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Simplicial complexes are now a popular alternative to networks when it comes to describing the structure of
complex systems, primarily because they encode multinode interactions explicitly. With this new description
comes the need for principled null models that allow for easy comparison with empirical data. We propose a
natural candidate, the simplicial configuration model. The core of our contribution is an efficient and uniform
Markov chain Monte Carlo sampler for this model. We demonstrate its usefulness in a short case study by
investigating the topology of three real systems and their randomized counterparts (using their Betti numbers).
For two out of three systems, the model allows us to reject the hypothesis that there is no organization beyond
the local scale.
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Network science’s approach to complexity rests onto the
tacit hypothesis that the structure of complex systems is
reducible to the pairwise interaction of their constituents. It
is often a valid premise and, as a result, network science
has been extremely successful in, e.g., both predicting [1]
and controlling [2] the behavior of complex systems, inferring
their function from their structure [3,4], and so on. Networks,
however, might not be as ubiquitous as previously thought.
It has been shown recently that the structure of a number of
complex systems, such as the brain [5,6], protein interactions
[7], and social systems [8,9], cannot always be reduced
to the sum of pairwise interactions. For these systems, it
is now known that network representations can give an
incomplete picture: When many-body interactions are broken
down into multiple pairwise interactions (cliques), high-order
information simply disappears [10].

Simplicial complexes generalize graphs by encoding many-
body interactions explicitly; they have hence been proposed
as a complementary description of the structure of com-
plex systems [11–14]. Different from hypergraphs, they are
equipped with an implicit notion of containment. If nodes
(v1, . . . ,vq+1) are involved in a q-dimensional interaction, then
it is implicit that all possible lower-dimension interactions
involving the same nodes also exist [for example, (v1, . . . ,vq)
and (v1,v3)]. While it might appear constraining, this property
actually arises in all systems where interactions are maximal,
e.g., in scientific collaborations (largest cohesive group of
collaborators) or gene activation pathways (largest group
of collectively activated genes). Furthermore, it is found in
many processed relational datasets, e.g., in clique complexes,
obtained by mapping the cliques of networks to simplices
[15,16], or in filtered simplicial complexes [13]. Simplicial
complexes thus offer a natural and compact description of the
structure of complex systems, both when high-order structures
are explicitly available or when they are extracted from
low-order information.

*jean-gabriel.young.1@ulaval.ca
†alice.patania@isi.it

This application of simplicial complexes has led to promis-
ing discoveries: We now better understand, for instance, how
to detect large viral recombination events [17], how brain
networks reorganize under drugs [18], and how the atomic
structure of amorphous solids is hierarchically organized [19].
It has become crucial to establish the statistical significance
of these findings, a task for which random null models will
be needed. There is already a rich and growing literature
on random simplicial complexes and topology, ranging from
simplicial generalization of Erdös-Rényi models, amendable
to analytical treatment [20,21], to equilibrium formulations of
simplicial complex ensembles [10,22], and growth models that
reproduce various emergent patterns observed in real systems
[23,24]. However, null models—in the sense of network
science—are still wanting [25,26].

We address this issue by refining a recently proposed
generalization [22] of the (simple) configuration model of
network science [25,27,28], which we dub the simplicial
configuration model (SCM). Different from Ref. [22], we
think of our model as a null hypothesis for real systems; we
therefore develop a numerical and statistical toolbox instead of
focusing on closed ensemble averages. This entails a number
of interesting results: One, we define the first simplicial
configuration model able to describe arbitrary complexes,
in line with our goal of obtaining a generic null model
(Sec. I). Two, we propose and analyze an efficient and rigorous
sampling algorithm for this model (Sec. II). Three, we use the
model to investigate real datasets and show—now using sound
statistical arguments—that the local structure of these systems
does not always explain their mesoscale structure (Sec. III).
We conclude by listing a few important open problems.

I. SIMPLICIAL CONFIGURATION MODEL

Informally, a labeled simplicial complex K is the high-
order generalization of a network. Formally, it is a collection
of simplices incident on a node set V = {v1, . . . ,vn} [29]. A
q-dimensional simplex—the generalization of an edge—is a
tuple of q + 1 distinct nodes (v1, . . . ,vq+1); we say that this
simplex is incident on v1, . . . ,vq+1. All simplices not included
in a larger simplex are called the facets of the complex, whereas
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a contained simplex is called a face; e.g., if K comprises of
σ = (v1,v2) and τ = (v1,v2,v3), then σ is a face of facet τ .
It is always assumed that if facet σ = (vi, . . . ,vj ) is in the
simplicial complex K , all elements in the power set of σ

are also in K . Therefore, faces need not be enumerated: The
structure of a simplicial complex is fully specified by the list
of its facets.

Departing from other recent contributions [22], we define
the degree di of a node vi as the number of facets incident on vi

and the size si of a facet σi as the number of nodes it contains
(its dimension plus one). This local information is summarized
by the sequences d = (d1, . . . ,dn) and s = (s1, . . . ,sf ), where
n is the number of nodes and f is the number of facets.

With these notions in hand, we define the simplicial
configuration model (SCM) as the uniform distribution over
all labeled simplicial complexes with degree sequence d and
facet size sequence s. In other words, if �(d,s) is the set of all
labeled simplicial complexes with joint sequences (d,s), then
the SCM places a probability

Pr(K; d,s) = 1/|�(d,s)| (1)

on K if it has sequences (d,s), and 0 otherwise. The model
of Ref. [22] is recovered by setting the size of all facets to a
constant s.

This particular choice of definition for the SCM is natural
for three reasons. First, the SCM directly generalizes the
simple CM of network science [25]; when si = {1,2} for all
facets, one recovers a graph ensemble with degree sequence
d. Second, the SCM does not include any correlation—the
structure is maximally random beyond the local level. This is
reminiscent of the equivalent network model. Third, the SCM
can describe the local structure of any simplicial complex,
since it allows for arbitrary degree and size sequences. This
property is not common to all random models of simplicial
complexes, for good reasons; many models are constructed
with a focus on the calculation of closed-form expression
for a few properties (e.g., the asymptotic entropy) [10,20,22].
This commends simplifying assumptions, e.g., a regular facet
size sequences [22]. Our definition of the SCM forgoes these
simplifications to accommodate arbitrary local structures, at
the expense of analytical tractability.

II. EFFICIENT SAMPLING ALGORITHM

A. Constraints on the support

For the SCM to be of any use, one needs to be able to
sample from it. This is far from a trivial problem, because
there are numerous constraints on the support of the model. It
will be easier to see these constraints by first switching to the
equivalent graphical representation of simplicial complexes.

In this representation, facets are replaced by nodes (we
denote by F this new node set, and by V ∪ F the complete
node set), and an edge connects facet σi ∈ F to node vj ∈ V in
B if and only if σi is incident to vj in K (see Fig. 1). Because
B encodes the structure of K without ambiguity, we can think
of the model in terms of either representations.

As such, one could be tempted to assume that sampling from
the SCM of parameters (d,s) is equivalent to uniformly sam-
pling from all bipartite graphs with these degree sequences—a
solved problem [30]. But this would be wrong: The mapping

(a) (b)

FIG. 1. (a) Simplicial complex K and (b) its graphical represen-
tation B. In the bipartite graph, small square nodes represent facets
and large orange nodes represent the nodes of K . An edge connects
a facet σi and a node vj in B if the facet σi is incident on node vj

in K . Notice how some cliques are not filed (i.e., k fully connected
nodes do not necessarily form a size k), and how isolated nodes are
attached to facets of size 1.

is not bijective. This is, in fact, where the constraints on the
support of the SCM become apparent [22]. Let us introduce
the notion of sequence-preserving bipartite graph to formalize
these constraints. We say that a bipartite graph B with
joint degree sequences (d,s) is sequence preserving if, upon
interpretation of B as a simplicial complex, one obtains a
simplicial complex with facet size sequence s and generalized
degree sequence d.

Not all bipartite graphs are sequence preserving, and there
are two reasons for this, both related to the fact that we think of
the nodes in F as facets. The first reason is the inclusion of at
least one facet: If there is a σi ∈ F such that the neighborhood
of σi ⊆ σj for some j �= i, then B is not sequence preserving
[see Fig. 2(a)]. When this occurs, σi is included in σj ; the
corresponding simplicial complex is thus either ill specified
(facets cannot contain other facets, by definition) or does not
have the same degree and size sequences as B (if we simply
remove σi). For similar reasons, if two or more edges connect
the same pair of nodes in B, then the graph is not sequence
preserving [see Fig. 2(b)].

(a)

(b)

FIG. 2. Example of non-degree-preserving bipartite graphs. The
two bipartite graphs (left column) encode the joint degree se-
quences (d,s) = ([2,2,1,1,1],[3,2,2]), but the associated simpli-
cial complexes (right column) have different size and degree
sequences, respectively (d ′,s′) = ([1,1,1,1,1],[3,2]) and (d ′,s′) =
([2,1,1,1,1],[2,2,2]). The disparities are due to the presence of
(a) a fully included neighborhood, and (b) pairs of nodes connected
by more than one edge.
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The sampling space would not be too constrained if these
non-sequence-preserving bipartite graphs were rare. Sampling
would then be easy. Unfortunately, it is straightforward to show
that non-sequence-preserving graphs are far more common
than sequence-preserving ones, by adapting the calculations
of Ref. [31]. We find that the fraction φ of bipartite graphs
with degrees (d,s) not featuring parallel edges rapidly tends to

φ = e− 1
2 (〈d2〉/〈d〉−1)(〈s2〉/〈s〉−1), (2)

where 〈xk〉 is the kth moment of the sequence x, and where
it is assumed that the elements of d and s do not grow with n

(i.e., B is sparse). Thus, based on the presence of multiedges
alone, there is a stringent upper bound on the fraction of
bipartite graphs that are actually in the support of the SCM.
An even smaller fraction remains after the bipartite graph
with included neighborhood are removed.

B. Markov chain Monte Carlo method

To sample from the SCM, then, one needs to sample uni-
formly from a very constrained space, i.e., that of all sequence-
preserving bipartite graphs with joint degree sequence (d,s).
Previously proposed approaches such as rejection sampling do
not work well [22], because natural proposal distributions (e.g.,
stub matching) give an appreciable weight to non-sequence-
preserving bipartite graphs [see Eq. (2)]. Thus, we turn to
the Markov chain Monte Carlo (MCMC) sampling strategy
[32], which has been used with great success for the CM
[25,30]. The general idea is to construct a random chain of
sequence-preserving bipartite graphs B0, . . . ,BT , to sample
from this chain at regular intervals, and to treat the samples as
if they had been drawn identically and independently from the
ensemble. The algorithm will be correct if the chain is ergodic
(time averages equal ensemble averages) and uniform (all
nonisomorphic B are represented equally). These properties
are determined by the allowed transformations Bt → Bt+1 and
the resulting transition matrix π , where πij is the probability
that Bj follows Bi in the chain. If the move set connects
the space and the chain is aperiodic, then the chain will be
ergodic. If the transition matrix is doubly stochastic (all rows
and columns sum to 1), then the chain will be uniform.

We claim that the following set of moves satisfies all three
conditions. Consider L, a random variable on the support
L = {2,3, . . . ,Lmax}, where Lmax is a parameter and the
distribution P[L = �] is arbitrary but nonzero everywhere on
L (for illustration purposes, we will use P[L = �; λ] ∝ e−λ�).
At each step of the chain, we pick L edges in B (uniformly
at random). We cut these edges and randomly match the stubs
stemming from facets to the stubs stemming from nodes. If
this matching generates a sequence-preserving bipartite graph
B ′, then we accept the move; otherwise we resample B. This
set of moves is similar to the double-edge swap commonly
used in graph MCMC [25]. The only difference is the variable
number of rewired edges, added to help the sampler better
navigate the constrained support [30]. Much like its graphical
counterpart, the resulting MCMC algorithm is efficient since
drawing L edges and checking for resampling can be done in
polynomial times.

The chain is aperiodic because the above set of moves yields
a doubly stochastic transition matrix for any distribution P:

The total number of possible transitions at each configuration
is a constant independent from the configuration considered
(resampling guarantees this) [25]. The chain is also aperiodic,
because there exists orbits of period 1 (resampling steps) and
2 (all moves are reversible) for any nontrivial (d,s).

This leaves open the question of whether the support of the
SCM is connected by the set of moves or not. We argue that it
is, for all Lmax � L∗

max, where L∗
max is bounded by

L∗
max � 2 max s. (3)

To prove this, one would have to show that given two
sequence-preserving bipartite graphs B1 and B2, it is al-
ways possible to find a B3 such that |	+[K(B1),K(B2)]| �
|	+[K(B1),K(B3)]|, where 	+ is the set of facets in K(B2)
that are not in K(B1), and 	− is the set of facets in K(B1) that
are not in K(B2) [K(B) is the simplicial complex associated
to the graph B]. Although a general proof remains elusive, we
propose the following nonrigorous argument, valid for sparse
simplicial complexes (simplicial complexes with bounded
max d and max s in the limit n → ∞).

To construct B3, we first select a facet σ in 	+ (incident
on the set of nodes 
 in B2). The conservation of sizes and
degrees guarantees that there exists a facet τ ∈ 	− of the
same size. The idea is then to start from B1, cut all edges
attached to τ and one edge from every node in 
, match
the stubs of σ to those of v ∈ 
, and finally match the
remaining orphaned stubs. This algorithm ensures that B3 is
closer to B2 than B1 was, because it removes facets from
	± (and does not add new facets either: Each v ∈ 
 has
at least on facet in 	− by the conservation of degrees). In
general, it is not guaranteed that the last step can be carried out
without creating included faces. However, in sparse simplicial
complexes, σ is well separated from τ for almost all (σ,τ ),
since B1 is locally treelike [28]. In such cases, no included
faces are created at the last step, and the above algorithm can
be carried through for some (σ,τ ), generating B3. Because this
scheme involves at most L∗

max = 2 max s rewired edges (when
|τ | = |σ | = max s), we obtain the bound of Eq. (3) for infinite
sparse SCM. In practice, Lmax = 2 seems to always connect
the space (we found no counterexamples), and sampling is
more efficient when Lmax  2 (see Fig. 3)—the value of L∗

max
is more of theoretical than practical interest.

III. NULL MODEL

We put our efficient MCMC algorithm to the test, by
verifying the statistical significance of the structural patterns
found in three relational datasets that can be represented as
simplicial complexes (see caption of Fig. 4 for details).

Since an instance of the SCM is provided in each case
(the real system), we use it as the initial condition for
each independent run of the sampling algorithm. Ergodicity
implies that the state of the sampler will be uncorrelated
with the initial configuration after a sufficiently long burn-in
period—the choice of initial condition is ultimately irrelevant.
Extrapolating from the results of Fig. 3, we opt for the
proposal distribution P[L = �] = eλ�/Z with λ = 1 and Lmax

set to 10% of m = ∑
di = ∑

si . Nonrigorous arguments from
expander graph theory suggest tf = O(m log m) as a good—if
overzealous—choice of sampling interval [36].

032312-3



YOUNG, PETRI, VACCARINO, AND PATANIA PHYSICAL REVIEW E 96, 032312 (2017)

100 101 102 103 104
Lmax

0

2500

5000

7500

E
di

t d
is

ta
nc

e = 0
= 1
= +1

FIG. 3. Effect of the parametrization of the proposal distribution
P on the mixing time, as quantified by the edit distances of the
graphical representation of the samples. We investigate the family
of distributions P[L = �; λ] = eλ�/Z, and use the regular SCM of
f = 1 000 facets of size s = 8, and n = 2 000 nodes of degrees d = 4.
Pairs of samples are separated by 100 proposed MCMC moves and
are obtained from a unique initial configuration found via rejection
sampling. The shaded region lies below the upper bound on L∗

max of
Eq. (3). λ = 1 balances high-rejection probability but efficient moves
with safe but inefficient moves, yielding the best overall performance
for all Lmax. In practice, we have found that medium values of Lmax are
better, because checking for resampling is of complexity O(Lmax〈d〉),
which translates into slower effective mixing time when Lmax  1.

Significance results only make sense if they rely on a null
model that embodies a natural null hypothesis for the problem
at hand [25]. For example, the regular CM and its correlated
variants usefully show that the network projection of datasets
with high-order interactions are abnormally clustered [37].
Therefore, we use the sampler to investigate the distribution of
a mesoscopic property only accessible when the datasets are
encoded as simplicial complexes: The shape of the datasets, as
captured by their homology, i.e., the pattern of holes, cavities,
and higher dimensional voids [29]. The homology can be
summarized by a series of Betti numbers β = (β0,β1,β2, . . . ),
where βk counts the number of structural holes bounded by
k-dimensional simplices. For example, β0 counts the number
of connected component, β1 the number of homological cycles
in K, β2 the number of holes enclosed by facets of sizes
2, etc. Since every instance of the SCM has the same fixed
local structure but is otherwise maximally random, we expect
significant differences between the Betti number β of an
organized simplicial complex and the bulk of the distribution
of β in the corresponding randomized ensembles.

We show in Fig. 4 the distribution of β0 and β1 for
the SCM associated to the real systems. Looking first at
β0, we find that the structure of the pollinator dataset is
essentially random [Fig. 4(a)]. That is, the overwhelming
majority of simplicial complexes with the same sequences
have similar β0. In contrast, the β0 of the disease genome
regulation (hereafter diseasome) and crime complexes are
highly significant [Figs. 4(b)–4(c)]: A random instance of the
SCM has fewer (diseasome) or more (crime) components than
the real system with high probability. In one case (crime),
the difference is a statistical signature of how the dataset was
gathered, namely by looking up the ties of suspects, victims,
and witnesses already in the dataset, recursively [35]. Because
this process creates much larger connected components than
random sampling, the resulting β0 is far from the ensemble
average—an effect that we expect to find in any dataset
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FIG. 4. Significance of the Betti numbers of real systems. The
datasets are bipartite networks, which we convert to simplicial
complexes (we prune included faces). They map the relationships
between (a) flower-visiting insects (nodes, n = 679) and plants (facets
f = 57) in Kyoto [33], (b) human disease (nodes n = 1100) and
genes (facets f = 752) linked by known disorder-gene associations
[34], and (c) crimes (nodes, n = 829) and suspects, victims, and
witnesses (facets, f = 378) in St. Louis [35]. The Betti numbers
of these real systems appear as solid vertical lines and are equal to
(a) β0 = 2, β1 = 17 (b) β0 = 503, β1 = 27, and (c) β0 = 20, β1 =
23. We show the distributions of Betti numbers for the equivalent
SCM with solid symbols (computed from 1000 instances of the
model). The shaded regions contain 95% of the samples. The
parameters of the SCM—extracted from real systems—are shown
in insets.

constructed using a similar methodology. In the other case
(diseasome), the real system has more components than one
would typically expect from the local information alone. The
construction procedure does not explain this disparity [34],
meaning that the system must self-organize in a fragmented
way, likely for biological or evolutionary reasons.

Turning to β1 we again find that the structure of the
pollinator dataset is typical and that the same cannot be said of
the diseasome and crime datasets. Both simplicial complexes
have significantly fewer cycles than expected; i.e., given a
cycle, it is more likely to be filled by a simplex in the real
system than in the randomized one, suggesting that some form
of high-order triadic closure is at play [10]. The difference
is, however, much more pronounced in the crime dataset; this
could be due to the fact that it describes a social system, whose
structure tend to be heavily driven by triadic closure [38] (and
potential high order analogs).
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Finally, taking both distributions into account, we conclude
that the shape of the pollinator dataset is completely deter-
mined by its local structure, while large-scale organizational
principles influence the structure of the other datasets. This
leads us to two final observations: One, care must be exerted
in drawing conclusions about the shape of complex datasets—
from the homology point of view there is nothing of note in the
structure of the pollinator dataset. Two, some datasets—here
the crime and diseasome datasets—are decidedly not random.
This raises the question of just how much information must
models account for before they can capture such atypical Betti
numbers. Would, for example, adding limited correlations
among degrees be sufficient to capture the shape of most real
datasets? Or do we need to embrace growth models, with their
sophisticated rules and clustered local structure [8,23,24]?

IV. PERSPECTIVES

As it stands, the SCM already establishes the analysis of
simplicial complexes on firmer statistical ground. The next
step will be to clarify a number of important open questions,
e.g., what is the true value of L∗

max for arbitrary simplicial
complexes and what is optimal choice of proposal distribution
P (cf. Fig. 3).

Beyond these obvious questions, the connection between
the SCM and the simple CM lead us to a series of natural
problems not addressed in this paper. These include the
problem of the simpliciality of arbitrary pairs of sequences

(i.e., is there a simplicial complex which realize a pair of
sequences?) [22], related to the problem of constructing initial
conditions for the MCMC sampler, when no real system is
available. We believe that the solution to such problems will
require new insights, as the no-inclusion constraints appear
to be a major obstacle to the application of classical methods
developed for the analogous graphicality problem [39,40].

In closing, we stress that all the above questions and
challenges are of technical nature; the model and sampler
can already be applied to practical problems [32]. This could
lead to improvements in persistent homology (e.g., statistically
sound filtrations of weighted complexes) or a formulation of
community detection of simplicial complexes (via modularity
[41]) and could provide a new glimpse into the emergence
of homology and higher order structural properties in real
complex systems.
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