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Abstract. The present work addresses a closed-form solution for the free vibration analysis of
simply supported composite laminated beams via a refined one-dimensional (1D) model, which
employs the Carrera Unified Formulation (CUF). In the framework of CUF, the 3D displace-
ment field can be expanded as any order of generic unknown variables over the cross section,
in the case of beam theories. Particularly, Lagrange expansions of cross-sectional displace-
ment variables in conjunction with Layer-wise (LW) theory are adopted in this analysis. As a
consequence, the governing equations can be derived using the principle of virtual work in a
unified form and can be solved by a Navier-type, closed-form solution. Numerical investigation
is carried out to test the performance of this novel method. The results are compared with those
available in the literature as well as the 3D finite element method (FEM) solutions computed
by commercial codes. The present CUF model is proved to be able of achieving high accu-
rate results with less computational costs. Besides, they may serve as benchmarks for future
assessments in this field.
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1 INTRODUCTION

Determination of vibration characteristics is of crucial importance in the safe design of com-
posite beams subjected to dynamic loads. The classical beam theory under the assumption
outlined by Euler-Bernoulli [1] is inadequate to analyze composite structures because it can not
capture non- classical vibration modes with couplings between torsion, shear and bending.

Many refined 1D beam models have received wide attention over the last few decades and
they can be divided into two categories: Equivalent Single Layer (ESL) and Layer-wise theories.
ESL hypothesizes a continuous and differentiable displacement function through the thickness
direction. Some of the relevant theories are developed within this framework, e.g., first-order
shear deformation theory (FSDT) [2], high-order shear deformation theories (HSDT) [3, 4].
Unfortunately, this approach cannot account for the continuity of the transverse stresses and the
zig-zag behavior of the displacements along the thickness. In the domain of LW, a continuous
displacement function is adopted for each layer, and a discontinuous derivative of displacement
function is imposed at the intra-layer interfaces, see [5, 6].

LW theory can increase the accuracy of results significantly but also computation costs. A
unified beam formulation is proposed in this work within the framework of the Carrera Uni-
fied Formulation [7], which makes use of Lagrange polynomials expansion (LE) to express the
three-dimensional (3D) displacement field via arbitrary order approximation of pure displace-
ment variables at each layer over the cross section, in a LW sense. According to Carrera et
al. [8] and Dan et al. [9], the 1D classical FEM shape functions and Navier-type closed-form
solution were adopted for the free vibration analysis of laminated beams and isotropic beams,
respectively.

In the present paper, the same analytical solution is utilized for the free vibrations of cross-ply
composite beam with compact and thin-walled cross sections subjected to the simply supported
boundary conditions based on 1D CUF LE model and LW theory. The rest of this paper is
structured as follows: (i) a brief introduction of 1D CUF LE theory are given in Section 2; (ii)
The equation of motion is obtained using the Navier-type closed-form solution in Section 3;
(iii) The numerical results of different assessments considered are presented in Section 4; (iv)
some conclusions and remarks of this work are outlined in the last section.

2 1D CUF beam theory

Consider a multi-layer laminated beam in physical coordinate system, as shown in Fig. 1.
The generic displacement field, within the framework of CUF theory, can be expanded as arbi-
trary functions Fτ :

u(x, y, z; t) = Fτ (x, z)uτ (y; t) τ = 1, 2, ....,M (1)

where Fτ is a function depending on the x and z coordinates. uτ is the generic displacements
vector of axial coordinates y. M is the number of expanded terms, and the repeated subscript,
τ , stands for summation.

In this study, Lagrange expansion polynomials are employed as the function Fτ to approx-
imate the displacement field above arbitrarily complex cross sections. The kinematics of a
refined beam model approximated with one single nine-node quadratic Lagrange polynomial
(L9) are presented here as an illustrative example:

ux = F1ux1 + F2ux2 + F3ux3 + F4ux4 + F5ux5 + F6ux6 + F7ux7 + F8ux8 + F9ux9
uy = F1uy1 + F2uy2 + F3uy3 + F4uy4 + F5uy5 + F6uy6 + F7uy7 + F8uy8 + F9uy9
uz = F1uz1 + F2uz2 + F3uz3 + F4uz4 + F5uz5 + F6uz6 + F7uz7 + F8uz8 + F9uz9

(2)
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Figure 1: Physical coordinate system for a laminated composite beam.

For the sake of brevity, the explicit expressions of the function Fτ are not reported here, but
they can be found in [7].

3 Analytical solution

In the case of simply supported composite beam, the displacement fields are assumed as a
sum of harmonic functions:

uxs(y; t) = Uxs sin(αy)e
iωt

uys(y; t) = Uys cos(αy)e
iωt

uzs(y; t) = Uzs sin(αy)e
iωt

(3)

where α is:
α =

mπ

l
(4)

Uxs, Uys and Uzs are the components of the generalized displacements vector. m is the half
wave number along the beam axis, ω is the vibrational natural frequency and i is the imaginary
unit. A compact form of the equations of motion can be obtained in a matrix form through the
variational principle of virtual work:

(Kτs − ω2Mτs)U = 0 (5)

Eq. (5) is assessed for kth layer and can be assembled into a global algebraic eigensystem
in the light of contribution of each layer. LW theory is used to fulfill this procedure, which
can be referred to Pagani et al. [10] for the sake of simplicity. In this paper, LW models are
implemented by utilizing one or more LE expansions on the cross-sectional domain of each
layer, as discussed in the following sections. As a consequence, the theory kinematics can be
opportunely varied at layer level by setting the order of LE expansions. This characteristic of
LE CUF beam models allows the implementation of higher-order LW models in an easy and
straightforward manner.

4 Numerical results

A square cross-section beam, consisting of two-layer [0◦/90◦] laminates of the same thick-
ness, is considered, see Fig. 2. The dimensions of the beam are: l/b = 5m, b = 0.2m,
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Figure 2: Cross section of a two-layer composite beam.

h = 0.2m. The material is assumed to be orthotropic with the following properties: Young
modulus: EL = 250 GPa, ET = 10 GPa; Poisson ratio: νLT = νTT = 0.33; material density:
ρ = 2700 kg/m3; shear modulus: GLT = 5 GPa, GTT = 2 GPa, where the subscripts L and T
represent the direction parallel and perpendicular to the fibres, respectively.

Unless differently specified, we use the notation ζ×ηLβ to denote beams of square cross sec-
tions, where ζ and η stand for the number of Lβ elements in the x direction and z direction, and
β stands for bilinear (4), second-order (9) and cubic (16) Lagrange polynomials, respectively.

Table 1 shows a list of the first five non-dimensional natural frequencies with one half wave
number (m = 1). Degrees of freedoms (DOFs) for different models are also reported in the
second column. The results obtained by various LE models are compared with the classical
beam models, including Euler-Bernoulli beam model (EBBM) and Timoshenko beam model
(TBM), and refined closed-form CUF-TE solutions provided by Giunta et al. [11]. Three-
dimensional finite element model created by Ansys software also serves as a benchmark for the
same assessment, where the quadratic solid element SOLID 186 is used. Two different mesh
schemes (coarse mesh and refined mesh) are adopted to ensure the convergency, where FEM
3Dn stands for the n elements, n× 10 elements and n elements along the x-axis, y-axis and z-
axis, respectively. The non-dimensional natural frequency ω∗ can be computed by the following
equation:

ω∗ = (ωl2/b)
√
ρ/ET (6)

From Table 1, we can see that lower-order CUF-LE models (1×2L4 and 2×2L4) and refined
lower-order CUF-TE model (N = 2) yield poor results in mode 4 and mode 5; namely, axial,
shear modes and their couplings. Conversely, higher-order models making use of L9 and L16
LW approximation can produce the same results as 3D FEM solutions with less computational
costs.

Mode 1 and mode 2 concerning two-layer composite beams obtained by 2 × 2L16 model
are shown in Fig. 3. Out of two graphs, it should be underlined that coupled flexural/torsion
appears due to the unsymmetric lamination in consideration.

5 Conclusions

In this paper, a unified closed-form formulation of refined beam models has been extended
to the free vibration of simply supported cross-ply composite beams. The analysis has been
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Table 1: First five non-dimensional natural frequencies ω∗ for a two-layer composite beam [0◦/90◦] with m=1,
L/b = 5

Model DOFs mode 1a mode 2b mode 3c mode 4d mode 5e

FEM 3D20
g[11] 1037043 4.9357 6.4491 9.0672 33.566 50.448

FEM 3D6
h[11] 33159 4.9387 6.4520 9.0698 33.564 50.441

TBM [11] 10 5.0748 7.5056 -f 40.959 -
EBBM [11] 6 6.0098 10.104 - 57.194 -

Refined CUF-TE Theory [11]
N = 2 18 5.0561 6.9642 10.134 37.566 63.563
N = 10 198 4.9413 6.4779 9.1134 33.910 50.923
N = 15 408 4.9388 6.4663 9.0958 33.803 50.749
N = 23 900 4.9375 6.4603 9.0852 33.718 50.640

Present CUF-LE theory
1× 2L4 18 5.0529 6.8718 9.7712 36.406 60.331
2× 2L4 27 5.0528 6.8698 9.7710 36.406 60.305
1× 2L9 45 5.0186 6.6664 9.4863 33.624 55.646
2× 2L9 75 5.0185 6.4716 9.1681 33.623 51.560
1× 2L16 84 4.9359 6.4518 9.0753 33.568 50.736
2× 2L16 147 4.9358 6.4504 9.0708 33.568 50.564
a: Flexural mode on plane yz
b: Flexural (plane xy)/torsional mode
c: Torsional mode
d: Axial/shear (plane yz) mode
e: Shear mode on plane xz
f : Mode not provided by the theory
g: The number of elements is 20× 200× 20
h: The number of elements is 6× 60× 6

(a) Mode 1, Flexural mode on plane yz of a two-layer
laminated beam (L/b = 5).

(b) Mode 2, Flexural (plane xy)/torsional mode of a
two-layer laminated beam (L/b = 5)

Figure 3: Selected mode shapes of two-layer laminated beams of Table 1 via 2× 2L16 model,m=1.

performed in the domain of Carrera Unified Formulation, where 3D kinematic fields can be
discretized as the expansion of any order of the cross-sectional node displacement unknowns via
Lagrange Expansion (LE), being the ability of Layer-wise naturally satisfied. A numerical case
has been carried out to demonstrate the accuracy and effectiveness of the proposed methodology
in comparison with those from the literature. From these results, the following conclusions can
be drawn:

• LE CUF model are considered to yield similar results as 3D FEM results, and more
accurately than TE CUF model.
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• Non-classical modes such as torsion, shear and axial/shear coupling modes can be de-
tected with higher-order CUF LE model.
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