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Abstract

In today’s world, large volumes of data are being continuously generated

by many scientific applications, such as bioinformatics or networking. Since

each monitored event is usually characterized by a variety of features, high-

dimensional datasets have been continuously generated. To extract value

from these complex collections of data, different exploratory data mining al-

gorithms can be used to discover hidden and non-trivial correlations among

data. Frequent closed itemset mining is an effective but computational ex-

pensive technique that is usually used to support data exploration. Thanks

to the spread of distributed and parallel frameworks, the development of scal-

able approaches able to deal with the so called Big Data has been extended

to frequent itemset mining. Unfortunately, most of the current algorithms

are designed to cope with low-dimensional datasets, delivering poor perfor-

mances in those use cases characterized by high-dimensional data. This work

Preprint submitted to Big Data Research October 22, 2017



introduces PaMPa-HD, a MapReduce-based frequent closed itemset mining

algorithm for high dimensional datasets. An efficient solution has been pro-

posed to parallelize and speed up the mining process. Furthermore, different

strategies have been proposed to easily configure the algorithm parameter.

The experimental results, performed on real-life high-dimensional use cases,

show the efficiency of the proposed approach in terms of execution time, load

balancing and robustness to memory issues.

Keywords: high-dimensional data, frequent closed itemset mining, Hadoop

Framework

1. Introduction

In the last years, the increasing capabilities of recent applications to pro-

duce and store huge amounts of information, the so called ”Big Data” [1],

have changed dramatically the importance of the intelligent analysis of data.

Data mining, together with machine learning [2], is considered one of the

fondamental tools on which Big Data analytics are based. In both academic

and industrial domains, the interest towards data mining, which focuses on

extracting effective and usable knowledge from large collections of data, has

risen. The need for efficient and highly scalable data mining tools increases

with the size of the datasets, as well as their value for businesses and re-

searchers aiming at extracting meaningful insights increases.

Frequent (closed) itemset mining is among the most complex exploratory

techniques in data mining. It is used to discover frequently co-occurring items

according to a user-provided frequency threshold, called minimum support.

Existing mining algorithms revealed to be very efficient on simple datasets
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but very resource intensive in Big Data contexts. In general, the application

of data mining techniques to Big Data collections is characterized by the

need of huge amount of resources. For this reason, we are witnessing the ex-

plosion of parallel and distributed approaches, typically based on distributed

frameworks, such as Apache Hadoop [3] and Spark [4]. Unfortunately, most

of the scalable distributed techniques for frequent itemset mining have been

designed to cope with datasets characterized by few items per transaction

(low dimensionality, short transactions), focusing, on the contrary, on very

large datasets in terms of number of transactions. Currently, only single-

machine implementations exist to address very long transactions, such as

Carpenter [5], and no distributed implementations at all.

Nevertheless, many scientific applications, such as bioinformatics or network-

ing, generate a large number of events characterized by a variety of features.

Thus, high-dimensional datasets have been continuosly generated. For in-

stance, most gene expression datasets are characterized by a huge number of

items (related to tens of thousands of genes) and a few records (one transac-

tion per patient or tissue). Many applications in computer vision deal with

high-dimensional data, such as face recognition. An increasing portion of big

data is actually related to geospatial data [6] and smart-cities. Some studies

have built this type of large datasets measuring the occupancy of different

car lanes: each transaction describes the occupancy rate in a captor location

and in a given timestamp [7]. In the networking domain, instead, the het-

erogeneous environment provides many different datasets characterized by

high-dimensional data, such as URL reputation, advertising, and social net-

work datasets [8]. To effectively deal with those high-dimensional datasets,
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novel and distributed approaches are needed.

This work introduces PaMPa-HD [9], a parallel MapReduce-based fre-

quent closed itemset mining algorithm for high-dimensional datasets. PaMPa-

HD relies on the Carpenter algorithm [5]. The PaMPa-HD design, through

an ad-hoc synchronization technique, takes into account crucial design as-

pects, such as load balancing and robustness to memory-issues. Furthermore,

different strategies have been proposed to easily tune up the parameter con-

figuration. The algorithm has been thoroughly evaluated on real high di-

mensional datasets. PaMPa-HD outperforms the state-of-the-art distributed

approaches in execution time and by supporting lower minimum support

threshold.

The paper is organized as follows: Section 2 introduces the frequent

(closed) itemset mining problem, Section 3 briefly describes the centralized

version of Carpenter, and Section 4 presents the proposed PaMPa-HD algo-

rithm. Section 5 describes the experimental evaluations proving the effective-

ness of the proposed technique, Section 6 presents a brief review of the state

of the art, and Section 7 discusses possible applications of PaMPa-HD. Fi-

nally, Section 8 includes a brief summary of the experimental results and the

proposed solution, while Section 9 introduces possible further developments.

2. Frequent itemset mining background

Let I be a set of items. A transactional dataset D consists of a set of

transactions {t1, . . . , tn}, where each transaction ti ∈ D is a set of items (i.e.,

ti ⊆ I) and it is identified by a transaction identifier (tidi). Figure 1a reports

an example of a transactional dataset with 5 transactions. It is used as a
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D

tid items

1 a,b,c,l,o,s,v

2 a,d,e,h,l,p,r,v

3 a,c,e,h,o,q,t,v

4 a,f,v

5 a,b,d,f,g,l,q,s,t

(a) Horizontal representa-

tion of D

TT

item tidlist

a 1,2,3,4,5

b 1,5

c 1,3

d 2,5

e 2,3

f 4,5

g 5

h 2,3

l 1,2,5

o 1,3

p 2

q 3,5

r 2

s 1,5

t 3,5

v 1,2,3,4

(b) Transposed repre-

sentation of D

TT |{2,3}

item tidlist

a 4,5

e -

h -

v 4

(c) TT |{2,3}: ex-

ample of conditio-

nal transposed ta-

ble

Figure 1: Running example dataset D

running example through the paper.

An itemset I is defined as a set of items (i.e., I ⊆ I) and it is characterized

by a tidlist and a support value. The tidlist of an itemset I, denoted by
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tidlist(I), is defined as the set of tids of the transactions in D containing

I, while the support of I in D, denoted by sup(I), is defined as the ratio

between the number of transactions in D containing I and the total number

of transactions in D (i.e., |tidlist(I)|/|D|). For instance, the support of the

itemset {aco} in the running example dataset D is 2/5 and its tidlist is

{1, 3}. An itemset I is considered frequent if its support is greater than a

user-provided minimum support threshold minsup.

Given a transactional datasetD and a minimum support threshold minsup,

the Frequent Itemset Mining [10] problem consists in extracting the complete

set of frequent itemsets from D. In this paper, we focus on a valuable subset

of frequent itemsets called frequent closed itemsets [5]. Closed itemsets allow

representing the same information of traditional frequent itemsets in a more

compact form. In addition, an item or itemset I is closed in D if there exists

no superset that has the same support count as I.

For instance, in our running example, given a minsup = 2, the itemset {ab}

is a frequent itemset (support=2), but it is not closed for the presence of the

itemset {abls} (support=2).

A transactional dataset can also be represented in a vertical format, which

is usually a more effective representation of the dataset when the average

number of items per transactions is orders of magnitudes larger than the

number of transactions. In this representation, also called transposed table

TT , each row consists of an item i and its list of transactions, i.e., tidlist({i}).

Let r be an arbitrary row of TT , r.tidlist denotes the tidlist of row r. Fig-

ure 1b reports the transposed representation of the running example reported

in Figure 1a.
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Given a transposed table TT and a tidlist X, the conditional transposed

table of TT on the tidlist X, denoted by TT |X , is defined as a transposed

table such that: (1) for each row ri ∈ TT such that X ⊆ ri.tidlist there

exists one tuple r′i ∈ TT |X and (2) r′i contains all tids in ri.tidlist whose

tid is higher than any tid in X. For instance, consider the transposed table

TT reported in Figure 1b. The projection of TT on the tidlist {2,3} is

the transposed table reported in Figure 1c. Each transposed table TT |X is

associated with an itemset composed by the items in TT |X . For instance,

the itemset associated with TT |{2,3} is {aehv} (see Figure 1c).

3. The Carpenter algorithm

The most popular techniques to perform itemset mining (e.g., Apriori [11]

and FP-growth [12]) adopt the itemset enumeration approach (see Section 6

for further discussion). However, itemset enumeration revealed to be ineffec-

tive with datasets with a high average number of items per transactions [5].

To tackle this problem, the Carpenter algorithm [5] was proposed. Specifi-

cally, Carpenter is a frequent itemset extraction algorithm devised to han-

dle datasets characterized by a relatively small number of transactions but a

huge number of items per transaction. To efficiently solve the itemset mining

problem, Carpenter adopts an effective depth-first transaction enumeration

approach based on the transposed representation of the input dataset. To

illustrate the centralized version of Carpenter, we will use the running ex-

ample dataset D reported in Figure 1a, and more specifically, its transposed

version (see Figure 1b). Recall that in the transposed representation each

row of the table consists of an item i with its tidlist. For instance, the last
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Figure 2: The transaction enumeration tree of the running example dataset in Figure 1a.

For the sake of clarity, no pruning rules are applied to the tree.

row of Figure 1b shows that item v appears in transactions 1, 2, 3, 4.

Basically, Carpenter builds a transaction enumeration tree by exploiting
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a set of pruning rules which avoid the expansion of useless branch of the

tree. In the tree, each node corresponds to a conditional transposed table

TT |X and its related information (i.e., the tidlist X with respect to which the

conditional transposed table is built and its associated itemset). The trans-

action enumeration tree, when pruning techniques are not applied, contains

all the tid combinations (i.e., all the possible tidlists X). Figure 2 reports

the transaction enumeration tree obtained by processing the running exam-

ple dataset. To avoid the generation of duplicate tidlists, the transaction

enumeration tree is built by exploring the tids in lexicographical order (e.g.,

TT |{1,2} is generated instead of TT |{2,1}). Each node of the tree is associated

with a conditional transposed table on a tidlist. For instance, the conditional

transposed table TT |{2,3} in Figure 1c, matches the node {2, 3} in Figure 2.

Carpenter performs a depth first search (DFS) of the enumeration tree

to mine the set of frequent closed itemsets. Referring to the tree in Figure 2,

the depth first search would lead to the visit of the nodes in the following

order: {1}, {1,2}, {1,2,3}, {1,2,3,4}, {1,2,3,4,5}, {1,2,3,5}, {...}. For each

node, Carpenter applies a procedure that decides if the itemset associated

with that node is a frequent closed itemset or not. Specifically, for each

node, Carpenter decides if the itemset associated with the current node is a

frequent closed itemset by considering:

1. The tidlist X associated with the node, useful to enforce the depth-first

exploration and to check the actual support of the itemset

2. The conditional transposed table TT |X , used to obtain the itemset

associated to the node and, through the remaing tids, determine how

and if the node should be expanded
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3. The set of itemsets found up to the current step of the tree search, used

to avoid to process the same itemset twice (due to the enumeration tree

architecture, the real support of the itemset is the one obtained the first

time the itemset is processed in a depth-first exploration manner)

4. The enforced minimum support threshold (minsup), used to decide if

the itemset is a frequent closed itemset

Based on the theorems reported in [5], if the itemset I associated with the

current node is a frequent closed itemset then I is included in the frequent

closed itemset set. Moreover, by exploiting the analysis performed on the

current node, part of the remaining search space (i.e., part of the enumeration

tree) can be pruned, to avoid the analysis of nodes that will never generate

new closed itemsets. To this purpose, three pruning rules are applied on the

enumeration tree, based on the evaluation performed on the current node

and the associated transposed table TT |X :

• Pruning rule 1. If the size of X, plus the number of distinct tids in

the rows of TT |X does not reach the minimum support threshold, the

subtree rooted in the current node is pruned.

• Pruning rule 2. If there is any tid tidi that is present in all the

tidlists of the rows of TT |X , tidi is deleted from TT |X . The number of

discarded tids is updated to compute the correct support of the itemset

associated with the pruned version of TT |X .

• Pruning rule 3. If the itemset associated with the current node has

been already encountered during the depth first search, the subtree
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rooted in the current node is pruned because it can never generate new

closed itemsets.

The tree search continues in a depth first fashion moving on the next node

of the enumeration tree. More specifically, let tidl be the lowest tid in the

tidlists of the current TT |X , the next node to explore is the one associated

with X ′ = X ∪ {tidl}.

Among the three rules mentioned above, pruning rule 3 assumes a global

knowledge of the enumeration tree explored in a depth first manner. This,

as detailed in section 4, is very challenging in a distributed environment that

adopts a shared-nothing architecture, like the one we address in this work.

4. The PaMPa-HD algorithm

In this section we describe the new algorithm, called PaMPa-HD, pro-

posed in this paper. Specifically, we describe how PaMPa-HD parallelizes

the itemset mining process and applies the pruning rules discussed in Sec-

tion 3 in a parallel environment. Furthermore, we discuss how, through an

ad-hoc synchronization phase, PaMPa-HD achieves a good load balancing

and robustness to memory issues.

As discussed in the previous section, given the complete enumeration tree

(see Figure 2), the centralized Carpenter algorithm extracts the whole set of

closed itemsets by performing a depth first search (DFS) of the tree. Differ-

ently, in order to parallelize the mining process, the PaMPa-HD algorithm

splits the depth first search process in a set of (partially) independent sub-

processes, that autonomously evaluate sub-trees of the search space. Specif-

ically, the whole problem can be split by assigning each subtree rooted in
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Figure 3: Running toy example: each node expands a branch of the tree independently.

For the sake of clarity, pruning rule 1 and 2 are not applied. The pruning rule 3 is applied

only within the same task: the small crosses on the edges represent pruned nodes due to

local pruning rule 3, e.g. the one on node {2 4} represents the pruning of node {2 4}.
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TT |X , where X is a single transaction id in the initial dataset, to an in-

dependent sub-process. Each sub-process applies the centralized version of

Carpenter on its conditional transposed table TT |X and extracts a subset

of the final closed itemsets. The subsets of closed itemsets mined by each

sub-process are merged to compute the whole closed itemset result. Since

the sub-processes are independent, they can be executed in parallel by means

of a distributed computing platform, e.g., Hadoop. Figure 3 shows the ap-

plication of the proposed approach on the running example. Specifically, five

independent sub-processes are executed in the case of the running example,

one for each row (transaction) of the original dataset. The crosses on the

nodes represent the local pruning within each parallel task. Partitioning the

enumeration tree in sub-trees allows processing bigger enumeration trees with

respect to the centralized version. However, this approach does not allow fully

exploiting pruning rule 3 because each sub-process works independently and

is not aware of the partial results (i.e., closed itemsets) already extracted by

the other sub-processes. Hence, each sub-process can only prune part of its

own search space by exploiting its “local” closed itemset list, while it cannot

exploit the closed itemsets already mined by the other sub-processes. For

instance, Task T2 in Figure 3 extracts the closed itemset av associated with

node TT |2,3,4. However, the same closed itemset is also mined by T1 while

evaluating node TT |1,2,3. In the centralized version of Carpenter, the du-

plicate version of av associated with node TT |1,2,4 is not generated because

TT |1,2,4 follows TT |1,2,3 in the depth first search, i.e., the tasks are serialized

and not parallel.

Since pruning rule 3 has a high impact on the reduction of the search
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space, its inapplicability leads to a negative impact on the execution time

of the distributed algorithm (see Section 5 for further details). To address

this issue, we share partial results among the sub-processes. Each indepen-

dent sub-process analyzes only a part of the search subspace. Then, when

a maximum number of visited nodes is reached, the partial results are syn-

chronized through a synchronization phase. Of course, the exploration of the

tree finishes also when the subspace has been completely explored.

Specifically, the sync phase filters the partial results (i.e., nodes of the

tree still to be analyzed and found closed itemsets) globally applying pruning

rule 3. The pruning strategy consists of two phases. In the first one, all the

transposed tables and the already found closed itemsets are analyzed. The

transposed tables and the closed itemsets related to the same itemset are

grouped together in a bucket. For instance, in our running example, each

element of the bucket Bav can be:

• a frequent closed itemset av extracted during the subtree exploration

of the node TT3,4,

• a transposed table associated to the itemset av among the ones that

still have to be expanded (nodes TT1,2,3 and TT2,3,4).

We remind the readers that, because of the independent nature of the Car-

penter subprocesses, the elements related to the same itemset can be nu-

merous, because obtained in different subprocesses. Please note that all the

extracted closed itemsets come together with the tidlist of the node in which

they have been extracted.

In the second phase, in order to respect the depth-first pruning strategy
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of the rule 3, for each bucket it is kept only the oldest element (transposed

table or closed itemset) based on a depth-first order. The depth-first sorting

of the elements can be easily obtained comparing the tidlists of the elements

of the bucket. Therefore, in our running example from the bucket Bav, it is

kept the node TT1,2,3 (See Figure 5) . The transposed tables which are not

pruned in this phase are then expanded to continue the enumeration tree

exploration.

Afterwards, a new set of sub-processes is defined from the filtered results,

starting a new iteration of the algorithm. In the new iteration, the Carpen-

ter tasks process also the frequent closed itemsets obtained in the previous

iteration, which are used to enrich the local memory of the task and enhance

the effectiveness of the local pruning. The Carpenter tasks process the re-

maining transposed tables, that are expanded, as before, until the maximum

number of processed tables is reached. In order to enhance the effectiveness

of the pruning rules related to the local Carpenter task, the tables are pro-

cessed in a depth-first order. After that, as before, in the synchronization

phase, pruning rule 3 is applied. The overall process is applied iteratively by

instantiating new sub-processes and synchronizing their results, until there

are no nodes left. The application of this approach to our running example

is represented in Figure 4, in which the small crosses represent the prun-

ing related to the local state memory; and in Figure 5, in which the bigger

crosses represent the pruning related to the synchronization phase. The ta-

ble related to the itemset av associated with the tidlist/node {2, 3, 4} is

pruned because the synchronization job discovers a previous table with the

same itemset, i.e. the node associated with the transaction ids combina-
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tion {1, 2, 3}. The use of this approach allows the parallel execution of the

mining process, providing at the same time a very high reliability dealing

with heavy enumeration trees, which can be split and pruned according to

pruning rule 3. Of course, this architecture cannot deliver the same prun-

ing efficiency characterizing the centralized implementation of Carpenter in

which the complete tree depth-first exploration is known.

The introduction of the sync phase leads also to a better load balancing

of the tasks. At each synchronization, the tables to process are redistributed

among the tasks. Therefore, the task related to the first branches of the tree,

which are the ones with more nodes than others, are splitted into several

subtasks. In this way, as shown Section 5, we achieve a better exploitation

of the resources.

4.1. Implementation details

PaMPa-HD implementation uses the Hadoop MapReduce framework.

The algorithm consists of three MapReduce jobs as shown in PaMPa-HD

pseudocode (Algorithm 1). The source code of PaMPa-HD is freely available

at https://github.com/fpulvi/PaMPa-HD .

The Job 1, whose pseudocode is reported in Algorithm 2, is developed to

distribute the input dataset to the independent tasks, which will run a local

and partial version of the Carpenter algorithm. The second job performs the

synchronization of the partial results and exploits the pruning rules. At the

end, the last job interleaves the Carpenter execution with the synchroniza-

tion phase.

Job 1 (Algorithm 2). Each mapper is fed with a transaction of the input

16



Figure 4: Execution of PaMPa-HD on the running example dataset. For the sake of clarity,

pruning rules 1 and 2 are not applied. The dark nodes represent the nodes that have been

written to HDFS in order to apply the synchronization job.
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Figure 5: Execution of PaMPa-HD on the running example dataset. For the sake of clarity,

pruning rules 1 and 2 are not applied. The big checked crosses on nodes represent the

nodes which have been removed by the synchronization job, e.g., the one on node {2 3 4}

represents the pruning of node {2 3 4}.
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Algorithm 1 PaMPa-HD at a glance
1: procedure PaMPa-HD(minsup; initial TT )

2: Job 1 Mapper: process each row of TT

and send it to reducers, using as key values

the tids of the tidlists

3: Job 1 Reducer: aggregate TT |x and run

local Carpenter until expansion threshold is

reached or memory is not enough

4: Job 2 Mapper: process all the closed itemset

or transposed tables from the previous job

and send them to reducers

5: Job 2 Reducer: for each itemset belonging

to a table or a frequent closed, keep

the eldest in a Depth First fashion

6: Job 3 Mapper: process each closed itemset

and TT |x from the previous job.

For the transposed tables run local Carpenter

until expansion threshold is reached

7: Job 3 Reducer: for each itemset belonging

to a table or a frequent closed, keep

the eldest in a Depth First fashion

8: Repeat Job 3 until there are no more

conditional tables

9: end procedure

dataset, which is supposed to be in a vertical representation, together with

the minsup parameter. As detailed in Algorithm 2, each transaction is in the

form item, tidlist. For each transaction, the mapper performs the following

steps. For each tid ti of the input tidlist, given TLgreater the set of tids

(ti+1, ti+2, ..., tn) greater than the considered tid ti (lines 2-7 in Algorithm 2).

• If |TLgreater| >= minsup, output a key-value pair <key= ti; value=

TLgreater, item>, then analyze ti+1 of the tidlist.

• Else discard the tidlist.

19



For instance, if the input transaction is the tidlist of item b (b, 1 2 3) and

minsup is 1, the mapper will output three pairs: <key=1; value=2 3, b>,

<key=2; value=3, b>, <key=3; value=b>.

After the map phase, the MapReduce shuffle and sort phase aggregates the

<key,value>pairs and delivers to reducers the nodes of the first level of the

tree, which represent the transposed tables projected on a single tid (lines

10-13 in Algorithm 2). The tables in Figure 6 illustrate the processing of

a row of the initial Transposed representation of D. Given that each key

matches a single transposed table TTX , each reducer builds the transposed

tables with the tidlists contained in the “value” fields.

From this table, a local Carpenter routine is run (line 14 in Algorithm 2).

Carpenter recursively processes a transposed table expanding it in a depth-

first manner (see Section 3 for further details). However, the local Carpenter

routine stops when the number of processed transposed tables is over the

given maximum expansion threshold. This allows periodically performing

the synchronization among the parallel tasks and hence enforcing pruning

rule 3. All the intermediate results of the local invocation of the Carpenter

routine are written to HDFS (lines 15-17 in Algorithm 2).

During the local Carpenter process, the found closed itemsets and the ex-

plored branches are stored in memory in order to apply a local pruning. The

closed itemsets are emitted as output at the end of the task, together with

the tidlist of the node of the tree in which they have been found (lines 18-20

in Algorithm 2). This information is required by the synchronization phase

in order to establish which element is the eldest in a depth first exploration,

i.e., which element is visited first in a depth first exploration (e.g. the node
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associated with tidlist {1, 2, 3, 5} is eldest than the node associated with

tidlist {2, 3, 4} in a depth-first exploration order).

Algorithm 2 Dataset distribution and local and partial Carpenter execution

(Job 1)
1: procedure Mapper(minsup; itemi; tidlist TL)

2: for j = 0 to |(TL)| − 1 do

tidlist TLgreater : set of tids greater than

the considered tid tj .

3: if |TLgreater| ≥ minsup then

4: output <key= tj ; value= TLgreater, item>

5: else Break

6: end if

7: end for

8: end procedure

9: procedure Reducer(key = tid X, value = tidlists TL[ ])

10: Create new transposed table TT |X
11: for each tidlist TLi of TL[ ] do

12: add TLi to TT |X (populate the transposed table)

13: end for

14: Run Carpenter(minsup;TT |X ;max exp)

15: for each transposed table I found but not processed do

16: Output<itemset; tidlist+ TransposedTable I rows>

17: end for

18: for each frequent closed itemset found do

19: Output(<itemset; tidlist+ support>)

20: end for

21: end procedure

Job 2 (Algorithm 3). The synchronization phase is a straightforward

MapReduce job in which mappers input is the output of the previous job: it

is composed of the closed frequent itemsets found in the previous Carpenter

tasks and intermediate transposed tables that still have to be expanded. The
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item tidlist

a 1,2,3,4,5

(a) Transposed repre-

sentation of D: tidlist

of item a

key value

1 2,3,4,5 |a

2 3,4,5 |a

3 4,5 |a

4 5 |a

5 - |a

(b) Emitted key-

value entries from

the example row in

Table 1b

key value

3 4,5 |a

3 - |c

3 - |e

3 - |h

3 - |o

3 5 |q

3 5 |t

3 4 |v

(c) key-value en-

tries for key 3

TT |{3}

item tidlist

a 4,5

c -

e -

h -

o -

q 5

t 5

v 4

(d) TT |{3}: com-

posed with the re-

ceived values

Figure 6: Job 1 applied to the running example dataset (minsup = 1): local Carpenter

algorithm is run from the Transposed Table 6d.
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itemsets are associated to their minsup and the tidlist related to the node of

the tree in which they have been found; the transposed tables are associated

to the table content, the corresponding itemset and the table tidlist.

• For each table, the mappers output a pair of the form <key=itemset;

value=tidlist,table rows>(lines 2 - 5 of Algorithm 3);

• for each itemset, the mappers output a pair in the form <key=itemset;

value=tidlist,minsup>(lines 6 - 11 of Algorithm 3).

The shuffle and sort phase delivers to the reducers the pairs aggregated by

keys. The reducers, which match the buckets introduced in Section 4, com-

pare the entries and emit, for the same key or itemset, only the oldest version

in a depth first exploration (lines 15 - 21 of Algorithm 3). For instance, re-

ferring to our running example in Figure 5, in the reducer related to the

itemset av are collected the entries related to the nodes T123 and T234. Since

the tidlist 123 is previous than 234 in a depth-first exploration order, the

reducer keeps and emits only the entry related to the node T123. With this

design, the redundant tables that can be obtained due to the independent

nature of the Carpenter tasks, which can explore nodes related to the same

itemsets, are discarded. This pruning is very similar to the one performed

in centralized memory at the cost of a very MapReduce-like job (similar to

a WordCount application).

Job 3 (Algorithm 4). This is a mixture of the two previous jobs. In

the Map phase all the remaining tables are expandend by a local Carpenter

routine. The Reduce phase, instead, applies the same kind of synchroniza-
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tion that is run in the synchronization job. The job has two types of input:

transposed tables and frequent closed itemsets. The former are processed

respecting a depth-first sorting and expanded until it is reached the maxi-

mum expansion threshold (line 5 of Algorithm 4). From that moment, the

tables are not expanded but sent to the reducers (lines 6 - 8 of Algorithm 4).

Please note that the tree exploration processing the initial transposed tables

in a depth-first order is the same to a centralized architecture, enhancing the

impact of pruning rule 3 (which strongly relies on this exploration manner).

The latter (i.e. the frequent closed itemsets of the previous PaMPa-HD job)

are processed in the following way. If in memory there is already an oldest

depth-first entry of the same itemset, the closed itemset is discarded. If there

is not, it is saved into memory and used to improve the local pruning effec-

tiveness (lines 2 - 3). At the end of the task, all the frequent closed itemsets

found are sent to the reducers, where the redundant elements are pruned.

This job is iterated until all the transposed tables have been processed.

Thanks to the introduction of a global synchronization phase (Job 2 and

Job 3 in Algorithms 3 and 4), the proposed PaMPa-HD approach is able to

apply pruning rule 3 and handle high-dimensional datasets, otherwise not

manageable due to memory issues.
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Algorithm 3 Synchronization Phase and exploitation of the pruning rule 3

(Job 2)
1: procedure Mapper(Frequent Closed itemset;

Transposed table)

2: if Input I is a table then

3: itemset← ExtractItemset(I)

4: tidlist← ExtractT idlist(I)

5: Output(<itemset; tidlist+ table I rows>)

6: else (i.e. input I is a frequent closed Itemset)

7: itemset← ExtractItemset(I)

8: tidlist← ExtractT idlist(I)

9: support← ExtractSupport(I)

10: Output(<itemset; tidlist+ support>)

11: end if

12: end procedure

13: procedure Reducer(key = itemset;

value = itemsets & tables T [ ])

14: oldest← null

15: for each itemset or table T of T [ ] do

16: tidlist← ExtractT idlist(T )

17: if tidlist previous of oldest in a Depth-First Search then

18: oldest← T

19: end if

20: end for

21: Output(<itemset+ oldest>)

22: end procedure
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Algorithm 4 Interleaving of the Carpenter execution and synchronization

phase (Job 3)
1: procedure Mapper(Frequent Closed itemset;Transposed table)

2: if Input I is a frequent closed itemset then

3: save I to local memory

4: else (i.e. input I is a Transposed Table)

5: Run Carpenter(minsup;TT |X ;max exp)

6: for each transposed table I found but not processed do

7: Output<itemset; tidlist+ TransposedTable I rows>

8: end for

9: end if

10: for each frequent closed itemset found do

11: Output(<itemset; tidlist+ support>)

12: end for

13: end procedure

14: procedure Reducer(key = itemset;

value = itemsets & tables T [ ])

15: oldest← null

16: for each itemset or table T of T [ ] do

17: tidlist← ExtractT idlist(T )

18: if tidlist previous of oldest in a Depth-First Search then

19: oldest← T

20: end if

21: end for

22: Output(<itemset+ oldest>)

23: end procedure

5. Experiments

In this section, we present a set of experiments to evaluate the perfor-

mance of the proposed algorithm. Firstly, we asses the impact on perfor-

mance of the maximum expansion threshold (max exp ) parameter (Sec-

tion 5.1). This phase is mandatory in order to tune-up the parameter con-

figuration to compare the proposed approach with the state-of-the-art algo-
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rithms. Because the tuning of the parameter is not trivial, we discuss and

experimentally evaluate some self-tuning strategies to automatically set the

max exp parameter and improve the performance (Section 5.2).

Next, we evaluate the speed of the proposed algorithm, comparing it

with the state-of-the-art distributed approaches (Section 5.3). Finally, we

experimentally analyze the impact of (i) the number of transactions of the

input dataset (Section 5.4), (ii) the number of parallel tasks (Section 5.5),

and (iii) the resouce utilization and load balancing (Section 5.6).

Experiments have been performed on two real-world datasets. The first

is the PEMS-SF dataset [13], which describes the occupancy rate of different

car lanes of San Francisco bay area freeways (15 months worth of daily data

from the California Department of Transportation [14]). Each transaction

represents the daily traffic rates of 963 lanes, sampled every 10 minutes. It is

characterized by 440 rows and 138,672 attributes (6 x 24 x 963), and it has

been discretized in equi-width bins, each representing 0.1% occupancy rate.

As mentioned, PaMPa-HD design is focused on scaling up in terms of

number of attributes, being able to cope with high-dimensional datasets. For

this reason, we have used a 100-rows version of the PEMS-SF dataset for all

the experiments. However, we have used the full dataset and several down-

sampled versions (in terms of number of rows) to measure the impact of the

number of transactions on the performance of the algorithm (Section 5.4).

The second dataset is the Kent Ridge Breast Cancer [15], which contains

gene expression data. It is characterized by 97 rows that represent patient

samples, and 24,482 attributes related to genes. The attributes are numeric

(integers and floating point). Data have been discretized with an equal-depth
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partitioning using 20 buckets (similarly to [5]). The discretized versions of the

real datasets are publicly available at http://dbdmg.polito.it/PaMPa-HD/.

Table 1: Datasets

Dataset Number of Number of Number

transactions different items of items

per transaction

PEMS-SF 440 8,685,087 138,672

Dataset

Kent Ridge Breast 97 489,640 24,492

Cancer Dataset

PaMPa-HD is implemented in Java 1.7.0 60 using the Hadoop MapRe-

duce API. The experiments were performed on two different configurations.

The first, Configuration 1, consists of a cluster of 5 nodes running the Cloud-

era Distribution of Apache Hadoop (CDH5.3.1). Each cluster node is a 2.67

GHz six-core Intel(R) Xeon(R) X5650 machine with 32 Gbyte of main mem-

ory. The configuration assumes 17 contemporary independent Yarn contain-

ers (tasks) of 6 GB of memory. Configuration 2 consists of a larger shared

Hadoop cluster of 30 nodes with 2.5 TB of total RAM and 324 processing

cores provided by Intel CPUs E5- 2620 at 2.6GHz, running the same Cloudera

Distribution of Apache Hadoop (CDH5.3.1). We were able to work with 80

contemporary independent Yarn containers (tasks), each one characterized

by 4GB of main memory.
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5.1. Impact of the maximum expansion threshold

In this section we analyze the impact of the maximum expansion thresh-

old (max exp) parameter, which indicates the maximum number of nodes

to be explored before a preemptive stop of each distributed sub-process is

forced. This parameter, as already discussed in Section 4, strongly affects

the enumeration tree exploration, forcing each parallel task to stop before

completing the visit of its sub-tree and send the partial results to the syn-

chronization phase. This approach allows the algorithm to globally apply

pruning rule 3 and reduce the search space. Low values of max exp thresh-

old increase the load balancing, because the global problem is split into sim-

pler and less memory-demanding sub-problems, and, above all, facilitate the

global application of pruning rule 3, hence a smaller subspace is searched.

However, higher values allow a more efficient execution, by limiting the start

and stop of distributed tasks (similarly to the context switch penalty) and

the synchronization overheads. Above all, higher values enhance the pruning

effect at task level, due the state centralized memory. In order to assess the

impact of the expansion threshold parameter, we have performed two sets of

experiments. In the first one we perform the mining on the PEMS-SF (100

transactions) dataset with minsup = 10, using Configuration 1 and varying

max exp from 100 to 100,000,000. The minsup value has been empirically se-

lected to highlight the different performance related to different values (trivial

mining would be overwhelmed by overhead costs of the MapReduce frame-

work). In Figure 7 are shown the results in terms of execution time and
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Figure 7: Execution time and number of iterations for different max exp values on PEMS-

SF dataset with minsup=10. and Configuration 1.

number of iterations (i.e., the number of jobs)1. It is clear how the max exp

parameter can influence the performance, with wall-clock times that can be

doubled with different configurations. The best performance in terms of exe-

cution time is achieved with a maximum expansion threshold equal to 10,000

nodes. With lower values, the execution times are slightly longer, while there

is an evident performance degradation with higher max exp values.

The same experiment is repeated with the Breast Cancer dataset and

a minsup value of 5. As shown in Figure 8, even in this case, the best

1Please note that in all the experiments, for the sake of clarity, the confidence inter-

vals (obtained after a sufficient number of executions and with complementary level of

significance of 95%) are omitted from the graphs.
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Figure 8: Execution time and number of iterations for different max exp values on Breast

Cancer dataset with minsup=5. and Configuration 1.

performances are achieved with max exp equal to 10,000. In this case, dif-

ferences are more significant with lower max exp values, although with a

non-negligible performance degradation with higher values.

The max exp choice has a non-negligible impact on the performances of

the algorithm. However, as demonstrated by the curves in Figures 7 and 8, it

is very dependent on the distribution of the data and on the tree exploration.

It is clear how the benefits of a more effective centralized pruning due to

higher max exp are enhanced for dense datasets such as PEMS-SF. For this

dataset, for a large range of max exp values, the benefits of the additional

synchronization are almost completely mitigated by the weaker task level

pruning impact and the additional iterations overhead. The motivation is
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Figure 9: Execution time divided per iteration for different max exp values on PEMS-SF

dataset with minsup=10. and Configuration 2.

related to the impact of max exp on the number of synchronization phases

and the pruning effectiveness of pruning rule 3. When max exp increases, the

pruning at task level increases as well, while the number of synchronizations

decreases together with their related overhead due the HDFS interactions

(the temporary itemsets and related data are stored in HDFS). However,

limiting the number of synchronizations has a negative impact on the global

pruning effectiveness of pruning rule 3, that is applied less frequently and

hence the probability of extracting multiple times the same (useless) itemsets

increases. For PEMS-SF (the denser dataset), the overhead given by the

synchronization operations is balanced by pruning rule 3 for a large range of

values of max exp (up to 1.000.000), because of the enhancend impact of the
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Figure 10: Execution time divided per iteration for different max exp values on Breast

Cancer dataset with minsup=5. and Configuration 2.

task level pruning in such a dense dataset. Differently, for Breast Cancer (the

sparser dataset) , the negative impact of the synchronization phase overhead

is initially higher than the positive impact of the application of pruning rule

3 (this is true up to 10.000). The main reason is that, since the dataset is

sparse, pruning rule 3 is less effective when short “iterations” are performed

(few itemsets are mined and hence the pruning impact of rule 3 is limited).

We run the same experiments with Configuration 2. In Figures 9 and

10 we reported the performance of the algorithm with respect to the expan-

sion threshold parameter, highlighting the length (execution time) of each

iteration of the mining. It is clear how the length of the last iterations is

strongly reduced with respect to the central ones. Figures 11 and 12, in-
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Figure 11: Pruning impact in terms of redundant tables and itemsets produced in each

iteration, PEMS-SF dataset with minsup=10 and Configuration 2.

stead, plot the pruning impact of the synchronization phase, i.e. the number

of elements (tables or closed itemsets) that are deleted. These elements

are redundant and their generation is caused by the parallelization which

decreases the effect of the centralized pruning. The higher the pruning ef-

fect, the more useless elements are produced and, hence, discarded in the

synchronization phase. From the trend it is clear how large maximum ex-

pansion threshold value configurations are characterized by a greater number

of deleted elements between the iterations. On the contrary, low values and

frequent synchronization lead to less redundant elements to be deleted and

a better optimization of the whole process at the cost of a higher number

of iterations. Interestingly, the best configurations for both datasets are the
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Figure 12: Pruning impact in terms of redundant tables and itemsets produced in each

iteration, Breast Cancer dataset with minsup=5 and Configuration 2.

ones related the most steady pruning effect along all the iterations. This

is particularly evident for PEMS-SF dataset in Figure 11 (scattered bars).

The value of max exp impacts also on the load balancing of the distributed

computation among different nodes. With low values of max exp, each task

explores a smaller enumeration sub-tree, decreasing the size difference among

the sub-trees analyzed by different tasks, thus improving the load balancing.

Table 2 reports the minimum and the maximum execution time of the min-

ing tasks executed in parallel for both datasets, Configuration 1 and for two

extreme values of max exp. The load balance is better for the lowest value

of max exp.

In the next subsection we introduce and motivate some tuning strategies
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Table 2: Load Balancing

Task execution time Task execution time

Breast Cancer PEMS-SF

Maximum expansion threshold Min Max Min Max

100,000,000 7 m 2h 16m 17s 44s 2h 20m 28s

10 6m 21s 45m 16s 6s 2m 24s

related to max exp.

5.2. Self-tuning strategies

This section introduces some heuristic strategies related to the max exp

parameter. The aim of this experiment is to identify a heuristic technique

able to improve the performances of the algorithm and easily configure the

algorithm parameter. The heuristic consists in the automatic modification,

inside the mining process, of the max exp parameter, without requiring the

user to manually tune it. To introduce the techniques, we provide motiva-

tions behind their design in the following. Because of the enumeration tree

structure, the first tables of the tree are the most populated. Each node, in

fact, is generated from its parent node as a projection of the parent trans-

posed table on a tid. In addition, the first nodes are, in the average, the

ones generating more sub-branches. By construction, their transposed table

tidlists are, by definition, longer than the ones of their children nodes. This

increases the probability that the table could be expanded. For these reasons,

the tables of the initial mining phase are the ones requiring more resources
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and time to be processed. On the other hand, the number of nodes to be pro-

cessed by each local Carpenter iteration tends to increase with the number

of iterations. Still, this factor is mitigated by (i) the decreasing size of the

tables and (ii) the eventual end of some branches expansion (i.e. when there

are not more tids in the node transposed table). These reasons motivated

us to introduce four strategies (Table 3) that assume a maximum expansion

threshold which is increased with the number of iterations. These strategies

start with very low values in the initial iterations (i.e. when the nodes require

a longer processing time) and increase max exp during the mining phases.

Strategy #1 is the simplest: max exp is increased with a factor of X at

each iteration. For instance, if max exp is set to 10, and X is set to 100

at the second iteration it is raised to 1000 and so on. In addition to this

straightforward approach, we leverage information about (i) the execution

time of each iteration and the (ii) pruning effect (i.e. the percentage of

transposed tables / nodes that are pruned in the synchronization job).

The aim of the strategy #2 is balancing the execution times among the

iterations, trying to avoid a set of very short final jobs. Specifically, strategy

#2 increases, at each iteration, the max exp parameter with a factor of

XTold/Tnew , where Tnew and Told are, respectively, the execution times of the

previous two jobs.

For strategy #3, we analyzed the pruning impact of the synchronization

phase (i.e. the percentage of pruned table due to redundancy). An increasing

percentage of pruned tables means that there are a lot of useless tables that

are generated. Hence, this could suggest to limit the growth of the max exp

parameter. However, the pruning effect is an information which cannot be

37



easily interpreted. In fact, an increasing trend of the pruning percentage is

also normal, since the number of nodes that are processed increases exponen-

tially. Given that our intuition is to rise the max exp among the iterations,

in strategy #3, we increase the max exp parameter with a factor XProld/Prnew ,

given Prnew and Prold the relative number of pruned tables in the previous

two jobs. In this way, when the pruning impact increases (Prnew ≥ Prold),

the growth of max exp is slowed.

Finally, strategy #4 is inspired by the congestion control of TCP/IP (a

data transmission protocol used by many Internet applications [16]). This

strategy, called “Slow Start”, assumes two ways for growing the window

size (i.e. the number of packets that are sent without congestion issues):

an exponential one and a linear one. In the first phase, the window size

is increased exponentially until it reaches a threshold (“ssthresh”, which is

calculated from some empirical parameters such as Round Trip Time value).

From that moment, the growth of the window becomes linear, until a data

loss occurs. In strategy #4, the max exp is handled like the congestion

window size.

In our case, we just inherit the two growth factor approach. Therefore,

our “slow start” strategy consists in increasing the max exp of a factor of

X (X ≥ 10) until the last iteration reaches an execution time greater than

a given threshold. After that, the growth is more stable, increasing the

parameter of a factor of 10. Please note that we have fixed the threshold to

the execution time of the first two jobs (Job 1 and Job 2). These jobs, for the

architecture of our algorithm, consists of the very first Carpenter iteration.

They are quite different than the others since the first Mapper phase builds

38



Table 3: Strategies

Strategy #1(X) Constant growth Increasing at each iteration

of the parameter with a factor of X

Strategy #2(X) Job balancing via Increasing at each iteration with

execution time analysis a factor of XTold/Tnew

Strategy #3(X) Job balancing via Increasing at each iteration with

pruning impact analysis a factor of XProld/Prnew

Strategy #4 Slow start Fast increase with a factor of

X, slow increase with a factor of 10

the initial projected transposed tables (first level of the tree) from the input

file. This choice is consistent with our initial aim, that is to normalize the

execution times of the last iterations which are often shorter than the first

ones.

For Configuration 1, Strategy #1 is the one achieving the best perfor-

mances for both datasets. Table 4 reports the best performance for each

configuration, in terms of relative performance difference with the best re-

sults obtained with a fixed max exp parameter. As shown in Table 4, the

results among the datasets and the configurations are quite different. It is

clear how the higher parallelization degree decreases the effect of the cen-

tralized pruning. For this reason, the mining with Configuration 2 should

be synchronized more frequently with respect to Configuration 1. Breast

Cancer data distribution better fits the growth of the parameter, as shown

by the better results with respect to the PEMS-SF dataset. The benefits of
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Table 4: Best strategies performance

Configurations PEMS-SF Breast Cancer

Configuration 1

Strategy 1

(X = 10,

-6,48%)

Strategy 1

(X = 10,000

-19,03%)

Configuration 2
Fixed Max exp

(1,000,000)

Strategy 1

(X = 10,

-25,12%)

the growth of the max exp parameter with PEMS-SF dataset are, indeed,

limited. The reason behind this behavior is related to the data distribution.

With PEMS-SF dataset, the mining process generates more intermediate

results. In this scenario, a more frequent synchronization phase delivers

more benefits with respect to the Breast Cancer dataset. The identified best

parameter configurations will be used to compare PaMPa-HD with other

distributed approaches.

5.3. Execution time

Here we analyze the efficiency of PaMPa-HD by comparing it with three

distributed state-of-the-art frequent itemset mining algorithms:

1. Parallel FP-growth [17] available in Mahout 0.9 [18], based on the FP-

growth algorithm [12]

2. DistEclat [19], based on the Eclat algorithm [20]

3. BigFIM [19], inspired from the Apriori [11] and DistEclat
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This set of algorithms represents the most cited implementations of fre-

quent itemset mining distributed algorithms. All of them are Hadoop-based

and are designed to extract the frequent closed itemsets (DistEclat and Big-

FIM actually extract a superset of the frequent closed itemsets). The parallel

implementation of these algorithms has been aimed to scale in the number of

transactions of the input dataset. Therefore, they are not specifically devel-

oped to deal with high-dimensional datasets as PaMPa-HD. The algorithms

are discussed in detail in Section 6.

Even in this case, the frameworks are compared over the two real dataset

(PEMS-SF and Breast Cancer datasets) The experiments are aimed to an-

alyze the performance of PaMPa-HD with respect to the best-in-class ap-

proaches in high-dimensional use-cases. The first set of experiments has

been performed with the 100-rows version PEMS-SF dataset [13] and min-

sup values 35 to 10.2

As shown in Figure 13, in which minsup axis is reversed to improve read-

ability, PaMPa-HD is the only algorithm able to complete all the mining

task to a minsup value of 10 rows or 10%. All the approaches show similar

behaviors with high minsup values (from 30 to 35). With a minsup of 25,

PFP shows a strong performance degradation, being not able to complete

the mining. In a similar way, BigFIM shows a performance degradation with

2The algorithms parameters, which will be introduced in Section 6, has been set in the

following manner. PFP has been set to obtain all the closed itemsets; the prefix length of

the first phase of BigFIM and DistEclat, instead, has been set to 3, as suggested by the

original paper [19], when possible (i.e. when there were enough 3-itemsets to execute also

the second phase of the mining).
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Figure 13: Execution time for different Minsup values on the PEMS-SF dataset (100-rows)

and Configuration 1.

a minsup of 20, running out of memory with a minsup of 15. DistEclat,

instead, shows very interesting execution time until running out of memory

with a minsup of 10. PaMPa-HD, even if slower than DistEclat with minsup

values from 25 to 15, is able to complete all the tasks.

The second set of experiments are performed with the Breast Cancer

dataset [15]. As reported in Figure 14 (even in this case, minsup axis is

reversed to improve readability, the minsup is absolute), PaMPa-HD is the

most reliable and fast approach. This time, BigFIM is not able to cope

even with the highest minsup values, while PFP shows very slow execution

times and runs out of memory with a minsup value of 6. DistEclat is able

to achieve good performances but is always slower than PaMPA-HD (with a

minsup value equal to 4, it is not able to complete the mining within several
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Figure 14: Execution time for different Minsup values on the Breast Cancer dataset and

Configuration 1.

days of computation). We repeated the same experiments with Configuration

2. The results (see Figures 15 and 16) are similar to the previous ones, with

PaMPa-HD demonstrating to be the most reliable solution. Actually, it is

the only approach able to benefit of the higher parallelization degree. In fact,

PFP does not show any improvement and it has been interrupted after 12

hours of processing. BigFIM and DistEclat performance are worsened by the

less amount of memory available for each process.

From these results, we have seen how traditional best-in-class approaches

such as BigFIM, DistEclat and PFP are not suitable for high-dimensional

datasets. They are slow and/or not reliable when coping with the curse

of dimensionality. In some cases characterized by relatively high minsup
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thresholds, some of the state of the art approaches perform slightly better

than PaMPa-HD, even if they are not specifically designed for high dimen-

sional data. This is due to the fact that high support thresholds limit the

number of frequent items, hence the dimensionality of the problem decreases,

limiting the advantages of PaMPa-HD. Specifically, the issue with PaMPa-

HD is that its design includes an interleaving synchronization job allowing

to prune redundant itemsets. When the minsup is high, the benefits of this

additional phase are less effective than the cons related to the I/O costs and

the iterative architecture. This is more evident with PEMS-SF, due to its

density and the production of more intermediate tables. For lower minsup

values, PaMPa-HD demonstrated to be most suitable approach with datasets

characterized by a high number of items and a small number of rows. After

the comparison with the state of the art distributed frequent itemset mining

algorithms, the next subsections will experimentally analyze the behavior of

PaMPa-HD with respect to the number of transactions, number of indepen-

dent tasks, communication costs and load balancing.

5.4. Impact of the number of transactions

This set of experiments measures the impact of the number of transactions

on PaMPa-HD performances. To this aim, the PEMS-SF datasets will be

used in three versions (100-rows, 200-rows and full). The algorithm is very

sensitive to this factor: the reasons are related to its inner structure. In fact,

the enumeration tree, for construction, is strongly affected by the number of

rows. A higher number of rows leads to:

1. A higher number of branches. As shown in the example in Figure 2,

from the root of the tree, it is generated a new branch for each tid
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Figure 15: Execution time for different Minsup values on the PEMS-SF dataset and

Configuration 2.

(transaction-id) of the dataset.

2. Longer and wider branches. Since each branch explores its research

subspace in a depth-first order, exploring any combination of tids, each

branch would result with a greater number of sub-levels (longer) and a

greater number of sub-branches (wider)

Therefore, the mining processes related to the 100-rows version and to the

200-rows or the full version of PEMS-SF dataset are strongly different. With

a number of rows incremented by, respectively, 200% and more than 400%,

the mining of the augmented versions of PEMS-SF dataset is very challenging

for the enumeration-tree based PaMPa-HD. The performance degradation is

resumed in Figures 17 and 18 , where, for instance, with a minsup of 35%, the
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Figure 16: Execution time for different Minsup values on the Breast Cancer dataset and

Configuration 2.

execution times related to the 100-rows and the full version of the PEMS-SF

dataset differ of almost two orders of magnitude.

The behavior and the difficulties of PaMPa-HD with datasets with an

incremental number of rows, is, unfortunately, predictable. This algorith-

mic problem represents a challenging and interesting open issues for further

developments.

5.5. Impact of the parallelization degree

The impact of the number of independent tasks involved in the algorithm

execution is a non-trivial issue. Adding a task to the computation would

not only deliver more resources such as memory or CPU, but it also leads

to split the chunk of the enumeration tree that is explored by each task. On
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Figure 17: Execution times for different versions of PEMS-SF for PaMPa-HD and Config-

uration 1.

the one hand, this means to reduce the search space to explore, lightening

the task load. On the other hand, this reduces the state centralized memory

and the impact of the related pruning. It can be interpreted as a trade-off

between the benefits of the parallelism against the state. In Figure 19 and

Figure 20, it is reported the behavior of PaMPa-HD with a mining process on

the datasets PEMS-SF and Breast Cancer. The minsup values, respectively

of 20 and 6, have been chosen in order to highlight the performance differences

among the different degree of parallelism and datasets. Interestingly, the

mining on PEMS-SF dataset is less sensitive to the number of reducers, with

the greatest drop in terms of execution time when the computation passes

from 5 to 20 nodes. The experiment of Breast Cancer instead, Figure 20,

shows a stronger performance gain. As before, the behavior is related to
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Figure 18: Execution times for different versions of PEMS-SF for PaMPa-HD and Config-

uration 2.

the dataset data distribution which causes the PEMS-SF mining process

generating more intermediate tables. In this case, the advantages related

to additional independent nodes into the mining is mitigated by the loss of

state in the local pruning phase inside the nodes. With additional nodes, each

node is pushed to a smaller exploration of the search space, decreasing the

effectiveness of the local pruning. These specific results recall a very popular

open issue in distributed environments. In problems characterized by any

kind of ”state” benefit (in this case, the local pruning inside the tasks), a

higher degree of parallelism does not lead to better performance a priori.
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Figure 19: Execution times for PEMS-SF dataset with different number of parallel tasks

based on Configuration 2.

5.6. Load Balancing and resources utilization

The last analyses are related to the load balancing and the resources

utilization of the algorithm. These issues represent very important factor

in such a distributed environment. Communication costs, for instance, are

among the main bottlenecks for the performance of parallel algorithms [21].

A bad-balanced load among the independent tasks leads to few long tasks

that block the whole job.

PaMPa-HD, being based on the Carpenter algorithm, mainly consists on

the exploration of an enumeration tree. The basic idea behind the paral-

lelization is to explore the main branches of the tree independently within

parallel tasks (Figure 3). For this reason, each task needs the information
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Figure 20: Execution times for Breast Cancer dataset with different number of parallel

tasks based on Configuration 2.

(i.e. transposed tables) related to its branch expansion. The ideal behavior

of a distributed algorithm would be to distribute the least amount of data,

avoiding redundant informations as much as possible. The reason is that

network communications are very costly in a Big Data scenario. Unfortu-

nately, the structure of the enumeration tree of PaMPa-HD assumes that

some pieces of data of the initial dataset is sent to more than one task. For

instance, some data related to nodes TT |2 and TT |3 are the same, because

from node TT |2 will be generated the node TT |2,3. This is an issue related

to the inner structure of the algorithm and a full independence of the initial

data for each branch cannot be reached.

In addition, the architecture of the algorithm, with its synchronization
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phase, increases the I/O costs. In order to prune some useless tables and

improve the performance, the mining process is divided in more phases writ-

ing the partial results into HDFS. However, as we have already seen when

studying the impact of max exp (Figure 7 and Figure 8), in some cases ad-

ditional synchronization phases lead to better execution times, despite their

related overhead.

We measured the resource utilization in terms of disk usage (read and

write phases of HDFS), network communication, and CPU usage. Please

note that the values are normalized with respect to the maximum resource

utilization. Specifically, Figure 21 and 22 report the achieved results for the

two datasets in an insulated hardware configuration. The spikes are related

to the shuffle phases, in which the redundant tables and closed itemsets are

removed. The flat part of the curve between the spikes is longer in the case

of the Breast Cancer dataset because of the adopted strategy. Its mining has

been executed with a more aggressive increasing of the max exp parameter

(steps of 10 for PEMS-SF dataset, 10,000 for Breast Cancer dataset), which

leads to a very long period without synchronization phases. As regards CPU

utilization (Figure 22) the degradation is due to the completion of some

of the tasks. The higher max exp, as already mentioned, has the counter

effect of decreasing the load balance. The trend is, in fact, more flat for

the mining of PEMS-SF dataset (Figure 21), characterized by more frequent

synchronizations.

The load balancing is evaluated by comparing the execution time of the

fastest and slowest tasks related to the iteration job in which this difference

is strongest. The most unbalanced phase of the job is, not surprisingly, the
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Figure 21: Resource utilization, PEMS-Cancer dataset, minsup=25.

mapper phase of the Job 3. This job is iterated until the mining is complete

and it is the one more affected by the increase of the max exp parameter

(iterations characterized by high max exp value are likely characterized by

long and unbalanced task). The difference among the fastest and the slowest

mapper is shown in Table 5. It is clear that the mining on PEMS-SF dataset

is more balanced among the independent tasks. Even in this case, the reason

is the different increment value in the Strategy #1 (10 for PEMS-SF dataset,

10,000 for Breast Cancer dataset). A slower max exp increasing leads to more

balanced tasks.
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Figure 22: Resource utilization, Breast Cancer dataset, minsup=7.

6. Related work

Frequent itemset mining represents a very popular data mining technique

used for exploratory analysis. Its popularity is witnessed by the high number

of approaches and implementations. The most popular techniques to extract

frequent itemsets from a transactional datasets are Apriori and Fp-growth.

Apriori [11] is a bottom up approach: itemsets are extended one item at

a time and their frequency is tested against the dataset. FP-growth [12],

instead, is based on an FP-tree transposition of the transactional dataset

and a recursive divide-and-conquer approach. These techniques explore the

search space enumerating the items. For this reason, they work very well for

datasets with a small (average) number of items per row, but their running

time increases exponentially with higher (average) row lengths [11, 20].
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Table 5: Load Balancing, Configuration 1

Dataset Slowest Task Fastest Task

Execution time Execution time

PEMS-SF (minsup = 20) 3mins 58 sec 3mins 37sec

Breast Cancer (minsup = 6) 20mins 33sec 8mins 42sec

In recent years, the availability of Big Data technologies allowed the im-

plementation of these techniques in distributed environments such as Apache

Hadoop [3], based on the MapReduce paradigm [22], and Apache Spark [4].

Parallel FP-growth [17] is the most popular distributed closed frequent item-

set mining algorithm. The main idea is to process more sub-FP-trees in

parallel. A dataset conversion is required to make all the FP-trees inde-

pendent. A Spark implementation of Parallel FP-growth has been delivered

with MLlib Library [23]. This version extracts all the frequent itemsets and

not just the closed ones. BigFIM and DistEclat [19] are two recent methods

to extract frequent itemsets. DistEclat represents a distributed implemen-

tation of the Eclat algorithm [20] an approach based on equivalence classes

(groups of itemsets sharing the same prefixes), smartly merged to obtain all

the candidates. BigFIM is a hybrid approach exploiting both the Apriori

and Eclat paradigms. BigFIM and DistEclat are divided in two phases. In

the first one, the approaches use respectively an Apriori-like and Eclat-like

strategy to mine the itemsets up to a fixed k-length. After that, the item-

sets are distributed and used as prefixes for the longer itemsets. In the last

phase, both approaches use Eclat to extract all the closed itemsets. In ad-

dition, [24] introduces another Apriori-based frequent itemset miner. The
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contribution of this work is focused on the candidates handling, which are

cached in memory between each iteration. In [25], a similar breadth-first

approach is introduced, but with the exploitation of a matrix-based prun-

ing in order to significantly reduce the amount of candidates. In [26], the

breadth-first exploration manner is combined with the suffix-based candidate

generation. Finally, for the environments requiring very fast response, some

sampling-based techniques have been presented [27], [28] and [29]. These

works are characterized by getting a trade-off between execution time and

quality of the results. While the previous works have been designed for use

cases characterized by datasets with a large amount of transactions, Carpen-

ter algorithm [5], which inspired PaMPa-HD, has been specifically designed

to extract frequent itemsets from high-dimensional datasets, i.e., character-

ized by a very large number of attributes (in the order of tens of thousands

or more). The basic idea is to investigate the row set space instead of the

itemset space. The idea of designing a parallel MapReduce algorithm to

efficiently support itemset mining on high dimensional data was first intro-

duced in [9]. The PaMPa-HD algorithm significantly enhances the algorithm

performance proposed in [9] by providing (i) a more efficent approach to ad-

dress synchronization phase, reducing the number of MapReduce jobs; (ii)

a more efficient visit of the transposed tables; (iii) and a set of self-tuning

strategies to speed up the performances through a dynamic modification of

the max exp parameter . Furthermore, this work introduces a wider set of

experiment to evaluate, on real datasets, the impact of the number of trans-

action on the performance, but also communication costs and load balancing,

very important in a distributed environment.
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This work extends our previous work [9]. The original algorithm exploits

an additional independent synchronization job at each iteration. As already

described in Section4.1, this implementation includes the synchronization

phase in the Mining Job 3. Therefore, the number of MapReduce jobs (with

their related overhead) are strongly reduced. Additionally, in order to better

exploit the pruning rule in the local Carpenter iteration in each indepen-

dent task, all the transposed tables are now processed (not only expanded)

in depth-first order. This strategy decreases the possibility to explore an

useless branch of the tree, i.e. a branch whose results would be completely

overwritten by the closed itemsets obtained by branches older in depth-first

fashion. For instance, the performance improvement from the previous ver-

sion, measured with Breast Cancer Dataset (minsup=6) is from 6% to 30%

(depending on the number of independent tasks).

7. Applications

Since PaMPa-HD is able to process extremely high-dimensional datasets,

it enriches the set of algorithm able to deal with datasets characterized by a

very large variety of features (e.g. [30], [31]). Consequentely, many fields of

applications which exploits frequent itemset to discover hidden correlations

and association rules [32] could benefit of it. The first example is bioinfor-

matics [33] and health environments: researchers in this domain often cope

with data structures defined by a large number of attributes, which matches

gene expressions, and a relatively small number of transactions, which typi-

cally represent medical patients or tissue samples. Furthermore, smart cities

and computer vision applications are two important domains which can ben-
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efit from our distributed algorithm, thanks to their heterogeneous nature.

Another field of application is the networking domain. Some examples of

interesting high-dimensional dataset are URL reputation, advertisements,

social networks and search engines. One of the most interesting applications,

which we plan to investigate in the future, is related to internet traffic mea-

surements. Currently, the market offers an interesting variety of internet

packet sniffers like [34], [35]. Collected datasets, that include traffic flows in

which the item are flow attributes ([36], [37], [38]), represent an appealing

domain where PaMPa-HD can be efficiently exploited. are already a very

promising application domain for data mining techniques.

8. Conclusion

This work introduced PaMPa-HD, a novel frequent closed itemset mining

algorithm able to efficiently parallelize the itemset extraction from extremely

high-dimensional datasets. The algorithm’s architecture mitigates the disad-

vantages of the parallelization of a search-space exploration which strongly

benefits of a centralized state. The introduction of the algorithm is followed

by an exhaustive experimental analysis. We firstly measured the impact

of different parameter configurations and dataset distribution on the exe-

cution time and on the whole mining (number of iterations, their duration

and the related pruning effect). In order to improve the performance, we

explored the introduction of self-tuning techniques, whose efficiency revealed

to be strongly related to the dataset distribution. To better assess the ef-

ficiency of the algorithm, we compared our approach with the best state of

the state-of-the-art algorithms. PaMPa-HD outperformed all of them, by

57



showing a better scalability than all popular distributed approaches, such

as PFP, DistEclat and BigFIM. Despite the algorithm design is strongly

focused on high-dimensional use-cases, we measured the impact of the num-

ber of transactions on the overall performances. This experiment evidenced

the difficulty for row-enumeration-tree-based approaches to deal with large

amount of rows. We measured the behavior of our algorithm with different

parallelization degrees, i.e. number of parallel tasks. Even in this experi-

ment, leveraging up to 80 different tasks, the performances are skewed by

the dataset distribution, since a higher parallelization degree limits the im-

pact of the pruning at task level. Finally, we tracked the resource utilization

and the load balancing. Once again, the experiment helped us to understand

the impact of the number of synchronizations. Specifically, load balancing

degradation demonstrated to be one of the major cons of a high max exp

values.

9. Future work

Further developments of the algorithm can be related to the analysis of

the trade-off between the benefits of the scalability and the ones related to

the local state. In addition, future works could analyze the introduction

of better load balancing mechanisms. The increasing max exp parameter

introduced by the self-tuning strategies leads to a degradation of the load

balancing between the parallel tasks of the job. As shown in Table 2, higher

max exp values decrease load balancing (i.e. only few tasks running), wast-

ing the resources assigned to the tasks that are already complete. Forcing the

synchronization phase after a fixed period of time would limit the amount
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of time in which the resources are not completely exploited. From the algo-

rithmic point of view, this is not a loss, since the tables are expanded in a

depth-first fashion. The last tables, hence, are the ones with highest proba-

bility to be pruned. This future development, therefore, would analyze the

choice of the time-out which forces the synchronization phase. Finally, since

all the strategies currently focus on the increasing of the max exp parameter

in order to eqaualize the wall-clock time duration of all the iterations, a future

work could be more focused on a pruning impact (i.e. number of redundant

elements deleted in each synchronization phase) normalization among all the

iterations.
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