operations

are management is required, to cope with the innovation in space mission

architectures.

The present work has been carried out to address the issue of operations for

small satellite missions. The thesis presents a research, carried out in several

institutions (Politecnico di Torino, MIT, NASA JPL), aimed at improving the

autonomy level of space missions, and in particular of small satellites. The key

technology exploited in the research is Artificial Intelligence, a computer science

branch that has gained extreme interest in research disciplines such as medicine,

security, image recognition and language processing, and is currently making its

way in space engineering as well. The thesis focuses on three topics, and three

related applications have been developed and are here presented: autonomous

operations by means of event detection algorithms, intelligent failure detection on

small satellite actuator systems, and decision-making support thanks to intelligent

tradespace exploration during the preliminary design of space missions. The

Artificial Intelligent technologies explored are: Machine Learning, and in particular

Neural Networks; Knowledge-based Systems, and in particular Fuzzy Logics;

Evolutionary Algorithms, and in particular Genetic Algorithms. The thesis covers

the domain (small satellites), the technology (Artificial Intelligence), the focus

(mission autonomy) and presents three case studies, that demonstrate the feasibility

of employing Artificial Intelligence to enhance how missions are currently operated

and designed.

Contents

Contents ... I

List of Figures ... VI

List of Tables .. XI

Notation ... XII

Introduction .. 1

1.1 Thesis Objectives ... 3

1.2 Thesis layout .. 4

Small Satellites .. 7

2.1 Small Satellites and smaller systems ... 7

2.2 CubeSats .. 9

2.2.1 Overview ... 11

2.2.2 The Standard ... 11

2.2.3 The Deployers ... 14

2.2.4 The Evolution ... 15

2.3 Application scenarios .. 18

2.3.1 Historic Small Satellite Missions .. 18

2.3.2 Interplanetary CubeSats .. 19

2.3.3 Earth Orbiting Constellations ... 22

2.3.4 Other relevant cases .. 23

Space Mission Software ... 25

3.1 Overview of Flight Software ... 25

3.1.1 Command and Data Handling ... 26

3.1.2 Other software ... 27

3.2 Overview of the Ground Software... 28

3.2.1 Planning and Scheduling .. 29

3.2.2 Command Loading ... 29

3.2.3 Science Scheduling and Support ... 29

3.2.4 Failure Detection ... 30

3.2.5 Data Analysis, Calibration, and Processing 30

3.3 Flight vs Ground Design ... 30

Mission Autonomy .. 33

4.1 The problem of Autonomy .. 33

4.2 Key concepts: Automation, Autonomy, Autonomicity 34

4.3 Autonomy versus Costs of Missions ... 36

4.4 History of Autonomy Features .. 37

4.4.1 Up to 1980 .. 37

4.4.2 1980-1990 Spacecraft ... 38

4.4.3 1990-2000 ... 39

4.4.4 2000s ... 39

4.4.5 Current and Future Spacecraft .. 39

4.5 ESA Autonomy Design Guidelines ... 40

4.5.1 Nominal mission operations autonomy levels 41

4.5.2 Mission data management autonomy.. 42

4.5.3 Fault management mission autonomy .. 42

4.6 The need of Autonomy .. 43

4.6.1 Multi-spacecraft missions with respect to Monolithic missions 44

4.6.2 Big Distances, Low Data Rates and Communications Delays 45

4.6.3 Variable Ground Support .. 45

Artificial Intelligence ... 47

5.1 What is Artificial Intelligence ... 47

5.1.1 Definitions of Artificial Intelligence ... 47

5.1.2 The various philosophies of Artificial Intelligence 48

5.2 Brief history of Artificial Intelligence ... 50

5.3 The basis of Artificial Intelligence .. 54

5.4 State of the Art ... 58

5.4.1 What belongs to Artificial Intelligence ... 58

5.4.2 State of the Art by algorithm .. 58

5.4.3 State of the Art by application .. 66

5.4.4 State of the Art by Open Source products 68

5.5 Bringing Artificial Intelligence to space ... 70

5.5.1 Selection of CubeSat compatible algorithms 70

5.5.2 Mapping Artificial Intelligence algorithms to fields of application71

5.6 Machine Learning algorithms and Neural Networks 71

5.6.1 Neural Networks Principles .. 73

5.6.2 Network architectures ... 75

5.6.3 Network training ... 76

5.7 Knowledge-based Engineering and Expert Systems 78

5.7.1 Knowledge Based Systems ... 79

5.7.2 Expert Systems ... 80

5.7.3 Fuzzy Logics ... 81

5.8 Evolutionary Algorithms ... 84

5.8.1 Genetic Algorithms ... 85

5.8.2 Design Suggestions and Improvements .. 87

Case Study: Event Detection with Neural Networks ... 89

6.1 Background .. 89

6.2 Reference Missions ... 91

6.2.1 Impact Mission ... 91

6.2.2 Comet Mission .. 93

6.3 Neural Network architecture selection .. 94

6.3.1 Impact Event detection network ... 95

6.3.2 Obtaining additional information from the detection 97

6.4 Event modelling ... 98

6.4.1 Asteroid impact modelling .. 98

6.4.2 Plume event modelling ... 99

6.5 Innovative Training Approach... 100

6.5.1 Impact event training .. 102

6.5.2 Plume event training ... 104

6.6 Results ... 106

6.6.1 Performance considerations .. 106

6.6.2 Impact Event Detection .. 106

6.6.3 Plume event detection ... 110

6.6.4 Review .. 111

Case Study: Failure Detection with Expert Systems ... 113

7.1 Background .. 113

7.2 Reference Mission ... 113

7.3 Fuzzy Logics Application .. 114

7.3.1 Magnetic Torquer Modelling .. 114

7.4 Failure Modelling .. 116

7.5 Rules definition ... 118

7.5.1 Input and Output Variables and their membership functions 118

7.5.2 Rules ... 120

7.6 Results ... 122

7.6.1 Review .. 123

Case Study: Tradespace Exploration with Genetic Algorithms 125

8.1 Background .. 125

8.2 Reference Mission ... 128

8.3 Genetic Algorithms for Tradespace Exploration 129

8.3.1 Intelligent exploration ... 129

8.3.2 Population dynamics ... 130

8.4 Algorithm Design .. 131

8.4.1 Architecture .. 131

8.4.2 The Design Vector .. 132

8.4.3 The Algorithm ... 133

8.4.4 The optimizer .. 134

8.5 Results ... 136

8.5.1 Efficient tradespace exploration ... 137

8.5.2 Impact of the CubeSat database integration.................................. 137

8.5.3 Requirements compliance ... 138

8.5.4 Algorithm performance comparisons ... 139

8.5.5 Review .. 141

Conclusions .. 143

The domain: Small Satellites ... 143

The focus: Mission Autonomy .. 144

The technology: Artificial Intelligence.. 146

References .. 147

Appendix A – Interesting images acquired through the research 157

Appendix B - Asteroid modelling on blender® ... 162

List of Figures

Figure 1 Thesis structure. Bigger circle represents the main conceptual sections

of the thesis. ... 4

Figure 2 Nano- and Microsatellite launch history and forecast at 2015 (1 - 50

kg) – Credits SpaceWorks® .. 9

Figure 3 CubeSat spacecraft. The three winners of first ESA Fly Your Satellite!

competition: OUFTI-1, e-st@r-II, AAUSAT-4. Credits ESA 10

Figure 4 CubeSat modularity is by design one of the key characteristics of the

platform. Credits RadiusSpace .. 13

Figure 5 P-POD CubeSat deployer. Credits CalPoly 14

Figure 6 Nano- and Microsatellite launch history and forecast at 2017 (1 - 50

kg). Credits NanoSats.eu ... 15

Figure 7 Repartition of the CubeSat projects among organization types. Credits

NanoSats.eu ... 16

Figure 8 Repartition of the CubeSats per developer nation. Credits NanoSats.eu

 ... 16

Figure 9 Nanosatellite types are not equally chosen by the mission designers.

Credits NanoSats.eu ... 17

Figure 10 Nanosatellite operational status [16]. Credits NanoSats.eu 18

Figure 11 Evolution of mission lifetime. Credits DLR 19

Figure 12 Evolution of Bus and Payload Mass. Credits DLR 20

Figure 13 Artist rendering of two 3U CubeSats to Europa. Credits NASA JPL

 ... 21

Figure 14 Example of Operating System layers: core Flight Software. Credits

NASA ... 27

Figure 15 Hubble Space Telescope. Credits NASA 38

Figure 16: History of Artificial Intelligence ... 50

Figure 17 Mapping between applications presented in the thesis and potential

Artificial Intelligence algorithms to solve those problems 71

Figure 18 Machine Learning algorithm map, grouped by type. Credits

Brownlee. ... 72

Figure 19 Biological model of a neuron. Credits Rojas 74

Figure 20 The artificial model of a neuron, seen as a computing element.

Credits Rojas .. 74

Figure 21 Definition of "knowledge" by Merriam-Webster English dictionary

 ... 78

Figure 22 Basic Knowledge Based System architecture 79

Figure 23 Examples of membership functions. Credits MathWorks 82

Figure 24 Example of MOM and COG methods for defuzzification 83

Figure 25 Non-comprehensive map of Evolutionary Algorithms and their

variants ... 85

Figure 26 AIM and COPINS Design Reference Mission. Credits ESA 93

Figure 27 Jets emitted by comet 67P. Source ESA ... 93

Figure 28 Plumes emitted by Enceladus, a moon of Saturn. Source ESA 94

Figure 29 Feed-forward network architecture ... 95

Figure 30 Performance trends for networks with two hidden layers. Each dot

represents a cluster of networks with 1 to 15 neurons in the first layer, and the X-

axis number of neurons in the second layer. .. 96

Figure 31 Average performances with respect to network architecture. Each

box plot is the result of 300 network initializations. Red line represents the median,

box lines represent first and third quartiles. When no box is drawn, all data except

the outliers are collapsed in the median value. Outliers represent samples that lie

further than 1.5 times the interquartile range. .. 97

Figure 32 Asteroid modelling ... 98

Figure 33 Impact on the secondary body .. 99

Figure 34 Impact location, as seen from two different observation points 99

Figure 35 Asteroid modelling and plume event .. 100

Figure 36 Plume event simulated on the comet 67P 100

Figure 37 Directing the neuron training with pseudo-random colouring of the

impact location: rectangular and truncated cone shapes 103

Figure 38 Trained network, input to hidden layer weights of a simple neuron.

Darker pixels correspond to lower weights. Direct match between overlay and

weights. .. 104

Figure 39 Trained network, input to hidden layer weights of a single neuron.

darker pixels correspond to lower weights. Interesting outcome of the training. 104

Figure 40 Examples of 67P images with an artificial plume overlay 105

Figure 41 Trained weights for the plume detection problem. The uniform grey

areas around the centre of the image are a result of having removed constant lines

throughout the dataset .. 105

Figure 42 Impact event from first capturing point .. 107

Figure 43 Impact event from second capturing point 107

Figure 44 Impact event, dark sky in the background. Continuous line: impact

detected; dashed line: no detection .. 108

Figure 45 Impact event, main body in the background. Continuous line: impact

detected; dashed line: no detection .. 108

Figure 46 Robustness to imprecisions in camera pointing. Continuous line:

impact detected; dashed line, no detection .. 109

Figure 47 Robustness to imprecisions camera pointing (cont.). Continuous line:

impact detected; dashed line: no detection .. 109

Figure 48 Confusion matrices for one body and two bodies simulations with

disturbances. Class 1 represents the impact event, Class 2 represents the no-impact

images .. 110

Figure 49 Confusion matrix for plume event on comet 67P 110

Figure 50 Detection of plume events: real images taken by the Rosetta mission

 ... 111

Figure 51 Magnetic torquer example: coil configuration.............................. 115

Figure 52 Magnetic torquer example: rod configuration 115

Figure 53 Representation of the resultant force due to magnetic field interaction

 ... 116

Figure 54 Failure modelling, output of the control command to the MT. Clock-

wise, starting from top-left: float, lock-in-place, hard-over, loss of efficiency ... 118

Figure 55 Input variables and their membership functions 119

Figure 56 Output variables: de-fuzzification is not needed, as the failure

identifier is an integer number ... 120

Figure 57 Membership function for the current input variable 120

Figure 58 Rule evaluation and failure detection: hard-over detected 122

Figure 59 Output of the Expert System: from the left, unfiltered, basic and

medium filters applied. Each step represents a different value of the output

variables, therefore represents a different failure detected 122

Figure 60 A few examples of utility function. Credits MIT 126

Figure 61 MATE logic flow .. 127

Figure 62 The implemented algorithm consists in combining Genetic

Algorithms with Multi-Attribute Tradespace Exploration. Solution generation,

requirements management and post-processing design and visualization are also

performed. .. 131

Figure 63 Optimization process: evolution in time of the population. The

improvement of the utility with the increase of the generation number is shown.

 ... 135

Figure 64 Solution spaces (100k points): from the left, cost-size-utility, size-

utility and cost-utility plots .. 137

Figure 65 3U internal configuration .. 138

Figure 66 Solar panels configuration: example outputs 139

Figure 67 Plume events: detection of upper or lower direction 157

Figure 68 Plume events: detection of four directions 158

Figure 69 Plume events: detection of eight directions 158

Figure 70 Impact sequence on an asteroid, simulation with dark sky in the

background ... 159

Figure 71 Impact sequence on an asteroid, simulation with main body in the

background ... 159

Figure 72 Early experimentations with Neural Networks: cats are recognized

as fully pictured asteroid. The picture right from the cat is wrongly classified. . 160

Figure 73 Experimenting with the overlay training methodology described in

the thesis .. 160

Figure 74 67P plume events as modelled on blender® 161

Figure 75 67P plume events as photographed by the Rosetta mission 161

Figure 76 Asteroid Modelling: creation of the starting cube 162

Figure 77 Asteroid Modelling: Subdivision Surface Modifier 163

Figure 78 Asteroid modelling: texture .. 163

Figure 79 Asteroid modelling: editing the geometry 164

Figure 80 Asteroid modelling: final result .. 164

Figure 81 Plume modelling parameters .. 165

List of Tables

Table 1 Small Satellites and related categories ... 7

Table 2 Extract of interesting CubeSat requirements from CDS rev. 13 12

Table 3 How the three levels are defined among different entities 35

Table 4 Example of spacecraft constellation and the relative human resources

needed for control. WMAP: Wilkinson Microwave Anisotropy Probe, NMP: New

Millennium Program; MC: Magnetotail Constellation .. 36

Table 5 Mission execution autonomy levels ... 41

Table 6 Mission data management autonomy levels 42

Table 7 Failure management autonomy levels .. 43

Table 8: Definitions of Artificial Intelligence ... 48

Table 9: Foundations of Artificial Intelligence ... 54

Table 10 Criteria for network architecture selection 94

Table 11 Network parameters ... 95

Table 12: mission inputs for the ANN definition .. 101

Table 13 Mission scenarios parameters and results 108

Table 14 Summary of FF ANN algorithms characteristics when applied to ED.

 ... 112

Table 15 Summary of ES algorithms characteristics when applied to FDIR 123

Table 16 Design Vector attributes categories ... 132

Table 17 - Genetic Algorithms configuration parameters 135

Table 18 - Algorithm performance comparison .. 139

Table 19 Summary of GA algorithms characteristics when applied to MATE

 ... 141

Notation

ADC – Analog-to-Digital Converter
AI – Artificial Intelligence
ANN – Artificial Neural Networks
AOCS – Attitude and Orbit Control System
C&DH – Command and Data Handling
CDS – CubeSat Design Specification
COTS – Components Off The Shelf
CS – Computer Science
DL – Deep Learning
EA – Evolutionary Algorithm
ED – Event Detection
EDL – Entry, Descent and Landing
EM-1 – Exploration Mission 1
EMF – Earth Magnetic Field
EO – Earth Observation
EP – Evolutionary Programming
EPS – Electrical Power System
ES – Expert System (used in 5.7 and in 7)
ES – Evolution Strategies (used in 5.8)
ESA – European Space Agency
FDIR – Failure Detection, Isolation and Recovery
FL – Fuzzy Logics
FSW – Flight Software
GA – Genetic Algorithm
GCS – Ground Control Station
GNC – Guidance, Navigation and Control
GP – Genetic Programming
GPU – Graphics Processing Unit
GS – Ground Segment
GSTP – General Support Technology Programme
HEAO – High Energy Astronomical Observatory
HL – Hidden Layer
HO – Hard-Over
HST – Hubble Space Telescope
HW – Hardware
IE – Inference Engine
IOD – In Orbit Demonstration
ISS – International Space Station

J-SSOD – Japanese Experiment Module Small Sat Orbital Deployer
JEMRMS – Japanese Experiment Module Remote Manipulator System
KB – Knowledge Base
KBE – Knowledge-based Engineering
KBS – Knowledge-based System
LEO – Low Earth Orbit
LIP – Lock In Place
LOE – Loss Of Efficiency
MATE – Multi Attribute Tradespace Exploration
MAUT – Multi Attribute Utility Theory
MC – Mission Control
MDP – Markov Decision Processes
ML – Machine Learning
MT – Magnetic Torquer
NASA – National Aeronautics and Space Administration
NEA – Near Earth Asteroid
NN – Neural Network
NRCSD – NanoRacks CubeSat Deployer
OEM – Original Equipment Manufacturer
OS – Operating Systems
P&S – Planning and Scheduling
P-POD – Poly-Picosatellite Orbital Deployer
PAC-L – Probably Approximately Correct Learning
RAM – Random Access Memory
ROM – Read Only Memory
RT – Real Time
RTOS – Real Time Operating System
SCG – Scaled Conjugate Gradient
SI – Science Instrument
SLS – Space Launch System
SMM – Solar Maximum Mission
SoA – State of the Art
SS – Space Segment
SW – Software
UAV – Unmanned Aerial Vehicle

Chapter 1

Introduction

The last two decades have been interesting times for space missions and have

seen a dedicated effort among the major players in the space domain to design and

develop unmanned mission ideas and concepts that are more challenging than ever.

Thanks to the consistent successes of great interplanetary and Earth orbiting

missions, space engineering has been pushing the boundaries for constant

improvement, envisioning everyday increasingly daring missions. The traditional,

monolithic, high-performance spacecraft have not been the only category of space

systems influenced by this push in innovation and in ambition: smaller satellites

have been gaining traction, thanks to newly developed technologies and to a

consolidation of the present state of the art. Small satellites, nanosatellites,

CubeSats, are experiencing a renovated and never-before-seen interest and

exploitation, thanks to the game-changing characteristics that this type of space

systems possess. The effort in using smaller satellites is common and shared among

the major agencies and industries in the world panorama.

Since 2013, ESA has initiated seven different CubeSat projects for low-cost In-

Orbit Demonstration (IOD) of innovative miniaturized technologies within the

framework of Element 3 of the General Support Technology Programme (GSTP).

The first technology IOD CubeSat to be launched, a 3U CubeSat called GOMX-3,

was deployed from ISS in October 2015 and has been a complete success over its

1-year lifetime in Low Earth Orbit (LEO) until re-entry. Other IOD CubeSats in

development are planned for launch in 2017 and 2018. Additional design effort has

been spent at ESA to study the applicability of small satellites for interplanetary or

2 Introduction

lunar missions. These concepts are mostly based on mother-daughter architectures

where the mothercraft transports the CubeSats to a target destination, deploys them

locally to perform their mission, and provides data relay support back to Earth for

TT/C and payload data downlink, enabled by a bi-directional inter-satellite link.

NASA has been following a similar approach, by studying the potential

exploitation of small satellites, for supporting flagship missions in the Solar System.

Moreover, concepts based on the CubeSat technology have been appearing even for

planet-based missions, such as the Mars Helicopter concept or a Europa under-ice

explorer.

Moreover, with the ongoing development of miniaturized solar array drive

assemblies for relatively high power steerable solar arrays, high delta-V Electric

Propulsion subsystems, and deep space X-band transponders with high gain antenna

reflectarrays, stand-alone interplanetary CubeSat missions are also being

considered, based on 12U CubeSat form factor and exploitation of piggyback

launch opportunities to near-Earth escape, thus opening up the potential for truly

low-cost space exploration.

Thanks to the efforts in technology miniaturization, thanks to the appearance

of radiation-hardened COTS and tighter system integration, significant reductions

in space and launch segment costs of entry-level spacecraft are enabled.

Unfortunately, the operations costs do not scale down with spacecraft size/mass.

For certain kinds of missions, especially in a mother/daughter architecture, the

CubeSat can reach complexity levels comparable to those of the mothership, if

classical operational approaches are used. Moreover, due to limitations in the

telecommunication windows and timings of interplanetary missions, Earth-based

control and monitoring may be infrequent for small spacecraft. Limitations in the

data rate available (constrained most of the times by the distances, the system sizes

involved, and the available power on board) and the consequent costs of more

performant ground systems (to overcome the lower onboard performances), add

further complexity and limitations to a typical small satellite mission. It becomes

evident that, to achieve truly low-cost ambitious small satellite missions, a high

degree of onboard autonomy will be required to ensure the missions is executed

despite limited ground contact and with a reduced mission operations centre.

Finally, aiming at innovating and improving the operations architecture is a must

when considering constellation missions composed by tens or hundreds of small

satellites.

1.1 Thesis Objectives 3

Thanks to the faster development cycles of COTS components and weaker

quality- and reliability-oriented approaches, small satellites are often employing

high computational capabilities within low power consumption and small form

factors. This enables advanced and computationally-intensive autonomy

approaches to be run onboard, compared to larger missions.

1.1 Thesis Objectives

The objective of the research presented in this thesis is the following:

Exploring the role and capabilities of Artificial Intelligence based

algorithms, to significantly increase the mission and system autonomy

of Small Satellite missions, investigating the feasibility of using these

algorithms by implementing and testing working prototypes.

To this purpose, Artificial Intelligence approaches and algorithms can be

implemented into space missions with the objective of enhancing the autonomous

decision-making capabilities of the space segment in terms of:

• Emulation of the expert knowledge required for mission operations

• Execution of tasks that cannot be defined during the development of the

spacecraft

• Optimization of onboard resources and execution of specific tasks

thereby ultimately leading to a reduction in operations costs for future small

missions through smaller operations teams and less frequent usage of large, deep

space, ground station network antennas. The presented research focused on

identification and application of Artificial Intelligence algorithms to enable smart

payload operations planning, fault detection, and, targeting the preliminary design

phase of a mission, intelligent spacecraft design.

This being said, it is important to consider that the thesis developed is presented

as a conclusion of an Aerospace program: the thesis and the research work

performed did not have the objective of determining which, among the available

Artificial Intelligence algorithms, is the best candidate to perform the automation

of a certain type of operations. Instead, the research is meant to be considered as a

feasibility study for developing AI-based solutions to real operations problems.

Additional studies and comparisons will have to follow in order to assess whether

the proposed algorithms are in fact the best options to solve the problem addressed

4 Introduction

in the case studies. Moreover, chosen candidates will have to be compared in future

works with other, non-AI-based algorithms.

The target spacecraft platform used in the thesis is constituted by a group of

heterogenous spacecraft categories that are commonly known as Small Satellites,

Nanosatellites, CubeSats and so on. Despite these category labels carry very precise

meaning and represent distinct typologies of space systems, for the purpose of

easiness of reading, and given the fact that no substantial change happens when

switching among the aforementioned categories when dealing with mission

autonomy, the following statement holds true throughout the whole thesis:

Small Satellite, Nanosatellite, CubeSats, Microsatellites and other

similar terms are used interchangeably and identify a common category

of spacecraft that encompasses several accepted categories, provided

that all of them used refer to spacecraft of limited mass and dimension,

and characterized by substantially different architectures and features

with respect to traditional missions.

1.2 Thesis layout

The thesis follows a straightforward layout, presenting the category of space

systems that serves as basis for the work, the domain (the software) that is object of

improvement, the functionalities to be implemented (autonomous operations) and

the technology that enables these improvements (Artificial Intelligence). Finally,

case studies demonstrate the findings of the research.

Figure 1 Thesis structure. Bigger circle represents the main conceptual

sections of the thesis.

1.2 Thesis layout 5

Chapter 2

 Chapter 2 provides an overview of Small Satellites, and presents an historical

overview of the most important Small Satellite missions. Moreover, a sub-category

of the Small Satellites is presented, that acquired significant industrial interest in

the last decades: CubeSats. Of this type of standardized spacecraft, the most

important details are covered: the standard, the deployer technologies, and a market

and diffusion analysis are presented. Finally, Chapter 2 presents some examples of

the most striking and interesting Small Satellites and CubeSat missions over the

years.

Chapter 3

Chapter 3 is about software, both ground-based and flight software. Overview of

the most common approaches and functionalities present in space software are

presented. The subject of space software is certainly vast: the presented concepts

serve as a summarization of the different aspect to be considered during the design

of space software. The chapter is not meant to include every possible aspect of

software design approaches.

Chapter 4

Chapter 4 is the first of the two major chapters of this thesis, and introduces the

concept of Mission Autonomy. The Chapter discusses about the need of improving

Mission Autonomy on modern spacecraft, presents key terminology used

throughout the thesis and discusses about past practices and current standards of

autonomous operations on spacecraft. Finally, it presents the various issues that are

currently driving the development on Mission Autonomy: control and operation

management of big constellations, interplanetary missions performed with Small

Satellites and unreliable ground support.

Chapter 5

The focus of Chapter 5 is on Artificial Intelligence. When dealing with these

innovative algorithms in a new context, it is important to cover history and

characteristics of the most dominant algorithms developed so far, even if not yet

adapted for space applications. Chapter 5 defines Artificial Intelligence as a

concept, and defines the State of the Art for this technology, from three different

perspectives: by Algorithm (discussing the various algorithms that populate the

domain of Artificial Intelligence), by application (presenting particular cases in

which Artificial Intelligence plays a relevant role), and by open-source products

6 Introduction

(listing the open-source technologies, frameworks and software that can be used to

develop Artificial Intelligence applications, both for space or other domains). The

chapter then focuses on three category of algorithms that were used in the case

studies of the thesis: Machine Learning, and in particular Neural Networks, Expert

Systems, and in particular Fuzzy Logics, and finally Evolutionary Algorithms, in

particular Genetic Algorithms.

Chapter 6, 7 and 8: The Case Studies

Chapter 6, 7 and 8 present three case studies developed for this research:

respectively Event Detection, Failure Detection and Tradespace Exploration. The

Event Detection case is developed using Neural Networks: an algorithm and an

innovative training approach is presented to be used during interplanetary missions

on a comet / asteroid, enabling detection of impact events or spontaneous gas

emissions. The Failure Detection case presents the use of Expert Systems to detect

failures that happen on a common actuator of a Small Satellite, Magnetic Torquers.

The presented approach performs considerably well on this category of

components, but is at the same time easily re-configurable to work on other types

of actuators or sensors of a spacecraft. Finally, the Tradespace Exploration case

presents the use of Genetic Algorithms exploited to support decision makers (in this

application, mission designers) in performing a very fast analysis on all the possible

alternate solutions for the design of a specific mission.

Chapter 2

Small Satellites

2.1 Small Satellites and smaller systems

“Small Satellites” is term that defines a category of space systems, in particular of

satellites. Although the term is not standardized and different interpretation of it

exist, it is traditionally associated with systems of limited dimensions and mass

inferior to 1000 kilograms.

Table 1 Small Satellites and related categories

Space agencies Classification Mass [kg]

European Space Agency (ESA) [1]
Small
Mini
Micro

350 - 700
80 - 350
50 - 80

Airbus Defence and Space [1]
miniXL
Mini
Micro

1000 - 1300
400 - 700
100 - 200

National Aeronautics and Space

Administration (NASA) [2]

Minisatellite
Microsatellite
Nanosatellite (CubeSat)
Femto- and Picosatellite

100 - 180
100 - 100

1 - 10
< 1

8 Small Satellites

Most widely accepted [3]

SmallSat
MiniSat
MicroSat
NanoSat
PicoSat
FemtoSat

500 - 1000
100 - 500
10 - 100

1 - 10
0.1 - 1
< 0.1

Refer to 1.1 for the interpretation of “Small Satellite” throughout the presented

research. Different entities (being them space agencies or companies) implement

their own classification based on satellite dimension, and most of them overlap, as

summarized in Table 1 [4].

Despite the lack of fully standardized classification, the majority of the entities

in the space industry agree on common aspects:

• Substantial changes in the architecture, design and implementation of

satellites take place when the mass involved is less than 1000 kg

• When distinguishing the various types of satellites, the mass

classification is one of the most useful [4]

From an historical point of view, from the launch of the first satellite (the

Sputnik-1, launched in 1957 with a mass of 84 kg) the size trend of satellites has

moved towards bigger, more complex, redundant and better performing systems.

This trend has been evident in several categories of satellites, from Earth

observation ones to geostationary telecommunication satellites. With the advent of

small satellites, and in particular of nano-satellites, the proportion between the

different categories of launched systems have shifted considerably. Market

predictions for nano- and micro-satellite launches show a sustained growth in the

number of satellites launched (Figure 2). Nonetheless, the small satellite trend is

clear and showing defined growth.

2.2 CubeSats 9

Figure 2 Nano- and Microsatellite launch history and forecast at 2015 (1 -

50 kg) – Credits SpaceWorks®

The evolution and diffusion of small satellites as major actor in the field of

space missions have been possible also thanks to the improvements and

advancements in electrical and mechanical miniaturization, that made possible the

development of payloads and platforms that perform in a similar way to their bigger

counterparts found in traditional assets. Antennas, cameras, spectrometers and so

on, are example of the quality (and reduced sizes) reached in the last decades by

these complex technologies [5]–[8]. Another important factor that led to the

adoption of the small satellite category worldwide, is the great success this

technology obtained in the educational sector. Thanks to the much more affordable

costs and more agile development times and approaches, small satellites programs,

teams and mission have begun to appear in different institutions: ESA ([9], [10]),

NASA ([11]–[13]) among agencies, and several universities (Politecnico di Torino

[14], University of Montpellier-2 [15], and more [16]).

2.2 CubeSats

Categorizing satellites by mass is not the only way, as other means (such as mission

objectives, launch orbits and so on) could re-arrange the satellite database in other,

still meaningful ways. Often times, categorizing satellite systems in different ways

produces overlapping representations of the satellite missions ecosystem. A well-

known example of this phenomenon is constituted by CubeSats (Figure 3).

10 Small Satellites

Figure 3 CubeSat spacecraft. The three winners of first ESA Fly Your

Satellite! competition: OUFTI-1, e-st@r-II, AAUSAT-4. Credits ESA

CubeSats are a category of space systems developed according to an open-

source standard, proposed for the first time in 1999 by professors Jordi Puig-Suari

of California Polytechnic State University and Bob Twiggs of Stanford University

[17]. The objective behind the definition of the standard was to create a spacecraft

system concept that would not only allow university groups to rapidly design and

develop a small space project, but also would ensure that the chances of being

accepted on traditional launchers as a secondary payload were maximised. To reach

stable rates of acceptance among launch providers, the standard was designed to

cover not only the space system itself, but also its interfaces with the launcher, via

the design of a deployment system able to guarantee safeness for the other, most of

the times more expensive and demanding, spacecraft on the launcher. In the initial

vision, the CubeSat development would require less than 100.000$ to build for each

One Unit (1U), allowing in addition a short duration of the launch procurement

phase. In general, time and cost of the development can vary significantly

depending on several factors, among which institution carrying out the project,

budget and quality level are the most influencing ones. As introduced above, the

CubeSat spacecraft encompass different size and mass categories, starting from the

nanosatellite one to the microsatellite one.

2.2 CubeSats 11

2.2.1 Overview

The CubeSat platform is envisioned as a miniaturised satellite based on a

standardized unit of mass and volume. A CubeSat spacecraft has the following

characteristics in its base form, that is the 1U configuration:

• Dimension of 10 x 10 x 10 cm

• Mass up to 1.33 kg (originally 1 kg until 2009)

• Modularity

• Standardized requirements

Furthermore, the standard foresees additional spacecraft, with increasing sizes,

in the factors of 1.5U, 2U, 3U, 4U, 6U, 8U and 12U.

2.2.2 The Standard

The CubeSat standard defines several characteristics of this category of space

systems [17]:

• Interfaces

• Requirements (General, mechanical, electrical, operational, testing)

• Tolerances and dimensions

• Waiver forms and acceptance checklists

• Deployer characteristics

These characteristics are peculiar, and tend to be rigorously applied for each

spacecraft in the category. In some cases, depending on the market availability of

the deployers, some parameters are revised for each spacecraft, reducing the

standardization of the CubeSats.

In general, it is possible to highlight some interesting features and requirements

dictated by the CubeSat Design Specification.

12 Small Satellites

Table 2 Extract of interesting CubeSat requirements from CDS rev. 13

Req. N. Category Description

3.1.3 General No pyrotechnics shall be permitted

3.1.6 General
Total stored chemical energy will not exceed 100 Watt-
Hours

3.2.10 Mechanical The maximum mass of a 1U CubeSat shall be 1.33 kg

3.2.10.1 Mechanical
Note: Larger masses may be evaluated on a mission to
mission basis

3.2.17 Mechanical
The 1U, 1.5U and 2U CubeSats shall use separation
springs to ensure adequate separation

3.3.9.1 Electrical
The CubeSat will have one RF inhibit and RF power
output of no greater than 1.5W at the transmitting
antenna’s RF input

3.4.4 Operational

All deployables such as booms, antennas and solar
panels shall wait to deploy a minimum of 30 minutes
after the CubeSat’s deployment switch(es) are activated
from P-POD ejection

Several characteristics are still applicable through the majority of the developed

and launched CubeSats projects.

Budget CubeSats are typically missions that are designed and developed

allocating budgets lower than those allocated in traditional systems, both for

educational projects and for commercial or scientific missions. Standardization,

simplicity in the design, reduced and more agile project management and quality

assurance efforts, agile approaches to testing, verification and validation, and

ultimately limited or no built-in redundancy are causes and consequence of the

different approaches.

Launch Traditional satellites are launched into space by dedicated launches.

On the other hand, CubeSats exploit their reduced dimensions to secure most of the

times launches as secondary payloads, the so-called piggybacking.

2.2 CubeSats 13

Design Thanks to the reduced complexity and standardization of CubeSats

projects, less formal design approaches can be employed, and the size and

scheduling of the involved teams is often reduced. An increased trend in reducing

the documentation packages is also observable.

Modularity One of the key characteristics of the CubeSat ecosystem is the

modularity of the technology: several components can be “assembled” to enable

functionalities on the platform, resembling a plug-and-play design. This modularity

extends to the modularity of the units, where bigger CubeSats can be composed

almost by putting together smaller units (Figure 4).

Figure 4 CubeSat modularity is by design one of the key characteristics of

the platform. Credits RadiusSpace

COTS A consequence of the trend of reducing costs and extending the reach

of the CubeSat standard, is that COTS components have started to populate the

majority of educational projects and many of the commercial / scientific ones.

Using this type of technology enables low-cost and short implementation cycles,

with the added benefit of using latest commercial and industrial grade components.

Reduced requirements for reliability of these space systems make the use of non-

space-qualified components possible.

Risk CubeSat projects are traditionally characterized by a higher accepted

technical risk, that is traded either for a lower cost, a faster implementation, a more

favourable approach to innovation, or a combination of these elements. Risk

mitigation approaches, even if reduced and more agile, is spreading also in the

CubeSat environment.

14 Small Satellites

Market and competition Thanks to the compatibility with non-space-qualified

technologies, the CubeSat ecosystem is vibrant with numerous companies

providing services and products for the mission designers and developers. This

competitive environment is beneficial to the CubeSat technology, as the effects of

this competition is the continuous innovation and improvement of the available

technology.

2.2.3 The Deployers

As with the evolution of the market and the availability of CubeSat components,

the CubeSat deployment technology has seen an increase in the number of available

options [4].

Poly-Picosatellite Orbital Deployer (P-POD) It is the original standardised

deployer, developed by California Polytechnic State University (Figure 5).

Figure 5 P-POD CubeSat deployer. Credits CalPoly

ISIS Picosatellite Orbital Deployer (ISIPOD) European launcher adapter

developed by ISIS – Innovative Solutions In Space.

Japanese Experiment Module Small Satellite Orbital Deployer (J-SSOD)

Provides a reliable small satellite launching capability to the International Space

Station (ISS). The deployer is handled by the Japanese Experiment Module Remote

Manipulator System (JEMRMS), which provides containment and deployment

mechanisms for several individual small satellites. The J-SSOD platform is

transferred by crew-members into the vacuum of space through the Japanese

Experiment Module (JEM) airlock for JEMRMS retrieval, positioning and

deployment. The J-SSOD uses a full airlock cycle, with two deployers, to launch a

total of 6U.

2.2 CubeSats 15

NanoRacks CubeSat Deployer (NRCSD) It is the first commercial device to

deploy CubeSats into orbit from the ISS. It also uses the JEMRMS, but the NRCSD

uses two airlock cycles, each one holding eight deployers, each one holding 6U, for

a total of 96 Units deployable.

Tyvak Deployers RailPOD Mk.II, NLAS Mk.II, 12U Dispenser, are three

deployment solutions developed by Tyvak Inc. Mass optimized and support up to

12U CubeSats.

2.2.4 The Evolution

The CubeSat ecosystem has been object of a distinct evolution in the last two

decades, and is interesting to report the status of the technology as of March 2017

(Figure 6). Nanosatellites, despite with some deviation, have maintained the

expected forecasts made concerning the adoption of this disruptive technology.

Biggest contributions to the increase of the numbers have been private companies

and educational projects, as seen in Figure 7.

Figure 6 Nano- and Microsatellite launch history and forecast at 2017 (1 -

50 kg). Credits NanoSats.eu

16 Small Satellites

Figure 7 Repartition of the CubeSat projects among organization types.

Credits NanoSats.eu

Concerning the diffusion of the CubeSat platform in the world, the repartition

sees countries that have already developed a stable space program lead the chart.

Despite this, the CubeSat technology has been fundamental in enabling access to

space for those countries that did not launch any satellite yet (Figure 8).

Figure 8 Repartition of the CubeSats per developer nation. Credits

NanoSats.eu

2.2 CubeSats 17

As introduced above, one of the key features of CubeSats is the modularity: it

is possible to design the space systems in different sizes. Interestingly, the four

major sizes (1U, 2U, 3U and 6U) are also the most common choices, with 1U and

3U platforms leading the choice for mission developers (Figure 9). This might be

due to concurrent reasons:

• Smaller platforms (1U) often involve lesser costs and more launch

availability, therefore enabling more and more entities to develop their own

mission

• Increased sizes enable more complex and more performing platforms and

payloads. In this sense, 3U and 6U CubeSats are the preferred choice when

performances requirements are stringent.

Figure 9 Nanosatellite types are not equally chosen by the mission

designers. Credits NanoSats.eu

Despite the high adoption rate, the CubeSat platform is not exempt of problems

during the mission: due to the selection of COTS components, to the agile

development and testing cycles, the failure rate of CubeSat missions is higher with

respect to the traditional ones [18], [19]. Nonetheless, numerous CubeSats have

been performing successful operations in orbit (Figure 10).

18 Small Satellites

Figure 10 Nanosatellite operational status [16]. Credits NanoSats.eu

2.3 Application scenarios

2.3.1 Historic Small Satellite Missions

Several missions could be cited among the set of historical Small Satellite missions.

Here a few important missions are presented.

First CubeSats were launched in 2003 from Plesetsk, Russia, and placed in a

sun-synchronous orbit. They were the Danish AAU CubeSat and DTUSat, the

Japanese XI-IV and CUTE-1, the Canadian Can X-1 and the US Quakesat. CUTE-

1, after at least 9 operational years in orbit, is, among other examples (such as Swiss

Cube) one of the longest operating CubeSat mission ever deployed.

SMART-1 was a Swedish-designed, European Space Agency satellite that

orbited around the Moon in a mission that lasted 3 years, from the launch in 2003.

The acronym stood for Small Mission for Advanced Research in Technology-1.

The satellite was used a technology demonstrator for the Hall-effect thruster and

other technologies.

PROBA series, are ESA operated satellites designed to host scientific

experiments and technological demonstrations. Payloads included hyperspectral

2.3 Application scenarios 19

instrument and a black and white camera with a miniaturised telescope. Launched

up to 2017 are the PROBA-1, PROBA-2 and PROBA-V.

IPEX is a CubeSat developed and launched by NASA JPL with the objective

of validating autonomous operations for onboard instrument processing and

product generation. The CubeSat is the first, and probably only, CubeSat

implementing state of the art level of autonomy on board. In addition, the CubeSat

carried the Continuous Activity Scheduler Planner Execution and Re-planner, to

enable mission replanning [20], [21].

2.3.2 Interplanetary CubeSats

The evolution of space systems has progressed without interruption since the

Sputnik-I satellite was launched. Improvement in the technologies, in the design

and fabrication processes, advancements in the scientific research, innovative

mission concepts enabled by successfully reaching previous mission objectives, can

be all seen as reasons for the advancement in the performances of the spacecraft

platforms and payloads. Some trends are interesting: mission lifetime has, on

average, increased through the years (Figure 11); spacecraft bus mass has increased,

while payload mass has remained constant (Figure 12). In general, the increased

bus mass is connected to higher requirements for mission lifetime, radiation

shielding and/or redundancies integrated in the platform. When considering the

trends of the various subsystems technologies, the trend is reversed: newer

subsystems would perform better and with a lower mass (normalized) with respect

to older counterparts [22].

Figure 11 Evolution of mission lifetime. Credits DLR

20 Small Satellites

Figure 12 Evolution of Bus and Payload Mass. Credits DLR

This trend is observable also in payload dimensions, where the miniaturization

is also playing an important role. Amazingly, as a consequence of the trend, a new

category of payloads has started to be considered in mission concept formulation

and design: nanosatellites as payloads of flagship, interplanetary missions.

Thanks to the increased capabilities of nanosatellites and to their reduced mass

and volume, several innovative mission concepts have begun to appear. The key

factor in these mission concept is that a flagship spacecraft would carry one or more

CubeSats during an interplanetary mission, to fulfil additional mission objectives

and enabling new concepts of operations, by releasing the nanosatellites in situ once

the mothership has reached its destination. Example of these concepts are:

AIM mission and its CubeSats to Didymos Binary Asteroid (cancelled) [23]:

a spacecraft would release up to 6U total of CubeSats in situ at the Didymos

asteroid, to perform technological and/or scientific objectives, either by supporting

the main mission or by fulfilling additional goals

CubeSats to Europa: NASA is considering new CubeSat concepts to be

deployed to Europa by the Europa Clipper mission [24]. The mission concepts

involving CubeSats will have to face interesting design problems: Europa world is

considered a potential candidate to host extra-terrestrial life, and therefore

contamination will have to be avoided by performing severe sterilization to the

CubeSat platforms.

2.3 Application scenarios 21

MarCO CubeSats, that will be released by the Insight mission to Mars during

the interplanetary transfer from the Earth. The objectives of the CubeSats will be to

monitor and record the Entry, Descent and Landing (EDL) telemetry of the Insight

probe, and to relay that information back to Earth. Given the high amount of escape

velocity, MarCO CubeSats will not be inserted into Martian orbit [25].

Figure 13 Artist rendering of two 3U CubeSats to Europa. Credits NASA

JPL

Interplanetary CubeSats are not only those that are directly released in situ by

a mothership. Several concepts have appeared where the CubeSats are released on

a transfer orbit by the launcher or by the mothership, and the orbit insertion is

performed directly by the CubeSats themselves. Examples of these types of mission

concepts are the Exploration Mission 1 (EM-1) secondary CubeSat payloads, that

will be released on a Moon transfer orbit by the first mission of the Space Launch

System (SLS) [26]:

Bio Sentinel, carrying live organisms in a deep-space mission to assess how

they will survive throughout its 18-month mission duration. The Bio Sentinel

mission aims at assessing the risks involved with radiation exposure on humans, to

prepare radiation protections for future missions.

NEA Scout will perform reconnaissance of an asteroid, taking pictures and

observing its position in space. The data collected will enhance the current

22 Small Satellites

understanding of asteroidal environments and will yield key information for future

human asteroid explorers [27].

Lunar Flashlight will look for ice deposits and identify locations where

resources may be extracted from the lunar surfaces. It will use lasers to reflect

sunlight and illuminate permanently shadowed craters at the lunar poles. A

spectrometer will then observe the reflected light to measure the surface water ice.

The EM-1 mission (and the SLS in general) will deploy 13 6U CubeSats.

2.3.3 Earth Orbiting Constellations

Another fundamental aspect of the CubeSat ecosystem is that they enable the design

and deployment of mission architectures involving a great number of spacecraft for

a considerably smaller budget when compared to traditional assets and

constellations. In addition, the availability of components enables mass production

strategies that are currently not considerable when dealing with bigger systems1.

Interesting cases of CubeSat constellations are here presented that are currently

disrupting the spacecraft and the space data market.

PlanetLabs is a constellation of CubeSat to be deployed to LEO, designed for

Earth Observation (EO). It is constituted of several 3U CubeSats that are usually

deployed on piggyback launches [28]. The company exploits the great scalability

of the CubeSat technology to perform unprecedented EO, with over a hundred

satellites in operations. In 2017, the company performed a record-breaking launch

of 88 satellites [29].

Planetary Resources is an American company focused on advancing humanity

technology level to enable asteroid mining, to exploit the incredible amount of

resources that are available in these celestial bodies. Initially aiming at performing

asteroid mining operations, the company has recently secured launches for the

Arkyd-100 series of space telescopes [30].

Spire Global is an American company whose aim is to deploy a CubeSat

constellation, initially thought to be made of 125 satellites, that host a GPS radio

occultation payload and a AIS signal tracking payload [31], [32].

1 Possibly the sole case of medium-sized satellite constellation up to 2017 is OneWeb

constellation.

2.3 Application scenarios 23

OneWeb is one of the most ambitious constellation projects that are currently

under development. It features a total of 648 operational satellites in 18 orbits at

1200 kilometres of altitude. Each small satellite will weigh between 175 and 200

kg in mass. The mission objectives are to provide internet broadband connectivity

with a worldwide coverage [33].

2.3.4 Other relevant cases

These concepts are not always adhering to the Small Satellite or CubeSat standards,

but are nonetheless interesting as they share a similar philosophy: reducing sizes to

enable new mission architectures.

Mars Helicopter, a concept developed by NASA JPL, highly resembles the

CubeSat form factor. The helicopter would be used to pinpoint interesting targets

on the Martian surface, effectively tripling the rover driving speed [34].

Copernicus Master Small Sat is a competition introduced in 2017 by the AZO

organization, for the design, development and launch of a Small Satellite to support

Sentinel satellite missions.

KickSat 1 was an innovative CubeSat mission released for crowdfunding on

Kickstarter in 2011, with the aim of releasing hundreds of sprites (small chipsats

equipped with a radio, solar cells, and microprocessor), that would beacon

customized messages defined by the crowdfunders [35]. The satellite failed to

deploy the sprites.

Mars and Lunar Penetrators are concepts of ground-penetrating systems

intended to be released as impactors on a re-entry trajectory towards a celestial

body, with the aim of penetrating the surface and to study the underlying substrate.

Concepts were formulated both for the Moon and for Mars missions [36].

Chapter 3

Space Mission Software

3.1 Overview of Flight Software

A spacecraft Flight Software (FSW) is generally designed to perform very specific

(and often mission-unique) functions, and, on the other hand, it has to satisfy very

diverse, and often competing, needs. Throughout the years, the FSW has become

the traditional interface between the GS and the spacecraft, and with the arrival of

new technologies, new functionalities of the FSW have also to be implemented.

In general, a typical FSW will have the following functionalities.

Command & Data Handling related functions:

• Executive and task management

• Time management

• Command processing

• Engineering and science data storage and handling

• Data monitoring

• Fail safe and safe mode

• Failure Detection, Isolation and Recovery

Attitude and Orbit Control related functions:

• Attitude determination and control

• Orbit determination and navigation

26 Space Mission Software

• Orbit management

• Propulsion

Other bus related functions:

• Communication management

• Electrical power management

• Thermal management

Payload related functions:

• Payload data commanding

• Payload data management

• Payload calibration

It has to be noted that the different algorithms constituting the FSW might be

physically located in different subsystems: the AOCS software might run in the

AOCS board, the COMSYS software on the COMSYS board and so on, depending

on the location of the different microprocessors or microcontrollers.

3.1.1 Command and Data Handling

The C&DH for typical small satellite missions, especially for CubeSat, traditionally

features standardized characteristics. Among these, an Operating System (OS), that

has the objective of handling the low-level interfaces with typical components of a

processing board: storage, RAM and ROM, interrupts, and so on. Typical OS for

Small Satellites and CubeSats are: Linux, RTEMS, VxWorks, FreeRTOS, Salvo

[37]. The OS software is generally divided into layers (Figure 14). In order to

streamline the process of development of Small Satellite projects, the mission

developers are moving towards coding applications in the higher layers of the

architecture, leaving lower level coding to the Original Equipment Manufacturer

(OEM). The C&DH middle to higher layers include decision-making algorithms,

time management, command processing, engineering and science data storage, and

higher-level communication functions. In general, C&DH is the coordinating core

of all the on-board processing, apart from some localized data management.

Data is managed and stored on specific memories, that in the C&DH for Small

Satellites assume the form of SD and microSD cards, that are now reaching very

promising levels of performance, storage capacity and reliability: extended

temperature ranges, radiation and magnetic field resistance.

3.1 Overview of Flight Software 27

Typical programming languages for the highest level of a CubeSat FS are:

• C, C++: traditionally one of the most used programming languages for

embedded applications, thanks to the extreme control available to

ensure efficiency and to predict performances, while still maintaining

good readability

• Python: especially suited for CubeSat applications, features rich library

availability, and is one of the most immediate languages to learn. This

is beneficial especially for low-budget, educational projects, where

training of the personnel (or students) must be performed as quickly as

possible. Drawback of using Python, as with other garbage-collected

languages such as Java, is the presence of fairly unpredictable latency

peaks, that make the use of these languages less indicated for Hard RT

applications.

Figure 14 Example of Operating System layers: core Flight Software.

Credits NASA

3.1.2 Other software

Payload and Instrument processing software

Often distributed in several processors and controllers in the spacecraft, this type of

software has usually very specific applications and is rarely reused among different

28 Space Mission Software

spacecraft with different payloads. Autonomy enhancing algorithms have

interesting applications in this category, both from a data reduction perspective and

from an event detection one.

Failure Detection algorithms

The type of algorithms involved with monitoring of failures is traditionally highly

distributed, with detection of errors performed locally, with increasing

centralization of the computation the higher the level of abstraction of the

reasoning. Fault correction is typically centralized and abstracted, in order to deal

with different and multiple types of failures in similar ways.

Microprocessors and other computing units

On a typical spacecraft, several computing units might be present: systems-on-

chip, microcontrollers and microprocessors might be spread in several boards or

subsystem of a spacecraft, effectively achieving a distributed architecture. In

general, few units assume a leading role in managing the whole spacecraft: common

architectures employ as much as three units for general management, scheduling

and so on. Other chips usually perform very specialized tasks and their reach on

other subsystems is very limited. These types of computing unit usually employ

low-level programming languages, such as Assembly. Examples of such

applications can be microprocessors to manage the peripherals of a

telecommunication board, microcontrollers to pre-process instrument data, and so

on.

3.2 Overview of the Ground Software

Since the beginning of the space era, several iconic tasks and actions have been

performed by the Mission Control centre, before the spacecraft started to be capable

enough to substitute it: planning and scheduling, communication link

establishment, science data management, calibration, Health and Safety

verification.

These functions were so important that the MC quickly became involved with

the highest responsibilities for managing the spacecraft and its activities, yet relying

on the space segment to provide most of the information needed to perform the MC

duties. In general, when designing spacecraft operations, it is important to consider

all the functions that will have to be performed, irrespective of the location (GS or

SS) that will execute them.

3.2 Overview of the Ground Software 29

3.2.1 Planning and Scheduling

Planning and Scheduling (P&S) is one of the most important tasks when operating

a space mission: the generation of detailed desired optimized timeline of spacecraft

activities. These activities can sometimes be based on complex modelling of the

spacecraft environment and of the expected behaviour: examples of these are the

Hubble Space Telescope and the Kepler mission. Once the schedule is defined, it is

uploaded to the spacecraft and executed in a time-tagged way. In general, the

definition of the activities is performed not only for the nominal path, but alternate

branches of off-nominal conditions are also foreseen and generated. Interestingly,

the definition of the timeline of operations is a process as time-dependent as the

execution of the operations itself: in certain cases, the look-ahead period can reach

several months to one year. Historically, long term operations definition is

performed to constrain the choice of medium-term to immediate operation

definition in given periods of the mission (Sun-Earth-Spacecraft geometry is an

important factor [23]). On the medium term, events such as the South Atlantic

Anomaly entry/exit or similar events are accounted for. On the short term, final

detailed scheduling to precision of seconds is defined using the most accurate

available data. The process of operation definition has traditionally been very

iterative. A considerable progress has been made with the intent of making this

process more flexible and efficient, yet some inefficiencies and complex modelling

are unavoidable.

3.2.2 Command Loading

Command loading is one of the fundamental functions that most, if not every,

spacecraft mission has performed at least once. In general, this activity has become

straightforward. It consists in converting the P&S outputs into specific commands

understandable by the spacecraft FSW. Automation is increasing in this domain.

3.2.3 Science Scheduling and Support

Science activities execution is traditionally constrained on the spacecraft, while a

consistent amount of work is required to plan the scheduling and for the support

activities: highly specific mission and science instrument activities that may include

calibration, management and direction of operations. Calculations to support the

definition of these activities can take a big amount of human resources.

30 Space Mission Software

3.2.4 Failure Detection

When a spacecraft encounters issues on board, the systems engineers on ground

must perform a diagnosis using the telemetry downlinked to ground. In these cases,

operations personnel must either rely on their skills and experiences, or use tools to

support the failure mitigation task. One of the main results of employing advanced

tools is that they vastly improve the speed at which the failure identification is

performed. Artificial Intelligence, performing pattern recognition, is one of the best

candidate for this type of task.

3.2.5 Data Analysis, Calibration, and Processing

In general, nearly all spacecraft engineering analysis and calibration functions have

been performed on ground. These include attitude-sensors alignment and

polynomial calibrations, battery depth of discharge and state-of-charge analysis,

communications margins evaluations and so on. There does not seem to be a clear

cost difference if these functions are performed on ground or on board. In addition,

science data processing and calibration have been nearly exclusively a ground

system responsibility for two main reasons: limited on-board computational

capabilities of rad-hard processors and a bias in the scientific community that

insisted on having all the scientific data downlinked to ground. There is still a strong

opinion that science data might not be processed as thoroughly on board as it is on

ground, and that science data users often process the same data multiple times using

different algorithms, calibrations and so on, even years later after the data were

downlinked.

It is still advisable to design missions with autonomy levels that do not force

the science users to rely on decision taken only on-board, but rather offer the option

to receive processed data or instead the complete set of acquired data.

3.3 Flight vs Ground Design

Autonomy level are steadily increasing thanks to improved and more reliable flight

system hardware capabilities (computational power, hardware input/output

handling, storage capacity, and so on), and to innovative approaches to the design

of the FSW architecture (object-oriented design, expert systems, remote agents and

so on). Moreover, specific approaches and operations that were intended explicitly

for the Ground Segment are now moving towards the Space Segment: engineering

data analysis and calibration, science processing and calibration. The result is that

3.3 Flight vs Ground Design 31

spacecraft have more and more the capability of taking advantage of the strengths

inherent of a RT software system in direct contact with the flight hardware.

The most striking characteristics of the FSW with respect to its ground

operation counterpart are:

• Reaction times

• Completeness

• No delayed information

Only the FSW of a spacecraft directly located in situ at the mission can instantly

access flight HW measurements, process the information and act in real-time.

An example might be obtained considering the AOCS: only the on-board

computer has complete and immediate access to the spacecraft status in realtime,

obtaining critical information well before a ground-based operator could.

On the other hand, previous approaches have assigned more importance to the

Ground Segment of a space mission, thanks to more powerful ground computers

that have allowed the Mission Control to execute complex schedule optimization

algorithms using highly complex predictive models. Even if the computational

power of both the ground-based systems and the spacecraft ones is increasing, and

somewhat narrowing, improvement potentialities exist also on the Ground Segment

[38], [39].

Chapter 4

Mission Autonomy

4.1 The problem of Autonomy

Since the beginning of the space age, a trend has become evident: with the

improvement of the experience and the technology associated with a mission, came

the desire and the need of more sophisticated mission. New instruments and

payloads are being developed, with increasing capabilities of data collection. In

addition, new worlds, new science, and new phenomena to observe are appearing

on the horizon. The new scientific goals and objectives often require multiple

coordinating spacecraft to make simultaneous observations, or to detect events

without ground intervention. This increase in the demands for new spacecraft has

led to intense research and development efforts for the software applications and

processes that are used during a space mission, both on ground, in the Mission

Control centre, and on-board, integrated into the Flight Software.

One of the key drivers for enhancing the capabilities of spacecraft for remote

and complex missions has also been the fact that human exploration missions have

received a setback, due to increased security standards in the design directions [40].

It is currently not advised to consider human exploration in certain kinds of mission,

for example mission to asteroids. In addition, several issues impede the deployment

of astronauts even in less exotic mission concepts: long mission timelines due to

the distances involved, or the radiation environment. More and more, there is an

evident necessity to develop unmanned missions with respect to manned ones.

34 Mission Autonomy

The present chapter present and discusses Mission Autonomy and its

management. On-board autonomy management addresses all the aspects of the

functions performed by the spacecraft that give the capability to fulfil mission

objectives (by performing certain operations) and to survive critical situations

without relying on ground segment intervention.

4.2 Key concepts: Automation, Autonomy, Autonomicity

Before proceeding, it is important to understand the differences between

automation, autonomy and autonomicity, as these concepts are used in space

engineering, but they have very different applications and characteristics. These

concepts refer to actions executed without any human intervention from the

beginning to the end. Automated processes follow, in a step-by-step fashion, a

routine that replaces manual processes and that might still involve human

cooperation. Autonomy, on the other hand, involves operations that have the goal

of emulating human thought processes, rather than just substituting them [41].

Autonomic processes, at last, involve processes in the area of self-awareness and

self-management.

An example of automatic process, related to spacecraft operations, would be a

spacecraft that turns on a payload and performs initial checks, in a series of

operation steps. In general, on-board procedures could be assimilated into the

automatic operations label. Another example would be a process that regularly

extracts from the data storage a set of telemetry parameters, performs a standard

statistical analysis of the data, outputs in report form the results of the analysis and

generates appropriate alerts of identified anomalies. Moreover, an automatic

process performs no independent decision-making based on real-time events, and a

human operator is required to respond to the outcome of the routine [42].

An example of autonomous process on ground would be a program that

monitors the spacecraft position in the orbit, determines when the communication

is possible, determines which files to uplink and sends them, accepts downlinked

data, verifies them and request retransmission if necessary. A flight software

example would be a software that, by processing the data obtained by a IR camera,

senses that there is a forest fire in the area observed by the satellite, and decides to

allocate more observation time to that particular area, instead of continuing the

observation plan [21].

4.2 Key concepts: Automation, Autonomy, Autonomicity 35

Key characteristics of autonomic traits are linkable to reflexes found in nature,

and to spontaneous behaviours. In particular, four properties related to self-

management are assimilable to autonomic computing:

• Self-configuring

• Self-healing

• Self-optimizing

• Self-protecting

These four traits are often associated to four properties:

• Self-aware: internal capabilities and state of the managed components

or equipment are known to the system

• Self-situated: the system has awareness of the external environment and

context

• Self-monitor and self-adjust: through monitoring sensors, actuators and

control loops

Table 3 How the three levels are defined among different entities

Intelligent

Machine

Design

Future

Communication

Paradigms

DARPA/ISO’s

autonomic

information

assurance

NASA’s

science

mission

Self-

directing

and self-

managing

system

potential

Reflection
Knowledge
plane

Mission plane Science Autonomous

Routine
Management
control plane

Cyber plane Mission Self-aware

Reaction Data plane
Hardware
plane

Command
sequence

Autonomic

Machines infused with Artificial Intelligence, to autonomously operate in their

specified environment, are traditionally constituted by three layers of behaviours: a

top level one, linked to reflection; a middle level, enabling reasoning routines; and

a bottom one, enabling reactions. At the reaction level, no learning occurs, but

36 Mission Autonomy

immediate responses are performed as a reaction to state information coming from

sensors. The routine level is where evaluation and planning are performed. Receives

inputs from sensors and both from the reaction and the reflection level. At last, the

reflection level receives no sensor input and has no output to actuators: receives

inputs from the reasoning level and the reaction level, and performs reasoning about

the state of the machine itself.

4.3 Autonomy versus Costs of Missions

Another direct effect of implementing more sophisticated mission operations

management software (either on-board or on ground) can be highlighted analysing

the costs of the mission, both in the total amount directly impacting the budget, and

on the repartition of the costs in the various activities. All the main space agencies

have allocated significant efforts in reducing the human-supervised operations in

favour of automating spacecraft functions. The current approach, both for designs

and methodologies, involves spacecraft downlinking their mission data (both health

keeping and payload) to Mission Control for processing, and Mission Control

centres uplinking commands to the spacecraft. As the complexity and number of

spacecraft increase, it takes a proportionately large number of personnel to control

the spacecraft [42].

Table 4 Example of spacecraft constellation and the relative human

resources needed for control. WMAP: Wilkinson Microwave Anisotropy

Probe, NMP: New Millennium Program; MC: Magnetotail Constellation

Mission Year
Number of

spacecraft

Operators needed

with current

technology

Current

people

per S/C

Goal

people

per S/C

WMAP 2000 1 4 4 -

Iridium 2000 66 200 3 -

GlobalStar 2000 48 100 2 -

NMP ST5 2007 3 12 - 1

MC 2012 30-40 120-160 - 0.1

4.4 History of Autonomy Features 37

Table 4 illustrates some constellations (proposed or flown) and compares the

amount of HR needed to operate the mission with present technology and future

technology [43]. Missions capable of fulfilling the desired science objectives will

obtain the operator-to-spacecraft ratio objectives only if designed to operate without

constant control and commanding by MC. The amount of HR considered in the last

column of the table will require substantial development effort in the autonomy

segment of the mission. In general, it is expected that, for multi-spacecraft missions,

featuring tens or hundreds of satellites, operations will be impossible to be carried

out without near-total mission autonomy.

4.4 History of Autonomy Features

4.4.1 Up to 1980

This period saw the first efforts into standardizing FSW, and the appearance of the

first automatic actions performed by a spacecraft. In particular, earliest efforts in

automating operations came on the HEAO series of spacecraft, with some

automatic functions such as pointing control, limited failure detection, stored

commanding and telemetry generation. Additional commanding capabilities

included the now standard absolute-timed, relative-timed and conditional

commands. Limit checking as FDIR was also implemented, with automatic mode

transition to pre-programmed safe modes. On the Solar Maximum Mission (SMM),

an embryo of autonomous target identification and acquisition capability was

implemented, that would be later refined into Hubble Space Telescope (HST).

SMM processing algorithms could detect solar flares, and re-program spacecraft

pointing to observe the phenomenon. This characteristic was also present in the

Orbiting Solar Observatory-8, launched in 1975: it could steer its payload platform

independently to perform observation of its targets.

The evolution of on-board pointing capabilities can be seen just by looking at

the pointing independence of the two spacecraft, HEAO-1 and HEAO-2: the first

one relied on attitude reference updates every twelve hours based on ground attitude

determination. The follow-on spacecraft, two years later, already possessed the

capability to compute its own attitude reference update, based on ground-supplied

guide-star reference information, a capability also implemented in SMM. HEAO-2

could, in addition, periodically go through a weekly target list.

38 Mission Autonomy

4.4.2 1980-1990 Spacecraft

The 1980 saw the launch of larger, more expensive and more sophisticated

spacecraft. Among these, some famous spacecraft such as the HST and Compton

Gamma Ray Observatory (CGRO) were actually launched in the 1990s, but were

scheduled to be launched earlier.

HST featured automatic safe mode options and improved FDIR checks; and the

first appearance of “message based” architecture between two processors, that

would coordinate when searching a new observation target. Moreover, it has to be

noted that many of the advanced FDIR functions of the HST were added to the

spacecraft after launch, in response to problems experienced inflight.

Figure 15 Hubble Space Telescope. Credits NASA

Another exemplar mission was the Extreme Ultraviolet Explorer (EUVE), that

featured innovative telemetry monitoring capability and autonomous generation of

commands. In addition, the spacecraft was integrated with a predecessor of a true

event-driven operation reasoning engine.

4.4 History of Autonomy Features 39

4.4.3 1990-2000

The spacecraft developed in this decade were characterized by HW and SW

enhancements: on-board computers were more powerful, more RAM and more

storage was available on-board, and on the software side new higher-level

languages (as C, C++ and Ada) and floating-point arithmetic allowed the FSW to

assume characteristics comparable to those of ground software.

Autonomy advancements featured better interconnection between different

processing units and different SI in the spacecraft. Moreover, the decoupling of the

science and communications scheduling introduced further flexibility in spacecraft.

Additional features concerned the telemetry definition tasks, that are now

configurable directly by table uplink, and this allows to reprogram the spacecraft

telemetry without changing the FSW. Advanced decision-making was also

implemented thanks to the introduction of Boolean logics to correctly isolate

failures (Landsat-7). In these years, spacecraft such as Deep Space One (DS-1) were

launched and later integrated with Remote Agents, responsible for multitasking,

P&S and model-based FDIR [44].

4.4.4 2000s

Among the new capabilities implemented on spacecraft in the 2000s, true lost-in-

space capabilities can be highlighted, along with even more improved model-based

failure detection. In general, the trend observed is moving towards the

implementation of SI acting as spacecraft controllers themselves, deciding

autonomously the science schedule with respect to planned and unplanned

observations.

Additional experiments in autonomous formation flying have been performed.

4.4.5 Current and Future Spacecraft

Spacecraft under development (such as the James Webb Space Telescope), are

implementing advanced features such as on-board event-driven scheduling, with a

flexible implementation that allows to move through observation targets as soon as

they are available, without forcing any observation if anomalies or unfavourable

conditions appear.

Developments in spacecraft constellation and formation flying are currently

driving the effort in mission autonomy research. Another important driver is the

40 Mission Autonomy

independence of SIs with respect to the spacecraft pointing. Finally, innovative, AI-

driven small spacecraft are being flown [20], [45].

4.5 ESA Autonomy Design Guidelines

The design and implementation of autonomy features on-board is yet to become

standardized. On the other hand, guidelines and requirements that cover the

autonomous operability of a spacecraft have been already laid by ESA, and are

available to the spacecraft manufacturers [46].

In general, the design of the on-board autonomy should take into account high-

level operations characteristics such as:

• Maximum level of mission outage that is considered acceptable

• Ground Control Station access durations and timings

• Maximum period of ground segment outage to be foreseen

Certain values, characteristics of each mission, should be defined when

designing a space mission:

• An autonomy duration, that is the time the spacecraft can continue

operations without instructions from ground

• A storage duration, that is the maximum time interval that the spacecraft

can continue storing new mission data, without downlink and

subsequent erase

• A maximum time during which the spacecraft can autonomously

manage its operations in the presence of a single failure. It also includes

the time spent by the Mission Control to detect, identify and plan the

recovery action for the failure

• The design of the spacecraft behaviour in the presence of a failure shall

take into account a minimum reaction time of the Mission Control

• The Mission Control, through defined Ground Control Stations, should

be able to override any on-board autonomous function.

When designing the autonomy features of a spacecraft, several application

scenarios must be considered: nominal operations, off-nominal operations and data

management autonomy.

4.5 ESA Autonomy Design Guidelines 41

4.5.1 Nominal mission operations autonomy levels

During the execution of nominal mission operations, four levels of autonomy have

been defined:

• Execution mainly under real-time ground control

• Execution of pre-planned mission operations on-board

• Execution of adaptive mission operations on-board

• Execution of goal-oriented mission operations on-board

These autonomy level, and their features, are summarized in the following

table.

Table 5 Mission execution autonomy levels

Level Description Functions

E1

Mission execution under ground
control; limited on-board capability
for safety issues

Real-time control from ground
for nominal operations
Execution of time-tagged
commands for safety issues

E2
Execution of pre-planned, ground-
defined, mission operations on-board

Capability to store time-based
commands in an on-board
scheduler

E3
Execution of adaptive mission
operations on-board

Event-based autonomous
operations
Execution of on-board
operations control procedures

E4
Execution of goal-oriented mission
operations on-board

Goal-oriented mission re-
planning

42 Mission Autonomy

4.5.2 Mission data management autonomy

Concerning mission data management, the following autonomy levels have been

defined:

• Essential mission data used for operational purposes can be stored on-

board

• All mission data can be stored on-board (science data and housekeeping

data)

The following table summarizes the details of these autonomy features.

Table 6 Mission data management autonomy levels

Level Description Functions

D1

Storage on-board of essential mission data
following a ground outage or a failure
situation

Storage and retrieval of
event reports
Storage management

D2

Storage on-board of all mission data, i.e. the
space segment is independent from the
availability of the ground segment

As D1 plus storage and
retrieval of all mission
data

4.5.3 Fault management mission autonomy

Failures are a fundamental aspect of each space mission, and the correct

management of expected and unexpected failures is often the line between a

successful mission and an unsuccessful one. Generally speaking, the approach

towards the management of failures is the Failure Detection, Isolation and Recovery

(FDIR) approach. In this scope, failures are managed in the following way:

• They are detected (on-board or on ground) and are reported to the

relevant subsystems/systems and to the Mission Control

• They are isolated, that is the propagation of the failure among other

components/subsystems/systems is inhibited

• The functions affected by the failure are recovered, to allow for mission

continuation

4.6 The need of Autonomy 43

The following autonomy levels have been defined:

• Autonomy to safeguard the space segment or its sub-functions

• Autonomy to continue mission operations

These levels are described more into details in the following table.

Table 7 Failure management autonomy levels

Level Description Functions

F1

Establish safe space segment
configuration following an on-
board failure

Identify anomalies and report to
ground segment
Reconfigure on-board systems to
isolate failed equipment or
functions
Place space segment in a safe
state

F2

Re-establish nominal mission
operations following an on-board
failure

As F1, plus reconfigure to a
nominal operational configuration
Resume execution of nominal
operations
Resume generation of mission
products

4.6 The need of Autonomy

The potentialities of Small Satellites are clear, and several innovative mission

architectures could be enabled by the diffusion and adoption of this category of

spacecraft. Unfortunately, as introduced earlier, there are several mission-level and

system-level issues that impede the capabilities of small spacecraft especially when

applied to complex mission architectures, both interplanetary and Earth-based. The

main issues are presented in the following sections.

44 Mission Autonomy

4.6.1 Multi-spacecraft missions with respect to Monolithic missions

For certain types of scientific or technological goals and objectives, implementing

a constellation with respect to a monolithic architecture can bring several

advantages:

• Risk spreading among several assets, preserving the chances of

fulfilling the mission in case an instrument or system fails

• Performing multiple observations, either in controlled formation flying

or in an uncontrolled swarm, of a mission target at the same time from

multiple locations

• Distributing different payloads among different spacecraft allows to

reduce the complexity and size of each asset

• Replacing an instrument by launching a new spacecraft into an existing

constellation or swarm

Missions are currently being planned and proposed that consider tens and

hundreds of assets in the space segment. In order to avoid excessive cost of

operations, the most promising way is to reduce the operators-to-spacecraft ratio.

An important conclusion can be drawn from the last statement: mission operations

design, and the operators themselves, need to work at a higher level of abstraction

and be able to monitor and control multiple spacecraft simultaneously.

Another benefit of increasing the level of autonomy on a spacecraft is that

several subsystem sizes can be reduced, as the performances needed to fulfil the

mission might be reached by a synergy of several spacecraft, instead of allocating

all the performance on a single one. Among the subsystems that are affected by the

autonomy of the space segment is the communication system: introducing higher

autonomy features enables the reduction of the downlinked data. Command and

Data Handling (C&DH) is another affected subsystem: the increase of the acquired

data would require additional on-board storage. This requirement can be mitigated

by enhancing the autonomy level, and implementing algorithms that analyse,

choose and discard non-meaningful scientific and mission data. On the other hand,

the C&DH will be affected by enhancing the on-board autonomy by a likely

increase in the computational power requirements of the subsystem.

4.6 The need of Autonomy 45

4.6.2 Big Distances, Low Data Rates and Communications Delays

Another key reason to implement advanced mission autonomy software is the fact

that, for certain types of missions, the communication between the MC and the

spacecraft takes minutes, if not hours. In these architectures, the mission risks

increase because the monitoring of the spacecraft cannot be performed in real-time

(or near real-time).

On the same side, another issue impedes the correct fulfilment of space

missions: for those mission whose objectives are to study randomly appearing

events (for example a comet plume, or a forest fire), the decision time for a human

operator is often too long to update correct observation commands to the spacecraft.

In this case, the communications delays might be small, but decision-making delays

are added, and the result is still a poorly performing mission. Autonomy can play

an important role in these cases, because it enables real-time decision-making and

a corresponding action can be taken to observe the desired phenomenon. Challenges

in this application include the definition of rules to manage the observation

schedule, to understand whether it’s more important to interrupt current objective

(to perform the observation of the newly appeared event) or to ignore the event and

continue with the objective in place. An example of this feature is the Swift mission,

for which one of the instruments has software functions that determine whether a

new observation has high priority, and if so, commanding of the spacecraft can be

executed to continue the observation.

At last, large communications latencies are also problematic for failure

management: long delays would introduce high uncertainties about the current

status of a spacecraft, putting at risk the success of the mission, but also

complicating the response of human operators, that would have to take decisions

without knowing into details the situation.

4.6.3 Variable Ground Support

Traditional mission design involves carefully planned Ground Segment resource

allocation, that allows the mission to be controlled and managed smoothly. This is

not always the case: one key example being the category of university CubeSats,

especially educational, low-budget projects. In this case, often times the required

Ground Control Centre is not available, has poor performances, or there are not

enough operators to guarantee a high percentage of presence during satellite passes.

A high level of autonomy on the spacecraft would allow the mission to continue

46 Mission Autonomy

without interruption for long periods of time, determining on its own the best

strategies to acquire new data, and to downlink the stored data once a passage is

available.

Additionally, there might be missions where complete autonomy may not be

the best solution, or that different periods may require different levels of autonomy.

In this scenario, adjustable autonomy can be implemented. The adjustment can be

performed autonomously by the system, depending on the conditions, or on request

by the MC to help the spacecraft accomplish current objectives, or to override the

on-board intelligence to perform manual commanding. With adjustable autonomy,

it is mandatory to have a well-designed Ground Segment and a robust operation

management to work flawlessly with the on-board software.

Chapter 5

Artificial Intelligence

5.1 What is Artificial Intelligence

Artificial Intelligence is a branch of Computer Science that has gained enormous

popularity in the last decade, thanks to the many successful applications developed.

The term was coined just after the second World War II, in 1956 [47]. Currently,

the field is composed by a great variety of subfields, ranging from learning and

sensing the stimuli, to specific activities, such as playing games, proving

mathematical theorems, writing or even driving and diagnosing diseases. Artificial

Intelligence is a universal field, as universal is the range of human activities.

5.1.1 Definitions of Artificial Intelligence

The definitions of this field of computer science are numerous, due to the fact that

the field has evolved quickly through the years, and defining with a univocal set of

words a field this vast is certainly open to opinions and different point of view. In

the literature, eight typical definitions are accepted, each one carrying slightly

different meaning and emphasizing certain aspects of the field. An interesting table

is provided in [47], and is presented here entirely:

48 Artificial Intelligence

Table 8: Definitions of Artificial Intelligence

Thinking Humanly

“The exciting new effort to make
computers think …machines with

minds, in the full and literal sense.”
(Haugeland, 1985)

“[The automation of] activities
that we associate with human thinking,
activities such as decision-making,
problem solving, learning …”
(Bellman, 1978)

Thinking Rationally

“The study of mental faculties
through the use of computational
models” (Charniak and McDermott,
1985)

The study of the computations that
make it possible to perceive, reason, and
act.” (Winston, 1992)

Acting Humanly

“The art of creating machines that
perform functions that require
intelligence when performed by
people” (Kurzweil, 1990)

“The study of how to make
computers do things at which, at the
moment, people are better.” (Rich and
Knight, 1991)

Acting Rationally

“Computational Intelligence is the
study of the design of intelligent
agents.” (Poole, 1998)

“AI… is concerned with intelligent
behaviour in artefacts.” (Nilsson, 1998)

5.1.2 The various philosophies of Artificial Intelligence

These definitions highlight four approaches for implementing an intelligent system.

Acting humanly

Traditionally, designing machines to emulate human way of acting imply giving

the machine at least one of the following characteristics:

• Natural language processing – enabling successful communications

• Knowledge representation – storing knowledge

• Automated reasoning – answering questions and drawing new conclusions

• Machine learning – adapting to new situations

Artificial Intelligence 49

• Computer vision – perceiving objects

• Robotics – manipulating objects and moving

Several competitions and tests are held every year in which machines compete in

disciplines involving one or more of the listed categories. Moreover, a rigorous and

widely famous test on machine capabilities of emulating humans is the Turing test,

designed by A. M. Turing.

Thinking humanly

This is an approach to develop Artificial Intelligence focused on defining and

implementing the way humans think: the cognitive modelling. This approach is

driven by an interaction between computer models from AI and experimental

techniques from psychology. Additional effort is put also on emulating the

reasoning steps, not only reaching a predefined reasoning output from certain

conditions. In general, cognitive science is based on experimental studies

performed on real humans or living beings.

Thinking rationally

The approach is driven by logic type of reasoning. Artificial Intelligence designed

on this philosophy aims at solving problems using a logical approach, implementing

solutions that aims at decomposing and solving the problems using logical

reasoning. This approach has two drawbacks:

• The link between informal knowledge and formal representation by logical

notation is not always easy to obtain and define

• The number of steps to be taken by a computer problem is not directly

related to the execution time and to the computational resources needed, as

even simple problems can hinder the computational resources if no guidance

is provided to identify the correct initial actions to take

Acting rationally

Computer programs developed with this philosophy are expected to operate without

external control, sense their surroundings, adapt and create and follow goals. A

rational agent constantly aims at achieving the best results, or, in case of uncertain

conditions, the best expected outcome. In general, rational agents will tend to

execute actions defined by either inferences or other kinds of reasoning. Among the

qualities needed for an agent to act rationally one can include those needed to

successfully pass the Turing Test, knowledge representation and reasoning. When

compared to the other approaches, two better qualities characterize the rational

agent approach:

50 Artificial Intelligence

• Generality: this approach encompasses more possible mechanisms to

achieve rationality with respect to the “laws of thought”

• More compliant with scientific procedures and development, as the

approach is formally defined and completely general

5.2 Brief history of Artificial Intelligence

Figure 16: History of Artificial Intelligence

The rise of AI as a distinct field in CS was not characterized by a linear progression:

instead, after an initial positive reception by the scientific community, the field had

to face several problems that highlighted the limitations of both the State of the Art

(SoA) algorithms and of the computer machines that were available at the time.

Despite this tormented start, AI is now unmistakeably recognized as one of the most

prominent fields in CS: it is therefore useful to recall all the key steps in the

evolution of the field.

1943-1955, the Preludium

The two professional figures widely recognized as the fathers of AI were the

neuroscientist Warrant McCulloch and the mathematician Walter Pitts, with a work

that is now indicated as the ancestor of AI: the proposal of a model of artificial

neurons in which each unit can be in the states of “on” and “off”, where the “on”

state occurs after a sufficiently strong stimulation by the neighbour neurons. The

results come after considering three main contributions: the fundamentals of

physiology and the study of the functions of neurons in the brain; Russel’s and

Whitehead’s formal analysis of propositional logic and Turing’s theory of

computation. Further works by McCulloch and Pitts on the field of network learning

introduced a simple rule to update the connections between neurons, the Hebbian

learning, which has been a pioneering model for years. The exemplar work in the

early developments of AI were made by Alan Turing, that introduced the Turing

Test, machine learning, genetic algorithms, and reinforcement learning concepts.

Artificial Intelligence 51

1956, the Birth

The key event in the history of AI can be identified in the workshop organized in

Dartmouth in the summer of 1956, in which 10 selected researchers participated in

two months period of research on the topics of AI. In this workshop, embryo

applications were developed and presented, including what can be considered the

first reasoning program capable of thinking non-numerically. Although the

workshop itself did not hold significant progresses in the field of AI, it served as a

fruitful start of the collaborations that led the AI development scene in the following

two decades. Starting from this event, two key and distinct characteristics of AI

development were made evident: the aim of AI researchers of duplicating human

faculties such as creativity, self-improvement and language use; and the research

on methodologies that focus on building machines that will function autonomously

in complex, changing environments.

1952-1969, the Inflation

The era of computers was at its beginnings, machines and programming tools were

still limited and the functions they could perform were basic, especially in the

earlier years of this period. Nonetheless, AI researchers were constantly confronted

with the idea that computers could never be programmed to do certain tasks. One

after another, the researchers could implement most challenges that were posed in

those years. Interesting applications of those years were the General Problem

Solver, a program designed to implement the “thinking humanly” approach, that

could solve problems in a way similar to that used by humans. Applications for

playing checkers were also developed using AI. Key advancement in the

programming tools available at the time was the invention of the language Lisp,

that will be the leading programming language for AI for the next 30 years. Initial

demonstration of self-learning programs was also realized during this period.

Concepts such as Adalines neural networks and perceptrons were also introduced.

1966-1973, the Scepticism

Initial successes came abundant as the AI research carried on. Despite this

promising evolution, the development of AI-based applications soon encountered

key issues that characterized those years: AI systems were performing very well in

specific but rather simple examples, while they would fail poorly when tested on

wider or more complex problems. In particular, a very challenging aspect was the

fact that most of early AI programs would fail in solving problems they knew

nothing about. One key example can be traced to machine translation efforts, that

showed how knowledge and understanding of the speech context is mandatory to

52 Artificial Intelligence

perform an accurate translation, and implementing those traits in a translator

program turned out to be more difficult than what had been predicted. Another

misconception that arose in those years was based on the fact that problem size was

irrelevant: a program able to solve a small but generic problem, was thought to be

able to solve more extended and vast problems as well, the difference being only in

the hardware that was running the algorithm. Scaling up to larger problems was

believed to be only an issue of more performing hardware and memories.

Furthermore, intrinsic limitations on the basic structures of earliest AI development

limited the performances of those algorithms.

1969-1979, a New Hope

The research carried on in the previous years was focused on what have been called

“weak methods”, as, despite being general, they do not show the same type of

performances with smaller or bigger problems, therefore showing scaling issues.

The solution to this issue was found to implement more powerful, specific methods

that allow more versatile reasoning. A few examples appeared in this period, such

as the DENDRAL program, that was able to determine the molecular structure only

by considering the outputs of a mass spectrometer. This program represented the

first knowledge-intensive system: its behaviour was originated from a large

quantity of special-purpose rules. Another notable project has been HPP, the

Heuristic Programming Project that was exploring the feasibility of expert systems

and their application in other fields of human expertise. In this sense, the research

was directed towards medicine and diagnosis. With a program made of about 450

rules, the performances of this expert system could be compared to those of an

expert physician, while reliably being better of a junior doctor. Notable at this time

was also the introduction of uncertainty during problems solving.

1980-present, the Widespread Adoption

The adoption of AI algorithms by companies worldwide saw both promising and

cautious times: the years after 1980 were surely considered a positive period for AI

applications: these allowed several companies to save great amounts of capitals,

and each of the leading CS companies had their own AI research team, with a

consequent investment in AI industry that rose to reach billions of dollars by 1988.

Examples of this effort were realized in the field of expert systems, vision systems,

robots and specialized hardware and software.

At the same time, the back-propagation algorithm (invented in 1969 by Bryson and

Ho) came back in fashion and was applied to many learning problems, from

computer science to psychology. Several interesting results were obtained thanks

Artificial Intelligence 53

to this training algorithm, and these successes contributed to create the third distinct

approach to the study and development of AI applications.

At last, the evolution of the research around AI separated into two distinct efforts:

researching on effective network architectures and algorithms, and research on

reaching precise modelling of the biological neurons and their group architectures.

The latest direction of development of AI are towards an embrace of the scientific

methodology that is the standard in other research fields. AI research must now

undergo rigorous empirical experiments, and the results must be analysed

statistically for their importance. Shared repositories of test data and code made it

possible to replicate experiments with ease.

This, coupled with refinements on the tools available to the AI researchers (such as

the Bayesian networks and improved training algorithms) allowed AI algorithms to

reach significant results in fields traditionally dominated by statistics, pattern

recognition, machine learning and so on.

1995-present, towards Skynet

Huge successes in the various fields of AI have contributed to the affirmation of

this branch of CS. Despite these successes, in the latest years, a particular research

effort has taken back momentum and is now expanding: the strive towards the

“whole agent”. Furthermore, previously isolated fields of AI have now been joined

together, comparing and sharing each other’s results: it is a fact that sensory systems

(vision, sonar and speech recognition) cannot deliver reliable information about the

environment. For this reason, reasoning and planning systems must be able to

handle uncertainty. In addition, another consequence of the agent perspective is that

AI has been drawn into much closer contact with other fields, such as control theory

and economics, that also deal with agents.

More exotic research directions (that, on the other side, share similar intents with

initial efforts in AI research) are considering the emulation of the human-level

intelligence, or more in general the development of an Artificial General

Intelligence, that would implement an universal algorithm for learning and acting

in any environment.

Finally, in recent years, an important paradigm shift has begun to appear: thanks to

the increased availability of data, scientists and researchers are becoming less picky

about the choice of the algorithm, with respect to careful definition and construction

of the datasets involved in the application. Examples of this can be found in

54 Artificial Intelligence

linguistic (trillions of English words), in pattern recognition (billions of images

found in the internet), in genetics (billions of base pairs of genomic sequences).

Researches like these highlight the possibility that the current problem of AI is the

way all the knowledge needed in an application is expressed, and that this problem

can be solved by improving the data used and then the learning method used, rather

than hand-crafting the knowledge into the problem. This type of approach is

suitable in different fields, but holds less value in field of application where the

datasets available are more limited in size.

5.3 The basis of Artificial Intelligence

The definition and establishment of Artificial Intelligence as a prominent field in

Computer Science is the result of an evolution of ideas, viewpoints and

methodologies that started out earlier in the human history with respect to the

invention of computers. In general, the path that led to the definition of Artificial

Intelligence as a discipline can be described under several different lights: in any

case, four distinct incentives and pushes can be identified in the areas of philosophy,

mathematics, economics and neuro-science.

Table 9: Foundations of Artificial Intelligence

Philosophy

Earliest records of automating

human reasoning date back to Aristotle

(III B.C. century) that formulated a

methodology to rule the rational sphere

of the mind. He developed an informal

system of syllogisms for proper

reasoning, which allowed to obtain

definitive conclusions given initial

premises. After him, the mechanization

of the thinking act was explored by Lull

(XIV century), that envisioned

reasoning carried out by a mechanical

artefact; Hobbes (XVI century)

proposed to treat reasoning as

numerical computation. Continuing,

Mathematics

The advance in mathematics was

one of the key stepping stones of the

definition of the foundations of AI. In

particular, the three essential fields that

can be linked to AI are logic,

computation and probability. Each one

of these fields has its own origins and

main exponents (Boole, Frege, Tarski).

The development and definition of the

first algorithms (Euclid, III B.C.

century) is a citation that has to be done

as well as the first works on proving

which mathematical problems could or

could not be proved (Gödel, XX

century) and more generally the effort

Artificial Intelligence 55

several philosophical currents can be

linked to the origins of AI, among

which are: rationalism, dualism,

materialism, empiricism, and so on. In

general, the typical questions of the

philosophic effort can be identified in:

- do formal rules to obtain valid

conclusions exist?

- what constitutes the mind and the

physical brain?

- where does knowledge come from?

- how is knowledge translated into

action?

to characterize which functions are

computable (Turing, XX century).

Moreover, tractability problems and

NP-completeness are surely subjects

that are involved with the development

of AI. Relevant questions:

- Are there, if any, formal rules to draw

valid conclusions?

- What can and what cannot be

computed?

- How do we deal with uncertain

information?

Economics

The field of economics is a

relatively recent one when compared

with philosophy and mathematics, yet

it held very important results that

fostered the development of the AI

discipline: the mathematical theory of

preferred outcomes (or utility); the

decision theory, that combines

probability theory with utility theory

and later on the game theory. Of

paramount importance are also the

operation research and the Markov

decision processes.

Some of the fundamental questions of

the field, related to AI:

- how should we make decisions to

improve the outcomes?

- how can we change these decisions

when the outcomes are evaluated in the

far future, or when boundary conditions

vary?

Neuroscience

Neuroscience is involved with

studying the brain, which is the main

element of the nervous systems in

human beings. Despite the majority of

the brain’s characteristics and functions

are yet to be discovered, several

advancements were made in the study

of localized areas of the brain

responsible for specific cognitive

functions (Broca, XIX century). On the

other side, the study of the brain nerve

cells, the neurons, was carried out after

a staining technique was invented that

allowed the observation of individual

neurons in the brain (Golgi, XIX

century). Furthermore, after the

invention of the

electroencephalograph, the

measurement of intact brain activity

could begin. Recent developments of

functional magnetic resonance imaging

are providing neuroscientists with

56 Artificial Intelligence

incredibly detailed images of the brain

activity. One of the most promising

conclusions of this discipline is that a

collection of simple cells can lead to

thought, action and consciousness

(Searle, XX century). The leading

question that is having its effects on AI

development is:

- how do brains process information?

Psychology

The early advancements on

experimental psychology began with

rigorously controlled experiments on

human beings (Helmholtz, Wundt, XX

century). Another effort was led by the

behaviourism movement, that aimed to

study only objective measures of the

stimuli given to an animal and the

resulting actions. The definition of the

brain as an information-processing

device, and the involvement of the

perception as a form of unconscious

logical inference can be traced back to

the end of XIX century. Further

developments were made towards the

definition of what is known as a

knowledge-based agent, which

possesses three characteristic traits: a

stimulus is translated into an internal

representation, the representation is

processed by cognitive functions to

derive new internal representations,

and these are translated back into

action. The leading question related to

AI in the field of psychology is:

Computer Engineering

The missing piece so far in the

development and spreading of AI is a

type of technology that allows the

implementation of the AI algorithms.

The selected choice has obviously been

the computer, despite calculating

devices were invented before the

computer, but were overcome by the

adoption of the computer. On the other

side, the software side of computer

science, several developments were

essential for the diffusion of AI:

programming languages, operating

systems and tools.

The main driver in this area has

been:

- how can we build an efficient

computer?

Artificial Intelligence 57

- how do humans and animals think and

act?

Control theory and cybernetics

Several examples of early control

theory are spread throughout history,

starting from water clocks with

regulators (II B.C. century), to self-

regulating feedback control systems

(steam engines governor, Watt, XIX

century). Control theory has been

introduced by Wiener, that also

speculated on creating artificially

intelligent machines by the use of

homeostatic devices, implementing

appropriate feedback loops to achieve

stable adaptive behaviour. Latest

development in control theory have all

aimed at reaching the maximization of

an objective function over time (see

stochastic optimal control). For this

reason, the advancements in control

theory can often times be placed side

by side with advancements in AI.

Calculus and matrix algebra, the tools

of control theory, lend themselves to

systems that are describable by sets of

variables, whereas AI was founded in

part as a way to escape from these

perceived limitations. The tools of

logical inference and computation

allowed AI researchers to consider

problems such as language, vision and

planning that fell completely outside

the control theorist’s view. Leading

research vision:

Linguistics

Linguistics also played a major

role in the development of AI, mostly

because it provided the missing link

between human language and

computers, with theories such as

computational linguistics or natural

language processing and knowledge

representation.

The understanding of human

language turned out to be a joint effort

between understanding the subject

matter, the context and the structure of

sentences. Furthermore, the link

between language and thought has been

considered very important:

- How does language relate to thought?

58 Artificial Intelligence

- how can artefacts operate under their

own control?

5.4 State of the Art

Identifying the SoA for the broad field of AI is certainly not a trivial task, and the

search must take into account the speed with which these algorithms and their

applications are evolving.

5.4.1 What belongs to Artificial Intelligence

One of the most striking characteristics of the field of AI is the ever-present

evolution in the algorithms and applications that can be considered part of the field.

In this section, a summary of the major algorithms of Artificial Intelligence are

presented. In general, when a research field is so vast and with so many different

applications, it’s difficult to include all the known algorithms in a concise summary.

The idea is to describe the constellation of the elements in this research field by

highlighting first the different algorithms and how they are grouped, and then by

citing the most promising and interesting applications that are solved with the use

of AI.

5.4.2 State of the Art by algorithm

Problem-solving

The category of algorithms that have the purpose of solving problems can be

grouped together, as they represent a set of general-purpose algorithms that search

for a solution to problems that, in this case, have as solutions a fixed sequence of

actions: in general, the representation of the problem could involve branching in

order to recommend different actions depending on the situation.

Solving problems by searching

This category of algorithms includes the searching strategies: defining the

different methods to explore and move through a tree that represents and describe

the problem itself. Examples of algorithms in this category include the breadth-first

search, where all the nodes at a given depth in the search tree are expanded before

any nodes in the next level are. Drawbacks of these methods are that memory

Artificial Intelligence 59

requirements are usually a great concern and execution times are often not practical.

On a similar note, depth-first search suffers from similar issues and are both not

optimal search methods. A decent solution is represented by iterative deepening

search, which tries to combine the benefits of breadth- and depth-first searches: this

method is the preferred uninformed search method when the search space is large

and the depth of the solution is not known. More exotic searching is represented by

the bidirectional search, where two searches are performed, one from the root node

and one backwards from the goal. An improvement over uninformed search is to

perform informed searches, when possible. The improvement comes from the fact

that evaluating the current state allows to introduce efficiency in the exploration:

best-first search is one example, greedy variant introduces a choice based on

preferring the expansion of the node closest to the goal, considering that that node

will be the most likely to lead to a solution. The currently most widely known form

of best-first search is the A* search, that combines the information of the cost to

reach the node and the cost to get from the node to the goal. Memory bounded

versions of the introduced algorithms exists as well (recursive best-first search and

simplified memory-bounded A*).

Beyond classical search

An evolution and a differentiation with respect to traditional search models is

represented by the category of algorithms that do not implement systematic

searches of all the possible paths. They have two key advantages: small amount of

memory and perform quite well in large or infinite state spaces. Local search

algorithms are an example, and are useful for solving optimization problem where

the intent is to obtain the best state given by optimizing an objective function.

Traditionally these algorithms involve analysing the shape of the objective

functions to find the global minimum (or maximum), avoiding local extremes and

plateaux, and coping with ridges (which are traditionally very difficult to deal with

for local search algorithms). Hill climbing and its variations are an example. To

overcome the problems of avoiding local extremes, an algorithm that combines the

processes of Hill climbing and the exploration properties of a random walk is

Simulated annealing, that introduces the concept of temperature while performing

gradient descent. Beam searches introduces the characteristics of exploring more

than one generated state, while keeping a connection between the searches, and

passing useful information between them.

A particular case of stochastic beam search is defined by Genetic Algorithms:

they aim at emulating the dynamics of populations of individuals, implementing the

60 Artificial Intelligence

survival of the fittest law of nature. In particular, the search for an optimal solution

is done by encoding the single solution as a single individual: it will then evolve in

successive generations of the population, converging to the optimal solution.

Behaviours such as reproduction, mutations, parenthood, natural selection and

elitism are defined and are essential for the success of the algorithm.

A note to these algorithms: it must be said that the strategies can vary when we

deal with problems in which the agent possesses sensors, and the strategies are

different in the case of a fully observable world, a partially observable one, and a

non-observable one.

Adversarial search

One of the key characteristics of Adversarial Search problems is that they deal

with competitive environments, such as games. Most of the times, real-life games

are quite difficult, if not impossible, to solve completely. One of the most important

reasons is because of the dimension of the problem. The average branching factor

of chess is 35, with games that can reach 50 moves per player. In such cases,

defining the optimal move is unfeasible. Several techniques exist to facilitate the

decision during games, such as pruning, that allows the algorithm to ignore portions

of the search tree, evaluation functions to approximate the true utility of a state

without a complete search, and strategies to deal with imperfect information.

Famous algorithms in this case are minimax for decision making, alpha-beta

pruning for removing large parts of a search tree, and in some cases, table lookup

for games states which solutions are known a-priori thanks to human knowledge

and experience. Even in this case, distinctions are possible when we consider games

ruled by chance or not, and games where the information is perfect or imperfect.

Constraint satisfaction problem

A more efficient approach for solving specific problems is known as Constraint

Satisfaction Problem (CSP) and involves a type of problems that is defined by

setting constraints to the characteristic variables, and that is solved when each

variable has a value that satisfies all the constraints on the variables. With respect

to traditional state-space search, the algorithms that solves CSPs involve two

possible actions: search, similar to traditional state-space problems, and do a

specific type of inference, that is propagate the constraints: this means exploiting

the constraints to reduce the number of values that a specific variable can assume.

Several types of inference techniques exist to check the consistency of the

Artificial Intelligence 61

constraints, common ones being node, arc, path and k-consistency. Searches can be

performed tracking backwards (backtracking) and methods exist to choose the best

variable to explore during a backtracking search.

Knowledge, reasoning and planning

The group of algorithms that aim to solve problems by using reasoning on an

internal representation of knowledge is constituted by knowledge-based agents.

This type of agents represents an evolution to what described earlier, as they operate

exploiting logic, seen as a general class of representations to support knowledge-

based agents.

Logical agents and First-order logic

Logical agents are a category of agents that use formal logic to take decisions

and perform actions in their world. Logic is the key element in the behaviour of the

agent, and is characterized by the presence of a syntax, semantics, knowledge-base,

and an inference procedure.

First-order logic is a type of logic that is inherently more powerful than

propositional logic. In this case, the types of problems that can be solved are more

complex and can be solved more efficiently with respect to propositional logic. In

general, developing a knowledge base in first-order logic requires a careful process

of analysing the domain, choosing a vocabulary, and encoding the axioms required

to support the desired inferences.

Classical planning and complex planning

Planning systems are problem-solving algorithms that operate on explicit

propositional or relational representations of states and actions. One of the most

famous algorithms is PDDL, the Planning Domain Definition Language, that

describes the initial and goal states as conjunctions of literals, and actions in terms

of their preconditions and effects. Planning graphs are often used to contain

supersets of all the literals or actions that could occur, and yield useful heuristics

for state-space and partial-order planners. There is no consensus on which planning

algorithm is currently the best, yet cross-fertilization between algorithms has yield

successful progresses.

Complex planning introduces the concepts of scheduling and of resource

constraints, which are not considered in classical planning. Strategies such as

hierarchical task network planning are used to infuse advice in the agent by domain

62 Artificial Intelligence

designers in the form of high-level actions. Extensions of this theory comprise

online planning and multi-agent planning.

Uncertain knowledge and reasoning

Dealing with uncertainty is one of the pillars of modern agent design: an agent

needs to handle uncertainty, both in case of partial observability, or non-

determinism, or a combination of the two. When we analyse the approaches of

agents described earlier, a few drawbacks are highlighted: when a logical agent has

to consider every logically possible explanation for the observations, the belief-

state representations become large and complex; on the same side, a correct

contingent plan that handles every eventuality can grow large and is daunted by

several low-probability events; when no plan is definable to pursue a goal, an action

is still required to the agent.

Dealing with Uncertainty

When dealing with uncertain reasoning, especially in complex problems, it is

mandatory to define a way to quantify the uncertainty level. For this, probability

comes into play with a way of summarizing the uncertainty level. Once a

description of the uncertainty is obtained, the subsequent actions consist in defining

agent preferences (what to do with respect to probability) and which utility is

reached once a preferred action is taken. The fundamental idea of decision theory

is that “an agent is rational if and only if it chooses the action that yields the highest

expected utility, averaged over all the possible outcomes of the action” (Maximum

Expected Utility, MEU). Bayesian Networks represent a very effective way to

represent uncertain knowledge. They are a directed acyclic graph whose nodes

correspond to random variables, with each node storing a conditional distribution

for the node. Inference algorithms exist to calculate the probability distribution of

a set of query variables, given a set of evidence variables.

Introducing the concept of time when dealing with uncertain reasoning requires

the introduction of more versatile reasoning tool, that have been widely used in the

last decades: the Markov processes and models. Inference models need to be

updated to take into account the dynamic environments. Powerful algorithms to

consider are also Kalman Filters, Dynamic Bayesian Networks, particle filtering

and more.

Artificial Intelligence 63

Decision making, simple and complex cases

Decision making is a process that combines having information of the

environment (thanks to probability representation) and information on the obtained

utility of a certain action (thanks to utility theory). In general, different types of

tools are available, but most promising ones are Multi-Attribute Utility Theory and

Decision Networks. Finally, Expert Systems include utility information and have

additional capabilities when compared with pure inference systems. On the other

hand, the problem of decision making is much more complex when we deal with

sequential decision problems, that are a category of problem in which the agent’s

utility depends not only on the outcome of a single decision, but on the sequential

outcomes of more decision actions. When the problem can be described as a

sequential decision problem for a completely observable, stochastic environment

with a Markovian transition model and additive rewards is called Markov Decision

Process (MDP) and they became one of the most important algorithms to date. A

variation to MDPs occurs when the environment is not fully observable, thus

encountering the Partially Observable MDPs.

Learning

The concept of learning is one of the fundamental aspects of AI, and defines a

category of algorithms that are known as Machine Learning. Learning means that

the performance of an agent will improve on future actions after observing the

surrounding world. There are three key reasons for why a developer would prefer

learning algorithms over hard-coded software: first, not every situation the agent

will be in can be predicted by the designer; second, changes over time are difficult

to predict; third, for certain problems, the direct implementation of a solver

algorithm is too hard and automatic learning represent the only viable solution to

the implementation of an agent. In general, four topics are shared among different

learning algorithms and problems: there is a component of an algorithm to be

improved; the agent possesses prior knowledge; data is represented in a specific

way; a feedback action provides guidance during learning. When a specific

algorithm needs to learn from its surrounding world, three main learning algorithms

are available to the designer, and will be discussed later: reinforcement learning,

supervised learning, unsupervised learning.

Learning from examples

Among the algorithms that can learn from examples, decision trees can be cited.

When learning from examples, one question appears soon: when an algorithm

64 Artificial Intelligence

learns something, how can we be sure that our learning algorithm has produced a

hypothesis that will predict the correct value for previously unseen inputs? How

many elements in the dataset do we need to get a good hypothesis? What hypothesis

space should we use? An interesting principle of computational learning theory

states as follows: “any hypothesis that is seriously wrong will almost certainly be

found out with high probability after a small number of examples, because it will

make an incorrect prediction. Thus, any hypothesis that is consistent with a

sufficiently large set of training examples is unlikely to be seriously wrong: that is,

it must be probably approximately correct”. Algorithms built on this principle are

called Probably Approximately Correct Learning (PAC-learning). Classification

algorithms (linear, linear with regressions, linear with hard threshold, and so on)

can be considered.

An exemplar category of algorithms that exhibit learning characteristics are the

Artificial Neural Networks (ANN). The algorithm aims at representing the

functional behaviour of biological neurons, translating their functions into

computational units, the artificial neurons. A simple mathematical model for a

neuron will be described later. When the artificial neurons are grouped together, a

network is defined. Several types of networks exist, such as feed-forward, recurrent,

single- or multi- layer, networks, and so on. Learning, which will be dealt with later,

is performed by applying training algorithms on a dataset.

Several other algorithms exist: Nearest Neighbour Models, Support Vector

Machines, Ensemble Learning.

Several other methods consider prior knowledge during learning: in this case,

the effects of knowledge representation and learning are joined together. Current-

best-hypothesis search and Least-commitment search are examples of these

algorithms. Efforts are also being spent in developing methodologies to extract

general knowledge from specific examples. Several different types of learning have

been developed, including Explanation-based learning, Relevance-based learning,

Knowledge-based inductive learning, Inductive logic programming.

Learning probabilistic methods

Learning by using statistical methods can be done in several different ways,

and the methods that fall under this category can be theoretically simple or very

complex. A few examples are: Bayesian learning, Maximum a posteriori,

Artificial Intelligence 65

Maximum-likelihood and by using non-parametric models. The majority of the

algorithms in this category fall under the unsupervised learning strategies.

Reinforcement learning

The fundamental concept behind reinforcement learning is that, providing the

agent with a feedback about how good (or bad) were the decisions he took, will

eventually improve its decision-making capabilities. This type of feedback is

identified as a reward, or reinforcement, and can be given either at the end of a

series of actions or more frequently. Two main philosophies exist when considering

reinforcement learning, passive and active reinforcement: in the first, the agent’s

objective is to compute each states’ utility, while in the latter the agent must

determine which actions to take. In general, anyway, the methodology used to

design an agent is tied to the information that needs to be learned. In the case of the

passive reinforcement learning, the utilities can be computed by using Direct utility

estimation, Adaptive dynamic programming, Temporal-difference.

Communicating, perceiving, and acting

When dealing with the problem of acquiring knowledge, the most powerful

ability that an agent can possess is the ability to understand natural language, as the

majority of the information currently stored in computer is expressed in this form

of language.

Understanding natural language

In this sense, n-gram models represent a quite effective methodology to

represent and learn the letter and words in a natural language. Smoothing of the n-

gram models is a process that allows to avoid the limitations of the training dataset:

above all, the backoff model is one of the better performing.

Machine reading holds a predominant spot in this section: the intent is to build

a system to extract knowledge from written text that can work with no human input

of any kind: a system that could define and fill in its database. In general, it is

necessary to define not only a system to parse and grasp the knowledge, but also to

explore the actual human behaviour. Several algorithms have been used so far for

different problems related to this problem: treebank is useful to learn a new

grammar, CYK algorithm can learn sentences in a context-free language, lexicalized

PCFG allows us to represent connections between words that are more frequent wrt

66 Artificial Intelligence

others. The same algorithms and concepts can also be applied to speech recognition

problems.

Perception

Perception is a fundamental field for computer science and in particular for

applications that interact with an environment, be it the real one or a virtual one.

The basic concept behind perception is that a device, known as sensor, execute a

measurement of the surrounding environment and provides it as an input to an

agent. Sensor is used here as a broad term, not linking the meaning to a complexity

threshold, but to the fact that any information is collected, manipulated and shared.

By intrinsic nature, a sensor that observes the real world will create a distorted

perception of the environment. This fact could be false when considering virtual

sensors. Once the external world is sampled, it is necessary to perform post-

processing to extract meaningful information: the type of algorithms used at this

point can vary, for example in the case of object recognition algorithms such as

Scale Invariant Feature Transform, Histogram of Gradient orientations, and

Neural Networks can be used. Algorithms might increase in complexity when

specific portions of an object need to be characterized as well, for examples arms

and legs in the human body.

Complex systems

When the problem to be solved involves the development of a system that

actively performs actions, we are dealing with complex systems, of which robotics

is a category. Traditionally, the base definition of a complex system is a system that

possesses three characteristic traits: sensors, actuators and a brain, or controller.

The diversification of the complex systems is astonishing: manipulators, humanoid

robots, UAVs and planes, spacecraft.

5.4.3 State of the Art by application

A small set of applications that notoriously implement some form of AI are

presented here. As for the previous list, a comprehensive list is difficult to produce

and would become outdated very quickly in this ever-changing environment.

Nonetheless, it is interesting to recap some of the main contribution of AI in key

example applications.

Autonomous planning and scheduling – Space Agencies (NASA, ESA,

JAXA) have since long dealt with autonomy and the problem of enabling the

Artificial Intelligence 67

spacecraft (especially interplanetary probes) with decision-making capabilities. In

the last two decades, a couple of applications were embedded on NASA spacecraft:

REMOTE AGENT featured autonomous execution plans, deriving them from high-

level goals sent from ground. NASA invested further research on goal-generation

capabilities, developing CASPER, which enabled the spacecraft with decision

making capabilities, goal generation, real-time scheduling, repairing and

optimization [38].

Fault Detection, Isolation and Recovery – Fault Detection systems have been

developed using several categories of AI algorithms, ranging from model-based

applications (which can be considered on the border of AI), to Fuzzy Logics and

Neural Networks [48].

Game playing – The art of gaming has always been a field where AI research

has been focused on, since the earliest decades of the diffusion of these algorithms.

Traditionally, each game saw the development of a specific tailored algorithm, and

the common long-term goal has always been to challenge and beat the world top

players in each discipline. IBM’s DEEP BLUE has set a keystone event in the game

of chess, beating world champion Garry Kasparov in an exhibition match. Games

such as Scrabble, Go and Jeopardy all saw the top players being beaten by AI in the

following years, with Go and Jeopardy games being one of the most challenging

efforts because of game complexity and size of possibilities during the game.

Logistic planning – AI applications for logistics planning and scheduling in

transportation have been developed both for civilian and military cases, with an

emblematic case being the use of the Dynamic Analysis and Replanning Tool, used

by DARPA to plan starting points, destinations, routes and conflict resolutions of

people and cargo. The improvement in the definition of these plans was so

significant that the time for the generation of these plans was reduced from weeks

to hours, with incredible increase of savings.

Machine translation – Language translation has seen a dramatic improvement

in the quality of the translations after specific AI algorithms have been developed

and used. Teams of researchers are able to develop high-performance translators

just by having deep notions of statistics and machine learning algorithms, without

knowing the languages themselves. The program uses a statistical model built from

example translations and from examples of texts totalling trillions of words.

Moreover, applications such as Skype Translator or Google Translate are making

extensive use of AI algorithms and the results are outstanding.

68 Artificial Intelligence

Medical research – Machine Learning, Markovian Decision Processes, Expert

Systems are only a few examples of performing algorithms in the field of medicine:

they are used to implement “whole agents”, such as Watson from IBM, or to solve

specific problems such as cancer/gene researches, image changes assessment, and

more [49].

Robotic vehicles – The SoA for civilian robotic vehicles (cars, trucks) has

considerably improved in the last decade. Several car manufacturers are now testing

their autonomous vehicles on roads open to normal civilian traffic (Tesla, Google,

Volvo cars, Scania trucks) [50]–[54]. Concerning non-civilian robotic vehicles,

companies are developing interesting applications for quadruped robots (Boston

Dynamics, DARPA). Excellent examples of applications are also to be found in

interplanetary robotics systems, such as NASA Mars Science Laboratory [55].

Robotics – Research applications have differentiated into various fields,

encompassing aerial, terrestrial and underwater robots: examples are found in the

heavy industry, in paralyzed people aids, computer vision and so on. Other

applications involved are the Touring Problems, VLSI layouts, Automatic

Assembly Sequencing and so on.

Spam fighting - when dealing with online spammers, a static programming

approach is not flexible and agile enough to keep pace with the evolution of the

spammers algorithms.

Speech recognition – current advancements in speech recognition are proven

by the fact that AI-enabled computers are now performing better than humans in

recognizing the words in a speech.

5.4.4 State of the Art by Open Source products

Open Source approach has become nowadays a fundamental key to the

advancement of international research, as open source programs and libraries

allows the researchers to focus on their research application, with respect to focus

on the development of the learning technology to be used.

Python-based open source, deep learning tools

TensorFlow – one of the most performant machine intelligence software

libraries available. Developed by Google engineers and researchers, is used for

numerical computation using data flow graphs.

Artificial Intelligence 69

Pylearn2 – a machine learning research library. Designed to make machine

learning research easy, development status is on-hold.

Theano – Python library to design, optimize and evaluate mathematical

expressions involving multi-dimensional arrays. Supports several frameworks.

Blocks – Theano framework to build and train neural networks.

Lasagne – Another famous Theano framework to build and train neural

networks.

Matlab-based open-source, deep learning tools

DeepLearnToolbox – Matlab toolbox for Deep Learning.

Deep Belief Networks – Matlab code for training Deep Belief Networks.

Deepmat – Matlab based deep learning algorithms

MatConvNet – Matlab toolbox to implement Convolutional Neural Networks

(CNNs) for computer vision applications.

Matlab Deep Learning – standard Matlab documentation on deep learning.

C/C++-based open-source, deep learning tools

CUV library – C++ framework with python bindings for easy use of Nvidia

CUDA functions on matrices.

OpenNN – An open source class library written in C++, which implements

neural networks

Eblearn – C++ machine learning library for energy-based learning,

convolutional networks, vision/recognition applications.

CXXNET – Fast, efficient and lightweight C++/CUDA framework with

friendly to python/Matlab interface for training and prediction.

The software list is not comprehensive of all the development and product

efforts in the different available languages. Updated information can be found at

[56].

70 Artificial Intelligence

5.5 Bringing Artificial Intelligence to space

5.5.1 Selection of CubeSat compatible algorithms

Artificial Intelligence categories, algorithms and disciplines are numerous, and

several approaches could be used to tackle specific problems. One of the questions

that arises in this situation is how do we choose among the variety of available

algorithms? Is there some kind of preliminary cut-off that severely limits the

applicability of certain algorithms in space missions, and in particular in small

satellite ones? Is this cut-off applying to CubeSat-vs-Traditional platforms or to

Spacecraft-vs-Ground categories? One of the striking features of CubeSats

platforms is the extensive use of COTS. Among these, the selection of computing

units available is united by a peculiar characteristic: the average performance of

COTS processors is considerably higher than the average rad-hard solution found

in spacecraft. However, despite the average performances, interesting solutions

from the rad-hard domain are also appearing, and this makes the separation between

COTS and rad-hard processors somewhat smaller when interpreted from a

performance point of view [57]. Even if from a cost perspective the comparison

might still be unfair, the performance difference, at a first glance, does not seem to

drive the selection of available algorithms. Another comparison that can be made

is between the average computing power available on CubeSats and the average

computing power of ground-based systems. Ground-based computers, especially

those traditionally used for Artificial Intelligence algorithm development, benefit

of elements that are not included in spacecraft computing units: Graphics

Processing Units (GPU). These types of computing units are designed to perform

intensive jobs, exploiting the parallelism in their architecture, that allows to

optimize the workload in a great number of parallel threads. These type of devices,

when compared to CPUs, trade a vastly improved computational power for

demanding tasks with a greatly increased power consumption. AI applications

developed on ground make use of clusters of GPUs, which is obviously not

achievable on a spacecraft. This is most likely the first cut-off concerning the usage

of AI algorithms but in principle this cut-off does not exclude certain algorithms

from being applied: the result is that, in order to apply algorithms that are power-

intensive on ground, a modification in their architecture must be envisioned for the

space segment. Examples of these modification can be a reduction in size of a

Neural Network, or an optimization of the training dataset used by the application.

Artificial Intelligence 71

5.5.2 Mapping Artificial Intelligence algorithms to fields of

application

Given a particular problem to solve, or an application to develop, several different

algorithms that are considered AI could be applied, and the solutions obtained with

these different algorithms would likely be similar, or at least comparable. In fact,

striking distinctions in terms of performances, computational cost and other

parameters (very important when applying the technology to a space mission)

would likely be discovered and evaluated later in the process of exploring the

feasibility of applying a specific algorithm to the problem. A mapping between the

three applications presented in the thesis and potential AI algorithms that could

provide a solution to it are shown in Figure 17.

Figure 17 Mapping between applications presented in the thesis and

potential Artificial Intelligence algorithms to solve those problems

Given the enormous availability of algorithms, the mapping does not aim at

being exhaustive: provides a small view on known algorithms that are most likely

to return interesting results and performances.

5.6 Machine Learning algorithms and Neural Networks

Definitions of Machine Learning started as early as 1959, with Arthur Samuel

defining ML as:

“field of study that gives computers the ability to learn

without being explicitly programmed”

This is the prelude to an incredibly vast, and ever growing, world [58]. Figure

18 attempts at presenting an overview of all the algorithms that can be qualified as

ML. As any type of mapping of a complex world, there are some imperfections.

Failure

Detection

• Markov Decision Processes

• Fuzzy Logics

• Deep Learning

• ...

Event Detection

• Deep Learning

• Pattern Recognition

• Support Vector Machines

• ...

Tradespace

Exploration

• Genetic Algorithms

• Simulated Annealing

• Normal-Boundary Intersections

• ...

72 Artificial Intelligence

Some methods could be represented by more than one category, for example, but

in general, grouping the different methods by similarity in terms of functionality is

one of the most effective approaches. The map presented is not meant to be

exhaustive.

Figure 18 Machine Learning algorithm map, grouped by type. Credits

Brownlee.

Artificial Intelligence 73

As it can be imaged, such an enormous availability of algorithms that fall under

the category of ML, implies that peculiar problems encountered during a space

mission, such as event detection, image classification or mission replanning could

be solved by applying many, or many combinations, of the ML algorithms

presented in the image.

5.6.1 Neural Networks Principles

The chosen family of algorithm to perform event detection on a spacecraft has been

Artificial Neural Networks. Before digging into the characteristics and different

types of algorithms that fall under the ANN category, it is important to state some

of the characteristics that made ANN a good candidate for this type of problems:

• Generalization: a trained network can provide good results even on

never-before-seen inputs, provided that they are similar to those the

network has been trained on

• Experience: a network, similarly to human behaviours, is able to learn

thanks to the knowledge that is fed into it

• Ability to deal with linear and non-linear functions, and has multi-

variable capabilities

• Robustness in presence of noise, disturbances and degradation.

Generally, the performance of a network degrades gracefully under

adverse operating conditions

• Performances can be better than a human counterpart, even if the

knowledge with which the network is trained comes from the human

expert

As with other types of AI, training and execution of ANN does not follow

traditional approaches, and the definition of the application behaviour is not

implemented through conventional programming.

ANNs have been introduced with the intent of modelling the processing

capabilities of biological nervous systems: millions of interconnected cells, each

one of them being a complex machine in which incoming signals are collected,

processed and routed in several directions (the neuron). From a computational

speed point of view, the common neuron is thousands of times slower than our state

of the art electronic logic gate: despite this, the human brain is able to achieve

complexity of problem solving that is yet unmatched by computers.

74 Artificial Intelligence

5.6.1.1 Biological Model

There are several differences between the biological neuron and the computing

unit known as neuron used in ANN.

Figure 19 Biological model of a neuron. Credits Rojas

Figure 19 shows the basic model of the biological neuron: it is composed of

three main elements: dendrites, cell body and axon. Dendrites collect signals from

the nearby neurons and send their signals to the body of the cell. If the sum of the

received signals is greater than a threshold value, the neuron produces a signal that

is transmitted along the axon to the next neuron.

 The neuron, seen as the fundamental unit of ANNs, is modelled taking

inspiration by the biological neuron, but is characterized by simplification that

make the unit more efficient from a computational point of view.

Figure 20 The artificial model of a neuron, seen as a computing element.

Credits Rojas

Artificial Intelligence 75

Figure 20 shows the structure of an artificial neuron with n inputs. Each input

channel i can transmit a real value xi. A primitive function f computed in the body

of the abstract neuron can be selected arbitrarily. Usually the input channels are

associated to a weight, that means that the incoming information is multiplied by a

weight that somehow defines how “important” that information is compared to the

others. The collected signals are integrated at the neuron and f is evaluated. ANNs

are in this sense a network of primitive functions, even if different models of ANNs

differ mainly in the assumptions about the functions used, the pattern of connection,

and the information transmission timing. The aggregating function g is usually the

addition.

5.6.2 Network architectures

Several types of ANN exist, and a list is presented here:

Feedforward The earliest appearance of ANN, and the network with the most

basic behaviour: the information moves only in the forward direction, from the

input nodes, through the hidden nodes, to the output ones. There are no cycles or

loops in the network.

Convolutional networks are a subset of Feedforward networks in which the

connectivity pattern between neurons is inspired by the organization of visual

cortex in animals, where neurons are placed in a way that responds to the different

overlapping regions that compose the visual field.

Recurrent Differently from FFNs, Recurrent Neural Networks (RNNs) are

characterized by bi-directional flow of information. Connections are directed from

input layers to output layers, but reverse-direction connections are also present.

RNNs can be used as general sequence processors.

Dynamic These types of networks include time-dependent behaviour such as

transient phenomena and delay effects. The network exhibits memory, that is its

response depends not only on the present input, but also on the history of the input

sequence. System identification can be performed with this type of ANN.

Radial Bases Functions are a type of ANNs that uses Radial Basis Functions

(RBFs, a function that has a distance criterion with respect to centre reference) as

activation functions. The basic idea behind RBF networks is that a predicted target

value of an item is likely to be similar to other items that have close values of the

predictor variables.

76 Artificial Intelligence

Modular Biological studies have shown that the human brain is characterized

not by a single, huge, network, but as a collection of small networks, in which

several small networks cooperate or compete to solve problems.

Cascading networks have the peculiarity of modifying their architecture during

training, starting with a minimal network and adding new hidden units one by one,

as training progresses. Once a new hidden unit has been added to the network, its

input-side weights are frozen. This unit then becomes a permanent feature-detector

in the network, available for producing outputs or for creating other, more complex

feature detectors.

Neuro-fuzzy is a combination of ANN and Fuzzy Inference System (FIS).

Embedding a FIS in a general structure of an ANN has the benefit of using available

ANN training methods to find the parameters of a fuzzy system.

5.6.3 Network training

One of the peculiar characteristics of ANNs is that they can be trained to mimic

model behaviours: the weights that multiply each input signal will be updated until

the output from the neuron is similar to the model used as a reference during the

training. Generally speaking, training is an adaptive algorithm that is used to match

the output of an ANN to a reference model. The algorithm iteratively compares the

output of the network to the model, and by applying a corrective action on the

network weights and biases, the output is adapted to match the desired one. The

training is generally based on previous experience, although methods that modify

the parameters of the network exist. Three types of learning algorithms have been

developed.

Supervised learning denotes a method in which some input vectors (training

data, that are composed by input object and matched desired output) are collected

and presented to the network. The output computed by the network is observed and

the deviation from the expected output is measured. Weights are corrected

according to the magnitude of the error, depending on the learning algorithm. In

general, every time a network is trained, different solutions can be obtained, due to

different initial weight and bias values, different initialization, and different

separation of the input data in the training, validation and test datasets. It will be the

type of training used in the case studies presented in the thesis.

Artificial Intelligence 77

Unsupervised learning is a type of learning that does not foresee a reference

to evaluate the quality of the training step by step. Since the examples fed to the

network are unlabelled, the training obtained might differ from a human-based

interpretation of the problem.

Reinforcement learning is conceptually similar to the supervised learning,

with the only difference that input/output pairs are not presented to the network, but

instead a reward (or penalty) is obtained with respect to the actions taken. Typically,

reinforcement learning is a technique useful in solving control optimisation

problems, that is the problem of recognizing the best action in every state of the

system, optimizing some objective function.

Among the different training algorithms available, the three most common ones

(that are also those available on Matlab®) are:

Levenberg-Marquardt back-propagation It is a network training function

that updates weight and bias values. Like the quasi-Newton methods, the

Levenberg-Marquardt algorithm was designed to approach second-order training

speed without having to compute the Hessian matrix, which is approximated [59].

The Levenberg-Marquardt algorithm is very simple but robust

Bayesian regularisation back-propagation It is a network training function

that updates the weight and bias values according to Levenberg-Marquardt

optimisation. It minimises a combination of squared errors and weights, and then

determines the correct combination so as to produce a network that generalises well.

The function can train any network as long as its weight, net input, and transfer

functions have derivative functions. It also modifies the linear combination so that

at the end of training the resulting network has good generalisation qualities [60].

Scaled conjugate gradient back-propagation It is a network training function

that updates weight and bias values according to the scaled conjugate gradient

method. The function can train any network as long as its weight, net input, and

transfer functions have derivative functions. Back-propagation is used to calculate

derivatives of performance with respect to the weight and bias variables. The scaled

conjugate gradient algorithm is based on conjugate directions, but this algorithm

does not perform a line search at each iteration [61]. It is faster with less memory

employed than previously methods. It is the training algorithm employed in the case

studies presented in the thesis.

78 Artificial Intelligence

Given a specific training algorithm, two approaches exist that regulate how the

data is fed to the training algorithm: in offline training (or batch), the complete

dataset is fed to the training algorithm; in online training, the training algorithm

updates the weights and biases of the network every time a new sample is fed to the

training algorithm. Typically, online training is characterized by a slower

convergence speed, also because of likely timings limitations in acquiring new

samples. On the other hand, they are particularly useful when the memory available

on the application does not allow to store complete datasets, but instead each sample

used in the training must be forgotten before a new sample can be obtained and

used.

5.7 Knowledge-based Engineering and Expert Systems

The section deals with knowledge-related algorithms and applications. The term

knowledge itself denotes familiarity, awareness, understanding of a process or a

situation, such as facts, information, descriptions or skills, which are acquired

through experience or education, by perceiving, discovering, or learning [62].

Figure 21 Definition of "knowledge" by Merriam-Webster English

dictionary

Knowledge can be considered a “tangible” concept, in the light of designing space

missions and space mission applications, especially when developing an application

that makes use of a translation to machine code of the knowledge that a domain

expert would use to solve the application underlying problem.

This is the case of Knowledge-based Engineering (KBE) and specifically of

Knowledge-based Systems (KBS). This term denotes a design approach and

Artificial Intelligence 79

philosophy, and a corresponding type of systems, that use expert knowledge as a

fundamental pillar. The main difference between a KBS and a conventional

application can be found in their structure, where the two roles of domain

knowledge and general application software are distinctly separated. On

conventional programs instead, the two layers are often joined and no distinction

can be easily observed in the code structure. The main consequence of this

distinction is that the knowledge base, that collects all the rules and concepts that

define the behaviour of the application, can be updated by domain experts without

having to coding into details the program structure, because the programming

expertise required for knowledge updating is consistently smaller [63].

5.7.1 Knowledge Based Systems

Figure 22 Basic Knowledge Based System architecture

A typical architecture for a KBS is shown in Figure 22, and will be described

in the following sections. Generically speaking, the Knowledge Base (KB) is

responsible of storing the knowledge in the system, and the Inference Engine (IE)

is responsible of defining how to apply the knowledge.

5.7.1.1 Knowledge Base

The Knowledge Base is the portion of the algorithm that has the purpose of

storing the diverse forms of knowledge: rules and facts are examples. Rules might

be complex, and facts can be organized in complex structures that include attributes

and relationship between entities.

An example of rule, very common and probably the simplest one, is the so-

called production rule:

if <condition> then <conclusion>

80 Artificial Intelligence

One of the advantages of storing knowledge in the form of production rules is

that they can often be expressed in a form that closely resembles natural language,

as opposed to computer language. Facts, in a similar approach, are also stored in

the KB. They can be categorized into different types: static facts, made available

and fixed in time; transient facts, made available when the system is executing;

derived facts, that are generated as a result of applying a rule. With respect to

traditional programming, storing hundreds or thousands of facts and rules into a

KBS is easier: rules and fact are represented explicitly and can be changed at will.

The paradigm changes completely when the knowledge handled by the system is

characterized by some degree of uncertainty. Several types of uncertainties exist:

• Uncertain evidence

• Uncertain connection between evidences and conclusions

• Value values

5.7.1.2 Inference Engine

Inference Engines vary greatly according to the type and complexity of the

knowledge they deal with. Two types of inference engines can be identified:

• Forward Chaining, or data-driven

• Backward chaining, or goal-driven

A KBS that employs the data-driven mode uses the available information (the

facts) and generates as many derived facts as it can. Outcomes of this process can

be either satisfying or not, as the output is often unpredictable and the system might

generate innovative solutions to a problem or wasting time generating irrelevant

information. A typical usage of the data-driven is for problems of interpretation

where data must be analysed. A goal-driven system, on the other hand, is

appropriate when a more focused solution is required. The process employed by a

goal-driven IE is to start from the given goal and trying to trace the information

back to the current status of the application (therefore generating the plan), or

assessing that no possible path is obtainable from the given goal back to the current

status.

5.7.2 Expert Systems

Expert Systems (ES) are a type of KBS designed to manage and use expertise in a

particular, specialized, domain. An ES is intended to act as a human expert who can

be consulted on a range of problems that fall within his or her domain of expertise.

Artificial Intelligence 81

Typically, the user of an ES will enter into a dialogue in which he or she describes

the problem (such as the symptoms of a fault) and the ES offers advice, suggestions

or recommendation. In other applications, the ES is directly configured by the

expert to act automatically, replacing the expert in taking actions driven by the

stored knowledge. Additionally, depending on the application, the ES might be

required to justify the current line of actions: an Explanation Module is often added

to the ES to help with this purpose.

When an ES is programmed but no knowledge is stored, it is called Expert

System Shell: in principle, it should be feasible to develop an ES shell, build up a

KB, effectively obtaining an ES. However, all domains are different, and it is

difficult to build a shell that adequately handles the various applications. Generally

speaking, ES shells are not suited for embedded applications.

5.7.3 Fuzzy Logics

Fuzzy Logics address a specific source of uncertainty: the vagueness of the

information. Developed in 1975 by Zadeh [64], builds on his theory of fuzzy sets

developed in 1965 [65], with the objective of performing computation with

linguistic variables and values, that are not unambiguously correlated to specific

values. The result is that, by using the Fuzzy Logic theory, systems can be designed

to operate basing themselves on values such as “big”, “small”, “enough” and so on.

5.7.3.1 Crisp and Fuzzy Sets

Fuzzy Sets carry a very distinct meaning with respect Crisp Sets. An example of

Crisp Set would be a variable that qualitatively measures a temperature value on a

spacecraft component. If a hypothetic control logic is set to three different actions

depending on the temperature being defined as high, medium or low, a Crisp Set

would be defined in the following way:

• T > 50°C is high

• 10°C < T < 50°C is medium

• T < 10°C is low

Each boundary is considered strict: if a temperature is high, then it cannot be

nor medium nor low. In this example, a high temperature might trigger a completely

different control action with respect to a medium one, and no distinction might be

implemented between a temperature of 51°C or one of 150°C, as they would both

be considered high.

82 Artificial Intelligence

Fuzzy Sets are a mean of reducing how strict these boundaries are. The theory

of Fuzzy Sets expresses imprecisions quantitatively by introducing characteristic

membership functions that can assume values between 0 and 1 corresponding to

degrees of membership of a variable value to a condition, from being “not a

member” to a “full member”. The degree of membership is sometimes called the

possibility that a certain value is described by the membership function. The key

differences between a Crisp and a Fuzzy set are:

• An element has a degree of membership in the range [0,1]

• Membership to one Fuzzy Set does not preclude membership to another

In the temperature example, the fuzzy theory terminology is configured as

follows:

• Fuzzy statement: “temperature is low”

• Fuzzy set: low temperatures

• Fuzzy variable: temperature

• Membership function: how the degree of membership to the fuzzy set

is evolving with the measured temperature

5.7.3.2 Fuzzification

To recall the earlier example on temperature, a temperature of 150°C could be

considered 0.99 high, and 0.01 medium, while a temperature of 51°C could be

considered 0.30 high and 0.70 medium. The process of deriving these possibility

values for a given value of the variable is called fuzzification.

Figure 23 Examples of membership functions. Credits MathWorks

Artificial Intelligence 83

Examples of membership functions are shown in Figure 23: they can assume

different shapes, and the most suitable shape of the membership functions and the

number of the fuzzy sets depend on the particular application.

5.7.3.3 Defuzzification

When designing an application that employs a Fuzzy Logic -based algorithm,

after defining the input variables and their membership functions, it is necessary to

continue the design process downstream to the output of the application. When a

control action or a decision is computed using Fuzzy Logic, the value of the action

will still be expressed in fuzzified values. In order to compute back a crisp, clear

value, the next process to perform is the defuzzification. Defuzzification takes place

in two steps:

• Adjusting the fuzzy sets in accordance with the calculated possibilities.

Several rules exist to process the various membership functions

(Larsen’s product operation rule is one, in which membership functions

are multiplied by their respective possibility values [66]). The effect is

to compress the fuzzy sets so that the peaks equal the calculated

possibility values. Alternative approaches are also present.

• Using methods to correlate the fuzzified values to a crisp value.

Methods applicable are Mean of Maximum (MOM) method, Centre of

Gravity (COG) Method, Height Method (HM) or Lookup Table [67]

(Figure 24). Other common method of defuzzification is Sugeno

method [68].

Figure 24 Example of MOM and COG methods for defuzzification

84 Artificial Intelligence

5.8 Evolutionary Algorithms

Evolutionary Algorithms (EA) are a category of Artificial Intelligence used to

perform metaheuristic optimization. Metaheuristic can be defined as “a common

but unfortunate name for any stochastic optimization algorithm intended to be the

last resort before giving up and using random or brute-force search. Such

algorithms are used for problems where you don’t know how to find a good

solution, but if shown a candidate solution, you can give it a grade” [69]. The main

inspiration for EA comes from genetics and natural selection [70] and at least four

categories can be identified that belong to EA:

Genetic Algorithms (GA) by far the most diffused category of EA. Algorithm that

treats the solution of a problem as individuals, and obtains optimal solution by

applying operators such as recombination and mutation.

Evolutionary Strategies (ES) are a type of algorithm that reaches optimal solutions

by applying mutation and selection operators [71], and can be successfully

employed even with populations numbers as low as two individuals. The selection

of individuals is performed only on fitness rankings and not on the actual fitness

values.

Evolutionary Programming (EP) is another common EA [72], and is based on

defining a program whose numerical parameters are subject to evolution. It is harder

and harder to distinguish from ES.

Genetic Programming (GP) is an optimization method that treats the solution to

a particular problem as computer programs, traditionally represented in memory as

tree structures. At each node of the tree there is an operand that executes

mathematical expressions.

In general, EA perform well approximating solutions to all types of problems

because they are not tailored to assumptions about the function shape to be

explored.

As with Machine Learning, the number of algorithms gravitating into the domain

of Evolutionary Algorithms is enormous, with hundreds of algorithms and even

more variations (Figure 25).

Artificial Intelligence 85

Figure 25 Non-comprehensive map of Evolutionary Algorithms and their

variants

The case study presented in this thesis, that shows an application of EA, will

implement Genetic Algorithms, since they are the most common type of EA and

the methodology fits well in the design problem.

5.8.1 Genetic Algorithms

Genetic Algorithms are the most used and known type of Evolutionary Algorithm,

to the point that the whole category is sometimes confused with GA. They owe their

diffusion to the numerous field of application they’ve found: parameters

optimization, financial prediction, scheduling, telecommunication, computer

drawing, datamining, bioinformatics and so on.

GAs are powerful search algorithms: they explore the solution space quickly in

search of optimal solutions [73]. GAs encode the decision variables (or input

parameters) of the problem into an array that represent a full solution [74]. Each

array assumes the characteristics of a chromosome and represents an individual

solution among the population. The position in the chromosome of each gene is

called locus, while its value is called allele. There are two encoding classes:

genotype and phenotype. Genotype denotes the ensemble of all the genes of an

individual, while the phenotype denotes the group of all the visible features and

characteristics of the individual. A fitness function is the “grading system” that is

Ant Colony
Artificial Immune

System Optimization

Bacterial Foraging

Optimization
Bee Optimization

Differential

Evolution

Backtracking Search

Optimization

Different Search

Algorithm

Hybrid Particle

Swarm Optimization

and Gravitational

Sarch Algorithm

Multi-objective bat

Algorithm

Flower Pollination

Algorithm

Wind Driven

Optimization

Grey Wolf

Optimization

Generative

Algorithms
Cuckoo Search

League

Championship

Algorithm

Continuous Scatter

Search
Lloyd's Algorithm Firework Algorithm

Big-band Big Crunch

Optimization

Tabu Search

Continuous

Optimization

86 Artificial Intelligence

used to evaluate the fitness of an individual in the problem considered. Unlike other

optimization techniques, the fitness function of GAs may be defined in

mathematical terms, or as a complex computer simulation, or even in terms of

subjective human evaluation. Operators are used to regulate the evolution of the

population. The three genetic operators commonly used are: selection, crossover,

mutation [75].

Selection operator is used to generate a parent population which favours good

individuals. There is a selection pressure that rules the selection schemes: it’s

defined as the ratio between the probability of selection of the best individual to

that of an average individual. There are two basic types of selection schemes:

proportionate and ordinal methods [76]. Proportionate selection choses individuals

by comparing the fitness values, while ordinal selection selects the individual by

comparing the order in which they appear when the population is ranked. Several

methods exist to perform the selection, and the tournament is one of the most

common: two (or more) individuals are randomly chosen and compared to each

other; the best is placed into the parent population. Other selection methods are

roulette wheel (each individual has a chance of being selected proportional to its

fitness), stochastic universal sampling (the probability is proportional to the fitness,

but an equally space pointer is used).

Crossover operator is used to generate offspring from parents, and it can

operate in different way depending on which type of strategy is chosen: single point

crossover selects a locus on both parents’ chromosomes and swaps the strings after

the locus; two-point is similar to the former, but selects two loci in the strings and

swaps only the middle portion; uniform and half uniform uses a fixed mixing ratio

between two parents: unlinked single- and two-point crossover, the uniform

crossover enables the parent chromosomes to contribute at the gene level instead

than the segment level; three parent uses three randomly chosen parents and

generates offspring by comparing a gene in two parents, and selecting the gene in

the same locus from the third parent if the first two are different from each other.

Mutation operator is used to alter an individual, by changing the value of one

or more (but a limited number with respect to the total gene number) optimization

variable in a random way. It is typically applied with a low probability (up to 5%)

and it does not have a great influence on the performance. It is useful to avoid the

issue of having the population stuck on a local minimum.

Artificial Intelligence 87

5.8.2 Design Suggestions and Improvements

GAs behaviour and optimization performance can be improved by implementing

variations in the traditional functioning of the algorithm. Elitism can be added, to

preserve the best individuals of a population and to replace the worst individuals of

the following generation to preserve a good solution; extended random

initialization: performing several random initializations until a significant solution

is found or a maximum number of tries is reached, to assure the presence of good

individuals in the initial population (a portion of the population can be still

initialized randomly only once, to preserve diversity); mass mutation, to ensure that

the diversity of the population stays high, by discarding most of the old individuals

and replacing them with random new ones.

There are additional things to consider when dealing with GA design: practical

suggestions that help to avoid common mistakes. Designing appropriate encoding

schemes is useful: representation by binary codes, real-values and program code

are available, and the length of an individual can be constant or change. Experience

suggests to prefer identical genotypes and phenotypes, and fixed length individuals.

Critical attention must be placed in designing the fitness function. Tournament

selection is perceived as one of the most effective selection methods. Tournament

selection with a tournament size of 2 individuals is advisable. Building-blocks

crossover (that does not interrupt a good inter-gene linkage) is especially advised if

the evaluation of the fitness function is computationally expensive, otherwise a one-

or two-point crossover is a good approach, provided that the crossover probability

is set to be relatively high. When crossover or mutation operators generate

infeasible solution (because of constraints) the two approaches are to apply a

penalty or to repair them: repairing the individuals is advisable unless the

development of the function is difficult. Finally, the application of population-

sizing models is suggested.

Chapter 6

Case Study: Event Detection with

Neural Networks

Neural Networks can be used for different types of applications, and each

category of NN excel in one or more specific domain. This chapter focuses on

performing Event Detection (ED) during the mission: the applications presented

here refer to detection of external mission events. Event detection, in particular

external events related to payload observation, is a fundamental characteristic of

highly autonomous spacecraft.

6.1 Background

In the previous chapter of this thesis, several applications of Artificial Intelligence

to increase the mission autonomy have been introduced, and it was shown how

enhanced autonomy could specifically benefit the nano- and small-satellite

missions. Making the spacecraft autonomous is a topic of paramount importance

especially for missions beyond LEO, where the current limited autonomy

capabilities are a severe stopper for the diffusion of nanosatellite interplanetary

missions. Examples of these missions are those targeted to the Moon, Near Earth

Asteroids (NEAs), Mars and Jupiter, with his satellite Europa. These destinations

have already been chosen by space agencies as ideal candidates for CubeSats and

nanosatellites missions that will reach them in the near future as a secondary

payload of traditional flagship missions. Moreover, CubeSat missions have been

proposed and are being developed by NASA and ESA as part of their space

90 Case Study: Event Detection with Neural Networks

exploration programs. A perfect example of this commitment is the deployment of

thirteen spacecraft by the Orion vehicle during the Exploration Mission 1 (EM-1),

scheduled for launch in 2018 to the Moon by NASA [77]. The deployment orbit of

the CubeSats will be a lunar transfer orbit from which they will start their own

independent missions, most of which have either scientific or technological

objectives. ESA has already started studies to deploy CubeSats in the vicinity of the

Didymos binary asteroid as secondary payload of the Asteroid Impact Mission

(AIM) spacecraft within the NASA/ESA Asteroid Impact & Deflection Assessment

(AIDA) mission. The CubeSats, named COPINS (CubeSat Opportunity Payload

Intersatellite Network Sensors), will pursue technological and scientific objectives

and will use the Aim spacecraft as a relay to send housekeeping and payload data

to Earth. Despite this mission being cancelled by ESA at the end of 2016 [78],

another interplanetary CubeSat mission is being developed on the traces left by the

AIM/COPINS study: M-ARGO, Miniaturised Asteroid Remote Geophysical

Observer, a stand-alone deep space CubeSat system for low cost science and

exploration missions [79]. Objective of this mission is a rendezvous with a NEO

for physical characterization and resource assessment. Another example is the first

CubeSat mission to Mars, MarCO, that will be part of the InSight mission of

NASA/JPL. MarCO aims at testing telecommunications capabilities from deep

space [6]. These nanosatellites will face new challenges with respect to current LEO

missions, such as surviving in deep space environment, communicating to Earth

from longer distances, and using their own propulsion systems. In addition, a

paradigm shift is required when taking into account the operation design, as most

GCS are not adequate to receive signals from space from a multitude of spacecraft,

and no line-of-sight periods will occur depending on the specific mission.

Taking into account the emerging needs of new nanosatellites missions, the

application presented in this case study aims at supporting the development of more

autonomous spacecraft, able to decide and execute tasks independently from ground

control and from mothership authority. The presented algorithm forms the

foundation for event-based autonomous operations. This case study presents an

activity whose objective was to design an algorithm to enable spacecraft with event

detection capabilities, with the intent of performing autonomous mission

operations. The key reference mission is AIM/COPINS and the event to be detected

is the impact event on the asteroid. In particular, two different applications are here

presented:

• Detecting the impact event, that is the change in surface characteristics

of the observed area

Case Study: Event Detection with Neural Networks 91

• Detecting a plume event, identifying the direction towards which the

plume is expanding

The problem behind this application is in practice an image change detection

problem, that can be treated in several ways. Many image/feature recognition

algorithms exist, and they are becoming more and more useful in various

applications, both in the industrial and in the scientific field. A distinction can be

made between algorithms that use an a priori knowledge of the features to be

identified, and those that use statistical or other methods to perform the detection,

i.e. without initial training. Among the former category a few examples of

applications are: convolutional neural networks for crater detection [80], and faces

identification [81]; random forest classifiers for space image processing [82] [83];

adaptive background subtraction for video surveillance [84]. Among the latter,

interesting examples are: visual salience maps to model visual attention [85] [21],

unsupervised neural networks for fault diagnosis [86], pixel comparison for medical

diagnosis [49] and change detection in overhead images [87].

The use of Artificial Intelligence algorithms is usually computationally

expensive: the aforementioned examples involve complex operations or use

datasets containing thousands of samples. For this reason, exploiting AI capabilities

on-board a small spacecraft, where the computational power is low, requires the

implementation of algorithms that are specifically designed to have a limited impact

on the processing resources [88]. The presented application is specifically

developed with this precise objective: avoiding the computational resources

overhead due to the huge size of datasets commonly used in classification problems

with NN, by developing a custom-designed network and innovative training

approach.

6.2 Reference Missions

For the intended type of application, two reference missions were considered: a

mission that involves an interplanetary CubeSat that performs observations on an

asteroid on which there will be an impact event, and an interplanetary mission to a

comet, on which events such as plumes and gas ejections can happen.

6.2.1 Impact Mission

One of the reference mission for this research was given by COPINS, which

was a secondary payload of the ESA AIM mission. AIM was one of the two

92 Case Study: Event Detection with Neural Networks

spacecraft of the AIDA joint effort of ESA and NASA, aiming to perform an

asteroid characterization and redirection experiment. ESA was providing the

monitoring/observing spacecraft (AIM), while NASA was supposed to launch the

impactor probe (DART) that would collide with the secondary body of the system

[89]. The COPINS mission consists of multiple CubeSats (up to two 3U platforms)

carried to the asteroid by AIM, which will deploy the nanosatellites at 10 km from

the secondary body surface, up to one month before the impact of DART. The

objectives of the CubeSat mission are to provide scientific support to the AIM

primary mission, either by repeating one or more of the main spacecraft's

measurements, by performing additional science measurements, or by recording

and taking pictures of the impact event. In addition, the CubeSats will also perform

technological demonstrations, such as satellite interlink communication. The

communications of the COPINS with Earth are relayed through the AIM spacecraft.

The architecture of this mission is definitely complex, as numerous challenging

elements are included in the scenario: four or more satellites joint operations, inter-

satellite links, limited data rates, and peculiar environment (for example, low and

irregular gravity field, which makes the orbit control critical). Given the complexity

of the mission architecture and concept of operations, increasing the COPINS

autonomy would be beneficial to the entire mission, and for this reason this mission

has been chosen as a test case for the developed algorithm. For the purpose of the

research, it is assumed that the COPINS’s payload objective is to detect the impact

of DART on Didymoon (the secondary body of the Didymos binary system, other

times referred to as moonlet) and to determine the changes in the physical properties

of the asteroid surface. Since the COPINS-Earth communication is characterised

by the fact that the main spacecraft serves as relay, the amount of data that can be

sent to Earth by COPINS and the possibility to command COPINS from Earth are

both affected by the availability of AIM. The autonomous detection of the impact

event would enable:

• To implement switching between operative modes. Switching between

a hypothetical basic operative mode to the science operative mode could

be performed with enhanced flexibility and increased reliability,

without relying on commands from ground. The post-impact operations

would start autonomously.

• To prioritise downlinked data. Given the limited data rate available for

the downlink, the pre-selection of payload data would avoid sending

meaningless information to ground in favour of data related to the

completion of scientific objectives.

Case Study: Event Detection with Neural Networks 93

Figure 26 AIM and COPINS Design Reference Mission. Credits ESA

6.2.2 Comet Mission

Second reference mission used in this thesis is a hypothetic mission to a comet-like

body of the solar system. These bodies are known to be the potential source of jets

and plumes, as demonstrated in several occasions to date (Figure 27, Figure 28).

Figure 27 Jets emitted by comet 67P. Source ESA

94 Case Study: Event Detection with Neural Networks

Figure 28 Plumes emitted by Enceladus, a moon of Saturn. Source ESA

The origin of these events can be of various nature, and among the known

causes are solar activity [90] or man-made impacts [91]. For the purpose, also in

this mission the CubeSats are considered deployed directly in situ by a mothership.

6.3 Neural Network architecture selection

When designing a network for an event detection case study, several factors

must be taken into account. In the presented case study, main driver is the

computational cost needed to train and run the algorithm, as it will be implemented

on the embedded processor of a nanosatellite with limited resources. The three

criteria considered are reported in Table 10.

Table 10 Criteria for network architecture selection

Criterion Value

Training performance High

Execution performance High

Network complexity Low

Case Study: Event Detection with Neural Networks 95

6.3.1 Impact Event detection network

For the application of ED, a simple feed-forward architecture is chosen, as

shown in Figure 29. The parameters of the network are presented in Table 11.

Figure 29 Feed-forward network architecture

Table 11 Network parameters

Parameter Value

Architecture Feed-forward (FF), one Hidden Layer (HL)

Dataset element type Image

Dataset element dimension 100x100 pixel

Hidden layer size 10 neurons

Output layer size 2 neurons

Training algorithm Scaled Conjugate Gradient (SCG)

Threshold function Symmetric sigmoid

The final number of layers and neurons per layer is the result of the analysis

performed over a set of possible network architectures. To select the most

performing network, a statistical analysis over all the possible architectures

compatible with the main requirement (compatibility with the CubeSat C&DH

performances) was performed. In particular, networks with one or two hidden layers

were tested, up to a maximum number of neurons of 15 for the first layer, and of 10

96 Case Study: Event Detection with Neural Networks

for the second layer. Figure 30 shows the average performance of each network

cluster for a two-hidden layer architecture: each dot represents the average of

architecture performance in function of number of neurons in the second layer. The

average is calculated over 4500 simulations (300 simulations for number of neuron

in the first layer, spanning from 1 to 15). The result of the analysis confirms that for

a binary classification problem, networks with one hidden layer show the best

performances on average [92]. Figure 31 illustrates performances of networks with

a single hidden layer in function of the number of neurons in the layer in the form

of boxplots. Boxes represent data from second and third quartile, while whiskers

cover data in first and fourth quartile. Samples are considered outliers when their

distance is greater than 1.5 times the interquartile range, and they are represented

as dots. The red line represents the performance median. For each architecture, 300

simulations have been run. From this graph, it is possible to deduct that networks

with more than 4 neurons are suitable for the final architecture, as boxes are

condensed into the median line.

Figure 30 Performance trends for networks with two hidden layers. Each

dot represents a cluster of networks with 1 to 15 neurons in the first layer, and

the X-axis number of neurons in the second layer.

The number of 10 neurons for the hidden layer size was chosen as a good

compromise between complexity of the network and associative memory [93]. As

Case Study: Event Detection with Neural Networks 97

the learning ability of a network increases with number of neurons, a margin was

taken to consider inherent uncertainty of early mission design stage, thus selecting

10 neurons instead of 5, which is the minimum acceptable number.

Figure 31 Average performances with respect to network architecture.

Each box plot is the result of 300 network initializations. Red line represents

the median, box lines represent first and third quartiles. When no box is

drawn, all data except the outliers are collapsed in the median value. Outliers

represent samples that lie further than 1.5 times the interquartile range.

6.3.2 Obtaining additional information from the detection

When developing an event detection application, objectives must be defined to

correctly select the network to be used. In particular, as seen above, when the aim

is to correctly identify just the appearance of the phenomenon, small networks are

performing already interestingly. When additional information must be extracted,

bigger networks must also be considered. Among the interesting information that

can be obtained when detecting an impact or a plume event, is the direction towards

which this jet is moving. An interesting future study can be correlating the size of

the network with the resolution of the direction towards which a plume has been

98 Case Study: Event Detection with Neural Networks

expelled. For the applications considered, networks with a total number of 100

neurons where used. In general, no optimization was performed on the networks

presented for this second application.

6.4 Event modelling

The asteroid impact sequence needed to be modelled in order to develop and test

the ANN algorithm.

6.4.1 Asteroid impact modelling

The Didymos binary system is modelled as defined in the literature by the Didymos

Reference Model [94]. The main body is represented as a fairly regular spheroid of

roughly 800m in diameter, while the secondary body (of which no radar or optical

images are available to date) is modelled as a bumpier, rubble-pile like body,

elongated in the direction towards the main body of the system (Figure 32).

Figure 32 Asteroid modelling

The impact event is modelled according to information found in literature [89].

A spacecraft of the size of DART has been included in the simulation to collide

with Didymoon at the speed of 7 km/s. All the modelling has been realized using

the open software blender® (Figure 33).

Case Study: Event Detection with Neural Networks 99

Figure 33 Impact on the secondary body

An overview of the impact location, observed from two different capturing

points, is shown in Figure 34.

Figure 34 Impact location, as seen from two different observation points

6.4.2 Plume event modelling

The shape and the plume event have also been modelled in blender®. The

characteristics of the object as matched to resemble common rubble-pile asteroids.

100 Case Study: Event Detection with Neural Networks

The asteroid is set on a slow rotation on all the three axes, and the jet is emitted

from a randomly chosen location on the asteroid surface (Figure 35).

Figure 35 Asteroid modelling and plume event

To further validate the methodology, a plume event detection has been

simulated on comet 67P model (Figure 36). The intent, in this second case, was to

train a network for a real-life mission: for the Rosetta mission, actual images of

plumes are available.

Figure 36 Plume event simulated on the comet 67P

6.5 Innovative Training Approach

One of the fundamental steps in the design of an ANN is the definition of the

training strategy, which heavily affects the robustness and reliability of the network

[88].

Case Study: Event Detection with Neural Networks 101

The ANN algorithm presented required the definition of a special training

approach, given the peculiar application under study.

Objective of the algorithm is the identification of an event that will occur on an

asteroid (or comet) at a certain time in the future. Table 12 summarises the main

mission data from which requirements and constraints for the design and

implementation of the ANN have been derived.

Table 12: mission inputs for the ANN definition

Event to be

detected

Impact of DART on secondary body (Didymoon)

of the Didymos binary system; plume emission event

on asteroid or comet

Event detection

instrument

Optical camera (the algorithm is also compatible
with IR cameras)

Event Time Within one month from deployment of COPINS at
the asteroid (exact time will be unknown until in situ); No
predictions are available on the next plume event

Info Both Didymoon and the target asteroid/comet have
never been observed, and no images are available nor will
be before in situ

From the information summed up in Table 12, it is evident that the ANN cannot

be trained on ground using actual images of the celestial bodies, as they do not exist

(concerning the comet 67P model, the application is developed forcing the

acquisition of the pictures in situ). Using a training dataset extrapolated from

models of the asteroid would be risky, as the network would get trained on a specific

shape of the asteroid that might result different from the actual shape: the possibility

exists that the impact will not be identified due to incorrect training of the algorithm.

Moreover, several conditions will likely be different from those simulated on

ground, especially with regards to the surface features (for example areas of

different composition) and light/shadowed areas (for example different crater

patterns).

102 Case Study: Event Detection with Neural Networks

The proposed solution for the training task takes into account the mission

scenario and concept of operations. As the spacecraft will reach its final orbit before

the event to be detected, it is possible to define a sequence of manoeuvres and

operations that allow the spacecraft to construct the training dataset directly in-situ,

either acquiring pictures of the foreseen impact area on Didymoon, or collecting

pictures of the comet prior to plume events.

Since the network employed in the algorithm performs pattern recognition, it is

mandatory to differentiate between more than one class in the dataset. In particular,

in order to detect an impact event with a pattern recognition algorithm, two classes

of images must be used during training: images taken before the event, and images

representing the event itself, in order to correctly train the network. The impact

images must be artificially created in situ before the event occurs, employing an

algorithm described in the next paragraph.

For a feed-forward network, considering the connections from the input to the

hidden layer, they are directly mapped to the input data: in this sense, for an image,

each pixel would be directly assigned to several weights. This means that, during

the training to identify the event, the weights need to be raised for the pixels that

would change during the event. This operation is done automatically during the

training. In the proposed case studies, the only missing piece is indeed the collection

of post-event images to construct a two classes dataset for the training.

6.5.1 Impact event training

For the impact event, since the coordinates of the impact on the asteroid are

known, it is possible to artificially super-impose a pattern of debris-like shapes to

force the weights update in particular areas of the image, as shown in Figure 37. As

shown in [89] the physical properties of asteroid’s surface upper layer strongly

influence the characteristics of ejecta. Shape, opacity and granularity of the overlay

are chosen accordingly to information found in literature to reflect the dynamics of

the event to be observed. Two geometries, rectangular and truncated cone, were

considered to assess the role of overlay shape in the algorithm performance.

Case Study: Event Detection with Neural Networks 103

Figure 37 Directing the neuron training with pseudo-random colouring of

the impact location: rectangular and truncated cone shapes

The effect is that the training algorithm will detect the differences in the

modified area of the image, and the resulting weights and biases will be arranged

in a way to favour the identification of changes in that particular area. This

operation is effortless from the computational point of view, as the pattern can be

super-imposed by using simple scripts, and it does not take into account the

underlying image, resulting in a very fast operation. Figure 38 and Figure 39

demonstrate the validity of the approach, plotting the weights of the network after

training. Figure 38 shows that the training assigns higher weights to the impact area,

with a direct match between the overlay shape and weights. An interesting result is

shown in Figure 39, where another neuron of the same network is considered. In

this case, the training assigns high weights to a specific vertical zone of the camera

field of view. This result shows that different neurons of a network can be trained

in different ways by the training algorithm, while maintaining the desired

performances.

104 Case Study: Event Detection with Neural Networks

Figure 38 Trained network, input to hidden layer weights of a simple

neuron. Darker pixels correspond to lower weights. Direct match between

overlay and weights.

Figure 39 Trained network, input to hidden layer weights of a single

neuron. darker pixels correspond to lower weights. Interesting outcome of the

training.

6.5.2 Plume event training

For the plume event, since the coordinates are not known a-priori, the training

approach must consider a set of probable locations. The overlay approach is

performed for several directions of generation of a plume. Moreover, as the comet

body is rotating in the camera frame, the generalization must be carried out both for

the plume direction and for the rotational state of the body underneath (Figure 40).

Case Study: Event Detection with Neural Networks 105

Figure 40 Examples of 67P images with an artificial plume overlay

The result of the training can be validated even before testing the performances

of the network by displaying the weights final value. In this case, as for the impact

event, the result clearly shows the correct training: it is interesting to notice how,

given a set of single-plume images, the final weights are defined in a configuration

that includes all the training images used. The result appears as a corona of high

weights around the asteroid shape (Figure 41).

Figure 41 Trained weights for the plume detection problem. The uniform

grey areas around the centre of the image are a result of having removed

constant lines throughout the dataset

106 Case Study: Event Detection with Neural Networks

6.6 Results

6.6.1 Performance considerations

In order to foresee the implementation of the algorithm on an embedded

processor, it is mandatory to address the performance concerns that are typically

raised when considering ANN. The algorithm has been designed keeping in mind

the computational cost: computational complexity of the Scaled Conjugate

Gradient algorithm is evaluated at ����√��, where N is the training image

matrices’ rank and k is the condition number [95]. Worst case for �� is the image

pixel total count, and for k is ��10��. The training process takes less than 5 seconds

(valued considering the results of 10000 training sessions) and the resulting ANN

executes in 0.02 seconds on a laptop with a core of 2.5GHz. The required RAM has

been estimated in less than 1 MB. These values are compatible with the intended

application of this algorithm, taking into account that state of the art processors on

COTS on-board computers for nanosatellites feature 1GHz clock speed and exceed

256 MB of RAM. An estimate of the execution times on a typical nanosatellite

processor is 12.5 seconds for training and 0.05 seconds to process a single image.

6.6.2 Impact Event Detection

The impact event has been simulated and tested from two capturing points

(depending on the position and orientation of the observing spacecraft around the

asteroid). In the first point, both bodies of the asteroid binary system are in the field

of view of the satellite, with the main body in the background (Figure 42). In the

second case, only the moonlet is in the field of view of the satellite, with the dark

sky in the background (Figure 43). For both cases, a video of the impact has been

realized, with a framerate of 25 frames per second. Frames of the post-impact

evolution were then selected for the testing of the algorithm. The algorithm has

been developed and tested in a Matlab/Simulink® environment, by using datasets

generated via the blender® asteroid model.

Case Study: Event Detection with Neural Networks 107

Figure 42 Impact event from first capturing point

Figure 43 Impact event from second capturing point

Four simulations have been run, changing the point of view of the impact from

space and the shape of the overlay pattern representing the impact effect on the

asteroid surface used in the ANN training process (Table 13).

108 Case Study: Event Detection with Neural Networks

Table 13 Mission scenarios parameters and results

Simulation # Background Training shape Result

1 Body Rectangular Success

2 Body Truncated cone Success

3 Sky Rectangular Success

4 Sky Truncated cone Success

The simulations show the effectiveness of the ANN developed, as the images

are correctly classified by the algorithm in the appropriate categories (Figure 44 and

Figure 45).

Figure 44 Impact event, dark sky in the background. Continuous line:

impact detected; dashed line: no detection

Figure 45 Impact event, main body in the background. Continuous line:

impact detected; dashed line: no detection

Furthermore, given the fact that the algorithm will run on board a spacecraft, it is

important to test the algorithm against the disturbances due to the pointing errors

that may arise during the mission. In particular, it must be guaranteed that the

algorithm does not trigger false positive or fails to detect the event in case of images

with different framing. The algorithm has been tested changing the orientation of

Case Study: Event Detection with Neural Networks 109

the camera on board the satellite. The range of the oscillation tested is ±12 degrees,

with steps of 1 degree in the up-down pointing. To overcome the issue of

oscillations affecting the detection of the impact event, the solution implemented

includes images with different framing in the training dataset. In this case, the

network is trained to compensate for the pointing uncertainties (Figure 46 and

Figure 47).

Figure 46 Robustness to imprecisions in camera pointing. Continuous line:

impact detected; dashed line, no detection

Figure 47 Robustness to imprecisions camera pointing (cont.). Continuous

line: impact detected; dashed line: no detection

The algorithm obtains an average detection performance of over 98% in all the

four event cases. Figure 48 depicts the confusion matrices for simulations 2 and 4

as defined in Table 13. For each matrix, the Output Class represents the decision

taken by the algorithm, while the Target Class is the correct decision for each image.

Class 1 represents the impact case, and Class 2 represents the non-impact case. The

green quadrants represent images correctly classified. The red quadrants represent

false positives and false negatives. Grey boxes show the classification performance

for each class. The overall performance of the algorithm is given in the blue boxes.

110 Case Study: Event Detection with Neural Networks

Figure 48 Confusion matrices for one body and two bodies simulations

with disturbances. Class 1 represents the impact event, Class 2 represents the

no-impact images

6.6.3 Plume event detection

The plume ED problem was constituted by a dataset of 1600 images used during

training, divided in the following way: 98% for training, 1% for validation and 1%

for testing. An additional dataset composed of 400 images was used for testing, and

the ANN performance was measured on the test dataset. Figure 49 shows the

confusion matrix for the 67P plume event.

Figure 49 Confusion matrix for plume event on comet 67P

Case Study: Event Detection with Neural Networks 111

The algorithm has then been validated by evaluating its performance on real

images taken by the Rosetta mission, showing plume events as experienced by the

spacecraft. The detection of the events was successful, as seen in Figure 50.

Figure 50 Detection of plume events: real images taken by the Rosetta

mission

6.6.4 Review

The applications presented in this chapter provide clear examples of both the

usefulness and the applicability of NN in the domain of event detection for space

applications. On the other hand, the decision on which architecture is the most

efficient and effective in performing different tasks needs to be object of further,

deeper, investigation. Despite this, some insights can be already drawn from the

research performed, and this can help towards the objective of pre-selecting NN

architectures in relation with the problem to be solved. Finally, it has to be noted

that the purpose of this thesis was mainly to perform feasibility analysis: for this

reason, a comparison between the detection capabilities of NN and other ML

algorithms needs to be performed. If the usefulness and performances of heavy

architectures (such as Convolutional NN used to solve image classification

problems) is well established, the research on NN for space applications, and in

particular for embedded ones, needs to be expanded to reach a similar level of

heritage.

The following table summarizes the capabilities of ANN to perform Event

Detection.

112 Case Study: Event Detection with Neural Networks

Table 14 Summary of FF ANN algorithms characteristics when applied to

ED.

Review

Parameter

Comments

Benefits Training-defined Behaviour – The behaviour of the system
can be implemented to match the desired outcomes by training,
and not by hard-coded programming.

Robustness – The algorithm is, in most cases, inherently
robust to disturbances, provided a correct training has been
performed. The complexity of performing a correct training
with respect to defining a robust algorithm in a theoretical way
is reduced.

Limitations Architecture – The size and complexity of each element of
the dataset requires different solutions in the selection of the
algorithm architecture. Event detection on an image of
100x100 pixels can be performed with small FF networks.
Higher resolutions images require the use of other types of
ANN (e.g. Convolutional NN).

Applicability Scope – FF ANN are suitable for pattern recognition.
Applications such as sensor monitoring (where a time-
dependent behaviour is present) are better solved with other
ANN architectures (e.g. NARX).

Chapter 7

Case Study: Failure Detection with

Expert Systems

7.1 Background

The topic of failure detection on Small Satellites is certainly vast and would

require a complete PhD thesis on its own. This chapter deals with the problem of

detecting failures on components of the AOCS by using a domain of AI called

Expert Systems (ES). In particular, the specific category of ES here presented is

that of the Fuzzy Logics, and the actuator to which the algorithm is applied are the

Magnetic Torquers (MT). The presented case study can be considered a feasibility

study, but already demonstrates two results:

• The Fuzzy Logics are powerful and can be configured to perform failure

detection

• The expert knowledge is effectively represented by the FL and the

functioning of the algorithm represents the reasoning that the expert

would perform

7.2 Reference Mission

The reference mission for the presented Case Study is a nanosatellite mission

developed by the CubeSat Team at Politecnico di Torino, called 3-STAR. The main

objective of this program is to provide educational and hands-on experience to the

114 Case Study: Failure Detection with Expert Systems

numerous students participating in the team. The technological objective of the

mission will be performing stereoscopy experiments from space, possibly testing

and validating inspection algorithms to be later reused in other nanosatellites

missions. In addition to the main mission objectives, 3-STAR will be used as a

validation platform for different technologies currently being developed in the

team’s facilities. Among these, Artificial Intelligence (AI) based Autonomous

Command and Data Handling System (A-C&DH) and Attitude Determination and

Control System (A-ADCS) will be included [96]. The satellite is envisioned to be

a 3U CubeSat, featuring a commercial bus platform developed and sold by one of

the major companies (Tyvak Int., Clyde Space, GomSpace, and so on) and will

likely feature as payload one or more cameras, and an in-house developed

COMSYS board, either as main telecommunication unit or as a redundant one with

respect to the platform one. As of June 2017, the mission and preliminary system

design has just begun, thanks to the new students of the CubeSat Team. No

additional information is available at the moment. Given the direction of FSW

development taken in the past years, the FSW will be developed in Python, with

additional libraries developed in C/C++ for performance reasons.

7.3 Fuzzy Logics Application

The FL application developed for this case study aims at detecting the failures of a

specific set of actuators (the Magnetic Torquers) of a 3U CubeSat spacecraft. The

purpose of the application is to demonstrate the feasibility, and similar detections

can be performed on other sensors or actuators of a spacecraft, provided the failures

to be detected are modelled and their behaviour is known. Generally speaking, it is

possible to develop additional rules for unknown behaviours.

7.3.1 Magnetic Torquer Modelling

Magnetic Torquers are a very common and reliable actuator used to control attitude

for LEO CubeSats as they are cheap, they consume a low amount of power and are

typically low weight. They are typically employed in two configurations: coil

(Figure 51) and rod (Figure 52).

Case Study: Failure Detection with Expert Systems 115

Figure 51 Magnetic torquer example: coil configuration

Figure 52 Magnetic torquer example: rod configuration

They exploit the interaction between the Earth Magnetic Field (EMF) and the

magnetic field generated by the MT.

116 Case Study: Failure Detection with Expert Systems

Figure 53 Representation of the resultant force due to magnetic field

interaction

The interaction between the EMF and the magnetic dipole moment generates

the control torque (Figure 53), and can be modelled as follows:

������� � �� � ��

where Tcontrol is the 3x1 control torque vector, mb is the 3x1 magnetic torque

dipole moment and Bb is the 3x1 EMF vector expressed in body axis.

It is possible to evaluate the dipole moment m as

� � �����

where N is the number of coils, I the current flowing in them, A the area

inscribed by the coils and na the unit vector perpendicular to the plane of the coils.

The main specification for a MT is usually the maximum dipole moment, which is

a function of the number of coils, the amount and direction of the current that flows

into the coils, and the area of the MT.

7.4 Failure Modelling

In order to design a Failure Detection algorithm for a certain application, the

dynamics and behaviour need to be available during the design. Available is an

intended vague term, because of the different approaches that can be taken,

depending on whether the application involves NN or FL or other AI algorithms. In

particular:

• The dynamics of the failures need to be known and modelled in order

to define the rules for a FL application

Case Study: Failure Detection with Expert Systems 117

• The dynamics of the failures need to be reproducible in order to

correctly train a NN application

The two approaches can overlap, and in general it is considerable as a requisite

to have the data concerning some example of the failures to deal with detection

applications.

Despite the MT being a reliable hardware, they can be subject of failures and

these events have very peculiar and recognizable characteristics. MT can fail in four

different ways (Figure 54):

• Float: the output of the failure is zero

������ � 0

• Hard-Over (HO): the output assumes a ramp characteristic, until

saturation value is reached

��� � !"�#
%"&'!"&�(�

0 < & < &*��+���,��& ≥ &*��+���,��

• Lock-in-Place (LIP): the output is stuck to a value different than zero

�./0 � 1(�%&"&

• Loss of Efficiency (LOE): the behaviour remains similar to unaffected

MT, but a lower efficiency causes the output to be reduced

�.�2 � � ∙ �45*,�54 , 0 < � < 1

118 Case Study: Failure Detection with Expert Systems

Figure 54 Failure modelling, output of the control command to the MT.

Clock-wise, starting from top-left: float, lock-in-place, hard-over, loss of

efficiency

The simulation of the failures was performed by setting the actuator output to

match the characteristic failure. Several simulations were run, with a random

initialization of the characteristic variables in order to ensure generality of the

applied approaches.

7.5 Rules definition

As shown in 5.7, FL work by extending the classical logic in the continuous

interval. To perform this, a set of rules and sets of input and output variables must

be defined. One of the most striking characteristics of an AI application, is the fact

that its behaviour can be defined, or taught, without actually coding it in the

application. For ES, the knowledge of the expert involved in the design is translated

into executable code.

7.5.1 Input and Output Variables and their membership functions

Five input variables were defined in the application, and are intrinsic variables that

characterize the problem under analysis:

• MT current: the value of the current that flows into the MT. This value

is straightforward to obtain, as the Analog-to-Digital Converter (ADC)

current sensor is a common component

Case Study: Failure Detection with Expert Systems 119

• Derivative of MT current: the value of the derivative of the MT current.

Another straightforward value to obtain, as it can be simply obtained by

sampling two consecutive times the current value

• Double Derivative of MT current: the double derivative of the MT

current. As with the current derivative, to obtain this value two

consecutive measures of the derivative of the current are needed

• Error: the difference between the commanded value and the measured

value. Another easily obtainable value, as the commanded value is

known (the controller is responsible of commanding the current value)

and the measured value is known (by the ADC sensor)

• Estimated LOE: the value of the estimated loss of efficiency times the

commanded current value minus the measured current value.

7%&��"&78 9�: � � ∗ <��==��454 − <=5�*+�54

This is the less simple variable to obtain: k can be iteratively estimated

by comparing the commanded value to the measured one. If, for

example the ratio, is constant, the Estimated LOE can be obtained.

These five variables are able, along with the output variables and the

corresponding rules, to define an Expert System able to correctly identify which

type of failure is present on the torquers.

Figure 55 Input variables and their membership functions

For the presented five variables, appropriate membership functions (Figure 55)

must be defined for the evaluation of the input variables. In general, for this

application, some soft constraints can be guessed by the domain expert, by iterative

reasoning about the dynamics of the problem. Output variables, for this particular

application, do not need to be de-fuzzified (Figure 56).

120 Case Study: Failure Detection with Expert Systems

Figure 56 Output variables: de-fuzzification is not needed, as the failure

identifier is an integer number

The following membership rules have been defined:

• current: negative (less than -0.01), zero (between -0.01 and 0.01),

positive (greater than 0.01) (Figure 57)

• current derivative: monitored only when zero (between -0.00003 and

0.00003)

• error: monitored only when zero (between -0.2 and 0.2)

• current second derivative: monitored only when zero (between -0.01

and 0.01)

• estimated LOE: monitored only when zero (between -0.00002 and

0.00002)

Figure 57 Membership function for the current input variable

7.5.2 Rules

The following paragraphs emulate a possible way to define the membership

functions and the subsequent rules.

For a Hard-Over failure, that is constituted by a linear trend of the current value,

the derivative of the current is constant. Since each HO failure can be characterized

by a different constant value of the derivative, this particular variable is not

Case Study: Failure Detection with Expert Systems 121

meaningful. Continuing, since the derivative is constant, the second derivative must

be zero. This reasoning is meaningful: it means that the fuzzy set will have to

monitor the second derivative and to be able to distinguish between a zero and a

non-zero value. A possible rule can also be defined: if the second derivative is not

zero, then the failure can probably be a LOE (where the current value and their

derivative is changing over time).

After this reasoning, the Hard-Over behaviour is still undefined: the second

derivative must be zero, but this is not sufficient to correctly identify the HO.

Another rule defined for the HO is obtained by checking that the value of the current

derivative is not zero. If it is zero, then we would be in presence of a Lock in Place

failure (derivative being zero means the output current is constant).

Continuing with these types of reasoning lead to a set of rules and a set of

membership functions that completely represent the expert knowledge on the

problem in a computational form.

With just a set of five rules, the complete set of failures of the MT can be

detected. The rules are:

• if the current is zero AND the current derivative is zero AND the error

is NOT zero AND the estimated LOE is not zero then failure is float

• if current is NOT zero AND the current derivative is zero AND the

error is NOT zero AND the estimated LOE is NOT zero then the failure

is lock in place

• if current derivative is NOT zero AND the error is NOT zero AND the

current second derivative is zero AND the estimated LOE is NOT zero

then failure is hard-over

• if the error is NOT zero AND estimated LOE is zero then failure is loss

of efficiency

• if the error is zero then NO failure is present

It has to be noted that, for this specific case study, the number and the

complexity of the rules is low: for different applications, more complex and more

numerous rules can be expected.

122 Case Study: Failure Detection with Expert Systems

7.6 Results

At each sampling step of the on-board software, it is possible to obtain all the five

input variables (except for the starting steps where no derivatives exist), and at each

step it is possible to evaluate all the defined rules in the system (Figure 58).

Figure 58 Rule evaluation and failure detection: hard-over detected

Simulations that iterate the appearance of failures in the system (injecting the

failure by overring the output of the current sensor), and the behaviour of the

detection with the FL has been evaluated. The system is able to correctly identify

all failures. Instabilities are present in the final output and they are due to the fact

that sometimes, for certain values and certain types of failures, the commanded

value is coincident with the measured (faulty) one. This causes instantaneous shifts

to the status of no failure, and therefore instabilities in the detection. However, this

is not an issue, as the detection of a failure can take place in several steps, and

therefore basic filtering can be applied. A typical FSW runs at a speed of 2Hz or

more, therefore commanding a different value of the current at each step: filtering

over a period of a couple of seconds does not alter the quality of the detection and

allows to remove the instabilities due to the phenomenon described earlier (Figure

59).

Figure 59 Output of the Expert System: from the left, unfiltered, basic and

medium filters applied. Each step represents a different value of the output

variables, therefore represents a different failure detected

Case Study: Failure Detection with Expert Systems 123

7.6.1 Review

The applications presented in this chapter deal with a well-known domain of

spacecraft engineering: failure detection. Several algorithms categories can be used

to solve the problem of detecting failures in actuators and sensors. Neural Networks

are an example of algorithm category that can be used. A first conclusion that can

be drawn when comparing NN with ES, is the increased computational cost of NN.

The following table summarizes the capabilities of Expert Systems to perform

Failure Detection.

Table 15 Summary of ES algorithms characteristics when applied to FDIR

Review

Parameter

Comments

Benefits Knowledge Implementation – The knowledge transfer from
an operator to the program can be performed in a structured
way, without hard-coded programming of the behaviour of the
system.

Performances – Simple ES obtain high detection rates even for
complex problems such as failure detection.

Computational Costs – With respect to other algorithm
domains (such as ANN), ES are able to reach high detection
rates by requiring considerably smaller computational costs.

Limitations Scalability – ES implemented via FL are ideal for small
problems, such as actuator monitoring. Increasing the
architecture of the detection problem, the number of rules can
considerably increase. Other types of ES need to be considered
in this case.

Applicability Scope - Applicability of ES is vast, and applications are
appearing in many engineering domains.

Chapter 8

Case Study: Tradespace

Exploration with Genetic

Algorithms

8.1 Background

The purpose of multi-attribute tradespace exploration is to capture decision-

makers preferences and use them to generate and evaluate a multitude of system

designs, while providing a common metric described in a stakeholder friendly

language. To achieve this, the Multi Attribute Utility Theory (MAUT) is employed

for the aggregation of the preferences from all the stakeholders. MAUT is widely

used in the fields of economics, decision analysis, and operational research. It

postulates that people make decisions based on value estimates of personally-

chosen reference outcomes. Decision-makers interpret each outcome in terms of

some internal reflected value, or utility, and they act in order to maximize it. In the

case of multiple attributes, an elegant and simple extension of the single attribute

utility process can be used to calculate the overall utility of multiple attributes and

their utility functions [97], [98]. There are two key assumptions for using this

approach:

• Preferential independence, that means the ranking preference of a pair

of attributes is independent with respect to the other ones

126 Case Study: Tradespace Exploration with Genetic Algorithms

• Utility independence, or the independence of preference intensity, that

means that the “shape” (shown in Figure 60) of the utility function of a

single attribute is independent of the value of the other attributes.

Figure 60 A few examples of utility function. Credits MIT

The non-linear behaviour of the utility functions is strongly related to the

uncertainties of the outcomes of the decision process. This is caused by the non-

linear evaluation of benefits and by the experts’ attitude with respect to risky

scenarios. If the above assumptions are satisfied, then the multiplicative utility

function can be used to aggregate the single attribute utility functions into a

combined function according to

?@�A� � B ?CD@D�AD� E F
G

DHF
 (1)

• I is the solution to I E 1 � ∏ I�, E 1 K,HL and −1 < I < 1 I M 0

• N�O�, N,�O/� are the multi-attribute and single attribute utility

functions, respectively.

• N is the number of attributes.

• �, is the multi-attribute scaling factor from the utility interview

The values of each ki give a good indication of the importance of each attribute

(i.e. a kind of weighted ranking) and are bounded between 0 and 1. The scalar K is

a normalization constant that ensures the multi-attribute utility function has a zero

to one scale [99]. Despite the attractiveness of an axiomatically-based decision

model, empirical evidence shows that people do not obey expected utility theory in

daily decision-making due to systematic biases in their thinking. For this reason,

the logic flow of the method involves the definition of stakeholder attributes,

Case Study: Tradespace Exploration with Genetic Algorithms 127

context variables and design variables [100]. Once those elements are defined is

possible to develop system performance and value models, aiming to evaluate the

multi attribute utility and the costs involved in the project life cycle.

When applying the MAUT to a particular problem, the effects on the utility

given by the different attributes are highlighted. In this case, a Multi Attribute

Tradespace Exploration (MATE) analysis is obtained. Given the complexity and

the variety of different possible choices during the conceptual phase of a space

mission, this technique is particularly suitable for assuring that all the various

options have been considered, including programmatic and technical aspects, such

as manufacturability, assembly, operations, and physical architecture choices.

Figure 61 MATE logic flow

Once all the aspects involved in the MATE are defined, it is possible to develop

a code which automatically explores the tradespace and gives as final output the

best choices with respect to all the involved stakeholders needs (Figure 61). Several

options exist to explore the tradespace: depending on the analysis models and

design variables, a specific exploration methodology may be required.

In literature, several applicable exploration methodologies have been studied:

complete exploration of all the problem solutions, optimization with Simulated

Annealing techniques [101], Normal-Boundary Intersection [102], Nelder-Mead

Simplex [103], Artificial Intelligence with Particle Swarm Optimization [104], and

Genetic Algorithms [105]. It is evident that a bigger size of the tradespace requires

a guided exploration to avoid excessive computational effort and avoid any loss of

solution candidates.

128 Case Study: Tradespace Exploration with Genetic Algorithms

8.2 Reference Mission

The trade-off capabilities of the MATE methodology and the exploration powers

of GA show very promising results when applied to the design of CubeSat missions,

especially thanks to the peculiarities of the CubeSat standardized design. The

reference mission considered in the research presented consists of one or more

CubeSats employed as secondary payloads of a flagship mission. They will be

deployed during mission operations in situ. The objectives of the CubeSat mission

are to provide scientific support to the mothership, either by repeating one or more

of the main spacecraft's measurements, or by supporting the science goals by

performing additional measurements. In addition, the CubeSats can also perform

technological demonstration. Since the CubeSats are secondary payloads,

constraints imposed by the flagship mission have been considered: maximum

occupied volume, maximum single satellite size and weight, specified interfaces

and operational requirements. A space mission concept that can be cited as a

reference is the CubeSat Opportunity Payload Intersatellite Network Sensor

(COPINS) mission [106]. The mission is the same as that considered in Chapter

6.2.

When considering the conceptual design of similar missions, it is evident that

several different architectures and systems designs are possible, and they can all

potentially satisfy the stakeholders of the mission. For example, a CubeSat mission

composed of 6 single unit CubeSats could provide similar results to a mission

composed of two 3-unit CubeSats, depending on the design. This is because the

only volume requirement considered in the case study is that the CubeSats shall

occupy a total of 6 units, with dimensions of a single satellite up to 3 units. The

same concept applies to other characteristics of the mission and the system, such as

the mission timeline, the scenario, the mission phases, operation strategies and

more. It is evident how a methodological approach should be used in exploring all

the different design choices, in order to come up with a mission baseline that

provides the best utility and biggest contribution to the results of the main mission.

For this reason, a Matlab(®)/Simulink(®) algorithm has been designed to

explore all the different mission architectures and concepts of operations that can

be generated. In particular, the solutions generated by the algorithm should

represent as closely as possible a complete mission concept. With this objective in

mind, the computational problem becomes complex, due to the presence of a high

number of design variables and the selection of components available. The design

Case Study: Tradespace Exploration with Genetic Algorithms 129

vector dimension can reach sizes of more than 30 design variables, adding up to a

solution space in the order of billions of different architectures. It is therefore

unfeasible to evaluate all the possible solutions [107].

8.3 Genetic Algorithms for Tradespace Exploration

In real world applications, most of the optimization problems involve more than

one objective to be optimized. These objectives are often conflicting, i.e., maximize

performance, minimize cost and maximize reliability. When this happens, a single

extreme solution would not necessarily satisfy all the objective functions and the

optimal solution for one objective may not be the best solution for other objectives.

Therefore, different solutions will produce trade-offs between objectives and a set

of solutions is required to represent the optimal solutions group. The trade-off curve

reveals that considering the extreme optimal of one objective (for example, costs)

might require a compromise in other objectives (for example, spacecraft reliability).

The solution to this problem can be found among the pareto-optimals. A pareto-

optimal is an optimal solution with respect to all objectives that cannot be improved

in any objective without worsening another one. The set of all feasible solutions

that are non-dominated by any other solution is called the pareto-optimal or non-

dominated set; the values of objective functions related to each solution of a pareto-

optimal set, evaluated in the objective space, is called pareto-front.

8.3.1 Intelligent exploration

In complex problems, such as the conceptual design of a space mission can be, the

number of solutions that form the design space can reach. It is therefore mandatory

to exploit structured and efficient ways to explore the design space and evaluate the

solutions, in order to keep the computational cost and the exploration duration

acceptable. Depending on how the problem is constructed in the first place, several

different exploration methods exist, that can move through the space both in case

of a continuous space and in the case of a discrete one. Examples of these methods

can be genetic algorithms for discrete problems, or simulated annealing for

continuous ones [73], [108], [109]. The present work explores the use of genetic

algorithms (GA), performing an exploration type called guided random search

[110]. These types of algorithms are inspired by the selection process of nature,

which causes the stronger individuals to survive in a competitive environment. In

nature, each member of a population competes for food, water and territory, and

also strives for attracting a mate. It is obvious that the stronger individuals have a

better chance for reproduction and creating offspring, while the weaker performers

130 Case Study: Tradespace Exploration with Genetic Algorithms

have lesser chances of producing offspring. Consequently, the ratio of the strong or

fit individuals will increase in the population, and overall, the average fitness of the

population will evolve over time. Offspring created by two fit individuals (parents)

has a potential to have a better fitness compared to both parents: the resulting

individual is called super-fit offspring. By this principle, the initial population

evolves to a better suited population to their environment in each generation [111].

8.3.2 Population dynamics

In genetic algorithms, each solution of the problem is represented by a set of

parameters known as genes, and these are joined together in a genome. A genome,

which describes an individual, evolves through iterations called generations. The

dynamics of each individual inside the population are ruled by a function that

evaluates how well the considered individual performs in the environment it is in.

The mentioned function is called fitness or objective function. Finally, during the

various iterations, a selection of the parents for reproduction and recombination is

applied [112]. The main objective of selection operator is to pick the fit solutions

and eliminate the weak individuals. In the reproduction phase, the two parents

identified by the selection operator recombine to create one or more offspring with

the crossover operator. There are several different crossover operators in the

literature, although the underlying mechanics is similar: selecting two strings

chromosomes from the mating pool and exchanging some portion of these two

strings in order to create new individuals. The purpose of this operator is to perform

a rapid exploration of the search space. Another operator that can be applied is the

mutation operator. It is applied to individual solutions after reproduction: one or

more genes are randomly changed in an individual, after a selection has been

applied. The mutation operator usually affects small portions of the population. The

aim of this operator is to maintain the diversity of the population and to increase the

possibility of finding the global optimum. To sum up, the selection operator selects

and maintains the good solutions; the crossover recombines the fit solutions to

create fitter offspring and the mutation operator randomly alters one or more genes

in the offspring with the intent of maintain the evolution dynamic. The next section

will cover in details the problem setup: in particular, the characteristics of the

individuals will be described, highlighting how these form the Design Vector (DV),

and how the genetics algorithms are employed to explore the tradespace.

Case Study: Tradespace Exploration with Genetic Algorithms 131

8.4 Algorithm Design

8.4.1 Architecture

Figure 62 The implemented algorithm consists in combining Genetic

Algorithms with Multi-Attribute Tradespace Exploration. Solution

generation, requirements management and post-processing design and

visualization are also performed.

Figure 62 shows the architecture of the implemented solution. At each algorithm

iteration, a population of individuals is selected and evaluated. As specified earlier,

each individual carries information concerning mission architecture aspects, system

design and components. Once the current population is generated, the fitness of

each individual is evaluated: this can be thought as evaluating the utility of the

corresponding mission concept. During the utility evaluation, high-level

requirements are also verified, and the individuals that violate any requirements are

penalized, receiving an utility score of zero. By design, GA select the most fit

individuals by using a tournament selection: this process guarantees the correct

elimination of the individual that violates the requirements and of the unfit

individuals. Finally, once the optimization has selected the most fit individuals,

additional post-processing algorithms are executed, to finalize the design and to

generate data products comparable with those generated during a CD session by the

domain experts.

132 Case Study: Tradespace Exploration with Genetic Algorithms

8.4.2 The Design Vector

The DV is the vector that describes a specific solution and that contains all the

information needed to define a particular mission concept. It is composed of 36

variables that store information about several aspects of mission architecture and

system design.

The DV structure was defined by analysing the mission goals and by selecting

both mission and system technical domains that are critical during the preliminary

design of a space mission.

Table 16 Design Vector attributes categories

Design Vector

Categories

Parameters Equipment Number of

Parameters

Autonomy Goal definition, event reaction,
data selection, knowledge from
measurements, failure
detection, isolation and
recovery

- 6

Communication
Architecture

Percentage of data rate used,
number of antennae, Earth
communication

Radio,
Antenna

5

On Board
Processing

Command and Data Handling
architecture, radiation
tolerance

Processor
Family

3

Primary Payload Camera technology, spatial
resolution, optics volume,
maximum frames per second,
number of sensors

Camera 6

Secondary
Payload

- Any in the
databases

1

Case Study: Tradespace Exploration with Genetic Algorithms 133

Guidance,
Navigation,
Control

Trajectory planning, attitude
determination performance,
attitude control performance,
position determination
performance, position control
performance

Sensors and
actuators

7

Data Acquisition Data acquisition strategy - 1

Operations Lifetime,
mothership/daughtership
interactions

- 2

Orbit
Architecture

Altitude, inclination, formation
flying, constellation

- 4

CubeSat
Number

Number of CubeSats
considered

- 1

Objectives
Accomplished

Each scientific / technological
objectives

- n

Table 16 shows a summary of all the categories that were included in the DV.

The first column shows the category, while the second and third one list all the

different parameters that were included in each category. Finally, the last column

condenses the information in a number, which represents the total number of

parameters for each category.

8.4.3 The Algorithm

The key part of the research relies on the algorithm that, from the definition of the

DV, creates each solution during the exploration.

The approach used involves GA to solve an integer problem: each parameter in

the DV is associated to an integer that represents the number of alternatives for the

specified parameter. The number of possible alternatives is defined by each domain

expert. For example, the event reaction parameter in the Autonomy category has a

value of 3 associated with it: this means it can assume three different configurations,

134 Case Study: Tradespace Exploration with Genetic Algorithms

as specified by the Flight Software Engineer: no event reaction is planned;

meaningful events are detected and then mission control is informed; meaningful

events are detected and mission re-planning is executed.

For the parameters in the third column, the approach is similar but each

parameter corresponds directly to an equipment category. For this, a CubeSat

component database was implemented. Four mandatory parameters were included

for each component in the database: mass, power, cost and size. Other parameters

were added, and are especially useful since they can be later used to verify the

compliance to the requirements, or to compute the fitness value. For example, the

Camera parameter can assume a value from 1 to 4 that corresponds to a specific

COTS equipment found in the database: a CMOS camera; a basic spectrometer; a

high-performance spectrometer; a CCD camera.

Custom population creation, cross-over and mutation functions were designed

to support the presented setup. Creation function initializes every individual of the

population, picking a random integer value constrained from 1 to the maximum

value for each DV variable. Single point crossover has been chosen as crossover

function. Mutation function affects only a small number of individuals in the

generation, and for these, only one gene is re-initialized to a random value, as

constrained by the DV.

Lastly, the fitness of each individual of the population is computed using (1).

8.4.4 The optimizer

As introduced earlier, genetic algorithms are the key technology used to explore the

tradespace. The configuration of the algorithm was as follows: initial population

was set at 540 individuals, crossover fraction was set at 0.95 (meaning that to the

remaining 0.05 the mutation operator was applied) and the elite population fraction

was set at 0.35 (Figure 63). The selection was made with tournaments. Infeasible

solutions, for example those that violated the requirements, were discarded and the

population was re-initialized randomly for the removed individuals.

Case Study: Tradespace Exploration with Genetic Algorithms 135

Figure 63 Optimization process: evolution in time of the population. The

improvement of the utility with the increase of the generation number is

shown.

Several configurations have been tried, since optimal initial configurations for

GA are highly dependent on the problem analysed. The details are summarized in

Table 17: the table shows both the final values selected for the simulations, and the

ranges that were used when defining the optimal values.

Table 17 - Genetic Algorithms configuration parameters

Configuration parameters Value Explored values

Population size 540 individuals 180, 360, 540, 720,
1000

Crossover fraction 0.95 0.75, 0.9, 0.95, 0.99,
1

Mutation fraction 1 – crossover fr. 0, 0.01, 0.05, 0.1,
0.25

136 Case Study: Tradespace Exploration with Genetic Algorithms

Elite population fraction

(paretofraction)
0.35 0.1, 0.35, 0.5

Selection Tournament -

Requirement violation approach Individual
removal

-

Population size has been chosen to be 15 times the number of variables in the

DV, as a balance between smaller populations (increase in the convergence speed)

and bigger ones (higher chances of having more optimal solutions in the initial

population) [113]. Crossover fraction was chosen at 0.95: this choice resulted in a

greater effect of the reproduction dynamics with respect to the mutation ones.

Mutation fraction was chosen to be 0.05, thus applying the mutation function only

to the population that did not reproduce. Elite population was set at 0.35, meaning

that the 35% of the new generation is formed by individuals picked from the old

generation. The selected value ensures a balance between effectiveness of the

search (lower elite population fractions) and survival of fit individuals (higher elite

population fractions).

8.5 Results

The investigation on methodologies to improve and automate the space mission and

spacecraft design is a vast effort, branching out into many fields of science and

engineering. The proposed research obtains several important results towards the

design of space missions that provide higher utility to the stakeholders, by being

more optimized and not bound to the stagnancy of conservative mission design

approaches. These improvements are obtained through innovations in three aspects

of the mission design:

• exploring the alternative concepts thoroughly and more efficiently

thanks to the MATE and GA approach

• considering the availability of certain highly standardized components

thanks to the component database included in the algorithm architecture

• ensuring effective final solutions that comply with high-level

requirements

Case Study: Tradespace Exploration with Genetic Algorithms 137

Furthermore, domain experts and mission designers obtain significant

improvement to the mission design process, thanks to the decision-making support

and the post-processing algorithms that emulate CD sessions.

8.5.1 Efficient tradespace exploration

Depending on the dimension of the design vector and the ranges of the considered

variables, the number of solutions forming the tradespace can well surpass the order

of billions. In the presented case, 36 variables add up to more than 1017 different

solutions. When, for each solution, a utility function must be evaluated, it is evident

that the problem becomes computationally expensive.

The use of guided random search strategies, implemented with GA, allows the

exploration and the discovery of the optimal solutions without evaluating the fitness

function for all the individuals, but only for a restricted set. Figure 64 shows several

plots of a limited set of the solution space for this problem, that give a glimpse of

the shape of the whole tradespace. As shown in the figure, the MATE and GA

implementation optimizes the search to define the pareto front for the analysed

problem.

Figure 64 Solution spaces (100k points): from the left, cost-size-utility, size-

utility and cost-utility plots

8.5.2 Impact of the CubeSat database integration

The integration of a component database in the architecture infuses the obtained

solutions with information regarding parameters such as power consumption, sizes,

performances and so on. The knowledge on these parameters would traditionally be

acquired later during the design process.

138 Case Study: Tradespace Exploration with Genetic Algorithms

Figure 65 3U internal configuration

With this approach, instead, as the GA creates new individuals, it defines specific

hardware configurations. This enables interesting analysis once the solution is

selected in the final iteration. The possibilities opened by this implementation are

numerous, and here the most promising ones are reported:

• mission and system budget definition (mass, link, power, delta-V)

thanks to the definition of the component list and mission architecture

• optimization of the internal configuration: the component list includes

information on volumes and specific component requirements, such as

positioning inside the spacecraft (Figure 65 shows a 3U CubeSat

configuration obtained by the algorithm)

• detailed design: by defining a power budget and a list of operative

modes, the solar panel and battery sizing can be automatically computed

(Figure 66 shows examples of solar panel design)

8.5.3 Requirements compliance

Thanks to the capability of the GA optimization to handle DV composed by a high

number of variables, it is possible to increase the number of variables representing

mission and system level aspects, directly matching them with high-level mission

and system requirements. This approach ensures that the corresponding design

produced by the algorithm is compliant with the requirements specified. This is

done by setting the solution individual fitness value to zero if the one or more

Case Study: Tradespace Exploration with Genetic Algorithms 139

requirement is not met. In this way, selection dynamics will remove the unwanted

solution.

Figure 66 Solar panels configuration: example outputs

Another important but less evident result of enforced requirement compliancy

is related to the biased attitude of human experts towards computer generated

solutions, especially when artificial intelligence is involved. In this way, the

obtained solutions are more likely to be accepted by the engineers involved in the

early design phase.

8.5.4 Algorithm performance comparisons

Table 18 - Algorithm performance comparison

Algorithm Problem Size

Considered

Time

Complexity

Average

Execution

Time

Pareto

Front

Found

Monte Carlo 8*1016 O(N*f) Undefined No

GA 8*1016 O(n*G*f) 1 hour Yes

Non-Guided

Exploration
8*1016 O(N*f) 1.8*1010 hours Yes

CD Inherently
smaller

- 1-2 weeks No

140 Case Study: Tradespace Exploration with Genetic Algorithms

The application of MATE analysis to engineering problems requires the

implementation of an explorer that navigates the solution space, and depending on

the dimension of the problem and the explorer design, obtaining the pareto front

can be expensive, both from a computational cost and time perspective. Table 18

presents a comparison with other methods used to explore a tradespace. The

algorithms explored are: Monte Carlo method, GA, Non-Guided exploration

(where every single solution of the tradespace is evaluated) and CD. The CD

approach is reported for additional comparison with traditional methodologies for

space mission preliminary design. The tradespace size is also presented to offer a

comprehensive view of the comparison. In particular, for CD sessions, the solution

space defined by experts is smaller than the one implemented on a computer

simulation: considered solutions are biased towards previous experience,

preferences of the experts, adversity towards innovation and bias towards safer

solutions. Moreover, not only the generation of a proper tradespace is challenging

for a human expert, but this space will be biased towards the preferences of the

expert himself, instead of reflecting the stakeholders’ goals. Time Complexity

column describes the complexity of the algorithm from an execution time

perspective, using the common Big O representation. N represents the solution

space size, f the complexity of the fitness function, n the max number of generations

for the GA, and G the GA population size.

Case Study: Tradespace Exploration with Genetic Algorithms 141

8.5.5 Review

The application presented in this chapter explores the concept of autonomy in a

different way: the use of AI to solve the problem of preliminary mission design,

and in particular to quickly and efficiently explore the set of possible alternatives

to mission design that can be generated from the stakeholder analysis. In addition,

a clear benefit of implementing AI in this type of problems, is that the solutions are

generated without traditional biases that would affect human designers. The

evaluation of solutions is also performed considerably quicker with respect to

traditional preliminary design generation. The following table summarizes the

capabilities of GA to perform Multi-Attribute Tradespace Exploration.

Table 19 Summary of GA algorithms characteristics when applied to

MATE

Review

Parameter

Comments

Benefits Unbiased exploration - solutions are discovered and analysed
without interference with previous knowledge or
methodologies, even those that would be hardly detectable by
human operators.

Analysis speed – solutions are processed and analysed much
faster with respect to a human operator.

Traceability – solutions are directly originated and evaluated
from the stakeholders’ needs

Limitations Discreet optimization – solutions are defined as vectors of
integers: in this perspective, dealing with continuous problems
requires a modified approach

Applicability Scope – GA as engine for performing MATE can be employed
not just in the space mission analysis domain, but in other fields
of engineering.

Chapter 9

Conclusions

The thesis presents the results of three years of PhD research on Mission

Autonomy for Small Satellite missions. In particular, the key focus of the research

was exploring the capabilities and potentialities of Artificial Intelligence to

innovate and improve the autonomy level of the future missions, both interplanetary

and Earth orbiting. Several reasons motivate the selection of the domain, the

methods, and the case studies, and they can be understood considering the

background of the research group this research was carried out in.

The domain: Small Satellites

CubeSats were born in 1999 as an educational tool, to ease the process with

which students could acquire spacecraft engineering experience and perform space-

related practical research. Now, in 2017, after almost 20 years, CubeSats have

definitely evolved towards becoming a fully capable space systems category:

scientific, technological and innovative missions are now designed with CubeSats

playing the main role. Small Satellites, the bigger counterpart of CubeSats, have

somehow lead the way, thanks to an easier transition from the world of flagship,

expensive and performant spacecraft, to the world of miniaturized, multiple and

flexible ones. After 20 years, the overall picture of the health and status of the

technology is clear: spectacular adoption rates, world-wide participation with

spacecraft developed and launched by many countries (of some of them, CubeSats

represented the first and only affordable and feasible way to start a national space

program). Small Satellites have, from the beginning, always been characterized by

144 Conclusions

solid organizations of the industries involved in their design and development,

probably thanks to an easier adaptation of standard procedures and methods to the

smaller class of spacecraft. CubeSats, on the other hand, have experienced tough

problems due to inherently less experienced players involved: reduced reliability,

lower-quality components used, more agile and less controlled development

processes, are all causes of the sustained failure rates for this type of technology.

Moreover, several problematic points have, since the beginning, affected the

spacecraft category and impeded a complete adoption: the slow evolution and

improvement of telecommunication systems, propulsion systems and overall

materials and components have played a big role in stopping some interesting

concepts from becoming a reality in the early years.

In the last decade, the panorama has changed: technology has evolved, and

more daring missions have been proposed and are now under development, with

improved payloads, communication technologies and propulsion systems. For these

missions, the CubeSat standard and, in general, the modified approach to small

spacecraft and mission design, have a noticeable effect most of the domains

involved. One key area is left behind: operations do not seem to scale by scaling

the technology, and little effort has been spent into disrupting and innovating how

operations are designed and managed for small satellite missions. Nevertheless,

Small Satellites platforms are the best candidate to demonstrate new concepts for

mission operations, as they possess the required flexibility and they welcome

innovative technologies (even if with a suboptimal TRL). Moreover, the category

of small satellites was selected thanks to a higher average computational capability

and to development approaches more comparable with traditional embedded

approaches.

The focus: Mission Autonomy

The presented work focused on improving the operation architecture and

management of Small Satellite missions, both Earth based and interplanetary. The

main reason for this choice is that operations have not been object of extensive

research such as other areas in a small satellite mission, and there have been many

possibilities of improvement. Among the operations, focusing on Mission

Autonomy was a straightforward choice, as the state of the art is currently aiming

at streamlining operations design around the highest possible level of autonomy, as

specified by ECSS. To date, very few examples of autonomous spacecraft have

Conclusions 145

flown. The present work, in addition, aims at raising awareness on the topic of

Mission Autonomy and innovative operations design.

The proposed algorithms described in the thesis bring many advantages,

impacting different segments of the mission architecture. As far as the space

segment is concerned:

• Autonomous Event Detection allows for the design of complex

operations during the mission. Furthermore, payload data downlink will

benefit thanks to the fact that only the highest priority images are

selected and sent to Earth, reducing the quantity of downlinked data and

improving its quality. In the ground segment, a reduced and improved

data flow allows for more agile resource allocations. These advantages

are mission specific, but could be easily generalised for other

applications

• Intelligent Failure Detection, Isolation and Recovery is another step in

the direction of more reliable, performing and autonomous missions. As

with Event Detection, increasing the performance of failure detection

system could enable not only more efficient ground operations (as the

operators are supported in taking decisions concerning failures) but also

to enable innovative recovery actions or to exploit the system

capabilities to fail operationally

The last case study presented aims at improving another area of mission design

and development: the preliminary design:

• Supporting decision makers in their activities (be them mission design,

or operations) is certainly welcomed. One of the key area where the

presented thesis focused was on the design of small satellite missions,

and in particular on automating tasks that are currently performed by

domain experts, such as component database search and spacecraft

configuration assessment. Given the standardization available for this

category of spacecraft, the autonomation potential in the preliminary

design phase is extremely high, and the result of this effort is that less

errors affect the design of a mission, especially in a phase where the

uncertainty about the system is high. Costs will also benefit from this

automation, as correcting design errors further down the design process

is costly and not efficient.

146 Conclusions

The technology: Artificial Intelligence

Artificial Intelligence is certainly a hot topic in research in these years:

applications in medicine, image recognition, security, natural language processing,

and more, are appearing and they are drastically changing the way we approach and

solve problems. Most importantly, they are performing pretty well and the future

improvements are promising. Space engineering is not immune to the diffusion of

AI, and the research is embracing AI for several different applications, from failure

detection and prognosis, to mission replanning, to spacecraft design, to payload data

processing and big data analysis, and the list continues. The thesis, and the related

research performed, wanted to serve as a first effort in exploring the capabilities of

AI for several different applications. The results presented in the case study chapters

are promising: applications compatible with the capabilities of Small Satellites can

be developed and they greatly improve the way missions are managed, resulting in

faster mission success and more reliable mission operations. Among the case

studies presented, AI algorithms were developed reusing known literature, but an

adaptation of the methodologies had to be envisioned to make the technology

suitable for a space mission, especially from the flight software point of view. The

innovative training algorithm developed under this research is an example of

adaptation that was necessary, yet that produced promising results.

In conclusion, it has been proven that the proposed applications and

methodologies are effective in improving the management and the design of Small

Satellite mission operations, and that the presented case studies can be adapted both

for Earth orbiting and for interplanetary missions. Future space missions will make

extensive use of Artificial Intelligence, and the thesis aims at being one of the first

step in that direction.

References

[1] R. Sandau, “Status and trends of small satellite missions for Earth
observation,” Acta Astronaut., vol. 66, no. 1, pp. 1–12, 2010.

[2] NASA, “Small Spacecraft Technology State of the Art,” no. February, pp.
1–197, 2014.

[3] J. R. Wertz, D. F. Everett, and J. J. Puschell, Space mission engineering : the

new SMAD. Microcosm Press, 2011.

[4] R. Mozzillo, “Technologies and methodologies for CubeSat performances
improvement,” Politecnico di Torino, 2016.

[5] A. Babuscia et al., “CommCube 1 and 2: A CubeSat series of missions to
enhance communication capabilities for CubeSat,” IEEE Aerosp. Conf.

Proc., 2013.

[6] J. Schoolcraft, A. Klesh, and T. Werne, “MarCO : Interplanetary Mission
Development on a CubeSat,” in AIAA SpaceOps Conference, 2016, pp. 1–8.

[7] Planet Labs, “Planet Labs Specifications : Spacecraft Operations & Ground
Systems,” 2015.

[8] Oerlikon Space, “The Optel 02 Model Optel 02 Terminal Specifications.”

[9] “Fly Your Satellite! CubeSats phoned home / CubeSats - Fly Your Satellite!
/ Education / ESA mobile.” [Online]. Available:
http://m.esa.int/Education/CubeSats_-
_Fly_Your_Satellite/Fly_Your_Satellite!_CubeSats_phoned_home.
[Accessed: 05-Jun-2017].

[10] “CubeSats - Fly Your Satellite! / Education / ESA.” [Online]. Available:
http://www.esa.int/Education/CubeSats_-_Fly_Your_Satellite. [Accessed:
05-Jun-2017].

[11] A. Heiney, “Project ELaNa: Launching Education into Space,” 2015.
[Online]. Available: https://www.nasa.gov/content/about-elana. [Accessed:
05-Jun-2017].

[12] E. Mahoney, “NASA’s CubeSat Launch Initiative,” 2015. [Online].

148 References

Available:
https://www.nasa.gov/directorates/heo/home/CubeSats_initiative.
[Accessed: 05-Jun-2017].

[13] “THE CUBESATS OF SLS’S EM-1 - Explore Deep Space.” [Online].
Available: http://exploredeepspace.com/news/the-cubesats-of-slss-em-1/.
[Accessed: 05-Jun-2017].

[14] R. Mozzillo, L. Franchi, L. Feruglio, F. Stesina, and S. Corpino, “CUBESAT
TEAM OF POLITECNICO DI TORINO : PAST, PRESENT AND
FUTURE,” in 1st Symposium on Space Educational Activities, 2015, no. 1.

[15] “ROBUSTA - eoPortal Directory - Satellite Missions.” [Online]. Available:
https://directory.eoportal.org/web/eoportal/satellite-missions/r/robusta.
[Accessed: 05-Jun-2017].

[16] “Nanosatellite Database.” [Online]. Available: www.nanosats.eu.
[Accessed: 28-Jun-2016].

[17] CalPoly, “Cubesat design specification, rev 13,” The CubeSat Program,

California Polytechnic State University. p. 42, 2014.

[18] M. Langer and J. Bouwmeester, “Reliability of CubeSats – Statistical Data,
Developers’ Beliefs and the Way Forward,” in AIAA/USU Conference on

Small Satellites, 2016.

[19] G. Obiols Rabasa, “Methods for dependability analysis of small satellite
missions,” Politecnico di Torino, 2015.

[20] S. Chien, J. Doubleday, K. Ortega, and D. Tran, “Onboard autonomy and
ground operations automation for the Intelligent Payload Experiment (IPEX)
CubeSat Mission,” 2012.

[21] S. Chien, J. Doubleday, D. R. Thompson, and K. L. Wagstaff, “Onboard
Autonomy on the Intelligent Payload EXperiment (IPEX) Cubesat
Mission : A pathfinder for the proposed HyspIRI Mission Intelligent Payload
Module,” 2012.

[22] S. Stellmann, D. Schubert, and A. Weiss, “Historical evolution of space
systems,” in 60th International Astronautical Congress, 2009, pp. 1–12.

[23] J. Naudet et al., “AIM: A SMALL SATELLITE INTERPLANETARY
MISSION,” in 4S Symposium, 2016.

[24] “News | JPL Selects Europa CubeSat Proposals for Study.” [Online].

References 149

Available: https://www.jpl.nasa.gov/news/news.php?feature=4330.
[Accessed: 06-Jun-2017].

[25] “MarCO CubeSat.” [Online]. Available:
http://www.jpl.nasa.gov/cubesat/missions/marco.php. [Accessed: 16-Jun-
2016].

[26] “Exploration Mission 1 Secondary Payloads.” [Online]. Available:
https://www.nasa.gov/content/exploration-mission-1-secondary-payloads.
[Accessed: 07-Jun-2017].

[27] L. McNutt, L. Johnson, P. Kahn, J. Castillo-Rogez, and A. Frick, “Near-
Earth Asteroid (NEA) Scout,” in AIAA SPACE 2014 Conference and

Exposition, 2014.

[28] W. Marshall and C. Boshuizen, “Planet Labs’ Remote Sensing Satellite
System,” AIAA/USU Conf. Small Satell., 2013.

[29] “Planet Launches Satellite Constellation to Image the Whole Planet Daily.”
[Online]. Available: https://www.planet.com/pulse/planet-launches-
satellite-constellation-to-image-the-whole-planet-daily/. [Accessed: 08-Jun-
2017].

[30] “Technology | Planetary Resources.” [Online]. Available:
http://www.planetaryresources.com/technology/#technology-services.
[Accessed: 08-Jun-2017].

[31] “Constellation of small satellites set to improve the skill of weather forecasts
| Spire.” [Online]. Available:
https://spire.com/company/insights/news/constellation-small-satellites-set-
improve-skill-w/. [Accessed: 08-Jun-2017].

[32] “Lemur-2 - Gunter’s Space Page.” [Online]. Available:
http://space.skyrocket.de/doc_sdat/lemur-2.htm. [Accessed: 08-Jun-2017].

[33] “Home - OneWeb | OneWorld.” [Online]. Available: http://oneweb.world/.
[Accessed: 08-Jun-2017].

[34] L. A. Young et al., “Experimental Investigation and Demonstration of
Rotary-Wing Technologies for Flight in the Atmosphere of Mars,” in the

58th Annual Forum of the AHS, 2002, no. Table 1.

[35] “KickSat -- Your personal spacecraft in space! by Zachary Manchester —
Kickstarter.” [Online]. Available:
https://www.kickstarter.com/projects/zacinaction/kicksat-your-personal-

150 References

spacecraft-in-space. [Accessed: 08-Jun-2017].

[36] S. Hatton, Proceedings of the 12th Reinventing Space Conference. .

[37] J. Marshall, A. Cudmore, G. Crum, and S. Sheikh, “Big Software for
SmallSats: Adapting cFS to CubeSat Missions,” in AIAA/USU Conference

on Small Satellites, 2015.

[38] C. Chouinard, R. Knight, G. Jones, and D. Tran, “An ASPEN Application :
Automating Ground Operations for Orbital Express.”

[39] G. Rabideau, R. Knight, S. Chien, A. Fukunaga, and A. Govindjee, “Iterative
repair planning for spacecraft operations using the ASPEN system,” Int.

Symp. Artif. Intell. Robot. Autom. Sp., vol. 440, p. 99, 1999.

[40] R. Sterritt and M. Hinchey, “Engineering Ultimate Self-Protection in
Autonomic Agents for Space Exploration Missions,” in 12th IEEE

International Conference and Workshops on the Engineering of Computer-

Based Systems (ECBS’05), pp. 506–511.

[41] E. Vassev and M. Hinchey, Autonomy requirements engineering for space

missions. Springer, 2014.

[42] W. Truszkowski et al., Autonomous and Autonomic Systems: With

Applications to NASA Intelligent Spacecraft Operations and Exploration

Systems. London: Springer London, 2010.

[43] C. Rouff, “Autonomy in Future Space Missions,” 2002.

[44] N. Muscettola, P. Nayak, B. Pell, and B. Williams, “The New Millennium
Remote Agent: To Boldly Go Where No AI System Has Gone Before,” Artif.

Intell., vol. 102, no. 1–2, pp. 1–39, 1998.

[45] R. Sherwood, S. Chien, and D. Tran, “Next generation autonomous
operations on a current generation satellite,” in 5th International Symposium

on Reducing the Cost of Spacecraft Ground Systems and Operations, 2003.

[46] European Cooperation for Space Standardization - ECSS, “ECSS‐E‐ST‐70‐
11C - Space segment operability,” no. July, 2008.

[47] S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach, 3rd
edition,” Prentice Hall, 2009.

[48] P. M. Frank and B. Köppen-Seliger, “New developments using AI in fault
diagnosis,” Eng. Appl. Artif. Intell., vol. 10, no. 1, pp. 3–14, 1997.

References 151

[49] M. J. Dumskyj, S. J. Aldington, C. J. Dore, and E. M. Kohner, “The accurate

assessment of changes in retinal vessel diameter using multiple frame
electrocardiograph synchronised fundus photography.,” Curr. Eye Res., vol.
15, no. 6, pp. 625–32, Jun. 1996.

[50] Boscove, “Computer assisted vehicle service featuring signature analysis
and Artificial Intelligence,” 4,796,206, 1989.

[51] G. Weiss, “Multiagent systems: a modern approach to distributed artificial
intelligence,” no. 3. Massachusetts Institute of Technology, p. 619, 2001.

[52] Tesla, “Autopilot | Tesla.” [Online]. Available:
https://www.tesla.com/autopilot. [Accessed: 13-Jan-2017].

[53] Volvocars, “Autonomous driving explained | Volvo Cars,” 2016. [Online].
Available: http://www.volvocars.com/intl/about/our-innovation-
brands/intellisafe/autonomous-driving/this-is-autonomous-driving.
[Accessed: 13-Jan-2017].

[54] Scania, “Autonomous transport systems 2016 | Scania Group.” [Online].
Available:
https://www.scania.com/group/en/section/pressroom/backgrounders/autono
mous-transport-systems-2016/. [Accessed: 13-Jan-2017].

[55] A. M. S. Martin, S. W. Lee, and E. C. Wong, “The Development of the Msl
Guidance , Navigation , and Control System for Entry , Descent , and
Landing,” AAS, pp. 529–546, 2012.

[56] C. Gulcehre, “Deep Learning - Software Links.” [Online]. Available:
http://deeplearning.net/software_links/. [Accessed: 28-Mar-2017].

[57] Gaisler, “LEON4.” [Online]. Available:
http://www.gaisler.com/index.php/products/processors/leon4. [Accessed:
22-Jun-2017].

[58] J. Brownlee, “A Tour of Machine Learning Algorithms.” [Online].
Available: http://machinelearningmastery.com/a-tour-of-machine-learning-
algorithms/. [Accessed: 21-Jun-2017].

[59] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the
Marquardt algorithm,” IEEE Trans. Neural Networks, vol. 5, no. 6, pp. 989–
993, 1994.

[60] D. J. C. MacKay, “Bayesian Interpolation,” Neural Comput., vol. 4, no. 3,
pp. 415–447, May 1992.

152 References

[61] M. F. M?ller and M. Fodslette, “A scaled conjugate gradient algorithm for

fast supervised learning,” Neural Networks, vol. 6, no. 4, pp. 525–533, Jan.
1993.

[62] “Knowledge | Definition of Knowledge by Merriam-Webster.” [Online].
Available: https://www.merriam-webster.com/dictionary/knowledge.
[Accessed: 20-Jun-2017].

[63] A. A. Hopgood, Knowledge-Based Systems. CRC Press, Inc, 1993.

[64] L. A. Zadeh, “The concept of a linguistic variable and its applications to
approximate reasoning I,” Inf. Sci. (Ny)., vol. 8, no. 4, pp. 199–249, 1975.

[65] L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, Jun. 1965.

[66] C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller, Part
II,” IEEE Trans. Syst. Man. Cybern., vol. 20, no. 2, 1990.

[67] Y. Bai and D. Wang, Advanced Fuzzy Logic Technologies in Industrial

Applications. Springer, 2006.

[68] H. T. Nguyen, N. R. Prasad, C. L. Walker, and E. a Walker, A First Course

in Fuzzy and Neural Control. 2003.

[69] S. Luke et al., Essentials of Metaheuristics Second Edition. 2015.

[70] C. W. Ahn, “Practical genetic algorithms,” Stud. Comput. Intell., vol. 18, pp.
7–22, 2006.

[71] J. Figueira, S. Greco, and M. Ehrgott, Multiple Criteria Decision Analysis:

state of the art surveys. Springer, 2005.

[72] P. S. Oliveto, J. He, and X. Yao, “Time Complexity of Evolutionary
Algorithms for Combinatorial Optimization: A Decade of Results,” Int. J.

Autom. Comput., vol. 4, no. 3, pp. 281–293, 2007.

[73] T. W. Manikas and J. T. Cain, “Genetic Algorithms vs . Simulated
Annealing : A Comparison of Approaches for Solving the Circuit
Partitioning Problem,” 1996.

[74] C. W. Ahn, Advances in evolutionary algorithms : theory, design and

practice. Springer, 2006.

[75] R. Rojas, “Genetic Algorithms,” Neural Networks, pp. 429–450, 1996.

[76] T. Back, “Selective pressure in evolutionary algorithms: a characterization

References 153

of selection mechanisms,” in Proceedings of the First IEEE Conference on

Evolutionary Computation. IEEE World Congress on Computational

Intelligence, pp. 57–62.

[77] D. Pierce and A. Petro, “NASA Perspectives on Cubesat Technology and
Highlighted Activities,” 2016.

[78] Jam Woerner, “ESA COUNCIL AT MINISTERIAL LEVEL 2016:
SUCCESS, TINGED WITH A BIT OF DISAPPOINTMENT,” Journal of

Fusion Energy, 04-Dec-2016. [Online]. Available:
http://link.springer.com/10.1007/s10894-015-0034-1. [Accessed: 16-Jun-
2017].

[79] R. Walker, D. Koschny, and C. Bramanti, “Miniaturised Asteroid Remote
Geophysical Observer (M-ARGO): a stand-alone deep space CubeSat
system for low- cost science and exploration missions,” 2017.

[80] J. P. Cohen, H. Z. Lo, T. Lu, and W. Ding, “Crater Detection via
Convolutional Neural Networks,” in 47th Lunar and Planetary Science

Conference, 2016.

[81] S. Singh and M. Singh, Progress in pattern recognition. Springer, 2007.

[82] A. Criminisi, “Decision Forests: A Unified Framework for Classification,
Regression, Density Estimation, Manifold Learning and Semi-Supervised
Learning,” Found. Trends® Comput. Graph. Vis., vol. 7, no. 2–3, pp. 81–
227, 2011.

[83] S. Chien et al., “Onboard Autonomy on the Intelligent Payload EXperiment
CubeSat Mission,” J. Aerosp. Inf. Syst., no. March, pp. 1–9, 2016.

[84] C. Stauffer and W. Grimson, “Learning Patterns of Activity Using Real-
Time Tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp.
747–757, 2000.

[85] C. Koch and S. Ullman, “Shifts in Selective Visual Attention: Towards the
Underlying Neural Circuitry,” in Matters of Intelligence, Dordrecht:
Springer Netherlands, 1987, pp. 115–141.

[86] J. F. Martins, V. F. Pires, and A. J. Pires, “Unsupervised neural-network-
based algorithm for an on-line diagnosis of three-phase induction motor
stator fault,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 259–264, 2007.

[87] W. Lafayette, C. Clifton, C. Sciences, and W. Lafeyette, “CERIAS Tech
Report 2003-45 Change Detection in Overhead Imagery Using Neural

154 References

Networks by Christopher Clifton Information Assurance and Security,”
2003.

[88] L. Feruglio and S. Corpino, “Neural networks to increase the autonomy of
interplanetary nanosatellite missions,” Rob. Auton. Syst., vol. 93, pp. 52–60,
2017.

[89] P. Michel, A. Cheng, M. Küppers, and P. Pravec, “Science case for the
Asteroid Impact Mission (AIM): A component of the Asteroid Impact &
Deflection Assessment (AIDA) mission,” Adv. Sp. Res., vol. 57, pp. 2529–
2547, 2016.

[90] F. Nimmo, J. R. Spencer, R. T. Pappalardo, and M. E. Mullen, “Shear heating
as the origin of the plumes and heat flux on Enceladus,” Nature, vol. 447,
no. 7142, pp. 289–291, May 2007.

[91] M. F. A’Hearn, M. J. S. Belton, W. A. Delamere, and J. Kissel, “Deep
Impact: excavating comet Tempel 1.,” Science, vol. 310, no. 5746, pp. 258–
64, Oct. 2005.

[92] A. A. Hopgood, Intelligent systems for engineers and scientists. CRC Press,
2012.

[93] K. Lee, “Theoretical study of information capacity of Hopfield neural
network and its application to expert database system,” Iowa State
University, 1991.

[94] ESA, “ASTEROID IMPACT MISSION: DIDYMOS REFERENCE
MODEL,” 2014.

[95] J. R. Shewchuk, “An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain,” 1994.

[96] L. Franchi, L. Feruglio, R. Mozzillo, and S. Corpino, “Model predictive and
reallocation problem for CubeSat fault recovery and attitude control,” Mech.

Syst. Signal Process., vol. 98, pp. 1034–1055, 2018.

[97] R. de Neufville, “Measurement of Utility,” Appl. Syst. Anal. Eng. Plan.

Technol. Manag., 1990.

[98] R. de Neufville, “Multiattribute Utility,” Appl. Syst. Anal. Eng. Plan.

Technol. Manag., 1990.

[99] A. M. Ross and D. E. Hastings, “The Tradespace Exploration Paradigm,”
INCOSE Int. Symp., vol. 15, no. 1, pp. 1706–1718, 2005.

References 155

[100] B. A. Corbin, “The Value Proposition of Distributed Satellite Systems for

Space Science Missions,” Massachusetts Institute of Technology, 2015.

[101] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated
Annealing,” Sci. New Ser., vol. 220, no. 4598, pp. 671–680, 1983.

[102] I. Das and J. E. Dennis, “Normal-Boundary Intersection: A New Method for
Generating the Pareto Surface in Nonlinear Multicriteria Optimization
Problems,” SIAM J. Optim., vol. 8, no. 3, pp. 631–657, Aug. 1998.

[103] D. M. Olsson and L. S. Nelson, “The Nelder-Mead Simplex Procedure for
Function Minimization,” Technometrics, vol. 17, no. 1, p. 45, Feb. 1975.

[104] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,”
Proc. Sixth Int. Symp. Micro Mach. Hum. Sci., pp. 39–43, 1995.

[105] J. D. Schaffer, “Multiple objective optimization with vector evaluated
genetic algorithms,” 1st Int. Conf. Genet. Algorithms, no. JANUARY 1985,
pp. 93–100, 1985.

[106] P. Abell et al., “Asteroid Impact & Deflection Assessment (Aida) Mission,”
no. May, 2012.

[107] E. Riddle, “Use of optimization methods in small satellite systems analysis,”
Proc. AIAA/USU Conf. Small Satell., pp. 1–8, 1998.

[108] Gwo-Ching Liao and Ta-Peng Tsao, “Application of a fuzzy neural network
combined with a chaos genetic algorithm and simulated annealing to short-
term load forecasting,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 330–
340, 2006.

[109] B. Corbin and T. Steiner, “Multidisciplinary System Design Optimization
for a Distributed Solar Observation Constellation!,” 2014.

[110] J. Sobieszczanski-Sobieski, A. Morris, and M. van Tooren, Multidisciplinary

Design Optimization Supported by Knowledge Based Engineering. 2015.

[111] N. Srinivas and K. Deb, “Muiltiobjective Optimization Using Nondominated
Sorting in Genetic Algorithms,” Evol. Comput., vol. 2, no. 3, pp. 221–248,
Sep. 1994.

[112] A. Jafarsalehi, P. M. Zadeh, and M. Mirshams, “Collaborative Optimization
of Remote Sensing Small Satellite Mission using Genetic Algorithms,”
Trans. Mech. Eng., vol. 36, no. 2, pp. 117–128, 2012.

156 References

[113] S. Gotshall and B. Rylander, “Optimal population size and the genetic

algorithm,” Proc. Genet. Evol. Comput. Conf., pp. 1–5, 2000.

Appendix A – Interesting images

acquired through the research

Figure 67 Plume events: detection of upper or lower direction

158 Appendix A – Interesting images acquired through the research

Figure 68 Plume events: detection of four directions

Figure 69 Plume events: detection of eight directions

Appendix A – Interesting images acquired through the research 159

Figure 70 Impact sequence on an asteroid, simulation with dark sky in the

background

Figure 71 Impact sequence on an asteroid, simulation with main body in

the background

160 Appendix A – Interesting images acquired through the research

Figure 72 Early experimentations with Neural Networks: cats are

recognized as fully pictured asteroid. The picture right from the cat is wrongly

classified.

Figure 73 Experimenting with the overlay training methodology described

in the thesis

Appendix A – Interesting images acquired through the research 161

Figure 74 67P plume events as modelled on blender®

Figure 75 67P plume events as photographed by the Rosetta mission

Appendix B - Asteroid modelling on

blender®

The first operation performed was the creation of a cube, from the submenu

"create".

Figure 76 Asteroid Modelling: creation of the starting cube

In Blender, each object has its own reference axes, so there is no need to create

a special coordinate system.

The next step is to add the "Modifiers" from the corresponding submenu. After

selecting "Add Modifiers" the first of them will be "Subdivision Surface". Soon

after, under the heading "Subdivision", the values "View" and "Render" will be

brought to the upper limit, i.e. six. The result of this operation is shown in Figure

76.

Appendix B - Asteroid modelling on blender® 163

Figure 77 Asteroid Modelling: Subdivision Surface Modifier

Figure 78 Asteroid modelling: texture

Next, the "Smooth" button under "Shading" in the left submenu "Tools" has been

selected.

164 Appendix B - Asteroid modelling on blender®

The second modifier added, always in the same way, is "Displacement". It

allows the introduction of the ripples on the surface in question, according to a user-

determined texture, using the “Add Texture” command. The selected texture is

shown in Figure 78. It is possible to choose additional parameters to customize in

the sub-menu "Texture". To create the more precise geometries, selecting

"subsurface" with the right mouse button individual faces of the intermediate solid

can be selected and, using Tab and G keys, deformed at will. To have a greater level

of detail, it is advisable to add another level of subsurface, setting the value of

"View" and "Render" on two. Eventually, the asteroid was put into rotation around

its axis through a 500 frames animation.

Figure 79 Asteroid modelling: editing the geometry

Figure 80 Asteroid modelling: final result

The plume can be added by creating a reference plane on which is to be placed

the source point. This done, the values shown in Figure 81 were inserted in the

"Particle" submenu.

Appendix B - Asteroid modelling on blender® 165

Figure 81 Plume modelling parameters

On completion of modelling, we can add a light via the "Lamp" submenu.

The emission of the plume starts at frame 150 and ends at 180 (despite the

emitted particles continue to be still visible for 200 frames).

