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Abstract

This research work was originated and inspired by a presentation made by Professor Arthur W.
Leissa at ISVCS 9, Courmayeur, Italy, on July 2013 [1]. According to his talk, authors realized
that the interesting phenomena related to mode aberration have rarely been investigated in the
recent years.

During service and due to the nature of applied loadings, structural components, such as stiffeners,
panels, ribs and boxes in aerospace constructions, for example, are subjected to stress fields. Those
stresses, and especially compression ones, may significantly modify the equilibrium state of the
structures and, thus, affect their dynamic response, eventually in a catastrophic manner. For this
reason, the evaluation and the analysis of the natural frequencies and mode shapes changing as the
elastic system is subjected to operational loads is of primary interest.

By employing a refined beam model with higher-order capabilities, this work, thus, investigates
the eigenvalue loci veering, crossing, coalescence and eventual buckling events due to mode de-
generation of metallic and composite structures undergoing pre-stress states and, eventually, large
displacements and rotations. The proposed models are based on the Carrera Unified Formulation
(CUF), according to which each theory of structures (either 1D or 2D) can be expressed as a de-
generated form of the three-dimensional equilibrium equations in a hierarchical manner [2]. As an
example, 1D beam theories can be formulated from the three-dimensional displacement field (u)
as an arbitrary expansion of the generalized unknowns (uτ); i.e.,

u(x,y,z) = Fτ(x,z)uτ(y), τ = 1,2, ....,M (1)

where Fτ are generic functions on the beam cross-section domain, M is the number of expansion
terms, and τ denotes summation. Depending on the choice of Fτ and the number of expansion
terms M, different classes of beam models can be formulated and, thus, implemented in a straight-
forward manner. Namely, in this work, low- to higher-order beam models with only pure displace-
ment variables are implemented by utilizing Lagrange polynomials expansions of the unknowns
on the cross-section.

Give a structure subjected to a pre-stress state σ0, it can be easily demonstrated that the lineariza-
tion of the virtual variation of the work of internal strains can be approximated as follows:

δ (δLint)≈< δε
T

σ >+< δ (δε
T )σ0 > (2)

or, in other words,
Ki jτs

T ≈ Ki jτs +Ki jτs
σ0 (3)
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Figure 1: Mode aberration of a composite box beam subjected to compression.

In Eq. (2), ε and σ are the vectors of strain and stress components, whereas < (·)>=
∫

V (·)dV . In
contrast, Eq. (3) shows that the fundamental nucleus (FN) of the tangent stiffness matrix, Ki jτs

T , can
be approximated as the sum of the FNs of the linear stiffness, Ki jτs, and the geometric stiffness,
Ki jτs

σ0 . According to CUF and in the framework of the finite element method, as in the case of this
work, finite element arrays of generally refined structural models can be formulated in a straight-
forward manner by expanding the FNs versus the indexes (τ,s = 1, · · · ,M) and (i, j = 1, · · · ,N),
where N is the number of nodes of the finite element employed. For the sake of brevity, the
derivation and the complete expressions of the FNs in Eq. (3) are not given here, but they can be
found in [2] and [3]. Once the global tangent stiffness matrix KT is known, the natural frequen-
cies and mode shapes of the structure can be evaluated by solving the usual eigenvalue problem(
KT −ω2M

)
u= 0, where M is the mass matrix. However, it is important to underline that Eqs. (2)

and (3) are based on the fundamental hypotheses that the equilibrium state is linear and the struc-
ture undergoes infinitesimal strains and displacements/rotations [4].

For representative purposes, a numerical example is shown here. We consider a cantilever single-
cell, two-bay composite box beam subjected to compression load P. The box is made of two
layers of carbon/epoxy material on each flange. In lamination A, the fibre orientation is 0 deg
in the top and bottom flanges and ±15 deg in the right and left flanges. On the other hand, in
lamination B, an angle-ply lamination ±45 deg is employed for all the flanges. Figure 1 shows
the variation of the natural frequencies for the first important modes and for different values of the
load P. Also, for the sake of completeness, Fig. 2 depicts some mode shapes of the box in the
case of P = 0. The analysis clarifies that, independently of the lamination angles, buckling occurs
approximately for the same compression loading. Nevertheless, Fig. 1 shows that, in the case of
lamination A, veering phenomena appear as a consequence of severe mode aberrations. Moreover,
Fig. 2 demonstrates the importance of employing adequate structural models when dealing with
this kind of analysis, especially if composite and thin-walled structures are considered. From this
point of view, due to its higher-order and enhanced capabilities, CUF is a good candidate for mode
aberration investigations.
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Figure 2: Representative mode shapes of the composite box strucrure. Lamination A.

As a final comment, it must be underlined that the hypotheses according to which the approxima-
tion in Eq. (2) holds may be too much limiting in the case of problems that involve moderate or
large displacements, e.g. for analyses and investigations that go beyond the first buckling load.
In this case, and by assuming that the nonlinear equilibrium state is reached with infinitesimal
and consecutive load steps (i.e., dynamic effects are not accounted for), the tangent stiffness to be
employed for the linear, free-vibration eigenvalue problem comes from the following expression
of the internal strain energy:

δ (δLint) =< δε
T

δσ >+< δ (δε
T )σ0 > (4)

or rather
Ki jτs

T = Ki jτs +Ki jτs
T1

+Ki jτs
σ0 (5)

where Ki jτs
T1

represents the contribution due to the secant stiffness and Ki jτs
σ0 takes into account both

the linear and geometrical nonlinear stress components. Accordingly, the differences between
linearized and full nonlinear vibration problems will be discussed during the 11th International
Symposium on Vibrations of Continuous Systems.
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