Location data enabling urban sustainable energy planning

Original
Location data enabling urban sustainable energy planning / Kona, Albana; Giacomo, Martirano; Mutani, Guglielmina. - ELETTRONICO. - (2016).

Availability:
This version is available at: 11583/2693305 since: 2017-11-23T08:51:55Z

Publisher:

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
The European Commission’s science and knowledge service
Joint Research Centre

Location data enabling urban sustainable energy planning

Albana Kona
Giacomo Martirano (JRC external consultant)
Guglielmina Mutani (Politecnico di Torino, IT)

Barcelona, 30 September 2016
INSPIRE Conference
Outline

• Overview of Use Case 4 of the EULF Energy Pilot
• Role of INSPIRE
• Energy Efficiency driven retrofit planning
• Mapping energy consumption
• Urban context variables
• Feasibility index
• Energy saving scenarios
• Input data
Overview of the EULF Energy Pilot UC4

• Goal: To support policy makers to design and implement Energy Efficiency driven renovation plans of building stock at urban level.
• Description: Use of existing models, from bottom-up to top-down approach, for the estimation of energy needs at urban level, based on real energy consumption data of a sample of buildings:
 • for building stock renovation planning and prioritization of interventions, e.g. by class of buildings and/or geographical area of interventions (e.g. in areas having energy distribution networks or in historical centres);
 • to enable Public Authorities (e.g. Municipalities) to assess the energy saving potential related to the building stock and to local conditions (e.g. climate);
 • to allow reuse of scaling-up models (from building to urban level) in different climatic conditions and with different characteristics of the building stock.
Role of INSPIRE

• Introduce INSPIRE into a methodology already applied to a test area (without INSPIRE), in order to facilitate the re-use of the methodology in other geographical contexts
Energy Efficiency driven retrofit planning

Urban or territorial scale:
- Existing buildings stock information: land use, Technical Maps, energy supply systems, and energy sources (literature)
- Population data: ISTAT census
- Thermal and electrical energy consumption data at territorial scale: SEAP
- Climate data: HDD

EPC database (GIS)

City energy use model

Drivers of energy use

Evaluation of a Feasibility index for buildings’ retrofit at census section level

Energy savings models at buildings’ scale kWh/m2/y

New energy-use scenarios MWh/y
Mapping energy consumption
Urban context variables

\[\text{kWh/m}^3 \quad \text{[CONTEXT]} = f(\text{BD, BCR, H/W, H/Havg, MOS, A}) \]

BD – Building Density \([m^3/m^2]\)

BCR – Building Coverage Ratio \([m^2/m^2]\)

\[\text{BD} = \text{BCR} \cdot \text{Building Height} \]

\[\text{BCR} = \frac{\text{Built Area}}{\text{Site Area}} \]
Mapping energy consumption

Case study: Turin (IT)

Space heating energy-use of 59 residential buildings
22 census sections
Heating season 2012/2013 = 2348 HDD
Heating season 2013/2014 = 1962 HDD
Weather station ARPA – via della Consolata
Mapping energy consumption

\[T_{\text{air}} = 23.05 \cdot G_{\text{mT}} + 2.69 \cdot BCR + 0.03 \cdot H/W + 0.65 \cdot MOS + 1.07 \cdot H/H_{\text{avg}} - 1.17 \cdot A - 0.6 \cdot H_2O \]
Feasibility index

The Feasibility index is a composite measure that evaluates various factors influencing the potential for energy efficiency improvements. It is calculated using a weighted average of several key factors:

1. **Age factor**
 - Population with scholastic graduation / total population
 - Variables: AWARENESS
 - Active population (24-65) / total population
 - Variables: ECONOMIC, DECISION, INTEREST

2. **Education factor**
 - Population with scholastic graduation / total population
 - Variables: AWARENESS
 - Active population (24-65) / total population
 - Variables: ECONOMIC, DECISION, INTEREST

3. **Employment factor**
 - Employed people / total population
 - Variables: ECONOMIC, CREDIT ACCESS

4. **Period of construction factor**
 - Buildings built before 1945
 - Variables: DECISION, INTEREST

5. **Occupation factor**
 - Variables: ECONOMIC

Feasibility Index Calculation

<table>
<thead>
<tr>
<th>Factor</th>
<th>First class</th>
<th>Second class</th>
<th>Third class</th>
<th>Fourth class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feasibility index</td>
<td><0.42</td>
<td>0.42 - 0.50</td>
<td>0.50 - 0.58</td>
<td>> 0.58</td>
</tr>
<tr>
<td>Number of buildings in the Metropolitan City of Torino</td>
<td>13%</td>
<td>42%</td>
<td>39%</td>
<td>6%</td>
</tr>
<tr>
<td>Number of buildings in Torino</td>
<td>20%</td>
<td>54%</td>
<td>23%</td>
<td>3%</td>
</tr>
<tr>
<td>Renovation level</td>
<td>windows substitution</td>
<td>+ boiler substitution</td>
<td>+ thermal insulation of slab and roof</td>
<td>+ thermal insulation of facades</td>
</tr>
</tbody>
</table>
Feasibility index
Energy savings scenarios

Energy savings: short-medium term objectives

Energy savings: medium-long term objectives
Input data

- energy consumption data at building level
- building characteristics
- energy networks
- land use
- population distribution
- socio-economic variables

BU ext
US
LU, LC
SU+PD
Stay in touch

Twitter: @EU_ScienceHub @EULocation

LinkedIn: [european-commission-joint-research-centre](https://www.linkedin.com/company/european-commission-joint-research-centre)

Website: http://ec.europa.eu/isa/actions/02-interoperability-architecture/2-13action_en.htm

Email: eulf-info@jrc.ec.europa.eu