
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

SIFI: AMD southern islands GPU microarchitectural level fault injector / Vallero, Alessandro; Gizopoulos, Dimitris; Di
Carlo, Stefano. - STAMPA. - (2017), pp. 138-144. (Intervento presentato al convegno 23rd IEEE International
Symposium on On-Line Testing and Robust System Design, IOLTS 2017 tenutosi a Hotel Makedonia Palace,
Thessaloniki (Greece) nel 21 September 2017) [10.1109/IOLTS.2017.8046209].

Original

SIFI: AMD southern islands GPU microarchitectural level fault injector

Publisher:

Published
DOI:10.1109/IOLTS.2017.8046209

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2692801 since: 2017-11-20T10:54:18Z

Institute of Electrical and Electronics Engineers Inc.

SIFI: AMD Southern Islands GPU
Microarchitectural Level Fault Injector

Alessandro Vallero∗, Dimitris Gizopoulos†, and Stefano Di Carlo∗
∗Politecnico di Torino, Control and computer engineering department, 10129, Torino, Italy.

Email: stefano.dicarlo,alessandro.vallero@polito.it
†University of Athens, Greece Email: dgizop@di.uoa.gr

Abstract—General Purpose computing on Graphics Processing
Unit offers a remarkable speedup for data parallel workloads,
leveraging GPUs computational power. However, differently from
graphic computing, it requires highly reliable operation in several
application domains. In this paper we present SIFI a reliability
evaluation framework for soft-errors on AMD GPUs built on
top of Multi2Sim, a micro-architectural level simulator. SIFI
is capable of computing different reliability metrics by means
of two different techniques: fault injection and ACE analysis.
Experiments performed on a set of 14 GPGPU applications
targeting the AMD Southern Islands GPU architecture show the
capability of the tool and the potential of its use to support
decisions about the best architectural parameters for a given
application.

I. INTRODUCTION

Recent years have witnessed an increase of computational
power demand in several application domains. General Pur-
pose computing on Graphics Processing Units (GPGPU) has
gained a primary role in the delivery of high computational
power leveraging the inherent high parallel architecture of
GPUs to accelerate complex tasks. In this scenario, GPUs are
no longer employed just for graphics. They have increasingly
found application in areas where reliability is a primary
concern (i.e., advanced driver assistance systems, aviation,
medicine, super computing, etc.). This trend is however threat-
ened by the technology shrinking, which has a detrimental
effect on the susceptibility to faults for new devices (especially
for large storage arrays) [1]. Characterization of the reliability
of GPGPU systems is therefore becoming a mandatory task.

One of the main open challenges in evaluating the reliability
of GPGPU systems is the development of fast and accurate
reliability assessment tools able to properly trade-off simu-
lation time and accuracy and providing information able to
guide the system designers in the choice of proper architectural
parameters and error protection mechanisms to achieve the
target reliability and performance requirements.

Tan et al. proposed [2] GPGPU-SODA, an Architectural
Correct Execution (ACE) analysis evaluation framework for
NVIDIA GPUs. Being based on the high level PTX assembly
language it suffers from high inaccuracy. Fang et al. proposed
GPU-Quin, a tool for evaluating the soft-error resilience of
applications in NVIDIA GPU chips [3]. GPU-Quin targets
transient faults in the functional units of the GPU processor.
One of the main limitations of this tool is that it performs
injection at the level of the assembly code instructions. It

therefore misses the details of the micro-architecture of the
GPU and their effect on the fault propagation and masking.
Hari et al. proposed SASSIFI, a fault injection tool for
NVIDIA chips working at the SASS assembly level [4].
Compared to GPU-Quin, SASSIFI also works performing
injections on the assembly instructions but introduces a set of
improvements to control predicate and condition code registers
and to improve the performance of the injection process.
Recently, Tselonis and Gizopoulos proposed a fault injection
reliability analysis framework based on a micro-architectural
model of the NVIDIA GPUs able to analyze the effect of soft-
errors in these devices [5]. Being based on a very detailed
micro-architectural model, it allows for improved capability
of modeling faults in the real hardware, considering also
large memory arrays. This framework represents a valuable
instrument for GPGPU system designers as reported in [6]
where it was exploited for the reliability analysis of complex
heterogeneous systems. Similar tools able to analyze systems
based on AMD GPU chips that together with NVIDIA cover
almost the totality of the GPU market share are still not
mature and available. Reliability studies using fault injection
to analyze systems based on the old AMD Evergreen GPU
architecture were presented in [7] and [8]. However, to the
best of our knowledge, no tools for the analysis of the
AMD Southern Islands architecture have been presented in
the literature.

This paper presents SIFI (Southern Islands Fault Injector),
a framework for the reliability analysis of systems based on
the AMD Southern Islands GPU architecture in presence of
soft-errors. Using SIFI, reliability can be assessed not only
by means of fault injection but also using very fast ACE
analysis [9]. In both cases soft-errors in the main memory
arrays of the GPU are the considered fault model. In particular,
SIFI is currently able to analyze the effect of soft-errors in the
vector register file, scalar register file and local memory of the
GPU. These arrays are among the biggest arrays of the GPU
and are therefore prone to be affected by radiation induced
soft-errors. Even if some of these arrays are often delivered
with hardware-protection techniques such as ECC, these can
incur performance and energy overheads and hence may not
be enabled by users in selected applications, thus motivating
their consideration in SIFI [3].

SIFI implements a set of techniques to reduce simulation
time of fault injection campaigns, thus allowing the analysis

of complex systems executing realistic software applications.
Moreover, SIFI offers the possibility to perform reliability
analysis just considering the portion of the hardware resources
actually used by the running software. This decouples the
reliability assessment from the occupancy of the target ar-
chitectural hardware components, focusing on the analysis of
the resiliency of the executed software to the injected faults.
Since SIFI is built on top of the Multi2Sim micro-architectural
simulator [10], it can be easily extended to other architectures
supported by this simulator, including the AMD Evergreen
architecture. The optimized simulation environment makes
SIFI a valuable tool to assist designers when taking decisions
on specific GPU architectural parameters. Several system
configurations can be analyzed and compared to identify the
best configuration given the application constraints.

In order to show the potential of SIFI , a reliability study has
been performed considering 14 GPGPU applications executed
on different AMD Southern Islands GPUs. Moreover, results
obtained using a preliminary version of SIFI have been also
presented in [11] where first findings of a study to compare
reliability between NVIDIA and AMD chips have been re-
ported.

Since SIFI is built on top of an open micro-architectural
simulator, its source code is also open and available to the
research community. Information to download the tool is
reported at the end of the paper.

The remainder of this paper is organized as follows: Section
II shortly overviews the Southern Islands GPU architecture
while SIFI is fully described in Section III. The results of the
use of SIFI on different benchmarks are presented in Section
IV. Finally, Section V concludes the paper.

II. THE SOUTHERN ISLANDS AMD ARCHITECTURE

From the hardware standpoint, the Southern Islands AMD
architecture consists of several compute units (CUs) managed
by a scheduler and sharing a global memory (Fig.1). Each
CU is composed of a front-end that fetches instructions and
dispatches them to the appropriate unit: a branch unit, a local
data storage unit performing operations on local memory, a
scalar unit executing scalar operations on scalar registers and
several SIMD units. Each SIMD unit contains a vector ALU
and the integer and floating point units operating on the vector
register file in parallel. OpenCL is the programming model
used by the Southern Islands AMD architecture [12].

In OpenCL, parallel portions of an application (kernels)
are executed on the GPU as work-items. Work-items are
grouped into work-groups. Communication among work-items
is possible only for work-items belonging to the same work-
group by means of the local memory. When a new kernel
is executed a new ND-Range is created. The programmer
specifies the number of work-groups and the number of work-
items per work-group characterizing the ND-Range. Every
time the GPU can execute a new work-group, the work-group
is assigned to a CU. The number of work-groups a CU can
concurrently execute (#wg) depends on the maximum number
of work-groups a CU can accommodate (#maxwg) and on

Fig. 1. Southern Islands AMD architecture

the amount of resources required by a single work-group.
More specifically, each work-group requires a certain amount
of resources: #vwg vector registers, #swg scalar registers
and #lmwg local memory cells. These resources are taken
from the pool of resources available in the CU: #VRF vector
registers, #SRF scalar registers and #LM local memory
cells. Interested readers may refer to [13] for details on how
#wg, #swg , and #lmwg are computed.

In order to be executed in parallel, work-items of the same
work-group are grouped into wavefronts. The number of work-
items per wavefront depends on the parallelism of the SIMD
Units of the chip.

III. SIFI ARCHITECTURE AND FUNCTIONALITIES

SIFI is built on top of Multi2Sim v. 4.2, a micro-
architectural simulator for heterogeneous systems accurately
modeling the micro architecture of the AMD Southern Islands
GPUs [10] [14]. The analysis carried out by SIFI focuses on
soft-errors in the main memory arrays of the GPU (i.e., the
vector register file, the scalar register file and the local mem-
ory). These errors, mainly caused by the effect of radiations,
thermal cycling transistor variability and erratic fluctuations
of voltage, are very relevant for large memory arrays such
as the one considered by SIFI. Currently, the Single Event
Upset (SEU) is the considered fault model, i.e., a bit-flip of a
memory element. Analysis of multiple bit upsets can however
be easily implemented.

SIFI measures the reliability of a GPU based system by
computing the Architectural Vulnerability Factor (AVF) of its
hardware structures [9]. The AVF quantifies the probability
of a soft-error to manifest as a failure of the system jointly
considering masking properties of the hardware architecture as
well as of the executed software. One of the main drawbacks
of the AVF is that it is influenced by the actual occupancy of
the hardware structures. To understand the contribution of the
instruction flow on the error masking, SIFI is able to compute

the AVF Util metric introduce by Farazmand et al. in [7]. The
AVF Util is the probability that a soft-error in a used hardware
structure causes a system failure. The relation between AVF
and AVF Util can be expressed as:

AV F = AV FUtil ×Occupancy (1)

The AVF Util is different from high level software metrics
such as the Program Vulnerability Factor (PVF) defined in
[15]. PVF is a pure software vulnerability metric defined to
be micro-architecture independent, while AVF Util still takes
into account the micro-architecture of the device.

Once the AVF is estimated for each GPU hardware struc-
ture, the Failure In Time (FIT) rate of the system (λS) can be
computed combining size and vulnerability of every hardware
structure of the GPU:

λS =
∑

i∈{vRF,sRF,LM}

AV Fi × λ×#biti (2)

where #biti is the number of memory elements of the
hardware structure i and λ is the raw error rate per bit of
the target technology node.

Since the FIT rate is a pure reliability metric and does
not provide any information about the system performance,
SIFI is also able to compute a new reliability metric named
executions per failure (EPF). EPF is the number of times
an application must be executed before observing a system
failure. It is computed as:

EPF = EIT/λS (3)

where EIT (Executions in Time) is the number of executions
of an application in 109 hours of device operation. The EPF
enables to jointly analyze performance and reliability into a
single metric.

SIFI can compute the presented metrics using different
simulation engines described in the following subsections.

A. Fault injection engine

The fault injection (FI) engine is the most accurate simu-
lation engine available in SIFI. It performs reliability analysis
by simulating the occurrence of faults in the GPU hardware
structures considering a statistically significant number of
program executions (one fault per execution) [16]. The impact
of a fault on the system is evaluated by comparing the output of
the computation with the one of a golden execution. At a high-
level, the impact of the fault is classified as masked or non-
masked. Fine grained classification of non-masked faults into
Silent Data Corruption (SDC) and Detectable Unrecoverable
Error (DUE) is also possible.

Since FI is a computational intensive task, SIFI is designed
to speedup the FI campaign trying to reduce the required num-
ber of simulations without loosing accuracy. A FI campaign
consists of several steps. At first, the application is profiled
in order to identify the time intervals in which the GPU is
active and to collect information about the executed kernels.
The faults to be injected are then randomly generated and
another simulation is run to profile whether these faults affect

at least one hardware structure assigned to a work-groups. In
case a fault hits a non-assigned hardware structure, it is marked
as masked without performing any simulation. Otherwise, it
is marked as Util. Eventually, all faults marked as Util are
simulated and classified. Using the results of FI simulations the
AVF and AVF Util of an hardware structure can be computed
as:

AV F =
injnot−masked

inj.
(4)

AV FUtil =
util − injnot−masked

util − inj.
(5)

The speedup obtained by skipping non-Util simulations de-
pends on the application and mainly on the occupancy of the
hardware structures. It can be computed as:

S = # inj./# util − inj (6)

B. ACE analysis engine

Unlike FI, the ACE analysis engine requires just a single
simulation of the application to perform AVF estimations. It
is therefore a very fast analysis that however has reduced
accuracy with respect to FI. SIFI ACE analysis engine is based
on the techniques presented in [9] and [17] for CPU memory
arrays.

Let us consider the computation of the AVF for the vector
register file (a similar procedure can be applied to the other
hardware structures). The ACE analysis is based on the
principle that not all registers continuously contribute to the
computation. Therefore, the AVF of the hardware structure
can be estimated by determining which registers affect the
final system output (ACE registers) and which do not (un-
ACE registers).

When performing ACE analysis, each kernel is analyzed
separately and then results are recombined together. For each
kernel, the amount of registers assigned to each work-group
(#vwg) is first computed (see Section II). All registers not
assigned to any work-group are classified as idle and directly
marked as un-ACE, while the others are profiled during
the execution of the kernel. During the time intervals (i.e.,
clock cycles) between a read and a write operation (read-to-
write intervals), and between two consecutive write operations
(write-to-write intervals) a register can be safely considered
un-ACE. In all other cases it is marked as ACE. To reduce the
complexity of the computation and to implement a very fast
reliability analysis workflow, SIFI does not implement more
sophisticated techniques, which also take into account dead
data (i.e., data not contributing to the output results) and logic
masking (i.e., logical and arithmetic operations resulting in
masked results).

The ACE factor of each work-group, i.e., the work-group
average number of ACE registers per clock cycle, can be
computed as:

ACEwg =

#vwg∑
i

ACEclk−vreg−i

wgclk
(7)

where wgclk is the number of clock cycles required to execute
the work-group and ACEclk−vreg−i is the number of clock
cycles in which the register i is classified as ACE.

The ACE factors of each work-group can be combined
together to compute the ACE factor of the CU (ACECU).
To perform this computation, the time window of every work-
group executed by the CUs is analyzed to build a time diagram
of the execution. Fig. 2 is an example of timing diagram for
a single CU assigned to 4 work-groups and able to execute 2
work-groups concurrently.

Fig. 2. An example of ACECU timing diagram for a single CU.

The ACE factor of the CU at clock cycle i (ACECU (i)) is
computed by summing the ACEwg of its active work-groups
on that clock cycle (Fig.2). Finally, the AV F of the entire
vector register file is computed as:

AV F =

∑#CU
j

∑#kclk
i

ACECUj
(j)

#VRF

#kclk
(8)

where #kclk is the number of clock cycles required to execute
the GPU kernel, #CU is the number of available compute
units and #VRF is the number of registers per compute unit.
The computation of the AVF takes into account the ratio
between the number of ACE registers and the total number
of registers available in the vector register files of the GPU.

In the example of Fig.2, considering #VRF = 32 and
#kclk = 7, the AVF is equal to:

AV F =
8+8+8+11+13+13+7

32

7
= 0.3 (9)

Similarly to the AVF, by considering the average number of
used vector registers of the active work-groups of each CU
(#util RFj in Fig.2) instead of the total available registers
(#VRF), the AVF Util can be computed as:

AV FUtil =

∑#CU
j

∑#kclk
i

ACECUj
(j)

#utilRFj
(i)

#kclk
(10)

In the example of Fig.2, if #vwg = 12 then the AVF Util
can be computed as:

AV FUtil =
8
24 + 8

24 + 8
24 + 11

24 + 13
24 + 13

24 + 7
12

7
= 0.45

(11)

IV. EXPERIMENTAL RESULTS

This section shows the capability of SIFI when analyzing
the reliability of a set of benchmark systems.

A. Experimental Setup

For our evaluation we considered 14 software benchmarks
with SIFI configured to resemble the architecture of the AMD
HD Radeon 7970 GPU device1. A CU of this GPU consists
of 4 SIMD Units. The scalar register file is composed of 2K
32-bit registers while the local memory size is 56KB. The
scalar register file and the local memory are shared among all
SIMD Units. Moreover, each SIMD Unit implements a vector
register file of 56K 32-bit registers.

Starting from this basic configuration we also performed
experiments considering CUs with different number of SIMD
units, thus demonstrating the capability of SIFI to compare
different GPU architectures.

The data workload of each benchmark has been chosen to
maximize and stress the use of the CU memory arrays consid-
ered during the analysis. Since this significantly increases the
simulation time when considering multiple CUs, following the
approach proposed by Farazmand et al. in a similar GPU study
[7], we scaled the analysis considering a single CU. Results
have been then extended to the case of multiple CUs without
loosing accuracy.

The benchmarks considered in our experiments have been
selected from the AMD-APP-SDK benchmarks2: (1) Bi-
nary Search (BinS), (2) Bitonic Sort (BitS), (3) DCT, (4)
DwtHaar1D (DWT), (5) FastWalshTransform (FWT), (6)
FloydWarshall (FW), (7) Histogram (HIS), (8) MatrixMul-
tiplication (MM), (9) MatrixTranspose (MT), (10) QuasiR-
andomSequence (QRS), (11) RecursiveGaussian (RG), (12)
Reduction (RED), (13) SimpleConvolution (SC) and (14)
URNG.

For each benchmark we used SIFI to compute the AVF and
AVF Util of the target system resorting both to the FI and ACE
analysis engines described in Section III. According to [16],
for each fault injection campaign (i.e., for each benchmark
and for each hardware structure), we applied statistical fault
sampling injecting a number n of faults equal to:

n =
N

1 + e2 × N−1
t2×p×(1−p))

(12)

where N is the population size3, p is the estimated proba-
bility of a fault to generate a failure4, e is the accepted error
margin5 and t is the cut-off point that defines the confidence
level6. Considering the simulated benchmarks, and and the
target GPU architecture, to characterize a hardware structure
for a given benchmarks about 10K fault injections are required.

1Any chip belonging to the AMD Southern Islands family can be modeled
2AMD-APP-SDK v.2.7 available at: http://developer.amd.com/tools-and-

sdks/opencl-zone/amd-accelerated-parallel-pro cessing-app-sdk/
3The size of the targeted memory array multiplied by the number of clock

cycles of the application. When very large populations such as the ones
considered in this paper this paper are considered, small differences have
a minor influence on the sample size.

4since it is unknown, a typical value of 0.5 is used to maximize the sample
size

51% in our case
695% in our case

B. Experimental results

Fig.3 reports the AVF of the vector register computed
using both FI and ACE analysis. Results show how different
software applications can significantly influence the AVF, thus
confirming the need to carefully perform this type of analysis.

The benchmark with highest vulnerability is MM (21%),
while some benchmarks are characterized by very low AVF
(i.e., BinS, BitS, DWT, FW, RG, RED and URNG). As ex-
pected, ACE analysis provides a rough estimation of the AVF.
In most of the cases, it overestimates more than two times
the vulnerability. This difference can be attributed to the fact
that the implemented ACE analysis does not take into account
dead instructions and software logic masking. It is however
worth to report that, from our simulations, we noticed that
dead data in the selected benchmarks represent a negligible
portion of the application (less than 0.5%). Therefore, the ACE
analysis inaccuracy is probably mostly due to the effect of the
software logic masking that is not taken into account in our
implementation.

Interestingly, when considering the AVF of the local mem-
ory results obtained using the ACE analysis are quite accurate
(Fig.4) and in general fall within the error margin of the
estimations obtained using FI with the only exception of MT
that is 8 percentile points higher. HIS has the highest local
memory vulnerability (91%). This is due to the fact that it
requires a large amount of memory basically used as a read-
only buffer.

Finally, Fig. 5 reports the AVF for the scalar register file. It
ranges between 0.2% (BinS) and 16% (MM) with an average
value of 6.3%. ACE analysis estimation is close to the one
obtained by FI just for DCT, while, in the other cases, the
AVF is always overestimated (almost 2x compared to FI).

Looking at the results, it is not easy to identify one compo-
nent with higher criticality (i.e., contribution to the global AVF
of the system) across all benchmarks. This strongly depends
on the application and on the use of the resources. This further
motivate the need of tools such as SIFI able to quantify this
contribution on a application base.

Fig. 3. Vector register file AVF (log scale) computed by FI and ACE analysis.

According to Section III, the AVF is influenced by two
factors: the occupancy of the memory arrays and the AVF
Util. SIFI allows us to analyze these contributions separately as
reported in Fig. 6 for the vector register file. The results show

Fig. 4. Local memory AVF (log scale) computed by FI and ACE analysis.
The AVF is reported just for benchmarks using local memory.

Fig. 5. Scalar register file AVF (log scale) computed by FI and ACE analysis.

that the occupancy is one of the most relevant contributions
to the AVF. Let us consider results for HIS. The AVF Util
of this benchmark is equal to 80.1%. This means that this
application is potentially highly vulnerable to faults affecting
active resources. However, this high vulnerability is compen-
sated by a low occupancy of the register file that leads to a total
AVF of only 6.7%. For benchmarks with higher occupancy
(e.g., MM), the difference between AVF and AVF Util is
reduced. Being able carefully analyze the relationship between
AVF, AVF Util and Occupancy is an important instrument to
carefully plan how to introduce fault-tolerance mechanisms in
the system. Results similar to the one reported in Fig. 6 have
been computed also for the local memory and for the scalar
register file with similar trends. However, due to the limited
space they have not been reported in the paper.

Fig. 6. The correlation between occupancy and AVF of the vector register file.
The AVF Util is computed in order to decouple vulnerability and occupancy

One of the main benefits of SIFI is the possibility to
evaluate the reliability of a system exploring different archi-
tectural parameters. To stress this capability we show how
the number of SIMD units per CU affects the AVF of the
vector register file (Fig.7), local memory (Fig.8) and scalar
register file (Fig.9). Changing the number of SIMD units leads
to AVF variations. More specifically, decreasing the number
of SIMD units increases the AVF of the vector register file
while decreasing the vulnerability of the local memory and
the scalar register file. This is an interesting behavior that
requires further investigation. However, some considerations
can be drawn. Concerning the local memory and the scalar
register file, AVF variations can be justified since increasing
the number of SIMD units increments the required bandwidth
and consequently the latency to main memory. This leads to a
larger vulnerability time-window for a single memory element
that in turns leads to an increment of the AVF. The trend for the
vector register file is instead unexpected and requires further
investigations.

Fig. 7. Vulnerability comparison (log scale) of vector register file changing
the number of SIMD Units per CU

Fig. 8. Vulnerability comparison (log scale) of local memory changing the
number of SIMD Units per CU

To conclude the proposed reliability analysis Fig.10 reports
the FIT rate, the EIT and the EPF computed by SIFI for
the analyzed systems. These metrics allow us to introduce
the contribution of the technology and performance into the
analysis. The FIT rate has been computed considering a raw
failure rate per bit of λ = 1mFIT/bit.

Fig. 9. Vulnerability comparison (log scale) of scalar register file changing
the number of SIMD Units per CU

From the performance prospective (EIT), decreasing the
number of SIMD units always translates into longer execution
time. However in some cases, as BinS, HIS and RED, this
overhead is negligible. Concerning reliability, the FIT is im-
proved in all cases when the number of SIMD units is reduced,
apart from QRS which has an opposite trend. Finally, thanks to
this analysis it is possible to combine both performance and
reliability, taking into account the EPF, that is the expected
value of application executions before a failure manifests. In
this case, both the EIT and FIT decrease for smaller numbers
of SIMD units. As a consequence, the parameter that decreases
faster dominates. On average, FIT prevails leading to higher
EPF for a single SIMD unit and lower EPF in case 4 SIMD
units. However the trend is not the same for all the analyzed
benchmarks. In fact, BitS, DCT and MM show the opposite
behavior. This strongly suggests that EPF should be evaluated
separately for each application to avoid errors in the reliability
assessment.

Finally, results illustrating the performance of SIFI as well
as the capability of executing complex benchmarks in reason-
able time are presented in Fig.11. In particular, the advantage
introduced by the speedup techniques of SIFI fault injector can
be appreciated. In fact, the time required by a fault injection
campaign is often reduced by almost one order of magnitude.
In addition, for each benchmark, the number of simulated GPU
instructions is reported too.

V. CONCLUSION

In this paper we have presented SIFI, a full reliability as-
sessment framework for systems based on the AMD Southern
Islands GPU architecture. SIFI enables to compute reliability
metrics using both accurate fault injection experiments or less
accurate but very fast ACE analysis, allowing the reliability
engineer to easily trade-off accuracy and simulation time. Both
simulation engines are highly optimized in order to allow the
analysis of realistic systems. We demonstrated the capability of
SIFI by analyzing 14 OpenCL software applications executed
on an AMD HD Radeon 7970 GPU device. Differences in the
computed metrics demonstrate the value of carefully assessing
the reliability based on the target application to carefully
optimize the protection mechanisms to be applied. Since SIFI

Fig. 10. Joint comparison of reliability and performance (log scale): the EPF changing the number of SIMD Units per CU.

Fig. 11. SIFI timing performance (log scale). For each benchmark the figure
reports the time required to estimate the vector register file AVF using ACE
analysis, FI and non-optimized FI (10,000 injections using 8 cores) alongside
the number of GPU instructions per simulation.

is built on top of an open micro-architectural simulator, it can
be easily extended to other GPU architectures supported by
this simulator.

ACKNOWLEDGMENTS

This paper has been fully supported by the 7th Framework
Program of the European Union through the CLERECO
Project, under Grant Agreement 611404.

SOFTWARE AVAILABILITY AND REQUIREMENTS

SIFI runs under the Linux operating system.
Its source code is open and available on-line at
https://www.testgroup.polito.it/sifi/

REFERENCES

[1] P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro, “Impact of gpus parallelism
management on safety-critical and hpc applications reliability,” in Dependable Sys-
tems and Networks (DSN), 2014 44th Annual IEEE/IFIP International Conference
on. IEEE, 2014, pp. 455–466.

[2] J. Tan, Y. Yi, F. Shen, and X. Fu, “Modeling and characterizing {GPGPU}
reliability in the presence of soft errors,” Parallel Computing, vol. 39, no. 9, pp.
520 – 532, 2013.

[3] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi, “Gpu-qin: A methodol-
ogy for evaluating the error resilience of gpgpu applications,” in 2014 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS),
March 2014, pp. 221–230.

[4] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer, “Sassifi: An
architecture-level fault injection tool for gpu application resilience evaluation,” in
IEEE International Symposium On Performance Analysis of Systems and Software
(ISPASS), 2017, pp. 249–258.

[5] S. Tselonis and D. Gizopoulos, “Gufi: A framework for gpus reliability assess-
ment,” in Performance Analysis of Systems and Software (ISPASS), 2016 IEEE
International Symposium on. IEEE, 2016, pp. 90–100.

[6] A. Chatzidimitriou, M. Kaliorakis, S. Tselonis, and D. Gizopoulos, “Performance-
aware reliability assessment of heterogeneous chips,” in Proceedings of the IEEE
VLSI Test Symposium, 2017.

[7] N. Farazmand, R. Ubal, and D. Kaeli, “Statistical fault injection-based avf analysis
of a gpu architecture,” in IEEE workshop on silicon errors in logic, 2012.

[8] R. Shah, M. Choi, and B. Jang, “Workload-dependent relative fault sensitivity and
error contribution factor of gpu onchip memory structures,” in 2013 International
Conference on Embedded Computer Systems: Architectures, Modeling, and Simu-
lation (SAMOS), July 2013, pp. 271–278.

[9] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A sys-
tematic methodology to compute the architectural vulnerability factors for a high-
performance microprocessor,” in Microarchitecture, 2003. MICRO-36. Proceedings.
36th Annual IEEE/ACM International Symposium on. IEEE, 2003, pp. 29–40.

[10] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: a simulation
framework for cpu-gpu computing,” in Proceedings of the 21st international
conference on Parallel architectures and compilation techniques. ACM, 2012,
pp. 335–344.

[11] A. Vallero, S. Di Carlo, S. Tselonis, and D. Gizopoulos, “Microarchitecture level
reliability comparison of modern gpu designs: First findings,” in IEEE International
Symposium On Performance Analysis of Systems and Software (ISPASS), 2017, pp.
129–130.

[12] J. E. Stone, D. Gohara, and G. Shi, “Opencl: A parallel programming standard for
heterogeneous computing systems,” Computing in science & engineering, vol. 12,
no. 3, pp. 66–73, 2010.

[13] AMD accelerated parallel processing opencl optimization guide available.
[Online]. Available: http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/
2013/12/AMD OpenCL Programming Optimization Guide.pdf

[14] R. Ubal, J. Sahuquillo, S. Petit, and P. Lopez, “Multi2sim: A simulation frame-
work to evaluate multicore-multithreaded processors,” in Computer Architecture
and High Performance Computing, 2007. SBAC-PAD 2007. 19th International
Symposium on, Oct 2007, pp. 62–68.

[15] V. Sridharan and D. R. Kaeli, “Quantifying software vulnerability,” in Proceedings
of the 2008 Workshop on Radiation Effects and Fault Tolerance in Nanometer
Technologies, ser. WREFT ’08. New York, NY, USA: ACM, 2008, pp. 323–328.

[16] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault injection:
Quantified error and confidence,” in Proceedings of the Conference on Design,
Automation and Test in Europe. European Design and Automation Association,
2009, pp. 502–506.

[17] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee, and R. Rangan,
“Computing architectural vulnerability factors for address-based structures,” in Pro-
ceedings of the 32Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 532–
543.

