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A Semantic Web Approach to Simplifying Trigger-

Action Programming in the IoT 
Fulvio Corno, Luigi De Russis, Alberto Monge Roffarello, Politecnico di Torino, Italy 

Programming environments for End-User Development in the Internet of Things (IoT) allow end-users to 

customize the joint behavior of their IoT objects, typically through trigger-action rules. Unfortunately, 

they mainly adopt highly technology-dependent models, i.e., they often categorize devices and services 

by manufacturers or brands. An example of how such low-level of abstraction could be overcome is 

EUPont, an ontological model to provide an abstract and technology-independent representation for IoT 

end-user programming environments. In this paper, we show how EUPont could improve the rule 

composition process, and we evaluate its expressiveness by presenting an automated translation 

procedure of 290,963 rules shared on the IFTTT programming environment. Results show that EUPont 

improves the rule composition process for end-users in terms of correctness and needed time. 

Furthermore, the evaluation confirms that the model is more expressive than the one adopted by IFTTT, 

one of the most common solutions in this field. 

Keywords: End-User Development, Internet of Things, Semantic Web, Trigger-Action Programming, 

Ontology 

In the emergent Internet of Things (IoT) world, end-users with and without programming skills are 

willing to customize the joint behavior of IoT objects based on their personal needs. In this context, 

programming environments for End User Development (EUD) such as IFTTT [1] are becoming 

increasingly common. They allow the definition of simple IoT applications, i.e., connections between 

pairs of IoT devices and services. Such applications are typically expressed as trigger-action rules, where 

an action is automatically executed when an event (the trigger) is detected. Unfortunately, 

contemporary programming environments adopt highly technology-dependent representation models, 

i.e., they categorize devices and services by manufacturers or brands. With this approach, end-users 

have to define several similar rules to satisfy their needs, even if the defined rules perform the same 

logical operation. Furthermore, end-users must be aware of every single object they may encounter 

before creating their rules, without the possibility to define their applications for yet unknown places, 

users, or IoT devices and services. For instance, the rule “if the bedroom motion sensor detects a 

movement, then turn the table lamps in the bedroom on” refers to a specific motion sensor and to a 

specific lamp, and it cannot be generalized to reproduce the same behavior (i.e., turning the lights on) in 

the kitchen. With this lack of discovery and adaptation features, the expressive power of the definable 

rules is very poor. 

An example of how such “low-level” of abstraction could be overcome is provided by EUPont [2], a 

“high-level” ontological model we defined to provide an abstract and technology-independent 

representation for IoT end-user programming environments. With such a model, a user interested in 

controlling her lights at home could simply define one single rule, e.g., “if I enter a room at home, then 

turn the lights in the room on”, independently from the lights manufacturer and from the involved 

location. 

In this paper, we show how EUPont could improve the rule composition process by describing a user 
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study we conducted [2], and we discuss and evaluate the expressive power of the model. To this 

purpose, we first highlight the characteristics of the trigger-action programming approach adopted in 

EUPont. Then, we show an automated translation procedure that allowed us to represent in EUPont 

290,963 rules publicly shared on IFTTT [3], one of the most common end-user programming 

environments for the IoT. The adopted trigger-action approach, along with the translation results, shows 

that EUPont is more expressive than the representation adopted by IFTTT, and it is fully compatible with 

rules already defined in a low-level representation. In addition, the translation confirms that EUPont 

significantly reduces the number of rules needed to satisfy all users’ needs. 

End-User Development in the IoT 
As defined by Lieberman et al. [4], EUD is “a set of methods, techniques, and tools that allow users of 

software systems, who are acting as non-professional software developers, at some point to create, 

modify or extend a software artifact”. Starting from iCAP [5], a visual rule-based system for PC to create 

context-aware applications, EUD is becoming a promising approach for the IoT. Several interfaces and 

tools for end-user programming in the IoT are present both in the literature (e.g., [6, 7]) and as off-the-

shelf products (e.g., IFTTT [1], Atooma [8]). Such applications allow the definition of rules, typically in the 

trigger-action form, without needing to write any code. The trigger-action format is one of the most 

used in EUD, and can be useful and usable for end-user programming in IoT settings like smart homes [9, 

10], and for cross-devices usage [11].  

Among the commercial tools, IFTTT is widely used and appreciated. IFTTT is a success in terms of user 

understandability and ease of use, with more than 1 million rules created by its users [12]. It allows the 

composition of simple connections (named applets) between more than 400 supported IoT objects 

(named services) [13]. The supported objects range from commercial devices (e.g, the Nest thermostat), 

to web or mobile services (e.g., Facebook). Applets, at least in the free version, can include a single 

trigger and a unique action, and can be composed by using a wizard-based procedure (a screenshot is 

shown in Figure 1).  

Although EUD in the IoT has recently gained interest, interoperability and scalability challenges remain. 

Each of the 400 devices and services modeled by IFTTT, in fact, has its own different properties, with 

associated various triggers and actions. With the spread of new smart “things”, the amount of 

information may become too high and cluttered. Furthermore, recent studies criticize the expressive 

power of IFTTT since it is rather poor in terms of trigger and action composition [9, 14], while others [15, 

9] show that the trigger-action approach should be further investigated to cope with the evolving IoT 

world. From this evidence, some works have tried to improve models and interfaces for EUD in the IoT, 

e.g., by allowing users to define context-dependent applications [16]. In agreement with the work of Ur 

et al. [9], we claim that that, besides considering the context, a new breed of programming 

environments should be designed to support a “higher level” representation of IoT devices and services. 

For this purpose, we developed EUPont [2], an ontology that considers the entities of the IoT ecosystem 

based on their categories and capabilities, and allows the definition of abstract trigger-action rules that 

can be automatically adapted to different contextual situations. EUPont is described in the next 

Sections, along with its evaluation in terms of usefulness and expressiveness. 

 



 

Figure 1: Applet Creation in IFTTT 

EUPont: Programming the IoT by Functionality 
To better explain our idea of EUD in the IoT we report a simple scenario:  

Susan is an architect that likes bright environments, especially when she is working. She is also interested 

in new technologies, and she equipped her home with intelligent lights and movement sensors. She 

installed some Philips Hue lamps in the kitchen, and a Stack Lighting lamp in the living room, while all the 

rooms are surveilled by a Nest Cam. Her office, instead, is equipped with LIFX lights, and with a Samsung 

SmartThings hub that controls all the doors.  

Suppose that Susan would like to automatically increase the environment brightness when she enters a 

specific closed place, e.g., by turning the lights on. By using IFTTT, she should define the following rules: 

• If the kitchen’s Nest Cam recognizes me, then turn the Philips Hue located in the kitchen on. 

• If the living room’s Nest Cam recognizes me, then turn the Stack Lighting lamp located in the 

living room on. 

• If the SmartThings hub detects that the office’s door opens, then turn the LIFX lights located in 

the office on. 

In other words, Susan should define at least 3 different rules even if they perform the same logical 

operation, and she must be aware of all the technologies and branded-products involved, by specifying 

the right object for each rule. Furthermore, even with an authorization, if Susan enters a place different 

than her home or office, the rules that she already defined cannot be used to control the new 

environment.  

We would like to help Susan in setting up her environments with one rule, only:  



• If I enter a closed space, then turn its lights on 

Such a rule is abstract and technology/brand independent: it does not require manually specifying the 

involved objects and places, and it can be used for different contextual situations (e.g., for the kitchen, 

the living room, and the office). In other words, the trigger and the action of the rule define the behavior 

in which Susan is interested, i.e., the functionality that Susan would like to obtain from the involved IoT 

objects. 

A Semantic Model 
To allow the definition of abstract and technology/brand independent rules, we developed EUPont, a 

high-level representation for End User Development in the IoT.  

 

Figure 2: The EUPont Ontology Structure 

EUPont models the objects that compose the IoT ecosystem based on their categories (e.g., lighting 

systems, user devices, smart appliances, social networks) and their capabilities (e.g., sensing, actuating, 

communication). EUPont is built as an ontology (available at 

http://elite.polito.it/ontologies/eupont.owl), thus offering all the advantages of the Semantic Web 

framework. Semantic Web technologies shall support the seamless integration of data, on-the-fly 

composition and interoperation of Web services [17]. With a semantic representation, the model can 

easily answer queries such as “which IoT devices or services can perform a particular action?” or “which 

IoT devices or services can generate a particular event?”.  

Figure 2 shows the overall structure of EUPont. The ontology is composed of four main blocks: Trigger-

Action Programming, Contextual Information, IoT Ecosystem, and Semantic Reasoning. 

Trigger-Action Programming 
The Trigger-Action Programming block allows the definition of abstract and technology/brand 

independent trigger-action rules. Triggers and actions are organized in a hierarchy, to allow the choice 

among different levels of abstraction. Depending on the granularity of user needs, EUPont defines two 

http://elite.polito.it/ontologies/eupont.owl


main levels of abstraction, that we call Medium Level and High Level. Figure 4 shows the hierarchy for 

some lighting-related actions. For instance, the action defined by Susan (i.e., “turn the lights on”) is 

included in the “illuminate the place” action, along with, for example, “open the blinds”.  

EUPont rules may support multiple triggers and actions. Triggers can be chained by means of the OR 

logical operator, while actions can be chained with the AND operator. Furthermore, for each trigger and 

action, users can specify up to three additional restrictions, namely Who, Where, and What. Similar 

restrictions are defined in the work of Desolda et al. [17]. The restriction What can be used to specify a 

list of details to associate with the trigger or the action, e.g., a temperature threshold to monitor, or the 

text of a message to be sent. Instead, Who defines the involved user(s) in the defined trigger and action, 

while Where specifies the involved location(s). Who and Where can be generic (e.g., any friends, any 

closed space, the location of the trigger) or specific (e.g., my friend Mark, or my kitchen).  

IoT Ecosystem 
The IoT Ecosystem block models IoT devices and services as entities that can offer one or more 

functionality.  Each functionality may have commands to perform some actions, or notifications to 

register event listeners. Commands and notifications include the features needed to interact with the 

specific technology (e.g., specific commands with required parameters to be sent to devices and 

services). For example, a Philips Hue lamp is modeled as a Lamp (a particular type of Lighting System) 

that offers, among the others, an Actuating functionality with Turn On and Turn Off commands. 

Contextual Information 
The Contextual Information block describes locations and users that act as restrictions for trigger-action 

rules (i.e., Who and Where restrictions), and the contextual information of the IoT Ecosystem (e.g., the 

position of a device, or the users subscribed to an online platform). Thanks to this layer, trigger-action 

rules can be adapted at run-time to different users and (even unknown) locations. In this way, the 

ontological representation provides a strong support for executing the defined end-user rules. 

Semantic Reasoning 
The Semantic Reasoning block automatically maps the defined trigger-action rules with devices and 

services in the IoT Ecosystem that allow to reproduce the desired behaviors, by keeping into account the 

current context, dynamically. Semantic Reasoning is implemented with a set of built-in SWRL rules, that 

can be used from run-time environments for executing the trigger-action rules defined by end-users. For 

the trigger-action rule defined by Susan, for example, a specific SWRL rule maps all the Lighting devices 

of the user that can be turned on (i.e., the Philips Hue and LIFX lights, and the Stack Lighting lamp) as 

potentially able to reproduce the action behavior. By reasoning on the contextual information, e.g., by 

comparing the location of the lights with the locations of the user, run-time environments can easily 

select the right IoT object(s). It is worth noticing that abstract behaviors, e.g., illuminate a place, could 

be potentially reproduced in different ways according to the current context. Different methodologies 

can be adopted to select specific devices or services, ranging from preference-based approaches to fully-

automatic solutions (e.g., through machine learning). 



 

Figure 3: A Portion of the Lighting-related Actions in the EUPont Trigger-Action Programming Hierarchy. 

Composing Trigger-Action Rules with EUPont 
Since the main goal of EUPont is to help end-users in composing IoT applications, we evaluated this 

aspect in a previous work [2]. We were interested in the understandability of the model, and whether 

and how EUPont helped end-users create trigger-action rules. For this purpose, we compared the level 

of abstraction offered by EUPont with the representation adopted by IFTTT. 

 

Figure 4: The Interface for Composing Trigger-Action Rules with EUPont 

We created an interface modeled after IFTTT in two versions, one that allowed the composition of 

trigger-action rules in the EUPont representation (Figure 4), and the other that exploited a subset of the 

(low-level) devices, services, triggers, and actions as modeled by IFTTT. Then, we performed a user study 

with 10 participants, and asked them to complete five scenario-based tasks related to the creation of IoT 

applications with both versions of the interface.  

The study we conducted revealed that EUPont is well understood by end users and suitable for creating 

IoT applications. Moreover, the high-level of abstraction of EUPont allows the creation of IoT 

applications in a more effective and efficient way than the representation currently adopted by IFTTT. 

Since EUPont abstracts and generalizes IoT devices and services, the number of rules created by the 

users to reach their goals was lower (28% fewer rules, on average). Additionally, the needed time and 



the number of errors in composing trigger-action rules were significantly lower with EUPont than with 

the IFTTT-like representation. The needed time, in fact, was 52% lower with the High-Level model while 

the number of errors was 64% lower, in average. Users qualitatively reported appreciating the lower 

cognitive effort required during the composition of high-level rules and envisioned a potentiality for a 

greater discoverability and applicability of such rules. 

EUPont Expressive Power 
To use EUPont in practice, its expressiveness is very important. To improve the expressive power of the 

trigger-action approach adopted by contemporary solutions, EUPont already implements guidelines 

reported in the literature, e.g., multiple triggers and actions, trigger and action restrictions.  

To further investigate the expressive power of EUPont and assess its completeness, we focused on the 

following two research questions:    

• Is EUPont at least as expressive as the representations used by contemporary IoT end-user 

programming environments? 

• Is EUPont compatible with low-level trigger-action rules defined with contemporary IoT end-

user programming environments? 

To answer these questions, we used a dataset of rules publicly shared on IFTTT [3] as of September 

2016. First, we analyzed and pre-processed the dataset. Then, we translated all the trigger-action rules 

of the dataset in their corresponding Medium and High-Level rules, as modeled by EUPont. Two 

researchers were involved in this manual mapping. The resulting ontology is available at 

http://elite.polito.it/ontologies/eupont-ifttt.owl.  

Translating Trigger-Action Rules in EUPont 
Table 1 (column “Original dataset”) reports some statistics about the original dataset. For each of the 

295,156 rules, the dataset includes: 

• id, creation date, description, and number of shares of the rule; 

• trigger service, trigger name, and trigger description; 

• action service, action name, and action description. 

Before translating the trigger-action rules in the EUPont representation, we performed a data pre-

processing step. Since we were interested in the final behaviors of the defined rules, we identified in the 

dataset the rules composed of ambiguous triggers or actions in terms of functionality.  

For example, the rule “if the Wemo switch is turned on, then send me an Android SMS” has an 

ambiguous trigger, because we do not know which devices are connected to the switch. Another 

example is the rule “if the Nest cam detect a new motion, then execute a scene with my IntesisHome 

hub”. In this case, the rule has an ambiguous action, because the scene that can be activated on the hub 

is defined by the user, and it can include many different environment settings that are not reported in 

the dataset. 

For all the identified ambiguous rules, we manually inspected the description field, trying to discover 

more information about actual devices involved in triggers and actions and the user’s intent. We deleted 

from the dataset 4,193 rules for which it was impossible to resolve the ambiguity. Finally, the pre-
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processed dataset was composed of 290,963 rules composed by 127,173 different users (Table 1, 

column “After pre-processing").   

 Original dataset After pre-processing 

Rules 295,156 290,964 

Distinct Triggers 976 951 

Distinct Actions 551 528 

Users 129,206 127,173 

Rules for each user (in average) 2.29 (S.D. = 6.5) 2.29 (S.D. = 6.5) 

Max number of rules for a user 982 982 

Min number of rules for a user 1 1 
Table 1: Dataset Description 

After data pre-processing, we carried out the translation process in three distinct phases. 

1. Triggers and Actions insertion. In the first phase, we manually mapped the IFTTT triggers and 

actions found onto the dataset in the hierarchical organization of the Trigger-Action 

Programming block of EUPont.  

2. Rule insertion. In the second phase, we automatically inserted the IFTTT rules of the dataset in 

the ontology by connecting each of them with its trigger and its action. For this purpose, we 

developed a Java program that uses the OWL API library [18] to work with the ontology.  

3. Rule translation. After the insertion, the program retrieved the corresponding Medium Level 

Trigger and Action in the Trigger-Action Programming hierarchy for each trigger and action of 

the inserted IFTTT rules. Finally, for each user, the program removed the duplicated rules 

resulting after the Medium Level translation, and saved the results. The process was then 

repeated, separately, by considering the High-Level abstraction. 

Results and Discussion 
Table 2 reports the results of the translation process in both abstraction levels. All the 290,963 IFTTT 

rules in the pre-processed dataset have been translated. With respect to the original dataset, EUPont 

allowed to translate 98.58% of the rules, along with 97.44% of triggers and 95.83% of actions. 

Furthermore, as already explained, the 4,193 ambiguous rules are mainly due to a lack of information in 

the original dataset: by knowing the functionality defined by the users, also those rules could be 

translated. 

 Medium-Level Translation High-Level Translation 

Number of translated rules 290,963 290,963 

Number of rules after translation 179,110 170,353 

Number of saved rules  111,853 120,610 

% of saved rules 37.90% 41.45% 

% of saved rules for each user 12.26% (S.D. = 24.12%) 13.26% (S.D. = 25.18%) 
Table 2: Translation Results 

The translation confirms that EUPont could significantly reduce the number of rules needed by end-

users to satisfy their needs. With the Medium Level translation, the total number of rules could be 

reduced by 37.90%, and, in average, each user could save the 12.26% of their rules. By expressing the 

rules in an even more abstract way, i.e., with the High-Level of abstraction, the percentage of saved 



rules increases (41.45% in total, and with an average saving of 13.26% for each user). Moreover, such 

promising results are influenced by the dataset distribution. In fact, 87,796 users (i.e., 68%) share one 

rule, only. In this case, obviously, the translation does not influence the final number of rules for the 

users but may avoid the creation of similar rules in the future. 

Given the translation results, we can conclude that EUPont is as least as expressive than the 

representation model used by IFTTT, and it is fully compatible with low-level rules as defined in IFTTT. 

Moreover, the flexible trigger-action approach adopted by EUPont (e.g., with multiple triggers and 

actions) increases the expressiveness of the representation. 

Conclusions and Future Works 
The forthcoming IoT world presents its own set of issues, mainly in terms of interoperability between 

different technologies and brands. Such issues also influence the ways in which end-users can customize 

the joint behavior of their IoT devices and services.  

In this paper, we described and evaluated EUPont, an ontology that allows end-users to define generic 

and technology-independent trigger-action rules that can be adapted to different contextual situations.  

We have shown that EUPont is more expressive than the most common solution in this field, i.e., IFTTT, 

because a) it follows literature guidelines to improve the expressive power of the trigger-action 

programming approach, and b) it is able to represent more than 200,000 IFTTT rules. EUPont allows to 

overcome the limitations of current low-level approaches, since IoT applications are more general and 

can adapt to different contextual situations as well to yet unknown IoT objects. Furthermore, EUPont 

allows end-users to define their needs with fewer rules. This aspect has a positive impact on the time 

needed by users to define their IoT applications, on the correctness level of the defined rules, and aims 

at increasing the discoverability and the reuse of such rules.  

We believe that EUPont could serve as the core information layer for future IoT end-user programming 

solutions. Numerous challenges still remain: which level of abstraction offered by EUPont would end-

users prefer, and how could a system choose which devices or services control in case of multiple 

possibilities? These and other questions are the focus of our current work. 
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