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ABSTRACT 

This work presents a new class of advanced plate FEM models with node-dependent kinematics. To 
capture the high local stress gradients in the analysis of composite structures, refined models are 
essential; while for the rest region of the structure, usually, low-order models can be sufficient. An 
innovative approach named as node-dependent kinematics is proposed to integrate models with different 
levels of refinement to reach an optimal balance between accuracy and solution costs in FEM analysis. 
Node-dependent kinematics is based on Carrera Unified Formulation (CUF), which introduces thickness 
functions defined on the thickness domain for the refinement of plate models. Both ESL (Equivalent 
Single Layer) and LW (Layer-wise) models adopting various approximation theories can be described 
and implemented in such a framework. CUF-type displacement functions allow the thickness functions 
to be related to specific FEM nodes before the interpolation of them over the in-plane domain of the 
element, leading to advanced FEM models with node-dependent kinematics. In this way, a kinematic 
variation can be conveniently obtained, which can bridge a global model to a locally refined model while 
keeping the displacement continuity. Hierarchical Legendre Expansions (HLE) are adopted to construct 
the shape functions in this work, which provides an approach to capture the localized effects without re-
meshing on the structure. Governing equations for FEM models with node-dependent kinematics are 
derived from the Principle of Virtual Displacements (PVD). When used in the analysis of laminated 
plates with local effects to be accounted for, the proposed advanced plate models can reduce the 
computational costs greatly while guaranteeing accuracy without employing special global-local 
coupling methods. 

 
1 INTRODUCTION 

Composite materials have attracted considerable attention in recent several decades due to their 
outstanding properties in engineering applications, which has also boosted the demands for efficient 
structural analysis methods to capture their sophisticated mechanical responses.  

Towards the optimal design of thin-walled laminated structures, various theories have been proposed. 
Based on Kirchoff-Love’s hypothesis, Classical Plate Theory (CPT) [1] is the simplest 2D model. First-
order Shear Deformation Theory (FSDT) [2] can account for transverse shear effects but give only 
constant transverse shear stresses through the thickness. A variety of Higher-Order Theories (HOT) have 
been suggested to improve the solution accuracy. Carrera [3] proposed Unified Formulation (CUF) as a 
new methodology to develop refined 1D and 2D models for the analysis of laminated structures. For 2D 
case, with the help of the introduced thickness functions, various theories can be integrated to formulate 
refined kinematics as either Equivalent Single Layer (ESL) or Layer-Wise (LW) models. The 
introduction of Fundamental Nucleus (FN) allows the governing equation to be derived in a unified and 
compact manner [4]. In the framework of CUF, various models based on either series expansions or 
interpolation polynomials have been put into practice as reported by Cinefra and Valvano [5] and 
Cinefra et al. [6].  

http://www.mul2.com/
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In FEM analysis, to improve the solution accuracy especially in the area with high stress gradients, 
refinement is required. A h-version approach [7] increases the mesh refinement to capture local effects 
in detail, while a p-version approach [8] adopts higher-order polynomials as shape functions to 
approximate the structural deformation. The h-p-version approach employs these two methods at the 
same time [9]. Note that in such mono-kinematic approaches, the element kinematics preserve over the 
whole model.  

Some global-local methods can couple models with different kinematics. The so-called three field 
formulations [10] enforce the displacement compatibility with Lagrange multipliers at domain 
interfaces. Various methods have been developed based on such an idea, as presented by Aminpour et 
al. [11] adopting a spline method, and by Prager [12] who introduced an interface potential, as well as 
eXtended Variational Formulation (XVF) suggested by Blanco et al. [13, 14]. Application of multi-line 
method was reported by Carrera and Pagani  [15, 16]. A superimposed zone can also help to construct 
global-local models. Arlequin method uses Lagrange multipliers to impose the compatibility in the 
overlapped area, as suggested by Dhia [17] and Dhia and Rateau [18]. Coupling of CUF-type models 
with different level of refinement with Arlequin method are reported on 1D modeling by Biscani et al. 
[19] and 2D modeling by Biscani et al. [20, 21]. On the contrast, multi-grid method superimposes 
additional elements with either refined mesh [22] or higher-order kinematics [23] on the global model 
directly, in which homogeneous boundary conditions were imposed on the overlapped zone. Note that 
in the aforementioned global-local methods, ad hoc coupling approaches are used, and usually two sets 
of FEM mesh grids are needed to refine the kinematics locally. 

In the framework of CUF for 2D models, the kinematics are refined by increasing the number of 
expansion terms used in the thickness functions. By relating the definition of thickness functions to 
specific nodes, kinematics can be refined locally. In this sense, the FEM nodes will act as “anchor” of 
the 2D kinematics. With the help of the nodal shape functions, the nodal kinematics can be smeared 
over the in-plane domain of a 2D element. Such an approach allows the local refinement to be carried 
out simply by increasing the kinematic order defined on a specific set of nodes without changing the 
mesh. Thus, one set of versatile mesh grids can be used to build various global-local models without 
using any ad hoc coupling method. This method was proposed by Carrera et al. [24] in 1D refined 
models then extended to the analysis multi-layered composite plates by Zappino et al. [25]. It has been 
demonstrated that global-local models constructed with node-dependent kinematics can account for 
detailed local effects with fewer computational costs [25]. 

In the present work, node-dependent kinematics for 2D modeling is extended to p-version plate 
elements constructed with Hierarchical Legendre Expansions (HLE). The adopted shape functions were 
firstly suggested by Szabo and Babuška [26] for quadrilateral domains, then employed by Pagani et al. 
[27] and Carrera et al. [28] as cross-section functions in constructing refined beam models. Compared 
with Lagrange shape functions of the same polynomial order, HLE requires a fewer number of functions. 
Meanwhile, since some of the HLE-type shape functions do not possess a specific interpolation node 
but an artificial one, the nodal kinematics can be smeared over the element domain located in the 
transition zone in a more averaged way. In the proposed method, the polynomial degree p is taken as an 
input parameter. In the following sections, the theoretical basis is briefly explained, and the governing 
equations are derived from the principle of virtual displacements. The efficiency of the proposed 
modeling approach is illustrated through a numerical example on a composite plate. 
 
2 PRELIMINARIES 

 
 

Figure 1: Geometry and reference system of a multi-layered plate model. 
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The geometry feature and reference system of a laminated plate are shown in Figure 1. The strains 
and stresses can be arranged as follows: 

 { , , }, { , , }.T T
p xx yy xy n xz yz zz     = =ε ε                                                   (1) 

    { , , }, { , , }.T T
p xx yy xy n xz yz zz     = =σ σ                                               (2) 

in which the subscript p represents the in-plane components, while n stands for the normal direction of 
the plate. The strains can be derived from the geometrical relations: 

    , ( ) . p p n np nz= = +ε D u ε D D u                                                    (3) 

where the differential operator matrices are: 

0 0 0 0 0 0
0 0 , 0 0 , 0 0 .

0 0 0 0 0 0

x x z

p y np y nz z

y x z

 ∂ ∂ ∂   
     = ∂ = ∂ = ∂     
     ∂ ∂ ∂    

D D D                          (4) 

The strain and stress components can be related by the constitutive equations: 

   , .pp pn np nnp p n n p n= + = +σ C ε C ε σ C ε C ε                                                  (5) 

  , ,pp pn npC C C  and  nnC  are the material coefficients rotated from the material system to the analysis 
system. For more details about the material coefficient matrices, the reader is referred to [25]. 

 
3 CARRERA UNIFIED FORMULATION FOR 2D MODELS 

For refined 2D models, CUF describes the displacement field { , , }Tu v w=u  as a product of thickness 
functions F  defined on the thickness domain and in-plane unknown vector ( , )x yu , which leads to: 

( , , ) ( ) ( , ) 0,1,...,x y z F z x y N  = =u u                                                  (6) 

where N is the number of expansion terms used in the thickness functions. When z is defined on the 
whole thickness domain and F  employ series expansions, an Equivalent Single Layer (ESL) model 
can be constructed; when F  are defined on a layer thickness domain and adopt interpolation 
polynomials, a Layer-Wise (LW) model can be obtained. Also, many traditional deformation theories 
can be described in such a manner as explained by Carrera et al. [4].  

Particularly, a general case of Higher-order Deformation Theories (HOT) to the N th order can be 
expressed as follows: 

0 1

0 1

0 1

( , , ) ( , ) ( , ) ( , )
( , , ) ( , ) ( , ) ( , )
( , , ) ( , ) ( , ) (

  
  

)  ,

N
N

N
N

N
N

u x y z u x y z u x y z u x y
v x y z v x y z v x y z v x y

w x y z w x y z w x y z w x y

= + ⋅ + + ⋅
= + ⋅ + + ⋅
= + ⋅ + +





 ⋅








                                    (7) 

which can be written in the form of CUF by setting: 
0 1

0 11, , , N
NF z F z z F z= = = = … =                                               (8) 

For a LW model based on Lagrange interpolation polynomials, F are defined in the thickness 
domain of layer k, which expressed in an isoparametric form is [ 1,1]k ∈ − . If N interpolation nodes are 
used in kF , the thickness functions can be expressed as: 

0,

 ( ) i

i

N
k kk

k
i i s k k

F




 


 = ≠

−
=

−∏                                                       (9) 
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In such a definition, the displacements on each interpolation node are physically meaningful. To keep 
the displacement continuity at layer interfaces, the displacements on the top surface of layer k should be 
set equal to those on the bottom surface of layer k+1. When a sufficient number of interpolation nodes 
are used to define the thickness functions, the interlaminar continuity of transverse shear stresses can be 
achieved, which has been demonstrated by Carrera et al. [6, 29].  

 
4 NODE-DEPENDENT KINEMATIC BEAM ELEMENTS 

When applied to construct refined 2D FEM elements, the displacement functions read: 
( ) ( )  ( , , ) ( , ) ( ) 1, , ; 1, , .k k

i ix y z N x y F z N i M  = = =u u  

                                     (10) 

where ( )kF  are the thickness functions, which in ESL models are F while in LW models will be kF . 
( , )iN x y  are the nodal shape functions, which usually adopt Lagrange interpolation polynomials.  is 

the number of expansions used in the thickness functions, and M is the total number of nodes in an 
element. According to such a definition, the nodal kinematics preserve over the whole model, which 
means the level of kinematic refinement is uniform. For structures with higher stress gradients only 
within a limited area, such models might consume unnecessary computation resources.  

CUF provides an approach to defining locally refined kinematics. By relating the thickness functions 
to specific nodes, a FEM element with node-dependent kinematics can be obtained, displacement 
functions are as follows:  

( ) ( ) ( , , ) ( , ) ( ) 1, , ;  1, , .k i k
i ix y z N x y F z N i M  = = =u u  

                                   (11) 

( )i kF  are defined on node i, and become nodal kinematics. In a sense, node i acts as the “anchor” of 
( )i kF . The nodal kinematics will be further interpolated over the in-plane domain of the element, as 

shown on the left-hand side of Figure 2, in which the kinematics are gradually refined from left to the 
right side of the element. Such elements with kinematic transition can act as a bridge between the local 
region with refined kinematics and a global model with lower-order kinematics, as illustrated on the 
right-hand side of Figure 2. Thus, the local kinematic refinement can be carried out without touching 
the mesh grids. Node-dependent kinematics has been successfully applied in building numerically 
efficient global-local models for 1D models by Carrera et al. [24] and 2D models by Zappino et al. [25]. 

 

 
 

Figure 2: An example: a Q4 plate element with node-dependent kinematics. 
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5 HIERARCHICAL LEGENDRE EXPANSIONS 

Szabó et al. [8] suggested a set of shape functions for a quadrilateral domain (r,s) defined on [-1,1], 
which are based on Legendre polynomials. For a specific polynomial degree p-1, the set of functions 
are included in the set for polynomial degree p. Hierarchical Legendre Expansions (HLE) can also be 
employed as cross-section functions in refined 1D models as presented by Pagani et al. [27, 28]. In the 
present work, HLE is adopted as shape functions for 2D modeling and used in combination with node-
dependent kinematics. In such a way, except for the kinematics refinement, p-version refinement is also 
considered.  

Hierarchical Legendre shape functions consist of nodal modes, edge modes, and internal modes, as 
shown in Figure 2.  

 

 
 

Figure 3: Hierarchical Legendre Expansions (HLE) as shape functions. 

Nodal modes: are defined as Lagrange-type linear interpolation on the four vertex nodes of the 
quadrilateral, which are expressed as: 

1 (1 )(1 ) 1,2,3,4
4i i i s isN r r= − − =                                                   (12) 

in which  ( , )iir s  represent the local coordinates of the ith node of the four-node element in the 
isoparametric reference system. 

Edge modes: are dominated by the deformation on the four edges and vary linearly along the 
corresponding perpendicular edges, which read: 
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1( , ) (1 ) ( ) 5,9,13,18,...
2
1( , ) (1 ) ( ) 6,10,14,19,...
2
1( , ) (1 ) ( ) 7,11,15,20,...
2
1( , ) (1 ) ( ) 8,14,16,21,...
2

i p

i p

i p

i p

N r s s r i

N r s r s i

N r s s r i

N r s r s i









= − =

= + =

= + =

= − =

                                            (13) 

where  p  is defined as: 

2
11

( ) ( )2 1 ( )d ( ) 2,3,..( ) .
2 4 2

s p p
pp

L s L sp L x x L ps
p

 −
−−

−−
= = =

−∫                      (14) 

Surface modes: Describe the deformation shapes happen on the internal surface which will vanish 
on the edges and vertexes, which are: 

, 4( , ) ( ) ( )i p qN r s r s p q  ≥=                                                     (15) 

Different from Lagrange polynomials, when the polynomial degree p increases to p+1, only the 
newly added shape functions need to be introduced in HLE. Meanwhile, most of the functions in HLE 
do not have a corresponding interpolation node, which implies in a higher-order 2D element, the nodal 
kinematics can be smeared more averagely. For those plate elements lie in the bridging zone, such a 
feature can help to improve the coupling performance. Moreover, it can be noticed that compared with 
Lagrange polynomials of the same polynomial order, HLE usually requires a fewer number of functions 
to construct a 2D element. Furthermore, with HLE the polynomial order p can be taken as an input 
parameter and p-version refinement can be conveniently realized. 

 
6 FEM GOVERNING EQUATION 

The governing equation for node-dependent kinematic 2D FEM elements is derived in this section. 
For a system in static equilibrium, the following equation holds: 

int extL L =                                                              (16) 

in which intL  stands for the stain energy and extL  represents the work done by the external load. 
indicates the virtual variation. intL  can be written as follows: 

k

T T
int kV A

L dV dA d  
Ω

= = Ω∫ ∫ ∫ε σ ε σ                                         (17) 

where kA  represents the thickness domain of the layer k, and Ω  indicates the in-plane domain of the 
element considered. The strains can be obtained as:  

,

( ) ( )

( ) ( ) ( ) ( )

  
) 

)
 (  

(

z

k i k k
p p i i

k i k k i k k
n np i i i i

F N
F N u F N

 

   

=
= +

ε D I u
ε D I I u

                                        (18) 

where I  is an 3 3×  identity matrix. By recalling the constitutive equations and the CUF-type 
displacement functions, the following expression can be obtained: 

( ) ( )( )
k

kT k k T k k T k k
int n n p p k js ij s iA

L dA d     
Ω

= + Ω =∫ ∫ ε σ ε σ u K u                             (19) 

k
ij sK is a 3 3×  core unit of the stiffness matrix, which is also known as the fundamental nucleus (FN). 

The subscripts and Einstein summation convention allow the element stiffness matrix to be expressed 
and assembled conveniently, which has been elaborated by Carrera et al. [4].   
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Considering the external load: 
T

ext V
L dV = ∫ u p                                                            (20) 

By substituting the CUF-type displacement functions, one can have: 

 T j T
ext js j s js jsV

L N F dV  = =∫u p u P                                           (21) 

in which jsP is the load vector. Thus, the governing equation for 2D FEM elements with node-dependent 
kinematics can be obtained as: 

  :  js ij s i js  ⋅ =u K u P                                                     (22) 

For a detailed description of the technique for the assembly of the stiffness matrix and load vector 
on a 2D FEM element with node-dependent kinematics, the reader is referred to [25]. 

  
7 NUMERICAL EXAMPLES 

In this section, numerical results of a three-layered composite plated subjected to a concentrated load 
are reported. The square symmetrically laminated cross-ply plate considered is clamped on the four 
edges, and imposed to a point load Pz at the central point of the top surface, as illustrated in Figure 4. In 
such a case, a numerical singularity will be encountered, which is a great challenge for weak form 
solution approaches. The aim of this numerical example is to show how the proposed approach can 
construct numerically efficient models.  

The plate has three layers with equal thickness h1=h2=h3=h/3, and the stacking sequence is 
[0 / 90 / 0 ]   . The length-to-thickness ratio is a/h=4. The FEM model is constructed based on CUF. The 
element shape functions employ Hierarchical Legendre Expansions (HLE). With node-dependent 
kinematics, in the local area with stress concentration, kinematic refinement is used. The material 
properties adopted are listed in Table 1, in which the subscript L indicates the fiber direction, while T 
represents the transverse direction.  

 

 
 

Figure 4: Three-layered composite plate with a concentrated load Pz. 

 
EL/ ET GLT/ ET GTT/ ET ,LT TT   

25 0.5 0.2 0.25 
 

Table 1: Material coefficients used for the three-layered composite plate. 
 
The plate is discretized into 16 square elements adopting HLE to the same polynomial order p as 

shape functions (denoted as HLE-p), as illustrated in Figure 5. Meanwhile, in the central zone with 
strong local effects, LW models with Lagrange polynomials as thickness functions are adopted; the rest 
of the plate is modeled with ESL model based on a full linear model (TE1). In this work, shape function 
terms with the same feature position (on a node, edge or surface) are assigned to the same cross-section 
kinematic model. For comparison, models with uniformly kinematic refinement (LW-LE3) and HLE to 
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different polynomial order are also used. The transverse displacement w  is nondimensionalized 
according to the following equation: 

3

2

100 T

z

E hw w
P a

= ⋅                                                             (23) 

 
 
Figure 5: FEM discretization of the three-layered composite plate with HLE-p as shape functions. 

The obtained displacements w  are compared in Figure 6. As expected, with the increase of the 
polynomial order, the out-of-plane displacement w  at the loading point approaches infinity gradually. 
Still, more accurate modeling needs better refinement. Whereas, considering that singularity cannot be 
numerically reached, such effort is neither necessary nor desirable. Figure 6 also shows that, with the 
help of node-dependent kinematics, compared with HLE7-LE3, model HLE7-LE3/TE1 can reach 
almost the same accuracy but with a reduction of 67.8% in total degrees of freedom in this case. 

 

-0.50 -0.25 0.00 0.25 0.50
0

50

100

150

HLE6-LE3

HLE5-LE3

HLE4-LE3
HLE3-LE3

w

z

 HLE7-LE3
 HLE7-LE3/TE1

HLE2-LE3

DOFs:
HLE2-LE3            1950
HLE3-LE3            3150
HLE4-LE3            4830
HLE5-LE3            6990
HLE6-LE3            9630
HLE7-LE3          12750
HLE7-LE3/TE1    4110

 
Figure 6: Through-the-thickness variation of transverse displacement w  at plate center (a/2,b/2). 

8 CONCLUSIONS 

This work presents node-dependent kinematic 2D FEM models adopting Hierarchical Legendre 
Expansions (HLE) as shape functions. In the proposed approach, local kinematic refinement can be 
conveniently carried out, and numerically efficient global-local models can be constructed conveniently 
to account for localized effects.   
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