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Intra-Subject Consistency during
Locomotion: Similarity in Shared and
Subject-Specific Muscle Synergies
Daniele Rimini, Valentina Agostini* and Marco Knaflitz

Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Turin, Italy

Human locomotion is a complex motor task. Previous research hypothesized that
muscle synergies reflect the modular control of muscle groups operated by the Central
Nervous System (CNS). Despite the high stride-to-stride variability characterizing human
gait, most studies analyze only a few strides. This may be limiting, because the
intra-subject variability of motor output is neglected. This gap could be filled by
recording and analyzing many gait cycles during a single walking task. In this way,
it can be investigated if CNS recruits the same muscle synergies consistently or if
different strategies are adopted during the locomotion task. The aim of this work is
to investigate the intra-subject consistency of muscle synergies during overground
walking. Twelve young healthy volunteers were instructed to walk for 5 min at their
natural pace. On the average, 181 � 10 gait cycles were analyzed for each subject.
Surface electromyography was recorded from 12 muscles of the dominant lower limb
and the trunk. Gait cycles were grouped into subgroups containing 10 gait cycles
each. The consistency of the muscle synergies extracted during the gait trial was
assessed by measuring cosine similarity (CS) of muscle weights vectors, and zero-lag
cross-correlation (CC) of activation signals. The average intra-subject CS and CC were
0.94 � 0.10 and 0.96 � 0.06, respectively. We found five synergies shared by all the
subjects: high consistency values were found for these synergies (CS D 0.96 � 0.05,
CCD 0.97� 0.03). In addition, we found 10 subject-specific synergies. These synergies
were less consistent (CS D 0.80 � 0.20, CC D 0.89 � 0.14). In conclusion, our results
demonstrated that shared muscle synergies were highly consistent during walking.
Subject-specific muscle synergies were also consistent, although to a lesser extent.

Keywords: muscle synergies, electromyography, locomotion, gait analysis, repeatability

INTRODUCTION

Human locomotion is a complex motor task, due to the many functions activated during gait
cycles (Perry, 1992) and the multiple degrees of freedom of the skeletal muscle system (Bernstein,
1967). Previous research highlighted that the central nervous system (CNS) activates a small set of
modules, called muscle synergies to control complex movements (Lacquaniti et al., 1999; Ivanenko
et al., 2003; Cheung et al., 2005; Bizzi et al., 2008; Tresch and Jarc, 2009; Delis et al., 2010).
According to the muscle synergies model, movements are produced by adapting a few activation
patterns shared by several muscles. These patterns are generated by neural circuitry located in the
lumbar spinal cord, which is responsible for producing the basic locomotor rhythm and allocating
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variable weights to different muscles (Ivanenko et al., 2004).
Hence, complex tasks are actuated by basic activation patterns
and the distribution of weights to the muscles (Zehr, 2005;
Lacquaniti et al., 2012; Danner et al., 2015). The effectiveness of
muscle synergies in modeling the complexity of motor control
during gait has been demonstrated in several studies. Indeed,
human gait can be described by a small set of robust synergies
(Ivanenko et al., 2004; Monaco et al., 2010; Chvatal and Ting,
2012; Steele et al., 2015), while some other studies showed that
different tasks can activate the same set of synergies (Chvatal
and Ting, 2013). Repeatability of muscle synergies within and
between days has been studied (Shuman et al., 2016). Moreover,
a model of human locomotion encoding principle of legged
mechanics was developed in Geyer and Herr (2010).

Muscle synergies during walking are generally extracted from
a few gait cycles ranging from 1 (Steele et al., 2015; Lencioni
et al., 2016) to 20 gait cycles (Kim et al., 2016). In most cases,
synergies are computed by averaging or concatenating around
10 gait cycles (Ivanenko et al., 2003, 2004; Monaco et al.,
2010; Chvatal and Ting, 2012; Coscia et al., 2015; Haghpanah
et al., 2017). In spite of the cyclic and repetitive nature of
walking, human gait is characterized by a high stride-to-stride
variability of EMG patterns: to collect this variability, a large
amount of gait cycles have to be recorded within each trial
(Winter, 1987; Di Nardo et al., 2015; Rosati et al., 2017).
It is reasonable to assume that, during a 5-min locomotion
task, some motor adaptations may arise due to internal and
external needs (e.g., undesired changes in gait speed, modified
attention to the task, temporary proprioceptive, or sensory input
changes, modified control of the task). This may or may not
be reflected in consistent synergies during the task. However,
since previous literature suggested that muscle synergies are
cabled at a spinal level to provide a modular control of
muscle groups during motor tasks (Saltiel et al., 2001; Dietz,
2003; Ting et al., 2015), we may hypothesize that muscle
synergies are consistent during locomotion. However, it has
not been fully investigated whether the motor control strategies
remain consistent or change during a locomotion task. To
fill this research gap, the present work aims at investigating
the intra-subject consistency of muscle synergies during a
5-min walking trial. With “intra-subject consistency” of muscle
synergies we refer to the specific subject showing synergies
with similar muscle weights and activation signals along the
whole trial. We also investigated which muscle synergies are
“shared” between subjects, and, on the contrary, which are
“subject-specific”, evaluating their respective degree of intra-
subject consistency.

MATERIALS AND METHODS

Subjects
Twelve young healthy females (age: 24.6 � 1.6 years, height:
164.1 � 6.8 cm, body mass: 54.1 � 5.7 kg) were recruited for
the study among the university student population. None of
the subjects reported lower limb injuries or interventions, and
none of them had neurological or musculoskeletal disorders that

could compromise their gait. All of the subjects were right-limb-
dominant according to the preferred foot to start the walking
action (Sadeghi et al., 2000). This study involved healthy students
in Biomedical Engineering from our university (Politecnico di
Torino, Italy) for whom this was an experience useful also for
their studies and it was exempt from Institutional Review Board
approval given that there were no safety issues. The volunteers
signed a written informed consent to participate in the study and
the research reported in this paper was undertaken in compliance
with the ethical principles of the Helsinki Declaration.

Recording System and Signal Acquisition
A multichannel system for gait analysis (STEP32, Medical
Technology, Italy) was used to acquire data. The system recorded:
(1) surface electromyography (EMG) signals, (2) foot-switch
signals, for timing the gait cycle, and (3) knee joint angle
curves in the sagittal plane. Surface EMG signals were recorded
by means of active probes (single differential configuration,
size 19 mm � 17 mm � 7mm, 4-mm diameter Ag-disks,
interelectrode distance 12 mm, CMRR over 126 dB), placed
over 12 muscles of the dominant leg and trunk: vastus medialis
(VM), tensor fasciae latae (TFL), gluteus medius (GMD), medial
hamstring (MH), longissimus dorsii, at L4 level, right (LDR), and
left (LDL), tibialis anterior (TA), lateral gastrocnemius (LGS),
peroneus longus (PL), soleus (SOL), rectus femoris (RF), and
lateral hamstring (LH). Foot-switch signals were acquired by
three thin switches (size 10 mm � 10 mm � 0.5 mm; activation
force: 3N) placed beneath the heel, the first, and fifth metatarsal-
heads of each barefoot sole. Knee joint kinematics in the sagittal
plane was collected, bilaterally, by electrogoniometers (accuracy:
0.5�) placed on the lateral side of each lower limb.

EMG signals were amplified to minimize, for each specific
muscle, the quantization error; gain ranged from 60 to 86 dB.
Data were acquired with a sampling frequency of 2000 Hz,
converted by a 12-bit A/D converter and sent to a PC.

After sensors positioning, subjects were asked to walk barefoot
back and forth over a straight pathway of 15 m for 5 min
(see Figure 1). Subjects were instructed to walk at self-pacing
rhythm and to maintain it constant in the A–B tract. Before
the recording session, the subject – equipped with all sensors –
performed a 2-min preliminary trial to acquire confidence with
the instrumented walking. Only gait cycles collected in the
linear A–B tract were considered, removing gait cycles relative
to direction changes, as described in the next section. The
experimenter timed each subject’s passage through the A–B tract.
The average gait speed was defined as the total distance walked in
a straight line divided by the total time required going through it
(Agostini et al., 2015).

Signal Processing
The foot-switch signals were used to time the gait cycle. More
specifically, foot-switch signals were debounced, converted to
four levels [Heel contact (H), Flat foot contact (F), Push off
(P), Swing (S)] and processed to segment and classify the
different gait cycles (Agostini et al., 2013). Furthermore, only gait
cycles consisting of the sequence of H–F–P–S were considered,
discarding other possible non-standard cycles.
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FIGURE 1 | Schematic representation of the walking path. Subjects walked from point (A) to point (B) at their natural pace, then turned back and proceeded in the
opposite direction.

The knee joint angle signal was low-pass filtered (FIR filter, 100
taps, cut-off frequency equal to 15 Hz).

The knee range of motion and gait phases durations
were exploited together to remove undesired strides relative
to direction changes. In particular, strides involving curve
negotiation, deceleration and acceleration before and after
changing direction, were discarded by means of a multivariate
statistical filter (Hotelling t-test, significance level a D 0.05)
(Di Nardo et al., 2017).

Muscle Synergies Extraction
Gait cycles were concatenated prior to filtering, with the aim
of attenuating the cutting artifact (Gizzi et al., 2015). Indeed,
in concatenating consecutive gait cycles it can happen that
they are not also contiguous, e.g., when they are separated by
deceleration/acceleration or by other outlier cycles.

The EMG of each specific muscle was concatenated
considering 10 consecutive HFPS gait cycles. To study the
consistency of muscle synergies, N subgroups of 10 gait cycles
each were generated: subgroup 1 contained the EMG signal
of HFPS gait cycles from 1 to 10, subgroup 2 from 11 to 20,
and so on. The last subgroup was discarded if it contained less
than 10 gait cycles. An EMG matrix M(t) (dimension m � n,
where m was the number of muscles and n was the time points
of 10 gait cycles) described each subgroup. The EMG signals
were pre-processed before muscle synergies extraction. They
were high-pass filtered at 35 Hz, demeaned, full-cycle rectified
and low-pass filtered at 12 Hz by a 5th order Butterworth filter.
Afterward, EMG of each channel was normalized in amplitude
with respect to its global maximum, through the entire walk. The
global maximum was calculated as the maximum RMS value
of the signal over 50 ms time windows. Finally, the duration of
each gait cycle was resampled into 1000 time points (Clark et al.,
2009).

For each subgroup, muscle synergies were extracted with
Non-negative matrix factorization (NMF) (Lee and Seung, 1999;
Torres-Oviedo and Ting, 2007). NMF models muscular activity
as a linear combination of muscular synergies activated by time-
varying coefficients:

M.t/ D
K∑

kD1

C.t/k Wk C e

where M(t) is the EMG signal, Wk are the weights of the linear
combination, Ck(t) are the recruiting coefficients that vary in
time, and e is the residual error. Wk defines the k-synergy
(k D 1,: : :,K), whereas Ck(t) expresses the neural signal that
controls the k-synergy (Ting and Chvatal, 2010; Danner et al.,
2015). The muscular activity estimated by NMF was compared
with the original EMG signal using the Variance Account
For (VAF) criterion. VAF expresses the amount of variation
explicated by the model: the higher the VAF, the smaller the
prediction error and, consequently, the better the model (Zar,
2010). Notice that, for each subgroup i, it may be required a
different number of synergies K i to accurately reconstruct the
original signal. We chose the number of synergies K, common to
all subgroups, in such a way as to obtain a VAF � 90% for every
subgroup. This requires calculating K as:

K D max .K1; K2; : : : ; KN/

Since the NMF algorithm was applied to each subgroup of 10 gait
cycles, N sets of K muscle synergies were obtained, one for each
subgroup.

The k-means algorithm was adopted to order the synergies
according to their weights Wk (Steele et al., 2015). The
number of k-means classes was set equal to K. Clusters were
randomly initialized and 10000 permutations, repeated five
times, were performed. The coefficient matrices Ck were ordered
correspondingly.

Synergy Consistency
We evaluated the intra-subject consistency of muscle synergies
by quantifying the similarity of muscle weights and activation
signals among subgroups of 10 concatenated gait cycles.

For each synergy, we adopted cosine similarity (CS) as a metric
of similarity between two weights vectors (D’Avella and Bizzi,
2005; Han and Kamber, 2007). The CS between two general
subgroups i and j of a synergy k was computed as the normalized
scalar product between the weights vectors

CSij
k D

Wi
k �W

j
k

kWi
kk kW

j
kk

where Wi
k and W j

k are the vectors of weights of the i- and j-th
subgroups, respectively. CS values range between 0 and 1 (0D no
similarity, 1D complete similarity).
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The degree of similarity of activation signals was computed
as the value of the cross-correlation at zero time lag (CC) (Gizzi
et al., 2011; Godlove et al., 2016). CC values range between –1
and 1.

Shared Muscle Synergies
We selected shared synergies between subjects using the
following criterion. We randomly chose a subject as reference
and fixed on a specific weight vector. We calculated CS between
the reference weight vector and all the vectors of another subject.
The highest CS defined the first shared function of the two
subjects. This procedure was iterated for each weight vector
of the reference subject to define the other shared functions.
We repeated the algorithm for every subject. Subsequently,
an averaged set of similar muscle synergies for all subjects
was computed (Torres-Oviedo and Ting, 2007; Hagio et al.,
2015).

Statistical Analysis
To analyze the intra-subject consistency of each muscle synergy,
for each subject, we calculated the average CS and CC values
and their standard error across subgroups of gait cycles. Since
each subject showed a different number of synergies, no other
specific statistical tests were performed on these data, at this
stage.

For the selection of the shared synergies (between subjects),
we averaged the weights and activation signals across subgroups.
Then, we analyzed the differences, in consistency, among
the shared muscle synergies. Both CS and CC data were
tested for normality by means of a Kolmogorov–Smirnov test.
Since both CS and CC data were not normally distributed,
we applied a Kruskal–Wallis test to analyze the median
differences among the shared muscle synergies. A post hoc
Fisher Least Significant Difference (LSD) test was applied when
appropriate.

Finally, for each subject-specific synergy we calculated the
average and standard deviation of CS and CC values across
subgroups. Since a subject (a) may not show any subject-specific
synergy, (b) may show one or more subject-specific synergies, no
further statistical analysis was performed on these data.

RESULTS

The 12 analyzed subjects walked at an average self-selected
speed of 1.2 � 0.1 m/s. On the average, 277 � 11.5 gait
cycles were recorded for each subject. After outlier removal,
181 � 10 gait cycles were analyzed. As an example of
EMG variability, we report onset/offset activation intervals
of the tibialis anterior muscle of a representative subject
relative to 163 gait cycles of her walking trial (Supplementary
Figure S1). Furthermore, knee joint kinematics of each
subject is reported in Supplementary Material (Supplementary
Figure S2). For each subject, gait cycles were divided in
18 � 1 subgroups of 10 concatenated gait cycles. Altogether,
muscle synergies were extracted from 213 subgroups of 10 gait
cycles.

Number of Extracted Muscles Synergies
and Analysis of Synergy Consistency
On the average 5.8� 0.6 muscle synergies were extracted for each
subject. More specifically, five synergies were extracted in three
subjects (VAF: 92.1% � 0.6), six muscle synergies were extracted
in eight subjects (VAF: 92.1% � 0.3), and seven synergies were
extracted in only one subject (VAF: 92.0%).

Figure 2 reports the muscle synergies for a representative
subject. The weights (Figure 2A) and coefficients (Figure 2B)
of the muscle synergies are reported for each subgroup of
10 concatenated strides. It is evident that some synergies are
very consistent among subgroups. As an example, synergy 2 is
consistently dominated by muscles LGS, and SOL. In this case,
these two muscles show a high value of weights (close to 1),
similar among all subgroups, while the other muscles are scarcely
represented (weights very close to zero). On the contrary, it can
be observed that, in synergy 6, the contribution of the muscles is
very variable. In some of the subgroups, weights are equal to 1
while in others they are zero. These observations are confirmed
by the CS values reported in Figure 2C: CS is close to 1 in very
consistent synergies (synergies 2, 3, and 5), while it decreases to
0.5 for the synergy 6 which is the least consistent. Figure 2D
reports CC values for the activation signals. It can be observed
that all activation signals are consistent across the task, with CC
values above 0.8.

Figure 3 shows CS (Figure 3A) and CC values (Figure 3B)
for all the muscle synergies found in the twelve subjects. On
the average, on all the synergies and all the subjects, CS was
0.94� 0.10, with values higher than 0.8 for most of the synergies.
Only two synergies showed a CS lower than 0.5 (synergy 6, subject
2, and synergy 6 subject 7). Analogous results were found for CC
and its average value was 0.96� 0.06.

Shared Motor Functions and Their
Muscle Synergies Consistency
A biomechanical function was assigned to each synergy by
observing the prevailing muscles (weights > 0.5) and the profile
of the coefficient curves (activation signals) (Winter, 1987; Perry,
1992).

We found five motor functions common to all the subjects,
and we labeled them from F1 to F5 (see Table 1). The muscle
synergies accomplishing the same motor function were averaged
among the twelve subjects (see Figure 4). Three motor functions
were mainly related to the generation of the cyclic pattern of gait
(F2, F4, F5), while two were related to body stabilization and
dynamic balance control (F1, F3).

Figure 5 shows the mean CS and CC values of the shared
muscle synergies. It can be observed that all the values are above
0.9. No significant difference was found among CS values of
different synergies (p D 0.17). A significant difference was found
among CC values of different synergies (p D 0.03). The post
hoc test showed that the CC median was significantly higher
for F2 with respect to F1 and F4. This is confirmed by the
results displayed in the right panel of Figure 4 showing a smaller
variability in the activation curves of F2 with respect to F1
and F4.
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FIGURE 2 | Analysis of the consistency of muscle synergies in a representative subject. (A) Muscle synergy weights (W1, : : :, W6): each colored bar represents a
subgroup of 10 concatenated gait cycles. The black line represents the average across bars. (B) Muscle synergy coefficients (C1, : : :, C6): each colored line
represents a subgroup of 10 concatenated gait cycles. (C) Cosine Similarity for the weights of each synergy. (D) Cross-Correlation coefficient for the activation
signals of each synergy. Data are reported as mean � SEM.

Characteristic Subject-Specific
Synergies
From 1 to 2 muscle synergies were characteristic of subjects.
Table 2 reports CS, CC, principal weights, and biomechanical
functions of the subject-specific synergies. More specifically,
we found subject-specific synergies in 9 out of 12 subjects: 8
subjects showed 1 subject-specific synergy, while 1 subject
showed 2 subject-specific synergies. Overall, we found
10 subject-specific synergies, with an average CS equal to
0.80 � 0.20 and CC equal to 0.89 � 0.14. VM was activated
in 6 out 10 synergies, followed by GMD (5 out 10), RF
(3 out 10), and TFL, LGS, SOL, and (1 out 10). A motor
function was assigned to each subject-specific synergy,
similarly to the shared ones. The main motor functions
aimed at decelerating leg at the heel strike and terminal swing
phase.

DISCUSSION

The present study evaluated, in young adults, the consistency
of muscle synergies during a 5-min walking trial. The trial was
divided into subgroups of 10 concatenated gait cycles each. Then,
we extracted muscle synergies from each subgroup of gait cycles.
To quantify muscle synergies consistency, we adopted the cosine

similarity metric, for the weights, and the cross-correlation, for
the activation signals.

Methodological Observations
In our protocol design, natural pacing was preferred to
constrained rhythm, to avoid influencing the synergies with
biomechanical constraints (Steele et al., 2015). For the same
reason, barefoot level walking was preferred to shoed treadmill
walking (Sloot et al., 2014). The number of gait cycles within
each subgroup was chosen to obtain a robust set of muscle
synergies. It was demonstrated that, in healthy subjects, when
calculated for small numbers of gait cycles the expected margin
of error can change dramatically as a result of cycle-to-cycle
variability. As the number of gait cycles increases, the margin
of error decreases and stabilizes (Shuman et al., 2016). In
addition, synergies extracted from 10 concatenated gait cycles are
comparable with those obtained from more gait cycles (Oliveira
et al., 2014).

Five Motor Functions: Coherence with
Literature and Biomechanics
Overall, we found 5 to 7 muscle synergies per subject. Among
these, five were shared by the entire sample, in good agreement
with previous studies. In fact, the number of synergies shared
by healthy subjects can vary from four (Gizzi et al., 2012;
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FIGURE 3 | Intra-subject consistency of the muscle synergies in the 12 subjects: Cosine Similarity for the weights (A) and Cross-Correlation for the activation signals
(B) are reported. In the x-axis labels, the first number identifies the subject, the second the synergy. Data are reported as mean � SEM.

Ranganathan and Krishnan, 2012; De Groote et al., 2014) to
five (Ivanenko et al., 2004; Cappellini et al., 2006; McGowan
et al., 2010), depending on the number and choice of muscles
and the goodness of synergies criterion (Shuman et al., 2016).
Each muscle synergy contributes to a precise biomechanical
function (Routson et al., 2014). We found muscle synergies
related to the hip joint stabilization (F1) (Zelik et al., 2014;
Hagio et al., 2015), the terminal stance propulsion (F2), and the

leg control during swing phase (F4 and F5) (Cappellini et al.,
2006).

Consistency of Shared and
Subject-Specific Muscle Synergies
Shared muscle synergies had CS and CC values close to 1. These
high values indicate a good consistency of these synergies over
the entire walking trial. Shared synergies represent biomechanical
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TABLE 1 | Biomechanical functions of the shared muscle synergies during gait.

Synergy Function Principal muscles Biomechanical function

1 F1 TFL – GMD Stabilize hip joint during heel strike and the load acceptance phase

2 F2 LGS – PL – SOL Generate propulsion at mid and terminal stance

3 F3 LDR – LDL Control the trunk position in the frontal plane at the heel strike of the homolateral and contralateral foot

4 F4 TA Decelerate the foot during first rocker and control forefoot clearance during swing phase

5 F5 MH – LH Decelerate the leg at the end of the swing phase

FIGURE 4 | Weights (left) and coefficients (right) of the common muscle synergies across subjects. Muscle labels are reported below the weight plots. Data are
reported as mean � SD.

tasks cyclically repeated. They represent motor control strategies
that remain substantially consistent across many gait cycles.
Indeed, the consistency of the five shared motor functions was
the same when comparing the muscle weights, while a very slight

difference was observed when comparing the activation patterns.
In particular, the “propulsion” motor function F2 was found
slightly more consistent with respect to the motor functions F1
and F4. This might suggest that activation signals, interpreted
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FIGURE 5 | Cosine similarity for the weights (A) and cross-correlation for the
activation signals (B) for the five shared muscle synergies. Data are reported
as mean � SD.

as supraspinal commands, may slightly change during the task,
at least for some motor functions. Conversely, all the muscle
weights, interpreted as basic motor modules fixed at a spinal
level (Ting et al., 2015), seem to remain consistent across the
task.

In addition to the shared synergies, one or two subject-
specific synergies were also found in the majority of subjects,
in accordance with previous works (Chvatal and Ting, 2012,
2013). Subject-specific synergies were mainly present during
two demanding phases of gait, which are heel strike and
terminal swing. Recruited muscles suggest that these synergies
were devoted to maintaining balance, a critical end-point
of motion control (Bauby and Kuo, 2000). In fact, due to
dynamic balance demand, locomotion is characterized by a
high variability of the hip and knee angular moments (Winter,
1995). Therefore, muscle synergies aimed at controlling the
hip and knee joints may vary across subjects to optimize
the balance task. This confirms the adaptability of muscle
synergies, since they aim at adapting the global activity
patterns to the kinetic and kinematic limb demands during
locomotion (Ivanenko et al., 2004). In most cases, subject-
specific synergies had CS and CC close to 1, like shared ones.
Subject-specific synergies, like shared ones, may refer to motor
tasks that subjects execute cyclically, and, consequently, they
are mainly consistent during walking. It may be speculated
that muscle synergy consistency reflects the contribution of
lower motor neuron circuitries or the locomotion rhythmic
signals produced by Central Pattern Generator (CPG)
(Dimitrijevic et al., 1998). However, some subject-specific
synergies had a CS and CC value consistently lower, while
others had undefined motor functions. Specific sensory inputs
may play a role in these synergies (Cheung et al., 2005). It
was demonstrated that synergies can vary due to obstacle
negotiation, speed transitions or specific motor tasks (Cheung
et al., 2009; Chvatal and Ting, 2012; Hagio et al., 2015).
Furthermore, some researchers demonstrated that muscle
synergies are influenced by step-related sensory feedback
and biomechanical events of the gait cycle (Ivanenko et al.,
2003).

TABLE 2 | Intra-subject consistency of muscle weights and activation signals across subgroups of gait cycles, principal muscles recruited, and biomechanical functions
of the subject-specific muscle synergies.

Subject Consistency of motor functions Principal muscles Biomechanical function

Muscle weights
CS (mean � SD)

Activation signals
CC (mean � SD)

Subject #1 – – – –

Subject #2 0.50 � 0.22 0.80 � 0.09 VM-RF Stiff the knee at heel strike and the load acceptance phase

Subject #3 – – – –

Subject #4 0.83 � 0.08 0.91 � 0.05 GMD-LGS-SOL Stabilize hip joint and the foot at the heel strike

Subject #5 0.97 � 0.01 0.99 � 0.004 PL Not defined

Subject #6 0.98 � 0.03 0.99 � 0.004 TFL-RF Stabilize hip joint during swing

0.74 � 0.25 0.80 � 0.17 VM Not defined

Subject #7 0.49 � 0.16 0.56 � 0.09 GMD Control the hip joint at heel strike and the end of the swing

Subject #8 0.99 � 0.004 0.99 � 0.004 VM-GMD-RF Stiff the knee and control the hip joint at heel strike and the end of the swing

Subject #9 – – – –

Subject #10 0.70 � 0.17 0.87 � 0.11 VM Stiff the knee at heel strike and the end of the swing

Subject #11 0.96 � 0.02 0.98 � 0.01 VM-GMD Stiff the knee and control the hip joint at heel strike and the end of the swing

Subject #12 0.97 � 0.02 0.99 � 0.01 VM-GMD Stiff the knee and control the hip joint at heel strike and the end of the swing

Subjects #1, #3, and #9 showed no subject-specific synergies, but only shared synergies.

Frontiers in Human Neuroscience | www.frontiersin.org 8 December 2017 | Volume 11 | Article 586

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-11-00586 December 4, 2017 Time: 12:5 # 9

Rimini et al. Consistency of Muscle Synergies

CONCLUSION

In this study, we investigated the intra-subject consistency of
muscle synergies during locomotion. We analyzed a sample
of healthy young adults during a 5-min walking trial. Each
subject showed at least five consistent synergies. These synergies
were common between subjects and described the same motor
functions. In addition, 9 out of 12 subjects showed also subject-
specific synergies. Subject-specific muscle synergies were also
consistent, although to a lesser extent.

Despite EMG variability of the single muscles, the neural
control based on muscle synergies remains substantially
unchanged over time (consistent). Muscle synergies are
consistent because they control the cyclical execution of the
locomotion task: this control does not change over time, although
the single muscle execution (EMG) may change due to external
or internal needs.

Future works will aim at investigating the subject-specific
synergies, to clarify their origin and role in controlling human
locomotion. This variability could be mainly influenced by low-
level neuromechanical reactions.
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