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Abstract 20 

Optimization of the operating conditions of district heating networks is usually performed limiting the 21 

analysis to the primary energy related with heat production. An additional aspect that should be considered is 22 

the role played by the pumping system. Pumping may contribute to about 10% of the total primary energy 23 

consumption, especially in large networks or when small temperature levels are applied. Furthermore, the 24 

increasing share of waste heat or renewable energy sources from distributed producers requires a flexible and 25 

efficient pumping system. A further aspect which pumping strategy should face is system operation when 26 

malfunctions in the plants, pumps or pipes occur.  27 

Optimization of the pumping system requires the use of detailed simulation tools, which may need 28 

significant computational resources, especially in the case of large networks. A reduced model, based on 29 

Proper Orthogonal Decomposition combined with Radial basis functions (POD-RBF model) is proposed in 30 

this paper. This approach allows maintaining high level of accuracy despite reductions of more than 80% in 31 

the computational time. This make the approach effective tool for control strategy operations. An application 32 

to a large district heating network shows that reductions of about 20% in the pumping request and effective 33 

management of failures are possible. 34 
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1. Introduction 38 

District heating (DH) is considered a very efficient option for providing heating and domestic hot water to 39 

buildings, particularly when they are located in densely populated areas [1]. The main advantage of DH 40 

systems consists in the possibility of utilizing the waste heat from industries or waste-to-energy plants or the 41 

heat generated by a number of efficient/low carbon thermal plants, such as cogeneration plants, and biomass 42 

[2], solar [3] and geothermal [4] systems.  43 

An important aspect to achieve high efficiency in DH is the optimization of the operating conditions the 44 

system has to face in order to comply with the household thermal request. In the literature, various papers 45 

deal with the analysis of supply temperature during daily [5] and seasonal [6] operations or with the selection 46 

of the optimal supply and return temperatures [7]. In [8] a control approach is proposed in order to increase 47 

the temperature difference across the substations with a consequent increase of overall performances. In [9], 48 

the operating conditions of a district heating system are optimized acting both on the set-point temperature of 49 

the boilers and on the water flow of the pumps; the total fuel consumption is considered as the objective 50 

function to be minimized. In [10] and [11] the opportunities to modify the thermal request profile of some 51 

users are investigated to maximize the heat production from cogeneration or renewable plants. 52 

An important aspect of optimal strategy analysis refers to pumping systems. Pumping systems are used to 53 

fulfill the desired heat flux to users facing the issues related to variations in friction losses. They include a set 54 

of pumps located along the network to provide consumers with hot water from the heat generation plants. 55 

The energy consumed for pumping operations is not negligible, in particular in large district heating 56 

networks, when distances involved are long. This aspect is further stressed in the case of low temperature 57 

district heating systems, typically operating with small temperature differences between supply and return 58 

networks and large mass flow rates [12]. Moreover, pumps work continuously during the heating season, 59 

even when heat demand is low. 60 

For instance, the DH system of the city of Turin, which is considered in this work as a case study, requires 61 

up to about 6 MW of power transferred to the fluid, depending on the thermal load. This means that pumping 62 

represents about 2% of the primary energy consumption at peak request and increases to about 6-8% at night. 63 



This aspect is also highlighted by various papers in literature, proposing the implementation of fluid dynamic 64 

models of the network for design purpose or the analysis of the effects of the control strategy on the energy 65 

consumption. A method for district heating network dimensioning, based on the probabilistic determination 66 

of the flow rate for hot water heating was carried out in [13]. Network costs, pumping energy consumption, 67 

and power of boilers were considered. In [14] a multi-objective optimization model is performed for the best 68 

network design considering both initial investment for pipes and pumping cost for water distribution. The 69 

best pipe diameters that reduce the total cost have been evaluated. A technical-economical optimization with 70 

the aim of minimizing both the pumping energy consumption and the thermal energy losses while 71 

maximizing the yearly annual revenue is performed in [15]. In [16] a fluid-dynamic model solved with the 72 

Hardy Cross method [17] is used in order to compare hydraulic performances of distributed variable speed 73 

pumps and conventional central circulating pump. Stevanovic et al. [18] solve the fluid-dynamic model with 74 

a loop method in order to show the potential for energy savings in pumping operations; the loop method is 75 

shown to be more effective with respect to the Hardy Cross method that is affected by problems related to 76 

convergence, computational cost and limited use [19]. In [20] a fluid-dynamic model of the network based 77 

on conservation was built and a genetic algorithm used in order to minimize the energy required by the 78 

system. Most works available in literature are focused on small district heating networks. When a large 79 

district heating network is considered, the computational cost to solve a physical based model becomes very 80 

high; this excludes the use of full physical models for fast multi-scenario and  fast optimization applications. 81 

In the present paper, the authors present two different model approaches for the simulation of large networks 82 

and the analysis of the optimal control strategy for the pumping system. The two models are built in order to 83 

find the set of pumping pressures that should be applied to the pumps located along the network so as to 84 

minimize the total electricity consumption for a given operating scenario. The first model is a fluid-dynamic 85 

model based on mass and momentum conservation equations which consider the network topology through a 86 

graph approach. The second method is a reduced model, which has been derived from the fluid-dynamic 87 

model. Model reduction is obtained through the combination of proper orthogonal decomposition (POD) and 88 

radial basis functions (RBF). POD is a reduction technique which is able to decrease the computational cost 89 

of full physical models without losing the most relevant information. POD is able to capture the main 90 

features of a complex problem using a smaller degree of information (eigenfunctions) than the full model. 91 



This method has received much attention for the reduction of complex physical systems and it has been used 92 

in different fields of science and engineering, such as the analysis of turbulent fluid flows [21,22], unsteady 93 

thermal systems [23], image processing [24] and many other fields.  94 

Both the full physical model and the POD-RBF model are used in order to find the optimal set of pumping 95 

pressures that minimize the mechanical power that should be applied to the working fluid (i.e. the efficiency 96 

of the pump and the efficiency in the overall energy supply chain from primary energy to electricity 97 

production have not been considered) to fulfill the thermal requests of the various users, once the heat 98 

production of each plant is fixed. In the following, this objective function has been indicated as pumping 99 

cost, which should be intended as a cost expressed in energy units. An analysis with different thermal loads 100 

was performed because of the peculiar characteristics of district heating networks to work for a large number 101 

of operating hours in off-design conditions. Therefore a careful analysis of optimal operating conditions, 102 

with different thermal requests, is necessary to achieve high levels of the annual efficiency. The heat flow 103 

supplied by each thermal plant is provided as an input of the model by setting the water mass flow rates 104 

exiting the various plants. 105 

Results obtained with the two models are compared in terms of both minimum energy consumption and 106 

computational time for each thermal load. The POD-RBF model allows us to obtain optimal costs that differ 107 

from the cost provided by the full physical model of less than5%. The full physical model is extremely time-108 

consuming especially if applied to large district heating networks. The POD-RBF method is much faster than 109 

the full physical model and allows us to perform multiple simulations and optimizations using small 110 

computational resources. The POD-RBF approach is shown to be very effective for the optimal management 111 

of complex district heating systems reducing computational cost by more than 90% with respect to the full 112 

physical model. This allows the optimization process for a much larger number of scenarios. Results of the 113 

optimization are then compared with the current pumping strategy used for the district heating system of the 114 

city of Turin; the comparison shows that a change in the policy of pumping operations can reduce the energy 115 

consumption for pumping by about 20%. 116 

 117 

2. System description 118 



The Turin district heating network is the largest network in Italy. It currently connects about 55000 buildings 119 

with an annual thermal request of about 2000 GWh. The maximum thermal power is about 1.2 GW. An 120 

expansion of the system, to reach about 72 million cubic meters of buildings is already planned [25].The 121 

water supply  temperature is constant and its value is 120°C while the return temperature varies with mass 122 

flow rate in the network and thermal load; the mean value is 65 °C. 123 

The complete network can be considered as composed of two parts: a transport network and a distribution 124 

network. The transport network, consists in large diameter pipes, usually larger than 200 mm, and connects 125 

the thermal plants to the thermal barycentres. Each barycentre is a subnetwork that reaches a group of 126 

buildings that are located in the same area. In the Turin network there are 182 barycentres. The ensemble of 127 

these sub-networks constitutes the distribution network. The transport network is a loop network, while the 128 

sub-networks are tree-shaped networks. Figure 1 depicts the transport pipeline network and, in detail, 3 129 

barycentres with their corresponding tree-shaped networks. 130 

The model developed in this work only considers the main transport network. The total length is about 515 131 

km. Five thermal plants, which are highlighted in green in Figure1, provide heat to the network. The main 132 

characteristics of the plants are reported in Table 1. The most usual start-up strategy of the thermal plants is 133 

the following: the two cogeneration plants in Moncalieri are started-up first (when the thermal request is 134 

below 260 MW one plant is operating, while the second one is operating when the request is below 520 135 

MW), then the cogeneration plant in Torino Nord is started up and then the storage units in Politecnico and in 136 

Torino Nord. Larger thermal requests are covered using the boilers in Politecnico, Torino Nord, Mirafiori 137 

Nord, BIT, Moncalieri. In the case some of the plants are not available or when specific constraints due to 138 

electricity production must be fulfilled, a different order can be selected. 139 

Regarding pumping systems, the main pumping stations are located at the thermal plants and 9 booster pump 140 

groups are located along the network. The main pumping stations allow the desired hot mass flow rate to be 141 

pumped into the network, from the operating thermal plants to the users. Booster pumping stations are used 142 

in order to distribute the correct mass flow rate to each user, contrasting friction losses and hydraulic head. 143 

Booster pumping stations and direction of the pumped flow are indicated in Figure 1b. RP1 and RP2 include 144 

two groups of pumps, each pumping in a specific direction; RP5 includes three groups of pumps; RP3 and 145 

RP4 include only one group of pumps. The latter is not considered in the simulation because it is used in a 146 



network configuration different to that examined in this work. The use of RP4 will be necessary when the 147 

network developments, which are already planned, are completed. A further utilization of this pump is 148 

possible in the case of malfunctions.  149 

3. Models description 150 

In order to minimize the pumping energy consumption, to provide the users with their thermal request, an 151 

optimization was performed. In the optimization, each scenario is defined by setting the total thermal load 152 

and the contribution of each plant to the thermal load, i.e. the heat production of each plant does not vary in 153 

the optimization procedure. Mass flow rates at the various plants are obtained dividing the heat production 154 

by the specific heat and the temperature difference between supply and return network. 155 

There are various different settings of the pumping groups which allow combining the production of plants 156 

and the request of the users, each corresponding with a different total power consumption. The independent 157 

variables are the pressure differences in the pumping stations; therefore there are 8 independent variables, 158 

one for each pump located along the network. As previously discussed, only the booster pumping stations, 159 

not the pumps located in the plants, were considered. A maximum pressure of 17 bar has been set as a 160 

technical constraint. 161 

The objective function is the energy consumption, also called the energy cost. It has been calculated as: 162 

𝐶 = ∑
𝐺𝑝∆𝑝𝑝

𝜌𝑝 + ∑
𝐺𝑟∆𝑝𝑟

𝜌𝑟      (1) 163 

where subscript p indicates pumping systems located in the thermal plant, which are the dependent variables 164 

in the optimization problem, and subscript r indicates the booster pumping systems, which are the 165 

independent variables. The water density in the plants was evaluated as the average value between the supply 166 

and the return temperatures. This procedure should be repeated for different thermal loads in order to build 167 

an optimal control strategy. 168 

Two approaches have been used to perform the optimization: a fluid dynamic approach and a POD approach. 169 

As regards the fluid dynamic approach, a genetic algorithm[26] was applied to the model described in the 170 

next section. The algorithm starts the search for the optimal values from multiple initial points. Consequently 171 

various cases (also called individuals in literature) must be created to run the optimization. This set of cases 172 

is usually named the population. The number of individuals in the population is kept constant during the 173 



optimization process, but the values of the independent variables associated with each individual are 174 

modified at each iteration. Iterations are usually called generations in GA nomenclature. To create the initial 175 

population to be used in the optimization, the non-dimensional variables are randomly selected.  A 176 

population of 100 elements and a maximum number of 100 iterations are selected. 100 sets of pressure 177 

differences randomly selected constitute the first population. The genetic algorithm runs until the 178 

convergence is reached, when further changes in population members do not affect the minimal cost 179 

obtained. The convergence was reached after about 50-60 generations depending on the thermal load 180 

selected. The procedure is shown in Figure 2a. The pressure differences can vary between the values selected 181 

in order to obtain, for the most cases simulated, a maximum pressure value lower than the upper pressure 182 

limit. 183 

The second optimization is performed using a POD-RBF approach. The POD-RBF model is built using a set 184 

of results from the fluid dynamic model. The set of results is called snapshot. In this work each snapshot 185 

consists in a set of mass flow rate in the branches where the pumping stations are located and the 186 

corresponding pumping cost. Once the model is built, it can be used to simulate different cases respect to the 187 

one used to build the model or used as an optimization tool. The procedure is represented in Figure 2b.  188 

The fluid dynamic model is a high time consuming model because it carefully analyzes the system behavior 189 

in all the network zones, even when only information in some sections is required  (in this case in the booster 190 

pumping power branches). The POD-RBF model instead provides an approximate value of the objective 191 

function, but the search for the optimum is much faster. These two methods are discussed in detail and 192 

compared in the next sections. 193 

3.1  Fluid-dynamic model 194 

A one dimensional model was developed to detail the thermo-fluid dynamic behavior of the main pipeline of 195 

the network (i.e. the transport network). The topology of the network has been described using a graph 196 

approach [27]. Each pipe is considered as a branch delimited by two nodes, which are identified as the inlet 197 

node and outlet node on the basis of a reference direction(velocity is positive when the fluid is flowing in the 198 

same direction as the reference direction and negative when flowing in the opposite direction). The main 199 

return pipeline network includes 685 branches and 677 nodes, with 9 loops. The fluid-dynamic model 200 



considers the mass conservation equation applied to all the nodes and the momentum conservation equation 201 

to all the branches. 202 

The incidence matrix A, is used in order to describe the network topology by expressing the connections 203 

between nodes and branches. Matrix A has as many rows as the number of nodes and as many columns as 204 

the number of branches. Its general element Aij is equal to 1 or -1 if the branch j enters or exits the node i and 205 

0 otherwise. Using this matrix the mass balance equation written using matrix form is: 206 

𝐀 ∙ 𝐆 + 𝐆ext = 0  (2) 207 

where G is the vector that contains the mass flow rates in the branches and Gext the vector that contains the 208 

mass flow rates exiting the nodes outwards. The terms in Gext are different than zero in the case of open 209 

networks, i.e. when only a portion of the entire closed circuit is considered.  210 

The steady-state momentum conservation equation in a branch for an incompressible fluid is considered, 211 

neglecting the velocity change between input and output sections and including the gravitational term in the 212 

static pressure: 213 

(pin − pout) =
1

2

f

D
L

G2

ρS2 +
1

2
∑ βkk

G2

ρS2 − t (3)  214 

where the first and the second terms on the right-hand side terms are respectively the distributed and the 215 

localized pressure losses, while the last term is the pressure rise due to the pumps that may be located in the 216 

branch. Equation (3) can be rewritten as: 217 

G = Y(pin − pout) + Yt (4)  218 

where the term Y is the fluid dynamic conductance of the branch, expressed as:  219 

Y = R−1 = [
1

2

G

ρS2 (
f

D
L + ∑ βkk )]

−1
 (5) 220 

The friction factor f has been evaluated using an explicit Haaland correlation in order to reduce the 221 

computational cost of the simulations. 222 

Momentum equation can rewritten in matrix form. This formulation is obtained using the incidence matrix in 223 

order to relate the quantities that are defined at the branches (mass flow rates and pressure variations due to 224 

friction and pumping) with pressures at the inlet and outlet nodes: 225 

𝐆 = 𝐘 ∙ 𝐀T ∙ 𝐏 + 𝐘 ∙ 𝐭 (6) 226 



The diagonal matrix Y represents the fluid dynamic conductance of branches. Because of the dependence of 227 

Y on mass flow rate, the obtained system of equation is non-linear. Equation (6) is finally modified by 228 

setting proper boundary conditions. 229 

Mass and momentum equations are solved using a SIMPLE (semi implicit method for pressure linked 230 

equation) algorithm [28]. This is a guess and correction method: a pressure vector is first guessed and during 231 

the iterations it is corrected together with the mass flow rate vector obtained using (6). Further details on the 232 

method are available in [29]. In order to solve the system of non-linear equations a fixed point algorithm has 233 

been used. 234 

The model includes both the supply and the return pipelines, which are connected in the barycentres. From 235 

fluid dynamic viewpoint, barycentres are considered as pipes with their certain friction resistances and the 236 

fittings frictions (e.g. T-junctions, curves, etc.). In a general case, the mass flow rates supplied to the 237 

barycentres, Gut, differ from their requests, therefore an adjustment is necessary to model the valve 238 

controlling the barycentre mass flow rates. Therefore a variable resistance term is added to the fixed term; 239 

both resistances are expressed as equivalent lengths which affect the term Y appearing in equation (4). 240 

The variable resistance term is iteratively modified until an acceptable flow distribution is obtained, with all 241 

users supplied with the requested mass flow rate. To obtain the mass flow rate required from every user the 242 

value of Leq in the nth-iteration is calculated as follows:  243 

Leq
n =  Leq_f + Leq_v

n−1 (
Gut

n−1

Gut
)

2

 (7) 244 

where Leq_f is the fixed resistance and Leq_vis the variable resistance. Subscripts n and n-1 refer to the current 245 

and previous iterations, respectively. The iterative procedure stops when the relative error between Gn-1and 246 

Gutis smaller than a threshold value. 247 

Concerning boundary conditions, the mass flow rate supplied by each plant is fixed on the corresponding 248 

node of the supply network. Similarly, the mass flow rate returning at each plant is fixed on the 249 

corresponding node on the return network, except for the node corresponding with Moncalieri plant, where 250 

the pressure is fixed. The latter boundary condition is required for proper solution of the fluid dynamic 251 

problem, as a further condition on the mass flow rate would result in a linearly dependent equation. Pressure 252 

is imposed on the Moncalieri plant, since the master pressurizing group is located there.  253 



3.2  Proper Orthogonal Decomposition 254 

Reduced order modeling is an effective way for the development of accurate and computationally 255 

inexpensive models. A POD model can be constructed following the method of snapshots, as proposed by 256 

Sirovich [30]. A snapshot is a vector u of N relevant physical quantities that identify the behaviour of the 257 

system for a particular combination of S input parameters, known as the process parameters. The latter are 258 

collected in a vector d. In this work, pressure rise at the eight booster pumps,  the percent thermal load (with 259 

respect to the maximum thermal load) and the contribution of each plant to the thermal load are chosen as the 260 

process parameters. For a given thermal load and contribution of the various plants, the eight values of 261 

pressure rise are the free variables that can be modified in the optimization process. It is worth remarking the 262 

fact that pressure rises in the pumps located at the thermal plants are not free variables. These should be 263 

adjusted in order to allow circulation of the mass flow rates exiting the various plants.  264 

Table 2 reports the maximum pressure selected for the various booster pumps, obtained after a pre-265 

processing stage, which has been performed in order to limit the number of random combinations of the 266 

input that are rejected because of a maximum pressure exceeding the technical limit of 17 bar. 267 

The response u of the system to a given set of the free variables is expressed by the mass flow rates at the 268 

booster pumps and by the total pumping power. 269 

Different snapshots are obtained by varying the optimization independent variables within a predefined 270 

range. In order to avoid obtaining an ill-conditioned model, some precautionary measures have been adopted. 271 

First, the input data of the model have been normalized. Furthermore the snapshots have been randomly 272 

selected considering a uniform coverage of the input ranges. The complete collection of M snapshots 273 

constituted the snapshot matrix U. POD aims at approximating an arbitrary snapshot as follows: 274 

𝐮a = Ф̅ ∙ �̅�𝐚  (8) 275 

where �̅�𝐚 ∈ ℝK×1 is a reduced state variable and Ф̅ is an orthogonal matrix. The latter is found solving the 276 

following eigenvalue problem [31]: 277 

(𝐔T𝐔) ∙ 𝛗i = λi𝛗i  (9) 278 

Matrix Ф̅ is then built using the eigenvectors 𝛗icorresponding to the largest eigenvalues λi, which are ranked 279 

in decreasing order. Namely, Ф̅ = [𝛗1, 𝛗2, … , 𝛗K].  280 



In the present analysis, the POD method has been coupled with radial basis functions (RBF). RBF are 281 

typically applied to approximate functions known only in a finite number of points. This interpolation 282 

technique involve all known values of functions and it is particularly effective when the distribution of nodes 283 

is scattered. Specifically, the reduced state variable �̅�a in Eq. (8) has been expressed as a linear combination  284 

of radial basis functions of the process parameters p: 285 

�̅� = 𝐁 ∙ 𝐠(d)  (10) 286 

where g contains the radial basis functions and matrix B the coefficients. Here, Euclidean norm was used as 287 

RBF: 288 

gi(p) = ‖p − pi‖ i = 1, … , K  (11) 289 

Matrix B is found by enforcing that Eq. (10) is exact for each of the snapshots contained in the matrix U 290 

[31]. 291 

The evaluation of a snapshot corresponding to an arbitrary set of parameter p can be performed using Eq. 292 

(12). This is obtained by substituting Eq. (10) in Eq. (8): 293 

𝐮 = Ф̅ ∙ 𝐁 ∙ 𝐠(p)  (12) 294 

The entire procedure has been built in Matlab environment. To initialize the POD optimization procedure, a 295 

set of random combinations of the free variables has been collected into the initial snapshot matrix U and fed 296 

as inputs to the full physical model. The corresponding values of mass flow rates in each of the eight pumps 297 

and the total pumping costs have been obtained. Snapshots and results are used to create the POD-RBF 298 

model, which is the implicit function relating the free variables to the output.  299 

 300 

4. Results and discussion 301 

4.1 Full physical model validation 302 

In order to validate the fluid dynamic model in the various operating conditions, a comparison with some 303 

measured data of the Turin district heating network was carried out. The pressure differences between two 304 

nodes located at the outlet of a pump and at the inlet of the next pump located downstream were evaluated in 305 

three different portions of the network where measurements were available for an entire heating season. In 306 

Figure 3, the pressure differences are reported  as a function of the mass flow rate circulating in the network. 307 



The measured data reported in figure refer to the operating conditions in March, where a large variation takes 308 

place. In the figure, the results of the fluid dynamic model are also represented. In the case of the first 309 

portion, the model is able to capture the fluid dynamic behavior of the network with high accuracy. In the 310 

other sections the dispersion of data is much larger and of the same order as the pressure differences, mainly 311 

because these portions are closer to the centre of town, where a large number of sub-networks and buildings 312 

are located. In the model, the thermal request profile of the various barycentres was considered similar, i.e. 313 

with the same shape parameterized on the basis of the design request. In reality this does not occur. In 314 

addition, the model was run considering strict compliance with the control strategy, while in real operation a 315 

deviation within an acceptable range is allowed. These are the causes of the large dispersion of data. 316 

Anyhow, the average deviation is lower than 0.3 bar, therefore  it is possible to state that the fluid dynamic 317 

model is able to capture the hydraulic behavior of the network. 318 

4.2 POD model characteristics, validation and performances 319 

Starting from the full physical model, over 15000 simulations were performed, varying the free variables 320 

randomly within the predefined ranges. These have been used to create the POD-RBF model.  321 

A test of the POD model was first performed considering new random sets of the free variables, which were 322 

not included in the original set. The fluid-dynamics model is used in order to compute the pumping cost, 323 

selecting the independent variable randomly, i.e. the pumping pressure differences and the thermal load. The 324 

same data are used in order to calculate the output through the POD model. In Figure 4a the POD and Fluid 325 

dynamic models’ results, in terms of pumping cost, are compared. Results evidently show that the POD 326 

based tool in almost all cases is able to reproduce the system behavior.  327 

Mass flow rates obtained from a random set of data using the two models are also computed. For each 328 

simulation, the branch containing the booster pumps where the largest mass flow rate is located is analyzed 329 

in Figure 4b. The figure shows that the reduced model is able to predict the mass flow rate for all cases with 330 

small deviations.  331 

The optimization has been performed for different heat loads. A comparison between the fluid dynamic 332 

model and the POD-RBF model is reported in Figure 5. Scenarios have been obtained considering the most 333 

typical start-up sequence of the thermal plants. As regards the fluid dynamic model optimization, Figure 5 334 



shows that the larger the thermal load, the larger the optimal pumping cost, except for the scenario 335 

corresponding with 40%  of the nominal load. The minimum cost for 40% of the nominal load is slightly 336 

larger than the minimum cost for 50% of the nominal load. This is due to the fact that when the thermal load 337 

is below 40% of the nominal load, only the Moncalieri thermal plant is operating (unless a different order is 338 

set, which can occur, for instance, in the case of network maintenance or depending on the production plans, 339 

especially related with the electricity production). When the request exceeds 40% of the nominal load, both 340 

the Moncalieri and Torino Nord thermal plants are operating. As these plants are located on opposite sides of 341 

the network, users in the North areas of the town (closer to Torino Nord plant) are reached by the water flow 342 

exiting Torino Nord plant. This allows a reduction in the pressure drops, therefore reducing the pumping cost 343 

despite an increase in the total mass flow rate flowing. When the mass flow rate further increases, the 344 

pumping cost tends to increase again. 345 

The optimum pumping pressure sets obtained using the POD-RBF model were used as an input in the fluid 346 

dynamic model in order to compare the optima. Results show that the POD-RBF model is able to predict the 347 

optimal costs as a function of thermal load with average relative errors of about 5%.  348 

A comparison of the computational cost requested to obtain the optimum values with the fluid-dynamic 349 

model and the POD-RBF model is reported in Figure 6. Computational costs are evaluated as the summation 350 

of the time requested to obtain the minimum cost in all the thermal load conditions that have been analyzed 351 

on a single 3.3 GHz CPU. Using the POD-RBF, the total time required for the calculation is reduced by 352 

about 95% with respect to that required by the fluid dynamic model. 353 

4.3 POD model for energy cost reduction 354 

4.3.1 Usual start-up sequence of thermal plants 355 

In order to present the potential advantages that can be achieved using an optimized pumping strategy, a 356 

comparison between the pumping cost corresponding to the application of a pumping strategy similar to that 357 

currently adopted and the optimal strategy is reported in Figure 7. In this analysis, the usual start-up 358 

sequence of the thermal plants is considered. It is possible to notice that the use of the optimized control 359 

strategy instead of the current one allows the achievement of a significant reduction in the energy 360 

consumption for all thermal loads, particularly in the portion between 40% and 90% of the nominal thermal 361 



load. The differences between results obtained with the two optimization strategies (the POD-RBF and the 362 

fluid-dynamic model) are quite negligible in comparison with the difference between optimal and current 363 

strategy, therefore only the POD-RBF results have been shown, since it is the approach that can be used in 364 

real applications. 365 

To better visualize the energy cost reduction with respect to the current pumping strategy, the energy cost 366 

reductions in each thermal load is shown in Figure 8. Energy saving is between 8% and 24% and it is 367 

particularly large at high thermal load. The use of an optimized pumping strategy allows an annual reduction 368 

in primary energy consumption due to pumping of about 4.4 GWh/year (from 25.8 GWh/year in the case of 369 

the current strategy to 21.4 GWh/year in the case of the optimized strategy). This represents more than 0.5% 370 

reduction in the total primary energy consumption, which is about 842.5 GWh/year (about 768.0 GWh/year 371 

associated with heat supplied to the users, about 48.5 GWh/year due to heat losses, and 25.8 GWh/year due 372 

to pumping). 373 

These results suggest that application of the POD-RBF optimization approach allows significant 374 

improvement in the overall energy performances of large district heating networks. 375 

4.3.2 Different start-up sequence of the thermal plants 376 

The same POD-RBF model can be used in order to optimize the pumping strategy when different 377 

combinations of the plants is adopted in thermal production. These scenarios can be necessary in the case 378 

one of the plants is not available or if there are specific constraints on the electricity production by the 379 

cogeneration plants. When the configuration in heat production changes, also the mass flow rate distribution 380 

at the thermal plants change, therefore a different setting of the pumps is necessary, even if the thermal 381 

request of the users remains unmodified. The optimization tool should be sufficiently flexible to allow fast 382 

optimizations in variable conditions. The POD-RBF model can been used by fixing the total load, by 383 

modifying the sequence of thermal plants that are used to cover it and by limiting the maximum DH mass 384 

flow rate that is elaborated by each plant (and thus the maximum thermal load supplied by each plant).  385 

Table 3 shows four different scenarios, corresponding with different plant configurations at 60% of the 386 

maximum thermal request of the users, are presented. In Figure 9, the corresponding optimal settings of the 387 

pumping group obtained using the POD-RBF model are shown. 388 



Results show that the pumping cost is smaller when the two Moncalieri cogeneration plants are not used at 389 

100%. In fact in cases 1 and 2, where just the Moncalieri cogeneration group 1 is switched on the optimal 390 

cost is lower than in the cases 3 and 4, where both the cogeneration groups in Moncalieri are used. This is 391 

due to the fact that the Moncalieri power plant is located at the south end of the network, therefore when 392 

large mass flow rate are supplied by these plants, a large pumping power is necessary. When one of the 393 

Moncalieri cogeneration plants is switch off, the power spent to pump the water from the south area to the 394 

city centre (R Monc, RP1a, RP1b)  is smaller, while the power to pump water from the north to the south is 395 

larger (R T.N., R Poli and RP5c). The configuration which minimizes the pumping power corresponds to a 396 

more distributed production. In case 1, in fact heat is produced in three plants, one located in the south end 397 

(Moncalieri), one in the central area (Politecnico) and one in the north end (Torino nord). 398 

4.3.3 Operation in the case of malfunctioning pumping groups 399 

The POD-RBF model is also been used in order to find the optimal set of pumping pressure when a failure in 400 

a pumping station occurs and therefore that piece of equipment cannot be used. In malfunctioning scenarios, 401 

minimization of primary energy consumption may become a secondary objective. Nevertheless, the fact that 402 

a constrained optimization is performed allows one to obtain the best pumping settings which allow 403 

fulfillment of the thermal request of the users, which is instead the main objective in malfunctioning 404 

scenarios.  405 

The analysis has been performed for each pumping station. Results are reported in Table 4, considering 60% 406 

of the thermal request and the usual configuration for thermal production.  407 

The minimum cost is obtained when no malfunctions occur. Nevertheless in most malfunctioning cases, the 408 

optimal costs do not differ significantly with respect to the case without malfunctions, except when a failure 409 

occurs in the pump 1b. This is due to the fact that this pump is located in a crucial position for water 410 

circulation and its unavailability causes longer paths to reach the users and thus larger friction losses. 411 

Possible iterative interactions between pumping system settings and plant operation can be theoretically 412 

examined using the modeling approach proposed in this paper. Such cases are meaningful in the case of 413 

possible malfunctions that may affect the hydraulic behavior of the network. In the case there are no 414 

pumping strategies that allow proper fulfillment of the thermal request, it is possible to examine scenarios 415 

where the production share among the plant is modified in order to help reducing the hydraulic issues. 416 



These results show that POD-RBF model allows one to create a flexible operation tool, which allows optimal 417 

management of bot normal and abnormal (malfunctioning) scenarios. 418 

5. Conclusion 419 

The present paper reports an optimization analysis for the minimization of the pumping cost in a large 420 

district heating network. The optimization is carried out using two different approaches. The first approach, 421 

more conventional, is based on the application of a genetic algorithm to the full physical fluid dynamic 422 

model of the network. The second approach utilizes a reduced model, obtained through radial basis function 423 

(RBF) and proper orthogonal decomposition (POD) in order to capture the main features of the physical 424 

system. This last approach requires much smaller computational time but provides more approximate results 425 

due to model reduction. The errors of the POD model in the evaluation of the objective function are quite 426 

small.  427 

Fluid dynamic model and the POD-RBF model are used to find the optimal values of pumping cost. Results 428 

show that a deviation of about 2% is obtained for both optima. Therefore POD provides a good 429 

approximation of the physical behavior of the system. The difference in computational time is very large. 430 

This is a crucial feature to allow optimal operation in real networks, as the operating conditions vary 431 

significantly depending on the thermal request and the availability of both the thermal plants and the 432 

pumping groups. In the case study considered in this paper the calculation of snapshots and the optimization 433 

of the POD model requires about 4% of the time requested for the optimization using GA. This difference 434 

increases with the number of nodes that are used to represent the network topology, which means that the 435 

advantages of using such a technique increases in the case of large networks. In order to show the potential 436 

for energy saving in district heating network pumping systems, a comparison between the electricity 437 

consumption using the current control strategy and the optimized strategy was carried out. This comparison 438 

shows encouraging results which suggest the applicability of fast simulation to the optimal management of 439 

the pumping system in district heating networks. The simulation tool shows to be sufficiently flexible to 440 

allow one handling both normal operating conditions and malfunctioning conditions.  441 
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Nomenclature 506 

A  incidence matrix 

B coefficient matrix 

c specific heat, J/(kg K) 

C energy cost, MW 

d input parameters vector 

D pipe diameter, m 

f distributed friction factor 

g radial basis function 

G mass flow rate, kg/s 

K stiffness matrix 

L pipe length, m 

M mass matrix, kg 

p pressure, Pa 

P pressure matrix, Pa 

S pipe section, m2 

t pumping pressure vector, Pa 

T temperature, °C 

u snapshot 

U  snapshot matrix 

U  pipe transmittance, W/kg K 

Y fluid dynamic conductance 

Greek symbols 

α coefficient vector 



β localized friction factor 

ϕ eigenfunction 

λ eigenvalues matrix 

ρ density, kg/m3 

Ф eigenfunctions matrix 

Ф heat power, MW 

Subscripts and superscripts 

ext external 

in inlet 

out output 

ret return 

sup  Supply 
 507 

508 
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Figure 1: Schematic of Turin District Heating Network (a) In detail 3 barycentres (b) Pumping system 529 
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Figure 2: Schematic of the two optimization approaches  (a) Fluid dynamic model (b) POD-RBF model 532 
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Figure 3: Test for Fluid dynamic model simulation capability: comparison with measured data 536 
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   539 

Figure 4: Test for POD simulation capability with 10 random cases a) pumping costs b) mass flows rate 540 
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Figure 5: Best cost comparison 544 

545 

20 30 40 50 60 70 80 90
0.5

1

1.5

2

2.5

3

3.5

4

4.5

Thermal Load [%]

M
im

in
u

m
 C

o
st

 [
M

W
]

 

 

Fluid Dynamic

POD-RBF



 546 

Figure 6: Computational costs comparison 547 
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Figure 7: Energy consumption with current and optimized pumping strategy 551 
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Figure 8: Energy cost reduction due to use of POD-RBF method instead of current pumps control strategy 555 
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Figure 9: Optimal pumping costs with different plants start up strategy at constant load 559 
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Plant Acronym Power [MW] Type 

Moncalieri Monc. 520  Cogeneration (two groups) 

 141  Boilers 

BIT BIT 255  Boilers 

Mirafiori Nord M.N. 35  Boilers 

Politecnico Poli. 255  Boilers 

 60  Storage 

Torino Nord T.N. 220  Cogeneration 

 340  Boilers 

 150  Storage 

 562 
Table 1. Characteristics of the thermal plants 563 

 564 

  565 



 566 

 Pmax [bar] 

RP1a 7 

RP1b 7.5 

RP2a 6.5 

RP2b 7 

RP3 6 

RP5a 5 

RP5b 5 

RP5c 5 

 567 

Table 2. Maximum pressure values for the each booster pumping stations 568 
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 570 

CASE 1 CASE 2 CASE 3 CASE 4 

Monc. Cog. Group 

1 

Monc. Cog. Group 

1 

Monc. Cog. Group 1 and 

2 

Monc. Cog. Group 1 and 

2 

T.N. Cog. T.N. Cog. T.N. Boiler Politecnico 

Politecnico T.N. Boiler Politecnico   

  Politecnico     

 571 

Table 3. Power plants start up strategies considered 572 
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 575 

  Optimal Cost 

[W] 

No malfunctions 3.57 

Malfunction in pump 1a 3.63 

Malfunction in pump 1b 4.06 

Malfunction in pump 2a 3.58 

Malfunction in pump 2b 3.57 

Malfunction in pump 3 3.59 

Malfunction in pump 5a 3.58 

Malfunction in pump 5b 3.60 

Malfunction in pump 5c 3.58 

 576 

Table 4. Minimum costs in case of malfunctions 577 
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