
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Blockchains can work for car insurance: Using smart contracts and sensors to provide on-demand coverage / Lamberti,
Fabrizio; Gatteschi, Valentina; Demartini, CLAUDIO GIOVANNI; Pelissier, Matteo; Gómez, Alfonso; Santamaria, Victor. -
In: IEEE CONSUMER ELECTRONICS MAGAZINE. - ISSN 2162-2248. - STAMPA. - 7:4:(2018), pp. 72-81.
[10.1109/MCE.2018.2816247]

Original

Blockchains can work for car insurance: Using smart contracts and sensors to provide on-demand
coverage

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/MCE.2018.2816247

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2693884 since: 2022-06-13T14:01:42Z

IEEE

On-demand Blockchain-based Car Insurance Using Smart Contracts and Sensors

By Fabrizio Lamberti, Valentina Gatteschi, Claudio Demartini, Matteo Pelissier, Alfonso Gómez, Victor Santamaria

The last couple of years witnessed the explosion of two major technological revolutions, with vehicles, that started to be
regarded as the next frontier for artificial intelligence and blockchain, which began to be considered by the wider public for
the great changes it could bring in a number of heterogeneous domains. In order to take part in these revolutions, in this
paper we show how blockchain and sensors installed on a vehicle could be combined to (semi-)automatically
activate/deactivate car insurance covers in an envisaged on-demand insurance scenario. We present a prototype, which
includes a mobile app and a portable electronic device to be installed onboard. The mobile app lets the driver dynamically
change the status of specific insurance covers (in some cases, after pictures of the vehicle have been taken to attest its
conditions). Each modification (and picture hash) is saved on the blockchain within a smart contract, in order to certify
changes made (and vehicle’s status). Sensors embedded in the electronic device are used to collect passengers’ and
vehicle’s data. Data are then used to automatically modify insurance covers based on car/environment conditions and
preferences set. The proposed solution could help lowering policy modification costs and limiting insurance frauds.

1. INTRODUCTION

During the last couple of years, cars have started to be regarded as “the ultimate Consumer Electronics (CE) product” [1],
mainly because of the recent research efforts and advancements made in the development of autonomous vehicles [2], [3].
The same years have also witnessed the recognition, by the wider public, of the potentialities of blockchain, which is
regarded as a disruptive technology able to bring tremendous changes to existing processes. A blockchain is a public
decentralized ledger managed by a peer-to-peer network, which records transactions among network nodes [4]. Past
transactions cannot be modified and could be inspected by every node. The blockchain uses a digital signature mechanism
(where the issuer of a transaction uses his/her private key, stored in a wallet, to sign a message broadcasted to the network)
in order to guarantee the integrity, authenticity and non-repudiability of transactions made.
Even though, initially, the blockchain was created to keep track, in a decentralized way, of financial transactions (Bitcoins
and, later, other crypto-currencies), as time passed researchers devised solutions to record different types of information
(e.g., images, text messages, etc.) or even store and run programs, the so-called smart contracts [5]. A smart contract is an
autonomous piece of code saved on the blockchain (hence, the code is immutable), which is programmed to behave in a
defined manner when certain conditions are met. From the technical point of view, smart contracts’ code could contain
variables and functions. When a programmer “publishes” (i.e., deploys) a smart contract on the blockchain, it becomes
accessible by every node of the network through a unique address. By sending transactions to this address, anyone can
invoke the smart contract’s functions and inspect values recorded in its variable.
A high number of companies are currently investigating blockchain technology and developing prototype solutions in
different sectors, such as Internet of Things (IoT) [6], [7], supply chain management [8], and autonomous vehicles [9].
To actively contribute to this movement, in this paper we propose a solution for an on-demand insurance service, which
combines blockchain technology and sensors installed on a vehicle to a) (semi-)automatically modify car insurance covers;
b) certify cover’s activation/deactivation; c) attest vehicle’s status at a given time. In particular, a prototype has been
created, which includes a mobile app and a portable electronic device to be installed onboard. By using the mobile app,
drivers can dynamically activate/deactivate covers against passengers’ injury, theft, fire and weather events. Modifications
are saved on the blockchain in a smart contract, to certify changes made. In addition, for some covers (theft, fire and
weather events), the driver is required to use the mobile app for taking pictures of the vehicle. Pictures’ hash (a fixed-length
alphanumeric summary of data content) is recorded in the blockchain together with the above information. In this way, the
insurance company can have a proof that the vehicle was not damaged at the time of cover activation. The electronic device
gathers, through several sensors, information about the car location, the number of passengers and the status of safety belts,
and uses these data to automatically modify insurance covers based on car/environment conditions and on preferences set.
The proposed solution is meant to complement traditional insurance practice and could help lowering policy modification
costs and reducing frauds. In fact, in a traditional insurance scenario, cover changes are recorded with a formal modification
to the contract made in presence of the insurer. With the proposed solution, costs could be cut since customers may directly
modify covers by interacting with a smart contract. Concerning frauds, the electronic device periodically gathers data from
the vehicle and stores them (together with location data and pictures taken by the customer before each cover activation) in
an immutable way, thus providing the insurer with a proof of vehicle’s state before the occurrence of an insured event.
Lessons learnt could be easily extended to other services, such as peer-to-peer insurances, where blockchain could be
successfully used to build Decentralized Autonomous Organizations (DAOs). Other application scenarios could be easily

envisaged for the devised solution. For instance, in on-demand home insurances, a home hub communicating with different
sensors could be used to dynamically activate covers, detect damages and automatically ask for intervention/refunds, etc.
The rest of the paper is organized as follows: Section 2 presents how CE could benefit from blockchain and reports related
works exploiting blockchain technology for (autonomous) vehicles and insurance. Section 3 presents the proposed solution,
whereas Section 4 shows the expected use for it through a practical example. Lastly, conclusions are drawn in Section 5.

2. RELATED WORKS

Among all the advantages brought by blockchain technology, probably the most significant ones are transparency and
automation. Transparency is linked to the fact that everyone can inspect the blockchain, and that transactions cannot be
repudiated. Automation is enabled by smart contracts, and could be particularly relevant in an IoT context [6], [7]. Similarly
to other scenarios, CE could benefit from the adoption of this technology, as proven by the increasing interest by the field’s
experts [10], [11]. In fact, blockchain could complement existing electronic payment means [12], by enabling peer-to-peer
payments without the need to rely on an intermediary. In smart homes, it could be used to enable intelligent appliances to
automatically order/pay for spare parts, when damaged, or as a foundation layer where devices can bargain energy [9], for
an optimized energy consumption [13]. Smart cities and their different components, such as smart energy, smart transporta-
tion, and smart healthcare [14] could benefit as well. In smart energy, the blockchain could be used to enable energy trading
among neighbors. In smart transportation, it could allow intelligent vehicles to pay for fast lanes. In smart healthcare, the
blockchain could be used as a shared ledger recording patients’ medical history. Finally, it must be underlined that
blockchain could be successfully used to enable the traceability of CE products [8], e.g., to identify counterfeit items.
The proposed work aims to address one of the emerging fields of CE, in-vehicle technology, and to investigate how the joint
use of sensors embedded in an electronic device installed onboard and of blockchain could support on-demand insurance.
Several projects already investigated the added value of blockchain in the context of in-vehicle technology, intelligent
(autonomous) vehicles and, more in general, of mobility. The Oaken project (https://www.oakeninnovations.com) proposes
a solution for letting vehicles autonomously pay tolls using crypto-currencies. The work reported in [9] suggests a similar
approach, where a vehicle could use the blockchain for purchasing electricity. The La’Zooz project (http://lazooz.org) has a
more ambitious goal, as it plans to be the “blockchained version of Uber”. The Dovu project (https://dovu.io) focuses on
collecting mobility data using vehicles’ sensors, and exploits the blockchain to reward users based on shared data.
In the insurance field, blockchain technology has been widely investigated [15]. The Dynamis project (http://www.dynamis
app.com) provides peer-to-peer unemployment insurances based on LinkedIn profiles data. The InsurETH project
(http://insureth.mkvd.net) uses smart contracts to automatically refund insured customers in case of flight delays. The
LenderBot project [16] focuses on micro-insurances, and records on the blockchain data related to lent items. Finally, the
EverLedger (https://www.everledger.io) initiative records diamonds’ data on the blockchain, to reduce jewelry frauds.
Similarly to the Dynamis, InsurETH and LenderBot projects, in this paper we propose to use the blockchain to record
undersigned policies. Nonetheless, if in the above initiatives policies could only be activated manually by the users, our
approach relies on sensors embedded in an electronic device to be installed onboard to make covers activation/deactivation
(semi-)automatic. We propose to store on the blockchain also additional vehicle’s data, such as vehicle’s pictures hash. In
this way, vehicle status at a given time can be certified and inspected by the insurer before paying claims, thus reducing the
number of frauds occurring when a customer claims a damage happened before cover activation.

3. PROPOSED SYSTEM

As said, the proposed system is composed of a mobile app and of a
portable electronic device to be installed on the vehicle. The app is used
to manually activate/deactivate covers, whereas the electronic device is
used to enable automatic covers changes based on number of passengers
onboard and vehicle’s location. Figure 1 depicts the architecture of the
system. Two parts can be distinguished, corresponding to two phases, i.e.,
policy undersigning and policy inspection/modification.
During policy undersigning, the customer can make a request for a new
on-demand policy using the mobile app. The server creates a new
insurance smart contract and deploys it on the Ethereum blockchain (a
well-known blockchain supporting smart contracts). After deployment, the customer is requested to make a transfer from
his/her wallet to the smart contract, to provide funds for the policy. In the prototype created, Ethers, i.e., the crypto-
currencies of the Ethereum blockchain are used. The smart contract stores the address of the sender to eventually transfer
back the money to him or her. Customer’s data and other information such as the address of the newly created smart
contract are stored in a database. In this phase, a portable electronic device is assigned to the customer, to be installed on

customer	requests	
forward	

new	policy	request	
smart	contract	

creation	

Policy	
undersigning	

Policy	
inspection/	
modification	

-	cover	inspection	
-	(manual)	cover	act./deact.	

Sensors:	
-	passengers	number	
-	safety	belts	
-	GPS	location	

(automatic)	cover		
act./deact.	

MOBILE	
APPLICATION	

SERVER	

DATABASE	

ELECTRONIC	
DEVICE	

BLOCKCHAIN	

SMART	
CONTRACT	

funds	transfer	

DATABASE	

SERVER	 rev.	SSH	
tunn.	

FIGURE 1. Architecture of the system.

his/her vehicle. This device acts as a server and forwards customer’s requests (e.g.,
activation/deactivation of covers) to the blockchain. Hence, it is provided with a wallet,
which is used to sign transactions sent to the smart contract. It can also act on its own, e.g.,
based on data collected by embedded sensors, and trigger transactions autonomously.
The customer can interact with the electronic device by using the mobile app. Since the
electronic device is connected to the Internet network through a mobile SIM and given the
fact that phone companies do not provide public IP addresses (which are needed to let the
device receive requests by external applications), a reverse SSH tunneling has been created
between the electronic device and a specific port of a dedicated server, letting all the
incoming data to a server’s port be automatically redirected in a secure way.
Once the smart contract is deployed on the blockchain, the customer can interact with it
(policy inspection/modification phase in Figure 1). In this phase, he/she can inspect the
active covers, and manually modify them if needed. The electronic device receives
customer’s requests and eventually updates the smart contract.
To have a better view of the functionalities offered by the system, Figure 2 reports the use
case diagram for a customer. To undersign a policy, he/she has to specify his/her personal
data. After smart contract deployment, he/she can activate the policy by transferring some
Ethers to it. Then, he/she can view the state of passengers, theft, fire and weather events
covers. He/she can either schedule an automatic cover modification (i.e., making the system
change the cover at/in a given time/place), or change the status of the cover manually. To
deal with conflicts between automatic and manual modification, when the customer triggers a new manual modification of a
cover, the previously defined automatic modification is discarded (and vice versa, letting recent modifications prevail over
old ones). Depending on the type of cover, different tasks are performed. For passengers’ cover modification, the customer
has to select the number of passengers to be insured against accidents (even though the electronic device subsequently
performs a further check on the number of passengers onboard). Theft, fire and weather events covers, instead, can be
activated only after pictures of the vehicle have been taken (to avoid frauds). Theft cover can be programmed to be
automatically modified in certain areas, whereas, for weather events, the customer can eventually inspect weather forecasts.
He/she can also view the modification history and the receipts of transactions made, or ask for a refund of unspent Ethers.
The next sub-sections provide more details on the smart contract and on the electronic device.

A. Smart Contract
The smart contract is responsible for storing the state of a policy and for recording changes to covers. It can be used to
certify cover changes as follows: when the customer wants to modify a cover, he/she sends a message (i.e., a transaction),
signed with his/her private key to the smart contract’s address. The smart contract receives the message, stores information
on the cover to be changed and simultaneously records a timestamp. The certification of a cover’s change is provided by: a)
the fact that the customer signed the message with his/her private key (certifying that the message was sent from his/her
wallet), b) the timestamp assigned by the smart contract (guaranteeing that a change was made at a given time), c) the fact
that blockchain transactions are public and cannot be deleted (everyone could inspect the history of cover changes).
Since users sending a transaction have to pay (using Ethers previously transferred to the electronic device) some gas (a tax
computed on the the basis of the amount of data they want to store on the blockchain or computational resources required to
run a smart contract’s function), we decided to limit the amount of data stored on the smart contract. In particular:
• for passengers’ cover, changes are recorded on the smart contract when the number of passengers (detected by the

electronic device) varies, or after a manual activation by the customer (in case of conflicts between the number of
passengers specified by the customer and the number retrieved by the electronic device, the highest value is considered);
information related to safety belts correct use is stored on the device database, and is replicated on company’s servers (to
have a backup copy in case the device is damaged);

• for theft covers, the smart contract changes are triggered either manually or automatically (in this case, the electronic
device monitors the vehicle position and interacts with the smart contract to record the change only when the vehicle
leaves/enters the area specified by the customer). GPS coordinates are stored on the device/company’s database;

• for theft, fire and weather events covers, the smart contract stores the hash of pictures taken before covers activation,
whereas pictures are stored on the device/company’s database.

In general, in the Ethereum blockchain, transactions for which users paid a higher gas are executed quicker than others. As a
matter of example, on the Ethereum blockchain Ether transactions generally cost between $0.001 and $0.5, and are executed
in less than 10 minutes (the cheaper ones) or 15 seconds (the more expensive ones), respectively. In some extraordinary
situations, which are not under the control of the user (e.g., in case of a high number of transaction on the network),
transaction execution time could be longer. Based on all of the above, we decided to let the customer specify the amount
he/she is willing to spend for a transaction (hence, how fast the modification will be recorded) using the mobile app.
Alternatively, to reduce latency, a private blockchain, connecting the insurance company and its customers, could be built.

Customer

Activate
the

contract

View
ins.covers?

state

Undersign
a policy

Modify a
cover

Schedule
a covers?

modif.

View
modif.
history

Receive
refund

Provide
personal

dataSend
Ethers to
contract

View
passenger
cov. state

View
theft cov.

state View fire
cov.
state

View
weather

cov. state

<<include>>

<<include>>

Modify
pass.
covers

Modify
theft.

covers

Modify
fire

covers

Modify
weather
covers

Choose
passenger

number

Select
area for

autom.activ.

Check
weather
forecast

Take
picture of
vehicle

<<include>>

<<extend>>

<<extend>>

<<include>>

<<include>>

<<extend>>

View
blockchain

receipts

Compute
unspent
Ethers

<<extend>>

<<include>>

<<include>>

FIGURE 2. Use case
diagram for the customer.

At any time, insurance staff can check information related to the insurance contract, by reading data from the smart contract
and the electronic device/company’s databases.
In the following, a list of the functions defined in the smart contract is provided. In the devised architecture, the insurance
smart contract is created by the insurance server. During creation, some additional information is provided and stored on the
contract, such as the duration of the policy and the address of the electronic device installed on the vehicle (i.e., the policy’s
owner). At the end of the creation process, an address is assigned to the deployed smart contract for future interactions.
As soon as the customer makes an Ether transaction from his/her personal wallet (providing funds to the smart contract), the
activate() function is invoked. The function identifies the sender of the request (i.e., the address of the customer’s wallet)
and stores this information on the smart contract as financier of the policy and recipient of future refunds. In addition, the
function also records the policy activation time. It is worth remarking that the distinction between owner (whose private
keys are stored in the electronic device) and financier (whose private keys are managed by the customer) has been made to
increase the security of the system as, in case of hacker attacks to the system, only the owner’s wallet (having a limited
balance) would be compromised. If needed, the customer can eventually send other Ethers (during the policy lifetime) to
provide additional funds to the smart contract (e.g., in case he/she wants to pay for the policy on a monthly basis).
Each time a cover is changed, the changeState() function is called. This function checks the validity of the policy (e.g., if
it is active and not expired yet) as well as the sender of the message (as only the owner is allowed to change the state). If the
above checks are successful, the function stores the new state and the timestamp of the modification. The timestamps of
each activation/deactivation will be used at a later stage to compute the amount to be paid to the insurance company.
As mentioned above, during the activation of theft, fire and weather events covers, the customer is also required to take
several pictures of the vehicle (in particular, pictures of front and back showing also the license plate, plus both sides and
top). Pictures can be taken only using the mobile app, to avoid the upload of pictures shot at a different time. Given the fact
that pictures are checked by the insurance staff during claims to assess the vehicle’s state prior to cover activation, an alert
reminds the customer to take pictures in a well-lighted place and to avoid out of focus pictures (even though, in the future,
image recognition techniques could be used to automatically give a feedback to the customer on the quality of the acquired
image). Once each picture has been taken, the mobile app converts it into a Hex string and sends it to the electronic device
(through the SSH protocol, thus enabling a secure channel between the mobile app and the device). The electronic device
computes the hash of the Hex string by using the MD5 algorithm. We chose this algorithm to limit the amount of data stored
on the contract (the MD5 algorithm produces a 16-byte summary of picture’s data), though other (stronger) hashing
algorithms could be exploited as well. The hash is stored in the smart contract by means of the setPictureHash() function,
which also records the related cover change and a timestamp, acting as a “proof of existence” of the picture at a given time.
Pictures are stored on the electronic device and company’s database, but other decentralized solutions, e.g., leveraging the
InterPlanetary File System (IPFS), could be adopted in the future. It is worth saying that, in order to reduce the amount of
data transferred by the customer to the system (to speed up the cover change process), it has been decided to rely only on
pictures for certifying the state of a vehicle. Nonetheless, using a similar approach, also videos could be stored.
The insurance company can withdraw money from the smart contract by using the withdrawToInsurance() function. This
function evaluates the amount spent by the customer for the active covers and transfers the resulting Ethers to the insurance
wallet. Similarly, the customer can trigger a withdrawal of unspent balance with the withdrawToCustomer() function.
For security reasons, the killContract() function was coded. This function, which is called by the insurance company, is
meant to clear smart contract data and transfer spent Ethers to the insurance company/unspent Ethers to the customer.
To read smart contract’s variables modified with the above functions, several getter functions (not discussed in this paper
due to space constraints) have been also developed.

B. Electronic Device
The electronic device is meant to be installed onboard. Its objective is to detect the
number of passengers, the connection of their safety belts and vehicle’s location. It
has been devised to make covers changes automatic, thus easing the work required by
customers and at the same time, reducing insurance frauds.
The architecture of the device is shown in Figure 3. The prototype created is based on
a Raspberry Pi 3 model B (https://www.raspberrypi.org/products/raspberry-pi-3-mo
del-b), a single-board computer, which has been used to control three sensing devices.
• To detect the number of onboard passengers, the Omron D6T

(https://www.omron.com/ecb/products/sensor/11/d6t.html) sensor has been selected. This module is a non-contact
infrared thermal sensor that uses the Micro-Electro-Mechanical Systems sensing technology. It has been chosen since it
is able to detect the presence of stationary humans by detecting their body heat, in contrast with the typical pyroelectric
human presence sensors, that rely on motion detection. In addition, it can measure the temperature of an entire area in a
contactless way, unlike standard thermal sensors that need a contact point. It is connected to the Raspberry Pi and has
been mounted on the front of the electronic device to acquire data from the vehicle’s interior.

Battery		

Raspberry	Pi	

Omron	
D6T	

GPS		 3G/GPRS	
shield	

Hall	effect-
based	sensor	

Hall	effect-
based	sensor	

ELECTRONIC	DEVICE	

CAR	DASHBOARD	

CAR		
SEATS	

FIGURE 3. Architecture of the
electronic device.

• To detect the connection of safety belts, Hall effect-based sensors have been used. These
sensors are transducers that vary their output voltage in response to a magnetic field. By
connecting them to each safety belt (mounting a magnet on the belt’s buckle and the sensor
on its tongue), it becomes possible to know if a person complies with the road safety rules.
In the prototype architecture, these sensors are connected to the Raspberry Pi.

• To detect the location of the vehicle, the Adafruit Ultimate Breakout GPS (https://www.
adafruit.com/product/746) has been used. The GPS is connected to the Raspberry Pi.

In addition to the above modules, the Raspberry Pi has been equipped with the 3G/GPRS shield
(https://www.cooking-hacks.com/3g-gprs-shield-for-arduino-3g-gps), enabling 3G connection
through a mobile SIM, and with the Powerbank RS Pro battery (http://uk.rs-
online.com/web/p/power-banks/7757508). Indeed, some of the above functionalities are
available already in black boxes installed by insurance companies or may be accessed through
existing control units. However, our goal was to develop a prototype of a portable retro-fitting
device integrating them all, which is not available yet.
Figure 4, 5 and 6 depict the state chart diagram of the electronic device and the activity dia-
grams for automatic changes detection and covers’ activation. To gather data from the sensors,
several Python scripts have been written. Once sensors are activated, some scripts continuously
check data coming from them to detect changes with respect to the smart contract configuration.
Data are gathered until the expiration of the contract. At the present time, data are extracted
every 5 seconds, even though a different interval could be set by the insurance company.
In particular, as soon as the number of passengers varies, a script invokes the changeState()
function of the smart contract to modify passengers’ cover. Similarly, should the vehicle leave or enter a pre-defined area
(set by the customer through the mobile app) another script triggers the
function to modify the associated cover. Location and safety belts
connection data are periodically saved on the device/company’s database.

4. USAGE SCENARIO

In the following, a practical example is shown, where a customer exploits
the mobile app to interact with the smart contract.
Figure 7a depicts the app main screen. From here, the customer can have an
overview of the state of each cover. When he/she clicks on “passengers’
cover”, he/she can add/remove passengers (Figure 7b). At this stage, the
electronic device checks whether the number of passengers indicated by the
customer corresponds to the number of passengers onboard (as detected by
the electronic device), and modifies the cover by specifying the highest
value between inserted/detected ones.
For each cover, the customer can also get additional information, e.g., about
the amount of time the cover has been active, the date and time of last modification, and the total amount of Ethers saved
while the cover was not active (Figure 7c). When he/she decides to modify the cover (Figure 7d), a transaction is made
towards the smart contract address by invoking the
changeState() function. Details such as transaction hash,
block number, block hash, used gas and information about
the specific modification performed are shown in the mobile
app (Figure 7e). Covers can also be automatically modified
by exploiting the GPS sensor of the electronic device. To
this purpose, the customer can schedule a cover modification
and specify the area where the cover (e.g., a theft cover)
should be automatically activated/deactivated (Figure 7f). In
case of theft (especially, should a thief steal the insured
vehicle and then enter/exit from an area specified for
automatic cover change, thus deactivating/activating the
cover), the insurance staff could cross police report’s data
with smart contract’s activations and location history to
verify the state of the cover when the theft happened.
Location data history could also potentially be used to find
the vehicle.

Electronic device Smart contract

Execute/validate
modif. request

Send modif.
results

Service started

detected>
specified?

Type of detected change

Save safety
belts info. in db

Save GPS
data in db

Send modif.
req.

safety belts

location

pass. numb.

Y

Y

N

N

enter/exit
location?

contract
active? N

Y

FIGURE 5. Activity diagram for changes
detection

Execute the modification
of a cover (activ./deactiv.)

Mobile application Electronic device Smart contract

Take a picture
of the vehicle

Send modif.
request

Send modif.
req. and picture

Passengers
Weather ev.

Cover modif. type?

Verify modif.
req.

Save picture
in db

Detect pass.
number

Send modif.
results

Send modif.
request

Update modif.
request

N

Y

days
num

N
Instantaneous

modif.?

Pass. cover
modif.?

detected>
specified?

N

Y

Y

Location data
specified? Y

N

Enter/exit
location?

N Y

Execute/validate
modif. request

Send modif.
results

Receive results/
visualize data

View
weather data

N

Y

Fire/Theft ev.

Schedule
activation

Y

N

Schedule
activation?

Check
weather?

Activate
cover?

FIGURE 6. Activity diagram for covers’ activation

Sensors activated

Waiting for
activation

Contract expired

Data detected

Waiting for
measurements

Sensors data
detected

Safety belts
detected

GPS position
detected

Passengers
detected

After n seconds

Service activated

Contract in progress

Readings
stopped

FIGURE 4. Statechart
diagram of the device.

5. CONCLUSIONS

In this paper we have shown how a system for on-demand
insurance could be realized using a smart contract and
sensors data. A prototype has been created, made up of a
mobile app and of an electronic device to be installed on
customers’ vehicles. The app is used to manually modify
policies’ covers (by interacting with the smart contract), to
schedule automatic modifications and to take pictures of the
vehicle to certify its state. The electronic device monitors
environment conditions and triggers modifications.
With the proposed solution, policy modifications costs
could be lowered, as the activation/deactivation of a cover
could be directly controlled by the customer by interacting
with the smart contract. Frauds could also be reduced, since
the system would record vehicle’s state at each change.
Future work could be devoted to extend the proposed
prototype, e.g., by empowering the electronic device with
additional sensors. Sensors could be used, e.g., to detect
damages, and smart contracts could be leveraged to
automatically trigger reimbursements. Additionally, the
application of the devised solution to other insurance
context (e.g., home insurance) could be evaluated.

ABOUT THE AUTHORS

Fabrizio Lamberti (fabrizio.lamberti@polito.it) is an Associate Professor at Politecnico di Torino, Italy.
Valentina Gatteschi (valentina.gatteschi@polito.it)	is a Post-doctoral Research Assistant at Politecnico di Torino, Italy.
Claudio Demartini (claudio.demartini@polito.it) is a Full Professor at Politecnico di Torino, Italy.
Matteo Pelissier (matteo.pelissier@gmail.com) is a Post-graduate with a MS in Management Eng. at Politecnico di Torino, Italy.
Alfonso Gómez (alfonso.gomez@realeites.com) is an IT Engineer in Technology & Digital Innovation at Reale ITES, Spain.
Victor Santamaria (victor.santamaria@realeites.com) is Responsible for Technology & Digital Innovation at Reale ITES, Spain.

REFERENCES

[1] A. Desi, “The evolution of consumer electronics: Autonomous vehicles and digital assistants.” [Online]. Available:
http://www.flexenable.com/blog/the-evolution-of-consumer-electronics-autonomous-vehicles-and-digital-assistants/. [Accessed: 27-Sep-2017].

[2] B. Markwalter, “The Path to Driverless Cars [CTA Insights],” IEEE Consumer Electronics Magazine, vol. 6, no. 2, pp. 125–126, Apr. 2017.
[3] A. Munir, “Safety Assessment and Design of Dependable Cybercars: For today and the future.,” IEEE Consumer Electronics Magazine, vol. 6, no.

2, pp. 69–77, Apr. 2017.
[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[5] N. Szabo, “Smart Contracts,” 1994. [Online]. Available: http://www.virtualschool.edu/mon/Economics/SmartContracts.html.
[6] P. Corcoran, “The Internet of Things: Why now, and what’s next?,” IEEE Consumer Electronics Magazine, vol. 5, no. 1, pp. 63–68, 2016.
[7] K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts for the Internet of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.
[8] J.-H. Lee and M. Pilkington, “How the Blockchain Revolution Will Reshape the Consumer Electronics Industry [Future Directions],” IEEE

Consumer Electronics Magazine, vol. 6, no. 3, pp. 19–23, 2017.
[9] T. Lundqvist, A. de Blanche, and H. R. H. Andersson, “Thing-to-thing electricity micro payments using blockchain technology,” in Global Internet

of Things Summit (GIoTS), 2017, 2017, pp. 1–6.
[10] D. Puthal, N. . Malik, S. P. . Mohanty, E. Kougianos, and C. . Yang, “The Blockchain - A Decentralized Security Framework,” IEEE Consumer

Electronics Magazine, vol. 8, no. 1, 2018.
[11] J. H. Lee and H. Kim, “Security and Privacy Challenges in the Internet of Things [Security and Privacy Matters],” IEEE Consumer Electronics

Magazine, vol. 6, no. 3, pp. 134–136, 2017.
[12] S. Ghosh, A. Majumder, J. Goswami, A. Kumar, S. P. Mohanty, and B. K. Bhattacharyya, “Swing-Pay: One Card Meets All User Payment and

Identity Needs: A Digital Card Module using NFC and Biometric Authentication for Peer-to-Peer Payment,” IEEE Consumer Electronics Magazine,
vol. 6, no. 1, pp. 82–93, 2017.

[13] E. Rodriguez-Diaz, J. C. Vasquez, and J. M. Guerrero, “Intelligent DC homes in future sustainable energy systems: When efficiency and intelligence
work together,” IEEE Consumer Electronics Magazine, vol. 5, no. 1, pp. 74–80, 2016.

[14] S. P. Mohanty, U. Choppali, and E. Kougianos, “Everything you wanted to know about smart cities: The Internet of things is the backbone,” IEEE
Consumer Electronics Magazine, vol. 5, no. 3, pp. 60–70, 2016.

[15] F. Lamberti, V. Gatteschi, C. Demartini, C. Pranteda, and V. Santamaria, “Blockchain or not blockchain, that is the question of the insurance and
other sectors,” IT Professional, 2017.

[16] J. Redman, “LenderBot: A Micro-Insurance Proof of Concept by Stratumn,” 2016. [Online]. Available: https://news.bitcoin.com/stratumn-deloitte-
blockchain-bot/. [Accessed: 28-Sep-2017].

3 – Implementation

Figure 3.29: Insurance cover state. Figure 3.30: Insurance cover modifica-
tions.

the mobile application makes a request to a PHP page, running on the device, to
verify the current state of the on-board passengers. This task removes, therefore,
the possibility to set a passengers’ number lower than the current number, detected
by the device, in accordance with the aim to guarantee the minimum degree of the
insurance protection, required by the legal system.

Figure 3.31: Insurance cover modification. Figure 3.32: Passengers’ cover modifica-
tion.

Before performing any of these modifications, the application needs a further
confirmation (Figure 3.33), to protect the user from unintentional actions with the
smartphone. In this direction, the application also provides, relating to the hail
cover, the possibility to check the weather forecast (Figure 3.34), in order to o↵er
a better user experience and to safeguard the vehicle protection in case of adverse
meteorological conditions.

With regard to the type of modification, instead, it is important to distinguish
between the activation and the deactivation process.

78

3 – Implementation

Figure 3.29: Insurance cover state. Figure 3.30: Insurance cover modifica-
tions.

the mobile application makes a request to a PHP page, running on the device, to
verify the current state of the on-board passengers. This task removes, therefore,
the possibility to set a passengers’ number lower than the current number, detected
by the device, in accordance with the aim to guarantee the minimum degree of the
insurance protection, required by the legal system.

Figure 3.31: Insurance cover modification. Figure 3.32: Passengers’ cover modifica-
tion.

Before performing any of these modifications, the application needs a further
confirmation (Figure 3.33), to protect the user from unintentional actions with the
smartphone. In this direction, the application also provides, relating to the hail
cover, the possibility to check the weather forecast (Figure 3.34), in order to o↵er
a better user experience and to safeguard the vehicle protection in case of adverse
meteorological conditions.

With regard to the type of modification, instead, it is important to distinguish
between the activation and the deactivation process.

78

(a) (b) (c)

3 – Implementation

Figure 3.33: Confirmation. Figure 3.34: Weather forecast.

In both cases, the application makes a request to the Node.js server, running on
the device, by sending the index of the cover to be modified and the new state to
store in the smart contract. As already said, the application signs the data of the
request with the private key, whereas the server verifies its origin by using the public
key.

In the event of the activation request, except for the passengers’ cover, the appli-
cation requires that the user takes a photograph of the vehicle. This functionality
has been included in the service in order to reduce the insurance fraud: without this
constraint, the user could activate the theft cover after that the vehicle has already
been stolen, or the fire cover when the car has already been burnt, or even, the hail
cover after that the vehicle has already su↵ered the hailstorm.

Therefore, the application, automatically, opens the smartphone camera, to allow
the user to take the photography. Then, the application sends the picture data to
the Node.js server, which handles the generation of its hash, by using the md5
algorithm, and the storing of the image in the internal hard drive of the device.

At the end of a contract modification, the application carries out other three
tasks, to certify and to notify the user about the successful completion of the
blockchain transaction, sent by the dedicated server. The first of these consists
in the visualisation of a “receipt” of the transaction (Figure 3.35), which shows the
transaction hash, the block number (in which the transaction is included), the block
hash, the gas used and the information about the specific modification performed.
With a similar purpose, the application sends, also, a push notification (Figure 3.36)
with the data concerning the task performed, so that the user can see the result of
the process from outside the application. To include this kind of notification, the
service exploits the Google Cloud Messaging14 [29], which allows to send messages
from the server to client apps. Lastly, to certify the modification, the application
uses another service o↵ered by Lleida.net, called “Registered SMS”15: it allows to

14https://developers.google.com/cloud-messaging/gcm
15http://www.lleida.net/en/registered-sms

79

3 – Implementation

Figure 3.29: Insurance cover state. Figure 3.30: Insurance cover modifica-
tions.

the mobile application makes a request to a PHP page, running on the device, to
verify the current state of the on-board passengers. This task removes, therefore,
the possibility to set a passengers’ number lower than the current number, detected
by the device, in accordance with the aim to guarantee the minimum degree of the
insurance protection, required by the legal system.

Figure 3.31: Insurance cover modification. Figure 3.32: Passengers’ cover modifica-
tion.

Before performing any of these modifications, the application needs a further
confirmation (Figure 3.33), to protect the user from unintentional actions with the
smartphone. In this direction, the application also provides, relating to the hail
cover, the possibility to check the weather forecast (Figure 3.34), in order to o↵er
a better user experience and to safeguard the vehicle protection in case of adverse
meteorological conditions.

With regard to the type of modification, instead, it is important to distinguish
between the activation and the deactivation process.

78

3 – Implementation

Figure 3.33: Confirmation. Figure 3.34: Weather forecast.

In both cases, the application makes a request to the Node.js server, running on
the device, by sending the index of the cover to be modified and the new state to
store in the smart contract. As already said, the application signs the data of the
request with the private key, whereas the server verifies its origin by using the public
key.

In the event of the activation request, except for the passengers’ cover, the appli-
cation requires that the user takes a photograph of the vehicle. This functionality
has been included in the service in order to reduce the insurance fraud: without this
constraint, the user could activate the theft cover after that the vehicle has already
been stolen, or the fire cover when the car has already been burnt, or even, the hail
cover after that the vehicle has already su↵ered the hailstorm.

Therefore, the application, automatically, opens the smartphone camera, to allow
the user to take the photography. Then, the application sends the picture data to
the Node.js server, which handles the generation of its hash, by using the md5
algorithm, and the storing of the image in the internal hard drive of the device.

At the end of a contract modification, the application carries out other three
tasks, to certify and to notify the user about the successful completion of the
blockchain transaction, sent by the dedicated server. The first of these consists
in the visualisation of a “receipt” of the transaction (Figure 3.35), which shows the
transaction hash, the block number (in which the transaction is included), the block
hash, the gas used and the information about the specific modification performed.
With a similar purpose, the application sends, also, a push notification (Figure 3.36)
with the data concerning the task performed, so that the user can see the result of
the process from outside the application. To include this kind of notification, the
service exploits the Google Cloud Messaging14 [29], which allows to send messages
from the server to client apps. Lastly, to certify the modification, the application
uses another service o↵ered by Lleida.net, called “Registered SMS”15: it allows to

14https://developers.google.com/cloud-messaging/gcm
15http://www.lleida.net/en/registered-sms

79

3 – Implementation

Figure 3.29: Insurance cover state. Figure 3.30: Insurance cover modifica-
tions.

the mobile application makes a request to a PHP page, running on the device, to
verify the current state of the on-board passengers. This task removes, therefore,
the possibility to set a passengers’ number lower than the current number, detected
by the device, in accordance with the aim to guarantee the minimum degree of the
insurance protection, required by the legal system.

Figure 3.31: Insurance cover modification. Figure 3.32: Passengers’ cover modifica-
tion.

Before performing any of these modifications, the application needs a further
confirmation (Figure 3.33), to protect the user from unintentional actions with the
smartphone. In this direction, the application also provides, relating to the hail
cover, the possibility to check the weather forecast (Figure 3.34), in order to o↵er
a better user experience and to safeguard the vehicle protection in case of adverse
meteorological conditions.

With regard to the type of modification, instead, it is important to distinguish
between the activation and the deactivation process.

78

3 – Implementation

obtain an evidence, with legal validity, about the content of the SMS, its sender, its
recipient and its sending time. Therefore, the application, by making a request to
the Lleida.net APIs [30], triggers the sending of a registered SMS to the user phone
number, with the information concerning the modification completed.

Figure 3.35: Transaction “receipt”. Figure 3.36: Push notifications.

The application, as mentioned above, also o↵ers the possibility for the user to
schedule a modification of the contract. Also in this scenario, there are some di↵er-
ences between the di↵erent covers, i.e.:

• for the passengers’ cover, the user must set the number of passengers to be
covered by the insurance protection and the date and time when to apply the
change (Figure 3.37);

• for the theft cover, the user must select how to schedule the change, i.e. based
on:

– the time, by choosing if activate or deactivate the cover (Figure 3.38) and
the date and time when to apply the change;

– the space, by choosing a place where automatically deactivate the cover;

• for the fire and the hail cover, the user must execute the same activity of the
time option of the theft cover.

To carry out the spatial option, the application opens a map, in which the
user can select di↵erent areas of circular shape (with the desired radius), where
automatically deactivate the theft cover (Figure 3.39). The service uses two di↵erent
APIs o↵ered by Google, i.e. “Google Maps Android API”16 [31] and “Google Places
API”17 [32]; the first is used to display a map in the application, whereas the second

16https://developers.google.com/maps/documentation/android-api/
17https://developers.google.com/places/android-api/

80

3 – Implementation

Figure 3.33: Confirmation. Figure 3.34: Weather forecast.

In both cases, the application makes a request to the Node.js server, running on
the device, by sending the index of the cover to be modified and the new state to
store in the smart contract. As already said, the application signs the data of the
request with the private key, whereas the server verifies its origin by using the public
key.

In the event of the activation request, except for the passengers’ cover, the appli-
cation requires that the user takes a photograph of the vehicle. This functionality
has been included in the service in order to reduce the insurance fraud: without this
constraint, the user could activate the theft cover after that the vehicle has already
been stolen, or the fire cover when the car has already been burnt, or even, the hail
cover after that the vehicle has already su↵ered the hailstorm.

Therefore, the application, automatically, opens the smartphone camera, to allow
the user to take the photography. Then, the application sends the picture data to
the Node.js server, which handles the generation of its hash, by using the md5
algorithm, and the storing of the image in the internal hard drive of the device.

At the end of a contract modification, the application carries out other three
tasks, to certify and to notify the user about the successful completion of the
blockchain transaction, sent by the dedicated server. The first of these consists
in the visualisation of a “receipt” of the transaction (Figure 3.35), which shows the
transaction hash, the block number (in which the transaction is included), the block
hash, the gas used and the information about the specific modification performed.
With a similar purpose, the application sends, also, a push notification (Figure 3.36)
with the data concerning the task performed, so that the user can see the result of
the process from outside the application. To include this kind of notification, the
service exploits the Google Cloud Messaging14 [29], which allows to send messages
from the server to client apps. Lastly, to certify the modification, the application
uses another service o↵ered by Lleida.net, called “Registered SMS”15: it allows to

14https://developers.google.com/cloud-messaging/gcm
15http://www.lleida.net/en/registered-sms

79

3 – Implementation

Figure 3.33: Confirmation. Figure 3.34: Weather forecast.

In both cases, the application makes a request to the Node.js server, running on
the device, by sending the index of the cover to be modified and the new state to
store in the smart contract. As already said, the application signs the data of the
request with the private key, whereas the server verifies its origin by using the public
key.

In the event of the activation request, except for the passengers’ cover, the appli-
cation requires that the user takes a photograph of the vehicle. This functionality
has been included in the service in order to reduce the insurance fraud: without this
constraint, the user could activate the theft cover after that the vehicle has already
been stolen, or the fire cover when the car has already been burnt, or even, the hail
cover after that the vehicle has already su↵ered the hailstorm.

Therefore, the application, automatically, opens the smartphone camera, to allow
the user to take the photography. Then, the application sends the picture data to
the Node.js server, which handles the generation of its hash, by using the md5
algorithm, and the storing of the image in the internal hard drive of the device.

At the end of a contract modification, the application carries out other three
tasks, to certify and to notify the user about the successful completion of the
blockchain transaction, sent by the dedicated server. The first of these consists
in the visualisation of a “receipt” of the transaction (Figure 3.35), which shows the
transaction hash, the block number (in which the transaction is included), the block
hash, the gas used and the information about the specific modification performed.
With a similar purpose, the application sends, also, a push notification (Figure 3.36)
with the data concerning the task performed, so that the user can see the result of
the process from outside the application. To include this kind of notification, the
service exploits the Google Cloud Messaging14 [29], which allows to send messages
from the server to client apps. Lastly, to certify the modification, the application
uses another service o↵ered by Lleida.net, called “Registered SMS”15: it allows to

14https://developers.google.com/cloud-messaging/gcm
15http://www.lleida.net/en/registered-sms

79

3 – Implementation

obtain an evidence, with legal validity, about the content of the SMS, its sender, its
recipient and its sending time. Therefore, the application, by making a request to
the Lleida.net APIs [30], triggers the sending of a registered SMS to the user phone
number, with the information concerning the modification completed.

Figure 3.35: Transaction “receipt”. Figure 3.36: Push notifications.

The application, as mentioned above, also o↵ers the possibility for the user to
schedule a modification of the contract. Also in this scenario, there are some di↵er-
ences between the di↵erent covers, i.e.:

• for the passengers’ cover, the user must set the number of passengers to be
covered by the insurance protection and the date and time when to apply the
change (Figure 3.37);

• for the theft cover, the user must select how to schedule the change, i.e. based
on:

– the time, by choosing if activate or deactivate the cover (Figure 3.38) and
the date and time when to apply the change;

– the space, by choosing a place where automatically deactivate the cover;

• for the fire and the hail cover, the user must execute the same activity of the
time option of the theft cover.

To carry out the spatial option, the application opens a map, in which the
user can select di↵erent areas of circular shape (with the desired radius), where
automatically deactivate the theft cover (Figure 3.39). The service uses two di↵erent
APIs o↵ered by Google, i.e. “Google Maps Android API”16 [31] and “Google Places
API”17 [32]; the first is used to display a map in the application, whereas the second

16https://developers.google.com/maps/documentation/android-api/
17https://developers.google.com/places/android-api/

80

3 – Implementation

Figure 3.33: Confirmation. Figure 3.34: Weather forecast.

In both cases, the application makes a request to the Node.js server, running on
the device, by sending the index of the cover to be modified and the new state to
store in the smart contract. As already said, the application signs the data of the
request with the private key, whereas the server verifies its origin by using the public
key.

In the event of the activation request, except for the passengers’ cover, the appli-
cation requires that the user takes a photograph of the vehicle. This functionality
has been included in the service in order to reduce the insurance fraud: without this
constraint, the user could activate the theft cover after that the vehicle has already
been stolen, or the fire cover when the car has already been burnt, or even, the hail
cover after that the vehicle has already su↵ered the hailstorm.

Therefore, the application, automatically, opens the smartphone camera, to allow
the user to take the photography. Then, the application sends the picture data to
the Node.js server, which handles the generation of its hash, by using the md5
algorithm, and the storing of the image in the internal hard drive of the device.

At the end of a contract modification, the application carries out other three
tasks, to certify and to notify the user about the successful completion of the
blockchain transaction, sent by the dedicated server. The first of these consists
in the visualisation of a “receipt” of the transaction (Figure 3.35), which shows the
transaction hash, the block number (in which the transaction is included), the block
hash, the gas used and the information about the specific modification performed.
With a similar purpose, the application sends, also, a push notification (Figure 3.36)
with the data concerning the task performed, so that the user can see the result of
the process from outside the application. To include this kind of notification, the
service exploits the Google Cloud Messaging14 [29], which allows to send messages
from the server to client apps. Lastly, to certify the modification, the application
uses another service o↵ered by Lleida.net, called “Registered SMS”15: it allows to

14https://developers.google.com/cloud-messaging/gcm
15http://www.lleida.net/en/registered-sms

79

3 – Implementation

obtain an evidence, with legal validity, about the content of the SMS, its sender, its
recipient and its sending time. Therefore, the application, by making a request to
the Lleida.net APIs [30], triggers the sending of a registered SMS to the user phone
number, with the information concerning the modification completed.

Figure 3.35: Transaction “receipt”. Figure 3.36: Push notifications.

The application, as mentioned above, also o↵ers the possibility for the user to
schedule a modification of the contract. Also in this scenario, there are some di↵er-
ences between the di↵erent covers, i.e.:

• for the passengers’ cover, the user must set the number of passengers to be
covered by the insurance protection and the date and time when to apply the
change (Figure 3.37);

• for the theft cover, the user must select how to schedule the change, i.e. based
on:

– the time, by choosing if activate or deactivate the cover (Figure 3.38) and
the date and time when to apply the change;

– the space, by choosing a place where automatically deactivate the cover;

• for the fire and the hail cover, the user must execute the same activity of the
time option of the theft cover.

To carry out the spatial option, the application opens a map, in which the
user can select di↵erent areas of circular shape (with the desired radius), where
automatically deactivate the theft cover (Figure 3.39). The service uses two di↵erent
APIs o↵ered by Google, i.e. “Google Maps Android API”16 [31] and “Google Places
API”17 [32]; the first is used to display a map in the application, whereas the second

16https://developers.google.com/maps/documentation/android-api/
17https://developers.google.com/places/android-api/

80

3 – Implementation

obtain an evidence, with legal validity, about the content of the SMS, its sender, its
recipient and its sending time. Therefore, the application, by making a request to
the Lleida.net APIs [30], triggers the sending of a registered SMS to the user phone
number, with the information concerning the modification completed.

Figure 3.35: Transaction “receipt”. Figure 3.36: Push notifications.

The application, as mentioned above, also o↵ers the possibility for the user to
schedule a modification of the contract. Also in this scenario, there are some di↵er-
ences between the di↵erent covers, i.e.:

• for the passengers’ cover, the user must set the number of passengers to be
covered by the insurance protection and the date and time when to apply the
change (Figure 3.37);

• for the theft cover, the user must select how to schedule the change, i.e. based
on:

– the time, by choosing if activate or deactivate the cover (Figure 3.38) and
the date and time when to apply the change;

– the space, by choosing a place where automatically deactivate the cover;

• for the fire and the hail cover, the user must execute the same activity of the
time option of the theft cover.

To carry out the spatial option, the application opens a map, in which the
user can select di↵erent areas of circular shape (with the desired radius), where
automatically deactivate the theft cover (Figure 3.39). The service uses two di↵erent
APIs o↵ered by Google, i.e. “Google Maps Android API”16 [31] and “Google Places
API”17 [32]; the first is used to display a map in the application, whereas the second

16https://developers.google.com/maps/documentation/android-api/
17https://developers.google.com/places/android-api/

80

3 – Implementation

Figure 3.29: Insurance cover state. Figure 3.30: Insurance cover modifica-
tions.

the mobile application makes a request to a PHP page, running on the device, to
verify the current state of the on-board passengers. This task removes, therefore,
the possibility to set a passengers’ number lower than the current number, detected
by the device, in accordance with the aim to guarantee the minimum degree of the
insurance protection, required by the legal system.

Figure 3.31: Insurance cover modification. Figure 3.32: Passengers’ cover modifica-
tion.

Before performing any of these modifications, the application needs a further
confirmation (Figure 3.33), to protect the user from unintentional actions with the
smartphone. In this direction, the application also provides, relating to the hail
cover, the possibility to check the weather forecast (Figure 3.34), in order to o↵er
a better user experience and to safeguard the vehicle protection in case of adverse
meteorological conditions.

With regard to the type of modification, instead, it is important to distinguish
between the activation and the deactivation process.

78

3 – Implementation

Figure 3.29: Insurance cover state. Figure 3.30: Insurance cover modifica-
tions.

the mobile application makes a request to a PHP page, running on the device, to
verify the current state of the on-board passengers. This task removes, therefore,
the possibility to set a passengers’ number lower than the current number, detected
by the device, in accordance with the aim to guarantee the minimum degree of the
insurance protection, required by the legal system.

Figure 3.31: Insurance cover modification. Figure 3.32: Passengers’ cover modifica-
tion.

Before performing any of these modifications, the application needs a further
confirmation (Figure 3.33), to protect the user from unintentional actions with the
smartphone. In this direction, the application also provides, relating to the hail
cover, the possibility to check the weather forecast (Figure 3.34), in order to o↵er
a better user experience and to safeguard the vehicle protection in case of adverse
meteorological conditions.

With regard to the type of modification, instead, it is important to distinguish
between the activation and the deactivation process.

78

3 – Implementation

Figure 3.29: Insurance cover state. Figure 3.30: Insurance cover modifica-
tions.

the mobile application makes a request to a PHP page, running on the device, to
verify the current state of the on-board passengers. This task removes, therefore,
the possibility to set a passengers’ number lower than the current number, detected
by the device, in accordance with the aim to guarantee the minimum degree of the
insurance protection, required by the legal system.

Figure 3.31: Insurance cover modification. Figure 3.32: Passengers’ cover modifica-
tion.

Before performing any of these modifications, the application needs a further
confirmation (Figure 3.33), to protect the user from unintentional actions with the
smartphone. In this direction, the application also provides, relating to the hail
cover, the possibility to check the weather forecast (Figure 3.34), in order to o↵er
a better user experience and to safeguard the vehicle protection in case of adverse
meteorological conditions.

With regard to the type of modification, instead, it is important to distinguish
between the activation and the deactivation process.

78

3 – Implementation

obtain an evidence, with legal validity, about the content of the SMS, its sender, its
recipient and its sending time. Therefore, the application, by making a request to
the Lleida.net APIs [30], triggers the sending of a registered SMS to the user phone
number, with the information concerning the modification completed.

Figure 3.35: Transaction “receipt”. Figure 3.36: Push notifications.

The application, as mentioned above, also o↵ers the possibility for the user to
schedule a modification of the contract. Also in this scenario, there are some di↵er-
ences between the di↵erent covers, i.e.:

• for the passengers’ cover, the user must set the number of passengers to be
covered by the insurance protection and the date and time when to apply the
change (Figure 3.37);

• for the theft cover, the user must select how to schedule the change, i.e. based
on:

– the time, by choosing if activate or deactivate the cover (Figure 3.38) and
the date and time when to apply the change;

– the space, by choosing a place where automatically deactivate the cover;

• for the fire and the hail cover, the user must execute the same activity of the
time option of the theft cover.

To carry out the spatial option, the application opens a map, in which the
user can select di↵erent areas of circular shape (with the desired radius), where
automatically deactivate the theft cover (Figure 3.39). The service uses two di↵erent
APIs o↵ered by Google, i.e. “Google Maps Android API”16 [31] and “Google Places
API”17 [32]; the first is used to display a map in the application, whereas the second

16https://developers.google.com/maps/documentation/android-api/
17https://developers.google.com/places/android-api/

80

3 – Implementation

Figure 3.29: Insurance cover state. Figure 3.30: Insurance cover modifica-
tions.

the mobile application makes a request to a PHP page, running on the device, to
verify the current state of the on-board passengers. This task removes, therefore,
the possibility to set a passengers’ number lower than the current number, detected
by the device, in accordance with the aim to guarantee the minimum degree of the
insurance protection, required by the legal system.

Figure 3.31: Insurance cover modification. Figure 3.32: Passengers’ cover modifica-
tion.

Before performing any of these modifications, the application needs a further
confirmation (Figure 3.33), to protect the user from unintentional actions with the
smartphone. In this direction, the application also provides, relating to the hail
cover, the possibility to check the weather forecast (Figure 3.34), in order to o↵er
a better user experience and to safeguard the vehicle protection in case of adverse
meteorological conditions.

With regard to the type of modification, instead, it is important to distinguish
between the activation and the deactivation process.

78

3 – Implementation

Figure 3.33: Confirmation. Figure 3.34: Weather forecast.

In both cases, the application makes a request to the Node.js server, running on
the device, by sending the index of the cover to be modified and the new state to
store in the smart contract. As already said, the application signs the data of the
request with the private key, whereas the server verifies its origin by using the public
key.

In the event of the activation request, except for the passengers’ cover, the appli-
cation requires that the user takes a photograph of the vehicle. This functionality
has been included in the service in order to reduce the insurance fraud: without this
constraint, the user could activate the theft cover after that the vehicle has already
been stolen, or the fire cover when the car has already been burnt, or even, the hail
cover after that the vehicle has already su↵ered the hailstorm.

Therefore, the application, automatically, opens the smartphone camera, to allow
the user to take the photography. Then, the application sends the picture data to
the Node.js server, which handles the generation of its hash, by using the md5
algorithm, and the storing of the image in the internal hard drive of the device.

At the end of a contract modification, the application carries out other three
tasks, to certify and to notify the user about the successful completion of the
blockchain transaction, sent by the dedicated server. The first of these consists
in the visualisation of a “receipt” of the transaction (Figure 3.35), which shows the
transaction hash, the block number (in which the transaction is included), the block
hash, the gas used and the information about the specific modification performed.
With a similar purpose, the application sends, also, a push notification (Figure 3.36)
with the data concerning the task performed, so that the user can see the result of
the process from outside the application. To include this kind of notification, the
service exploits the Google Cloud Messaging14 [29], which allows to send messages
from the server to client apps. Lastly, to certify the modification, the application
uses another service o↵ered by Lleida.net, called “Registered SMS”15: it allows to

14https://developers.google.com/cloud-messaging/gcm
15http://www.lleida.net/en/registered-sms

79

(d) (e) (f)

FIGURE 7. Screenshots of the prototype app: main window
(a), passengers’ cover modification (b), fire cover details (c),
deactivation of fire cover (d), details on the executed trans-
action (e), selection of areas for automatic cover change (f).

