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Abstract We study stability properties of f–minimal hypersurfaces isometri-
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curvature under volume growth conditions. Moreover, exploiting a weighted
version of a finiteness result and the adaptation to this setting of Li–Tam
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1 Introduction

Many problems in geometric analysis lead to consider Riemannian manifolds
endowed with a measure that has a smooth positive density with respect to the
Riemannian one. This turns out to be compatible with the metric structure
of the manifold and the resulting spaces take the name of weighted manifolds,
also known in the literature as manifolds with density. Weighted manifolds first
arose in the study of diffusion processes on manifolds in works of D. Bakry
and M. Émery, [1], and were intensively studied in recent years; see e.g. the
seminal works of F. Morgan, [29], and G. Wei, W. Wylie, [46]. A weighted
manifold is a triple Mm

f = (Mm, 〈 , 〉 , e−fdvolM ), where (Mm, 〈 , 〉) is a com-
plete m–dimensional Riemannian manifold, f ∈ C∞(M) and dvolM denotes
the canonical Riemannian volume form on M . The geometry of weighted man-
ifolds is visible in the weighted metric structure, i.e., in the weighted measure
of (intrinsinc) metric objects, and it is controlled by suitable concepts of cur-
vature adapted to the density of the measure. In [1] (see also [25]), it was in-
troduced an important generalization of Ricci curvature in this setting, known
as Bakry–Émery Ricci tensor and defined as

Ricf = Ric + Hess(f).

Following M. Gromov, [17], if we consider an isometrically immersed orientable
hypersurface Σm in the weighted manifold Mf , we can also define a general-
ization of the mean curvature vector field as

Hf = H + (∇f)⊥.

Here we have denoted by H the mean curvature vector field of the immersion,
by ∇ the Levi–Civita connection on M , and by (·)⊥ the projection on the
normal bundle of Σ.

It is a well–known fact that minimal hypersurfaces arise as critical points
of the area functional. Since the weighted structure on M induces a weighted
structure on Σ we can consider the variational problem for the weighted area
functional

volf (Σ) =

∫
Σ

e−fdvolΣ .

From variational formulae, [2], one can see that Σ is f–minimal, namely a
critical point of the weighted area functional, if and only if Hf vanishes iden-
tically.

Clearly, minimal hypersurfaces are a particular case of f–minimal hyper-
surfaces, corresponding to the case f ≡ const. Moreover, as we shall see more
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in details in Section 2, self–shrinkers of the mean curvature flow are important
examples of f–minimal hypersurfaces in the Euclidean space with the Gaus-
sian density e−|x|

2/2. This, on one hand, gives a motivation to the study of
f–minimal hypersurfaces and, on the other hand, strongly suggests to study
self–shrinkers in the realm of weighted manifolds; this is the point of view
adopted in [39], [37].

The research on f–minimal hypersurfaces has just started and it has been
already approached by many authors; see e.g. [14], [19], [44], [8], [7], [26], [13],
[43]. Much effort has been devoted to the study of the stability properties.
As we will see later on, the stability properties of f–minimal hypersurfaces
are taken into account by spectral properties of the following weighted Jacobi
operator

Lf = −∆f −
(
|A|2 + Ricf (ν, ν)

)
,

where A denotes the second fundamental form of the immersion, Ricf denotes

the Bakry–Émery Ricci tensor of the ambient space, and ∆f = ∆− 〈∇f,∇ ·〉
is the f–laplacian on Σf . Roughly speaking (for more details see Section 3
below) we say that an f–minimal hypersurface is Lf–stable if it minimizes the
weighted area functional. The most up to date result, proved by X. Cheng,
T. Mejia, and D. Zhou, [8], states that there exist no Lf–stable complete f–
minimal hypersurfaces Σ immersed in a complete weighted manifold Mf with
Ricf ≥ k > 0, provided volf (Σ) < +∞. Note that, by the equivalences ob-
tained in [9], in the special case of self–shrinkers this conclusion was originally
pointed out by T. Colding and W. Minicozzi in [10].

In the first part of the paper, we are able to generalize the result in [8],
considering progressively weaker growth conditions on the intrinsic weighted
volume growth of geodesic balls. Recall that, if Br (o) and ∂Br (o) denote
respectively the metric ball and the metric sphere of Σ of radius r > 0 and
centered at o ∈ Σ, we define

volf (Br (o)) =

∫
Br(o)

e−fdvolΣ , volf (∂Br (o)) =

∫
∂Br(o)

e−fdvolm−1,

where dvolm−1 stands for the (m− 1)–Hausdorff measure. We then prove the
following theorem.

Theorem A Let Mf be a complete weighted manifold with Ricf ≥ k > 0.
Then there is no Lf–stable complete non–compact f–minimal hypersurface Σ

immersed in Mf provided volf (Br(o)) = O(eαr) as r → +∞, with α < 2
√
k.

Furthermore, in the instability case, exploiting the oscillatory behaviour
of solutions of some ODEs that naturally arise in this setting, we investigate
general geometric restrictions for the finiteness of the weighted index of the
f–minimal hypersurface, that is, the maximum dimension of the linear space
of compactly supported deformations that decrease the weighted area up to
second order.
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Theorem B Let Mf be a complete weighted manifold with Ricf ≥ k > 0.
Then there is no complete f–minimal hypersurface Σ immersed in Mf with
Indf (Σ) < +∞ provided one of the following conditions hold

1. volf (Σ) = +∞ and volf (Br(o)) ≤ Cra for any r ≥ r0 and some positive
constants C, r0 and a;

2. volf (∂Br)
−1 /∈ L1(+∞) and |A| /∈ L2(Σ, e−fdvolΣ).

Note that this last research direction is significant also in the special case
of self–shrinkers. We are not aware of any result in this direction up to now.

The second aim of this paper is to obtain information on the topology
at infinity of f–minimal hypersurfaces immersed in suitable ambient spaces.
We recall that, in the non–weighted setting, there is a well–known connection,
developed by P. Li and L.–F. Tam and collaborators (see e.g. [21]), between the
dimension of the space of L2–harmonic forms, the number of non–parabolic
ends, and the Morse index of the operator −∆ − a(x), where −a(x) is the
smallest eigenvalue of the Ricci tensor at x. Furthermore, following H. D. Cao,
Y. Shen, S. Zhu, [18], and P. Li and J. Wang, [22], one shows that if the
manifold supports a L1–Sobolev inequality outside some compact set, then all
ends are non–parabolic. According to D. Hoffman and J. Spruck, [20], this in
particular applies to minimal submanifolds of Cartan–Hadamard manifolds.

In this order of ideas, by adapting the Li–Tam theory to the weighted
setting and by means of a weighted version of an abstract finiteness result from
[36], we are able to obtain the finiteness of the number of non–f–parabolic ends
of a weighted manifold Mf , assuming the finiteness of the Morse index of the
operator −∆f − a(x), where −a(x) is now the smallest eigenvalue of Ricf at
x.

Using then the technique adopted in [27], [20], we are able to guarantee the
validity of a weighted L1–Sobolev inequality outside some compact set on f–
minimal hypersurfaces with finite weighted index, under suitable assumptions
on f and on the curvature of the ambient weighted manifold. On the way we
prove a comparison theorem in weighted geometry assuming an upper bound
on the sectional curvature. An adaptation to the weighted setting of the results
in [18], [22] finally provides the following topological result.

Theorem C Let Σm be a complete f–minimal hypersurface isometrically im-
mersed with Indf (Σ) < +∞ in a complete weighted manifold Mm+1

f with

Sect ≤ 0 and Ricf ≥ k ≥ 0. Suppose furthermore that f∗ = supΣ f < +∞
and |∇f | ∈ Lm(Σf ). Then Σ has finitely many ends.

As a consequence, adapting ideas in [24], we are able to obtain the follow-
ing result, in which we replace the finiteness of the weighted index with the
finiteness of the weighted total curvature of the f–minimal hypersurface.

Corollary D Let Σm be a complete f–minimal hypersurface isometrically im-
mersed in a complete weighted manifold Mm+1

f with Sect ≤ 0 and Ricf ≥ k ≥
0. Assume that |A| ∈ Lm(Σf ). Suppose furthermore that f ≤ f∗ < +∞ and
|∇f | ∈ Lm(Σf ). Then Σ has finitely many ends.
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The paper is organized as follows. In Section 2 we introduce some notation
and provide some examples of f–minimal hypersurfaces. Section 3 is devoted
to the study of stability properties of f–minimal hypersurfaces. Namely we an-
alyze geometric conditions for the instability and infiniteness of the weighted
index of these objects. In Section 4 we present a weighted version of an ab-
stract finiteness result, recently obtained in [35], and state the adapted Li–Tam
theory in the weighted setting. In Section 5 we prove a new comparison re-
sult in weighted geometry. In Section 6 a proof of the weighted L1–Sobolev
inequality for hypersurfaces in Cartan–Hadamard manifolds is provided. We
end the paper with Section 7, where we finally prove the topological Theorem
7 and Corollary 2.

2 Definitions and some examples

Let Mm+1
f = (Mm+1, 〈· , ·〉, e−fdvolM ) be a weighted manifold and let Σm be

an isometrically immersed orientable hypersurface. We will denote by A the
second fundamental form of the immersion x : Σm →Mm+1

f , that is

A(X,Y ) = (∇XY )⊥,

where ∇ denotes the Levi-Civita connection on M and (·)⊥ denotes the pro-
jection on the normal bundle of Σ. Denote by H = trΣA the mean curvature
vector field of the immersion. We define the f–mean curvature vector field of
Σ as

Hf = H + (∇f)⊥.

Hence, denoting by ν be the unit normal we define the f–mean curvature Hf

of Σ by Hf := Hfν

Definition 1 Let x : Σm → Mm+1
f be a connected isometrically immersed

hypersurface. We say that Σ is f–minimal if Hf ≡ 0.

Remark 1 Note that, when f is constant Hf = H and we recover the usual
definition of a minimal hypersurface.

Example 1 (Self–shrinkers) Let Σm be a complete m–dimensional Riemannian
manifold without boundary smoothly immersed by x0 : Σm → Rm+1 as an
hypersurface in the Euclidean space Rm+1. We say that Σ0 = x0(Σm) is moved
along its mean curvature vector if there is a 1–parameter family of smooth
immersions x : Σm × [t0, T )→ Rm+1, with corresponding hypersurfaces Σt =
x(· , t)(Σm), such that it satisfies the following mean curvature flow initial
value problem {

∂
∂tx(p, t) = H(p, t)

x(·, t0) = x0,
(1)

for any p ∈ Σm, t ∈ [t0, T ). Here H(p, t) is the mean curvature vector field
of the hypersurface Mt at x(p, t). The short time existence and uniqueness of



6

a solution of (1) was investigated in classical works on quasilinear parabolic
equations.

A MCF {Σt}t<0 is called a self–shrinking solution if it satifies

Σt =
√
−2tΣ− 1

2

for all t < 0. For an overview on the role that such solutions play in the study
of MCF see e.g. the introduction in [10]. An hypersurface is said to be a self–
shrinker if it is the time t = − 1

2 slice of a self–shrinking solution. Equivalently,
by a self shrinker (based at 0 ∈ Rm+1) we mean a connected, isometrically
immersed hypersurface x : Σm → Rm+1 whose mean curvature vector field
satisfies the equation

x⊥ = −H. (2)

Let f = |x|2
2 and consider the Gaussian space Rm+1

f , which is the Euclidean

space endowed with the canonical metric and the measure e−|x|
2/2dvolRm+1 .

A simple computation shows that

∇f = x,

We hence obtain that f–minimal hypersurfaces Σ in the Gaussian space Rm+1
f

satisfy
H + x⊥ = 0,

and thus are exactly the self–shrinkers of mean curvature flow.

Example 2 (Slices of warped products of the form P ×e−f R) Let Mm+1 =
Pm ×e−f R, where P is an m–dimensional Riemannian manifold, f : P → R+

is a smooth function and the product manifold P × R is endowed with the
Riemannian metric

〈· , ·〉 = π∗P (〈· , ·〉P ) + e−2f(πP )π∗R(dt⊗ dt).

Here πR and πP denote the projections onto the corresponding factors and
〈· , ·〉P is the Riemannian metric on Pm. It is a well–known fact (see for in-
stance [33]) that the distribution on the space orthogonal to T = ∂/∂t pro-
vides a foliation of M by means of totally geodesic (hence minimal) leaves
Pt = P ×{t}, t ∈ R. Moreover, since the function f only depends on P , it fol-
lows that the unit normal νt = T , is everywhere orthogonal to ∇f . Hence the
slices Pt, t ∈ R, represent a distinguished family of f–minimal hypersurfaces
in M .

3 Stability properties

It is a well–known fact that minimal hypersurfaces arise from a variational
problem. Indeed, they are critical points of the area functional

vol(Σ) =

∫
Σ

dvolΣ .
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More precisely, letting xt , t ∈ (−ε, ε), x0 = x, be a smooth compactly sup-
ported variation of immersions and denoting by V the associated variational
vector field along x one gets that

d

dt
vol(xt(Σ))

∣∣∣
t=0

= −
∫
Σ

〈H, V 〉dvolΣ .

A similar characterization can be given also for f–minimal hypersurfaces, (see
e.g [44], [8]). Indeed, defining the weighted area functional of Σm → Mm+1

f

by

volf (Σ) =

∫
Σ

e−fdvolΣ

we have that

d

dt
volf (xt(Σ))

∣∣∣
t=0

= −
∫
Σ

〈Hf , V 〉e−fdvolΣ .

We can now give the following

Definition 2 Let xt , t ∈ (−ε, ε), x0 = x, be a smooth compactly supported
variation of immersions. We say that a f–minimal hypersurface Σ is Lf–stable
if

d2

dt2
volf (xt(Σ))

∣∣∣
t=0
≥ 0.

Denote by V the variational vector field along x associated to the variation
and let V = uν, u ∈ C∞c . By a direct computation one can prove the following
second variation formula for the weighted area, [2],

d2

dt2
volf (xt(Σ))

∣∣∣
t=0

=

∫
Σ

(|∇u|2 − u2(|A|2 + Ricf (ν, ν)))e−f dvolΣ

=

∫
Σ

uLfu e−f dvolΣ ,

where Ricf is the Bakry–Émery Ricci tensor of Mm+1
f , and the operator Lf

is defined by
Lfu = −∆fu− (|A|2 + Ricf (ν, ν))u.

Some steps into the study of non–existence results for Lf stable f–minimal
hypersurfaces were moved in [14], [8], [26].

Proposition 1 ([14], Corollary 1.4, [26], Theorem 1) Let Mf be a com-
plete weighted manifold with Ricf ≥ k and let Σ be a compact f–minimal
hypersurface immersed in Mf .

(a) If k > 0 then Σ cannot be Lf–stable;
(b) If k = 0 and Σ is Lf–stable, then it has to be totally geodesic and Ricf (ν, ν) =

0.

Proposition 2 ([8], Theorem 5) Let Mf be a complete weighted manifold
with Ricf ≥ k > 0. Then there exists no Lf–stable complete f–minimal hyper-
surface Σ immersed in Mf without boundary and with volf (Σ) < +∞.
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Remark 2 When Σ is a complete self–shrinker with volf (Σ) < +∞, the con-
clusion in Proposition 2 was originally pointed out by T. Colding an W. Mini-
cozzi in [10]. This follows by the equivalences obtained in [9]. Note also that
it was conjectured by H. D. Cao that the weighted volume of complete self–
shrinkers is always finite. On the other hand there is still no real evidence for
this conjecture; see the very recent [37] where some steps in this direction are
made.

Following classical terminology in linear potential theory recall that a
weighted manifold Mf =

(
M, 〈· , ·〉 , e−fdvolM

)
is said to be f–parabolic if

every solution of ∆fu ≥ 0 satisfying u∗ = supM u < +∞ must be identically
constant.

Moreover, the positivity of a Schrödinger operator can be formulated in
term of the existence of positive solutions of the associated linear equation.
Indeed the following equivalence holds, that is a weighted version of a classical
result by D. Fischer–Colbrie and R. Schoen, [15], and W. F. Moss and J.
Piepenbrink, [31].

Proposition 3 ([45]) Let Mf be a weighted manifold, and Ω ⊂ M be a
domain in M and let L = −∆f + q (x), q (x) ∈ L∞loc (Ω). Denote by λL1 (Ω) the
bottom of the spectrum of L on Ω. The following facts are equivalent.

(i) There exist ω ∈ C1,α
loc (Ω), ω > 0, weak solution of

∆fω − q (x)ω = 0 on Ω.

(ii) There exist ϕ ∈W 1,2
loc (Ω), ϕ > 0, weak solution of

∆fϕ− q (x)ϕ ≤ 0 on Ω.

(iii) λL1 (Ω) ≥ 0.

The proof of the previous proposition is straightforward once one looks at
Lemma 3.10 in [36] and observes that L = −∆f + q (x) is unitarly equivalent
to the Schrödinger operator

S = −∆+ [(1/4 〈∇f,∇f〉 − 1/2∆f) + q (x)] = −∆+ (p (x) + q (x))

under the multiplication map T = Me−f/2 : L2
(
M, e−fdvolM

)
→ L2 (M,dvolM ).

Example 3 (Lf–stable f–minimal hypersurfaces in warped products) LetMm+1 =
Pm ×e−f R, as in Example 2, and let Σm be an f–minimal hypersurface iso-
metrically immersed in Mm+1. Setting Y = e−fT it is not hard to prove that
the function u = 〈Y, ν〉 satisfies

∆fu+ (|A|2 + Ricf (ν, ν))u = 0.

Hence, using the previous proposition, we can see that every f–minimal hy-
persurface Σ isometrically immersed in M satisfying 0 < u is Lf–stable.
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We can now obtain the following generalization of Proposition 1 and Propo-
sition 2. Note that point (b) was already obtained in the very recent Theorem
7.3 in [13].

Proposition 4 Let Mf be a complete weighted manifold with Ricf ≥ k ≥ 0
and let Σ be a f–parabolic, complete, f–minimal hypersurface immersed in
Mf .

(a) If k > 0 then Σ cannot be Lf–stable.
(b) if k = 0 and Σ is Lf–stable, then it has to be totally geodesic and Ricf (ν, ν) =

0.

Proof Assume that Σ is a Lf–stable complete f–minimal hypersurface im-
mersed in Mf which is f–parabolic. Since Σ is Lf–stable, it follows by Propo-

sition 3 that there exists a nonconstant function u ∈ W 1,2
loc (Σf ), u > 0, weak

solution of
∆fu+ (|A|2 + Ricf (ν, ν))u = 0.

Since Ricf is bounded below by a positive constant k, this also implies that u
is a weak solution of

∆fu ≤ −(k + |A|2)u ≤ 0.

Hence u is a f–superharmonic function bounded from below and, since Σ is
f–parabolic, it must be constant. In particular,

|A|2 + Ricf (ν, ν) = 0.

and the conclusion follows immediately.

Remark 3 It can be shown that a sufficient condition for Σ to be f–parabolic
is that it is geodesically complete and

volf (∂Br)
−1

/∈ L1 (+∞) . (3)

This fact can be easily established adapting to the diffusion operator ∆f stan-
dard proofs for the Laplace–Beltrami operator; see [16], [38].
Moreover, note that it is not difficult to prove that f–parabolicity is also guar-
anteed if we assume the stronger condition

volf (Br) = O(r2), as r → +∞. (4)

The previous formula shows also that f–parabolicity holds if the manifold Σ
has finite f–volume. Hence, in particular, the conclusion in Proposition 4 can
be obtained if we either assume volf (Σ) < +∞ or volf (Br(o)) = O(r2) as
r → +∞.

In the following result we show that one can do even better, assuming a
weaker growth condition on the weighted volume of geodesic balls.

Theorem 1 Let Mf be a complete weighted manifold with Ricf ≥ k > 0.
Then there is no Lf–stable complete non–compact f–minimal hypersurface Σ

immersed in Mf provided volf (Br(o)) = O(eαr) as r → +∞, with α < 2
√
k.
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Proof Define the weighted volume entropy of (Σ, 〈· , ·〉Σ , e−fdvolΣ) as

hf (Σ) := lim sup
r→+∞

log volf (Br(o))

r
.

As observed in [4], the following inequality holds true in general for the bottom

of the spectrum of the f–Laplacian λf1 :

λf1 (Σ) ≤ 1

4
h2f (Σ).

Hence, in particular, if we assume that volf (Br(o)) = O(eαr) as r → +∞ we
obtain

λf1 (Σ) ≤ α2

4
.

Now assume by contradiction that Σ is Lf–stable. Then

α2

4
≥ λf1 (Σ) = inf

06=u∈C∞c (Σ)

∫
Σ
|∇u|2e−fdvolΣ∫
Σ
u2e−fdvolΣ

≥
∫
Σ

(|A|2 + Ricf (ν, ν))u2e−fdvolΣ∫
Σ
u2e−fdvolΣ

≥k,

for any u ∈ C∞c (Σ), contradicting the assumption on α.

In order to study Lf–unstable f–minimal hypersurfaces we introduce the
f–index of Σ as the generalized Morse index of Lf on Σ. Namely, let x :
Σm → Mm+1

f be an isometrically immersed complete orientable f–minimal
hypersurface. Given a bounded domain Ω ⊂ Σ we define

IndLf (Ω) = #{negative eigenvalues of Lf on C∞0 (Ω)}.

The f–index of Σ is then defined as

Indf (Σ) := IndLf (Σ) = sup
Ω⊂⊂Σ

IndLf (Ω).

Geometrically, the f–index of Σ can be described as the maximum dimension
of the linear space of compactly supported deformations that decrease the
weighted area up to second order.

The following result, due to B. Devyver, [11], permits to interpret the
finiteness of the Morse index of a Schrödinger operator in terms of the existence
of a positive solution of the associated linear equation outside a compact set
(also in the weighted setting).

Proposition 5 Let Σf be a complete weighted manifold, and let L = −∆f −
q(x), q(x) ∈ L∞loc(Σ). The following facts are equivalent

(i) L has finite Morse index.
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(ii) There exists a positive smooth function ϕ ∈ W 1,2
loc which satisfies Lϕ = 0

outside a compact set.
(iii) λL1 (Σ \Ω) ≥ 0, for some Ω ⊂⊂ Σ.

Let v(t) = volf (∂Bt(o)), where ∂Bt(o) are the geodesic spheres of radius t in
Σ. Note that by the co-area formula we have that

volf (Br(o)) =

∫ r

0

v(t)dt. (5)

We obtain the following

Proposition 6 Let Σf be a complete noncompact weighted manifold with
volf (Σ) = +∞ and let Ω be an arbitrary compact subset of Σ. Then

1. If volf (Br(o)) ≤ Cra for any r ≥ r0 and some positive constants C, r0
and a, then λf1 (Σ\Ω) = 0.

2. If volf (Br(o)) ≤ Ceαr for any r ≥ 0 and some positive constants C and α,

then λf1 (Σ\Ω) ≤ α2

4 .

Proof Since Ω is compact we can find a constant T0 such that Ω ⊂ BT0
(o).

We reason now as in [12], [3], and exploit the oscillatory behaviour under our
assumptions of solutions of the ODE{

(v(t)x′(t))′ + λv(t)x(t) = 0, a.e. on (T0,+∞),

x(T0) = x0,
(6)

where v(t) is a positive continuous function on [T0,+∞) and λ is a positive
constant. Choosing v(t) = volf (∂Bt(o)) it then follows from Theorem 2.1 in
[12] that equation (6) is oscillatory provided Σ has infinite f–volume and

either the assumption in (1), or λ > α2

4 and the assumption in (2), hold
true. Now the proof proceeds with slight modifications as in Theorem 3.1 in
[12], but we report it here for the sake of completeness. Let us first assume
that volf (Br(o)) ≤ Cra for any r ≥ r0 and some positive constants C, r0,
a. Then for any λ > 0 there exists some nontrivial oscillatory solution xλ(t)
of (6) a.e. on [T0,+∞), i.e., there exist Tλ1 and Tλ2 in [T0,+∞) such that
Tλ1 < Tλ2 , xλ(Tλ1 ) = xλ(Tλ2 ) = 0, and xλ(t) 6= 0 for any t ∈ (Tλ1 , T

λ
2 ). Let

ϕλ(x) = xλ(r(x)) and Ωλ = BTλ2 (o) \BTλ1 (o). It follows that

0 ≤ λf1 (Σ \Ω) ≤ λf1 (Ωλ)

≤
∫
Ωλ
|∇ϕλ|2e−fdvolΣ∫

Ωλ
|ϕλ|2e−fdvolΣ

=

∫ Tλ2
Tλ1

(x′λ(r))2v(r)dr∫ Tλ2
Tλ1

(xλ(r))2v(r)dr

= −

∫ Tλ2
Tλ1

(v(r)x′λ(r))′xλ(r)dr∫ Tλ2
Tλ1

(xλ(r))2v(r)dr

= λ.
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Since λ is an arbitrary positive constant, we obtain that λf1 (Σ \Ω) = 0.
On the other hand, suppose that the assumption in (2) is satisfied. Then,

for any λ > α2

4 there exists again a nontrivial oscillatory solution xλ(t) of (6)

on [T0,+∞). Proceeding as above, we get that λf1 (Σ \Ω) ≤ λ. The conclusion
is thus straightforward since λ is an arbitrary positive constant larger than
α2

4 .

Adapting arguments in [3] we obtain also the following

Proposition 7 Let Σf be a complete non–compact weighted manifold and let
L be the Schrödinger operator defined by

Lu = −∆fu− q(x)u,

where q(x) is a continuous nonnegative function on Σ. Assume that

(i) volf (∂Br(o))
−1 /∈ L1(+∞);

(ii) q /∈ L1(Σ, e−fdvolΣ).

Then, for an arbitrary compact subset Ω ⊂ Σ we have that the bottom of the
spectrum of L on Σ \Ω satisfies λL1 (Σ \Ω) < 0.

Proof Since Ω is compact we can find a constant T0 such that Ω ⊂ BT0
(o).

By Corollary 2.4 in [3] we have that under our assumptions any solution x(t)
of {

(v(t)x′(t))′ +Q(t)v(t)x(t) = 0, a.e. on (T0,+∞),

x(T0) = x0
(7)

whereQ(t) = 1
v(t)

∫
∂Bt(o)

qe−f , is oscillatory. Choose, as above, v(t) = volf (∂Bt(o)).

Then there exists some nontrivial oscillatory solution xQ(t) of (7) a.e. on

[T0,+∞), i.e., there exist TQ1 and TQ2 in [T0,+∞) such that TQ1 < TQ2 and

xQ(TQ1 ) = xQ(TQ2 ) = 0, and xQ(t) 6= 0 for any t ∈ (TQ1 , T
Q
2 ). Let ϕQ(x) =

xQ(r(x)) and ΩQ = BTQ2
(o) \BTQ1 (o). Using the co–area formula (5) we get∫

ΩQ

(|∇ϕQ|2 − qϕ2
Q)e−fdvolΣ =

∫
ΩQ

(x′Q(r)2 − qxQ(r)2)e−fdvolΣ

=

∫ TQ2

TQ1

(x′Q(r)2v(r)− xQ(r)2Q(r)v(r))dr

= −
∫ TQ2

TQ1

xQ(r)((v(r)x′Q(r))′ +Q(r)v(r)xQ(r))dr

= 0.

The conclusion follows now by strict domain monotonicity.

The previous results, applied in the setting of f–minimal hypersurfaces
allow us to obtain the following
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Theorem 2 Let Mf be a complete weighted manifold with Ricf ≥ k > 0.
Then there is no complete f–minimal hypersurface Σ immersed in Mf with
Indf (Σ) < +∞ provided one of the following conditions holds

1. volf (Σ) = +∞ and volf (Br(o)) ≤ Cra for any r ≥ r0 and some positive
constants C, r0 and a;

2. volf (∂Br)
−1 /∈ L1(+∞) and |A| /∈ L2(Σ, e−fdvolΣ).

Remark 4 Observe that if volf (Σ) < +∞ then volf (∂Br)
−1 /∈ L1(+∞). In-

deed,by the Cauchy–Schwartz inequality, we have that for all R > 0 and r > R,∫ r

R

ds

volf (∂Bs)

∫ r

R

volf (∂Bs)ds ≥ (r −R)2.

Taking now the limit as r →∞ the conclusion follows. Hence, the case of finite
f–volume is taken into account in part (2) of the theorem.

Proof (of Theorem 2) Assume that Indf (Σ) < +∞, volf (Σ) = +∞ and

volf (Br(o)) ≤ Cra

for any r ≥ r0 and some positive constants C, r0 and a. Then, for all r ≥ r0,

0 ≥ inf
Σ\Br(o)

(|A|2 + Ricf (ν, ν)).

This gives a contradiction in case Ricf ≥ k > 0.
To get the proof of the remaining case we only have to observe that if

|A| /∈ L2(Σ, e−fdvolΣ) then q = |A|2 + Ricf (ν, ν) /∈ L1(e−fdvolΣ). Hence
under the assumption volf (∂Br(o))

−1 /∈ L1(+∞) we can apply Proposition 7
to conclude the proof.

4 Finiteness results and weigthed Li–Tam theory

Finiteness results for L2 harmonic sections have been extensively investigated
by many authors under different assumptions. With respect to this, we quote
[22], [23], [6], [35], [36].

The abstract finiteness result we are going to present is an adaptation to
the weighted setting of Theorem 1.1 in [35]; see also [36].

Theorem 3 Let Mf be a connected, complete m–dimensional weighted man-
ifold and let E be a Riemannian vector bundle of rank l over M . Denote by
Γ (E) the space of its smooth sections. Having fixed

a(x) ∈ C0(M), A ∈ R, H ≥ p

satisfying the further restrictions

p ≥ A+ 1, p > 0,

let V = V (a, f,A, p,H) ⊂ Γ (E) be any vector space with the following two
properties.
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(i) Every ξ ∈ V has the unique continuation property, i.e., ξ is the null section
whenever it vanishes on some domain.

(ii) For any ξ ∈ V , the locally Lipschitz function u = |ξ| satisfies{
u(∆fu+ a(x)u) +A|∇u|2 ≥ 0 weakly onM

u ∈ L2p(Mf ).

If there exists a solution 0 < ϕ ∈ Liploc of the differential inequality

∆fϕ+Ha(x)ϕ ≤ 0 (8)

weakly outside a compact set K ⊂M , then

dimV < +∞.

Proof (Outline of the proof of Theorem 3) We follow the arguments in Theorem
1.1 in [35], and we refer to it for more details. Choose R � 1 in such a way
that K ⊂ BR(o) and, therefore, inequality (8) holds in M \BR(o). Note that,
by unique continuation, the restriction map

V → Γ (E|BR)

ξ 7→ ξ|BR
is an injective homomorphism. Use the same symbol V to denote the image of
V in Γ (E|BR). Easily adapting to the weighted setting the extension, obtained
in [35, Lemma 2.1], of a classical result by P. Li we obtain that if T ⊂ V is
any finite dimensional subspace, then there exists a (non–zero) section ξ̄ ∈ T
such that, setting ψ̄ = |ξ̄|, it holds

(dimT )min(1,p)

∫
BR

ψ̄2pe−fdvolM ≤ volf (BR) min {l,dimT}min(1,p)
sup
BR

ψ̄2p.

(9)
Observe now that, on every sufficiently small closed ball,

λLH1 (B3δ(x)) > 0,

where LH = −∆f−Ha(x), and therefore there exists w > 0 solution on B3δ(x)
of

∆fw +Ha(x)w = 0.

Let u ≥ 0 be a locally Lipschitz, weak solution of

u(∆fu+ a(x)u) +A|∇u|2 ≥ 0. (10)

Applying the computational Lemma 9 in [39] with β = p ≥ A + 1, α = p
H ,

setting h = − logw2α + f , we deduce that

v = uβw−α

satisfies
∆hv ≥ 0 weakly onB3δ(x) (11)
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and
‖v‖L2(Mh)

= ‖up‖L2(Mf )
. (12)

Since, locally, a weighted L2–Sobolev inequality is always available, reasoning
as in Section 2 in [35], we are able to obtain the following local weighted
L1–mean value inequality for solutions v of (11)

sup
Bδ(x)

v2 ≤ C
∫
B2δ(x)

v2e−hdvolM

for some constant C > 0 depending on w|B2δ(x)
and the geometry of B2δ(x).

Recalling the definition of v, we deduce from the previous inequality and (12)
the following weighted Lp–mean value inequality for solutions u of (8)

sup
Bδ(x)

u2p ≤ C ′
∫
B2δ

u2pe−fdvolM ,

where

C ′ =

(
sup
Bδ(x)

w
p
H

)2

C.

The local inequalities patch together and, in the special case of ψ̄, give

sup
BR(o)

ψ̄2p ≤ C ′
∫
BR+1(o)

ψ̄2pe−fdvolM .

Inserting into (9) we obtain

(dimT )min(1,p)

∫
BR

ψ̄2pe−fdvolM ≤ C ′volf (BR) min {l,dimT}min(1,p)

×

(∫
BR

ψ̄2pe−fdvolM +

∫
A(R,R+1)

ψ̄2pe−fdvolM

)
(13)

where A(R,R+ 1) is the annulus BR+1 \BR. Now considering a suitable com-
bination of u and ϕ, adapting the proof of Lemma 2.7 in [35] to the weighted
setting in a similar way to what we just did, we obtain a weighted integral,
a–priori estimate on annuli of the type∫

A(R,R+1)

ψ̄2pe−fdvolM ≤ C ′′
∫
BR

ψ̄2pe−fdvolM ,

for some constant C ′′ independent of ψ̄. From this latter and (13) we finally
deduce

dimT ≤ C ′′′min {l,dimT} ,

from some C ′′′ depending only on the geometry of BR. This proves that any
finitely generated subspace T of V has dimension which is bounded by a univer-
sal constant, depending only on the rank l of E and on the weighted geometry
of BR. The same bound must work for the dimension of the whole V .
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In the non–weighted case there is the well–known connection, developed by
P. Li and L.–F. Tam (see e.g. [21]), between L2 harmonic 1–forms, the number
of non–parabolic ends, and the Morse index of the operator −∆−a(x), where
−a(x) is the smallest eigenvalue of the Ricci tensor at x. In Theorem 4 below
we shall see that an analogous relation holds in the weighted setting. This can
be easily obtained with minor changes to the proofs in [21].

Recall that an end E of a weighted manifold Mf with respect to a fixed
compact set D with smooth boundary is said to be f–parabolic if and only
if its double is f–parabolic or, equivalently, if every positive f–superharmonic
function u on E satisfying ∂u/∂ν ≥ 0 on ∂E, ν being the unit outward normal
to ∂E, is constant. Otherwise the end will be called non–f–parabolic. Non–
f–parabolicity of the end E can be also characterized by the existence of
a positive minimal Green kernel Gf for ∆f , satisfying Neumann boundary
conditions on ∂E. As we said above, the following result permits to control
the number of non–f–parabolic ends by the dimension of the space of bounded
f–harmonic functions with finite Dirichlet weighted integral. The idea of the
proof is the same as in the non–weighted case. Given two distinct f–parabolic
ends EA and EB , one can construct bounded f–harmonic functions gA on Mf

with finite Dirichlet weighted integral such that

sup
EA

gA = 1 inf
EB

gA = 0,

and these turn out to be linearly independent.

Theorem 4 Let H∞D (Mf ) denote the space of bounded f–harmonic functions
with finite Dirichlet weighted integral on Mf , and by N(D) the number of
non–f–parabolic ends of Mf with respect to the relatively compact domain D.
Then

N(D) ≤ dimH∞D (Mf ).

It follows that, if H∞D (Mf ) is finite dimensional, then Mf has finitely many
non–f–parabolic ends, whose number is bounded above by dimH∞D (Mf ).

Let δf = δ+ i∇f , and denote with ∆f
H = δfd+dδf the Hodge f–Laplacian

on Mf . We have that the following f–Weitzenbock formula for 1–forms holds

1

2
∆f |ω|2 = −

〈
∆f
Hω, ω

〉
+ |Dω|2 + Ricf (ω], ω]).

In particular, if ω ∈ H1(Mf ) =
{

1−formsω |∆f
Hω = 0

}
, we obtain

1

2
∆f |ω|2 = |Dω|2 + Ricf (ω], ω]). (14)

Thus, let Ricf ≥ −a(x) for some continuous function a(x), and consider the
vector space L2,fH1(Mf ) =

{
ξ ∈ H1(Mf ) | |ξ| ∈ L2(Mf )

}
. Using Kato in-

equality, we get that, for any ξ ∈ L2,fH1(Mf ), the locally Lipschitz function
u = |ξ| satisfies {

u(∆fu+ a(x)u) ≥ 0 weakly onM∫
M
u2e−fdvolM < +∞.
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Moreover, note that equation ∆f
Hω = 0 is equivalent to the equation

∆Hω = F (x, ω, dω) with F satisfying the structural conditions of Aronszajn–
Cordes; see e.g. Appendix A in [36]. This suffices to guarantee that every
ξ ∈ H1(Mf ) has the unique continuation property.

We are thus in a situation where Theorem 3 can be applied. Hence, using
Proposition 5, we obtain the following consequence of Theorem 4. Compare
also with [32] where some related results are obtained.

Corollary 1 Let Mf be a complete non–compact weighted manifold satisfying

Ricf ≥ − a(x)

for some nonnegative continuous function a(x), and let L = −∆f − a(x).
Suppose furthermore that L has finite Morse index. Then Mf has at most
finitely many non–f–parabolic ends.

Proof (Sketch of the proof of Corollary 1) In order to apply Theorem 4 to get
the conclusion in the above corollary we have used the following fact. If u is a
f–harmonic function with finite Dirichlet weigthed integral, then its exterior
differential du belongs to H1(Mf ). Moreover du = 0 if and only if u ≡ const.
Hence, we have that

dimH∞D (Mf ) ≤ dimHD(Mf ) ≤ dimL2,fH1(Mf ) + 1,

where we denote by HD(Mf ) the space of f–harmonic functions with finite
Dirichlet weighted integral on Mf .

Remark 5 As observed in [35], the generality achieved in Theorem 3 permits
to deal also with situation in which we do not have the validity of a refined
Kato inequality. This is essential in our case since, as observed in Remark 4.2
in [40], in general we do not have the validity of any refined Kato inequality
for f–harmonic forms.

In order to deduce topological consequences from the finiteness result of the
space of bounded f–harmonic functions with finite weighted Dirichlet integral
on Mf , we need to find conditions which ensure that all ends of Mf are non–
f–parabolic. This can be done adapting to the weighted setting a result by H.
D. Cao, Y. Shen, S. Zhu, [18]. See also [5], where this result is proved in the
more general setting of metric measure spaces.

Lemma 1 Let Mf be a complete weighted manifold, and assume that for some
0 ≤ α < 1, there exists a constant S(α) > 0 such that the weighted L2–Sobolev
inequality (∫

M

h
2

1−α e−fdvolM

)1−α

≤ S(α)

∫
M

|∇h|2e−fdvolM (15)

holds for every smooth function compactly supported in the complement of a
compact set K. Then every end E of Mf is either non–f–parabolic or it has
finite f–volume.
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Remark 6 Suppose that Mf supports a weighted L1–Sobolev inequality out-

side a compact set K, namely for some α ∈
(

1, m
m−1

]
there exists a constant

S1(α) > 0 such that(∫
M

hαe−fdvolM

) 1
α

≤ S1(α)

∫
M

|∇h|e−fdvolM (16)

for every smooth function u compactly supported in M \K. Reasoning as in
the non–weighted setting, see e.g. Lemma 7.15 in [36], one can show that every
end with respect to K has infinite f–volume and that, if m ≥ 3, (15) holds
with

S(α) =

(
2S1(α)

2− α

)2

.

As a consequence of Lemma 1, it follows that if Mf supports (16) for some

α ∈
(

1, m
m−1

]
and for every smooth function u compactly supported in M \K,

then every end of Mf with respect to K is non–f–parabolic.

5 Weighted Hessian comparison theorem

Motivated by Remark 6, we are interested now in proving, under suitable con-
ditions, the validity of a weighted L1–Sobolev inequality for an hypersurface
Σ isometrically immersed in a weighted manifold Mf . In the non–weighted
setting, according to D. Hoffman and J. Spruck, [20], minimal submanifolds
of Cartan–Hadamard manifolds enjoy an L1–Sobolev inequality. In this order
of ideas, we have to address the issue of defining a right concept of weighted
sectional curvature.

In weighted geometry there are good concepts of Ricci and scalar curvature,
namely, the Bakry–Émery Ricci tensor and the Perelman scalar curvature,
defined on Mf as

Pf = R+ 2∆f − |∇f |2,

where R is the scalar curvature of M . On the other hand, as far as we know,
there is no concept of sectional curvature associated to a weighted manifold
and, in general, to a measure. As observed in [42], both Ricf and Pf , can be
viewed as the infinite–dimensional limit of their conformally invariant coun-
terparts. Trying to carry out the same process for the full curvature tensor
one easily realizes that, “letting the dimension go to infinity”, the conformally
invariant counterpart of the Riemann tensor recovers the Riemann tensor it-
self. This is not so surprising from the viewpoint of sectional curvature, since
sectional curvature only takes into account two–dimensional subspaces, and
hence the dimension plays no role in defining this concept. This informal dis-
cussion suggests that a good concept of sectional curvature in weighted geom-
etry should be the sectional curvature itself. This assertion is supported by
the following comparison theorem.
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Theorem 5 Let Mm
f be a complete weighted m–dimensional manifold. Having

fixed a reference point o ∈M , let r(x) = distM (x, o) and let Do = M \ cut(o)
be the domain of the normal geodesic coordinates centered at o. Given a smooth
even function G on R, let h be the solution of the Cauchy problem{

h′′ −Gh = 0

h(0) = 0, h′(0) = 1
(17)

and let I = [0, r0) ⊆ [0,+∞) be the maximal interval where h is positive.
Suppose that the radial sectional curvature of M , that is the sectional curvature
of 2–planes containing ∇r, satisfies

Sectrad ≥ −G(r(x)) (resp. ≤) (18)

on Br0(o) and, furthermore, assume that

η(r) = 〈∇r,∇f〉 ≥ −θ(r) (resp. ≤) (19)

for some θ ∈ C0 ([0,+∞)), and η(s) = o(1) as s→ 0+. Let

Hessf (r) := Hess(r)− 1

m
〈∇f,∇r〉 〈· , ·〉

then

Hessf (r) ≤ h′

h
{〈· , ·〉 − dr ⊗ dr}+

1

m
θ(r) 〈· , ·〉 (resp. ≥). (20)

Remark 7 Note that tracing (20), we recover corresponding estimates for ∆fr.
These are consistent with comparison results for weighted manifolds with
Ricf (∇r,∇r) bounded from below by −(m − 1)G(r) and f satisfying (19)
for some non–decreasing function θ ∈ C0([0,+∞)), see Theorem 3.1 in [34].

Proof Observe, first of all, that Hess(r)(∇r,X) = 0 for all X ∈ TxM and
x ∈ Do \ {o}. Next, since Hessf (r) is symmetric, TxM has an orthonor-
mal basis consisting of eigenvectors of Hessf (r). Denoting by λmax(x) and
λmin(x), respectively, the greatest and the smallest eigenvalues of Hessf (r) in
the orthogonal complement of ∇r(x), the theorem amounts to showing that
on Do \ {o} ∩Bro(o)

(i) if (18) and (19) hold with ≥, then λmax ≤ h′

h (r(x)) + 1
mθ(r(x));

(ii) if (18) and (19) hold with ≤, then λmin ≥ h′

h (r(x)) + 1
mθ(r(x)).

Let us prove case (ii). The argument in case (i) is completely similar. Let
x ∈ Do \ {o}, and let γ be the minimizing geodesic joining o to x. We claim
that ψ =

(
λmin + η

m

)
◦ γ satisfies{
ψ′ + ψ2 ≥ G
ψ(s) = 1

s + o(1) as s→ 0+
(21)
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Since φ = h′

h satisfies{
φ′ + φ2 = G on (0, r0)

φ(s) = 1
s + o(1) as s→ 0+,

(22)

the required conclusion follows at once from Corollary 2.2 in [36]. To prove
the claim we proceed as follows. Let γ be a minimizing geodesic joining o to
γ(s0) = x ∈ Do \ {o}. For every unit vector Y ∈ TxM such that Y⊥γ̇(s0),
define a vector field Y⊥γ̇, by parallel translation along γ. Since as noted above
hess(r)(∇r) = ∇∇r∇r=0, we compute, as in [36],

d

ds
(Hess(r)(γ)(Y, Y ))+〈hess(r)(γ)(Y ),hess(r)(γ)(Y )〉 = −Sectγ(Y ∧γ̇). (23)

Moreover, we have that

d

ds
(Hessf (r)(γ)(Y, Y )) =

d

ds
(Hess(r)(γ)(Y, Y ))− 1

m

d

ds
〈∇r ◦ γ,∇f ◦ γ〉

=
d

ds
(Hess(r)(γ)(Y, Y ))− 1

m

d

ds
η ◦ γ (24)

and letting

hessf (r)(γ)(Y ) = hess(r)(γ)(Y )− 1

m
(η ◦ γ)Y

we have that

〈hessf (r)(γ)(Y ),hessf (r)(γ)(Y )〉 = 〈hess(r)(γ)(Y ),hess(r)(γ)(Y )〉

− 2

m
Hess(r)(γ)(Y, Y ) (η ◦ γ) (25)

+
1

m2
(η ◦ γ)

2
.

Hence, by (23), (24), (25), and the lower bound in (18), we get that along γ

d

ds
(Hessf (r)(Y, Y )) + |hessf (r)(Y )|2 ≥ G(r)− 1

m

d

ds
(η ◦ γ)

− 2

m
Hess(r)(Y, Y ) (η ◦ γ) (26)

+
1

m2
(η ◦ γ)

2
.

Note that for any unit vector field X⊥∇r

Hessf (r)(γ)(X,X) ≥ λmin.

Thus, if Y is choosen so that, at s0

Hessf (r)(γ)(Y, Y ) = λmin(γ(s0)),
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then the function Hessf (r)(γ)(Y, Y )− λmin ◦ γ attains its minimum at s = s0
and, if at this point λmin is differentiable, then its derivative vanishes:

d

ds

∣∣∣∣
s0

Hessf (r)(γ)(Y, Y )− d

ds

∣∣∣∣
s0

λmin ◦ γ = 0.

Whence, using (26), we obtain that, at s0,

d

ds
(λmin ◦ γ) + (λmin ◦ γ)2 ≥ G(r)− 1

m

d

ds
(η ◦ γ)

− 2

m
Hess(r)(Y, Y ) (η ◦ γ) +

1

m2
(η ◦ γ)

2

= G(r)− 1

m

d

ds
(η ◦ γ)

− 2

m
Hessf (r)(Y, Y ) (η ◦ γ)− 1

m2
(η ◦ γ)

2

= G(r)− d

ds

η ◦ γ
m
− 2(λmin ◦ γ)

η ◦ γ
m
− (η ◦ γ)

2

m2
.

Letting now ψ =
(
λmin + η

m

)
◦γ we get the desired differential inequality (21).

The asymptotic behaviour

ψ(s) =
1

s
+ o(1) as s→ 0+

follows from our assumptions on η and the fact that

Hess(r) =
1

r
(〈· , ·〉 − dr ⊗ dr) + o(1) as r → 0+.

6 A Sobolev inequality in the weighted setting

In this section we prove a general weighted L1–Sobolev inequality for subman-
ifolds Σm of a weighted manifold Mm+1

f , satisfying some restrictions on f and
on the sectional curvature of M . The proof is inspired by the papers of J. H
Michael, and L. M. Simon, [27], and of D. Hoffman and J. Spruck, [20]. Recall
that with (·) we refer to quantities in the ambient space.

Theorem 6 Let Σm → Mm+1
f be an isometric immersion. Assume that

Sect ≤ 0 and suppose that there exists a positive constant cm such that

lim sup
ρ→0+

volf (Sρ(ξ))

ρm
≥ cm, (27)

for almost all ξ ∈Mf , where we are using the notation

Sρ(ξ) =
{
x ∈ Σ |Mdist(x, ξ) ≤ ρ

}
.

Let h be a non–negative compactly supported C1 function on Σ. Then[∫
Σ

h
m
m−1 e−fdvolΣ

]m−1
m

≤ C
[∫

Σ

|∇h|+ h
(
|Hf |+ |∇f |

)
e−fdvolΣ

]
. (28)
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Remark 8 Note that for every isometric immersion Σm →Mm+1 we have that

lim sup
ρ→0+

vol(Sρ(ξ))

ρm
≥ ωm

for almost all ξ ∈ M , with ωm the volume of the unit ball in Rm. Hence
condition (27) is satisfied if we assume that f < f∗ < +∞.

Remark 9 Theorem 6 has a companion weighted isoperimetric inequality. In
this regard, we mention that the isoperimetric problem in Riemannian man-
ifolds with density (and in particular in the Gaussian space) is a recent and
very active field of research; see e.g. [29], [41], [30], [28].

Let Σm → Mm+1
f be an isometric immersion as in Theorem 6, let X = r∇r,

r distance function on M , and {E1, . . . , Em} be a local orthonormal frame on
Σ. Since

ΣdivX =

m∑
i=1

〈
∇Ei(r∇r), Ei

〉
= r

m∑
i=1

Hess(r)(Ei, Ei) +

m∑
i=1

〈
∇r, Ei

〉2
we obtain, by the classical Hessian comparison theorem, that

ΣdivX −
〈
∇f,X

〉
= r

m∑
i=1

Hess(r)(Ei, Ei) +

m∑
i=1

〈
∇r, Ei

〉2
(29)

−r
〈
∇f,∇r

〉
≥ m−

m∑
i=1

〈
∇r, Ei

〉2
+

m∑
i=1

〈
∇r, Ei

〉2 − r 〈∇f,∇r〉
≥ m− r|∇f |.

Let λ be a non–decreasing C1 function on R with λ(t) = 0 for t ≤ 0. Let
0 ≤ h ∈ C1

c (Σ). For ξ ∈ Σ, let r(x) be the distance function from the point ξ
on M . Then we define the following quantities

φξ(ρ) =

∫
Σ

λ(ρ− r(x))h(x)e−fdvolΣ ;

ψξ(ρ) =

∫
Σ

λ(ρ− r(x)) (|∇h(x)|+ h(x)|Hf (x)|) e−fdvolΣ ;

µξ(ρ) =

∫
Σ

λ(ρ− r(x))
(
|∇f |(x)h(x)

)
e−fdvolΣ ;

φξ(ρ) =

∫
Sρ(ξ)

h(x)e−fdvolΣ ;

ψξ(ρ) =

∫
Sρ(ξ)

(|∇h(x)|+ h(x)|Hf (x)|) e−fdvolΣ ;

µξ(ρ) =

∫
Sρ(ξ)

(
|∇f |(x)h(x)

)
e−fdvolΣ ;

We now prove two lemmas which generalize Lemmas 4.1 and 4.2 in [20]. The
first one relates the growth of φξ(ρ) to ψξ(ρ) and µξ(ρ).
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Lemma 2 Let Σm →Mm+1
f be an isometric immersion. Assume that Sect ≤

0. Then

− d

dρ

(
ρ−mφξ(ρ)

)
≤ ρ−m [ψξ(ρ) + µξ(ρ)] . (30)

Proof Let X be the radial vector field centered at ξ and let (·)T denote the
projection on the tangent bundle of Σ. Since

Σdivf (λ(ρ− r)hXT ) = λ(ρ− r)hΣdivf (XT )− λ′(ρ− r)h
〈
XT ,∇r

〉
+λ(ρ− r)

〈
∇h,XT

〉
,

and

Σdivf (XT ) =

m∑
i=1

〈
∇EiXT , Ei

〉
−
〈
∇f,XT

〉
=

m∑
i=1

〈
∇EiX,Ei

〉
− 〈X, ν〉

m∑
i=1

〈
∇Eiν,Ei

〉
−
〈
∇f,X

〉
+
〈
∇f, ν

〉
〈X, ν〉

= ΣdivX −
〈
∇f,X

〉
+ 〈X, ν〉

(
H +

〈
∇f, ν

〉)
= ΣdivX −

〈
∇f,X

〉
+ 〈X, ν〉Hf ,

we obtain that

Σdivf
(
λ(ρ− r)hXT

)
= λ(ρ− r)h

(
ΣdivX −

〈
∇f,X

〉)
+λ(ρ− r)h 〈X, ν〉Hf − λ′(ρ− r)h

〈
XT ,∇r

〉
(31)

+λ(ρ− r)
〈
∇h,XT

〉
.

Since |∇r| =
∣∣(∇r)T ∣∣ ≤ |∇r| = 1 and λ(ρ − r) = λ′(ρ − r) = 0 for r ≥ ρ,

integrating (31) over Σ with respect to the weighted volume measure and
using the f–divergence theorem, we get that∫
Σ

λ(ρ− r)h
(
ΣdivX −

〈
X,∇f

〉)
e−fdvolΣ =

∫
Σ

λ′(ρ− r)h
〈
XT ,∇r

〉
e−fdvolΣ

−
∫
Σ

λ(ρ− r)hHf r
〈
∇r, ν

〉
e−fdvolΣ

−
∫
Σ

λ(ρ− r)r 〈∇r,∇h〉 e−fdvolΣ

≤
∫
Σ

rλ′(ρ− r)|h|e−fdvolΣ

+

∫
Σ

r λ(ρ− r)|h| |Hf |e−fdvolΣ

+

∫
Σ

rλ(ρ− r)|∇h|e−fdvolΣ

≤ ρφ′ξ(ρ) + ρψξ(ρ).
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Hence, by (29) we have that

ρφ′ξ(ρ) + ρψξ(ρ) ≥
∫
Σ

(m− r|∇f |)λ(ρ− r)he−fdvolΣ

= mφξ(ρ)−
∫
Σ

λ(ρ− r)r|∇f |he−fdvolΣ

≥ mφξ(ρ)− ρ
∫
Σ

λ(ρ− r)|∇f |he−fdvolΣ ,

that is,
mφξ(ρ)− ρµξ(ρ) ≤ ρφ′ξ(ρ) + ρψξ(ρ), (32)

proving (30).

Lemma 3 Let ξ ∈ Σ be such that h(ξ) ≥ 1. Let α, t satisfy 0 < α < 1 ≤ t,
and suppose that there exists a constant cm such that (27) holds. Set

ρ0 =
1

1− α

[
c−1m

∫
Σ

he−fdvolΣ

] 1
m

.

Then there exists ρ, 0 < ρ < ρ0, such that

φξ(tρ) ≤ α−1tm−1ρ0
[
ψξ(ρ) + µξ(ρ)

]
.

Proof Integrating (30) on (σ, ρ0), σ ∈ (0, ρ0), we have that

σ−mφξ(σ) ≤ ρ−m0 φξ(ρ0) +

∫ ρ0

0

ρ−mψξ(ρ)dρ+

∫ ρ0

0

ρ−mµξ(ρ)dρ.

Take ε ∈ (0, σ) and choose λ such that λ(t) = 1 for t ≥ ε. Then

σ−mφξ(σ − ε) ≤ ρ−m0 φξ(ρ0) +

∫ ρ0

0

ρ−mψξ(ρ)dρ+

∫ ρ0

0

ρ−mµξ(ρ)dρ.

Hence, since σ, ε are arbitrary,

sup
σ∈(0,ρ0)

σ−mφξ(σ) ≤ ρ−m0 φξ(ρ0) +

∫ ρ0

0

ρ−mψξ(ρ)dρ+

∫ ρ0

0

ρ−mµξ(ρ)dρ.

By contradiction, assume that for all ρ ∈ (0, ρ0),

ψξ(ρ) + µξ(ρ) < αt−(m−1)ρ−10 φξ(tρ).

Then∫ ρ0

0

ρ−mψξ(ρ)dρ +

∫ ρ0

0

ρ−mµξ(ρ)dρ

< αρ−10

∫ ρ0

0

t−(m−1)φξ(tρ)ρ−mdρ

= αρ−10

∫ tρ0

0

s−mφξ(s)ds

≤ αρ−10

[∫ ρ0

0

s−mφξ(s)ds+

∫ +∞

ρ0

s−mφξ(s)ds

]
≤ α sup

σ∈(0,ρ0)
σ−mφξ(σ) + αρ−m0 (m− 1)−1

∫
Σ

he−fdvolΣ .
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Thus we get that

(1− α) sup
σ∈(0,ρ0)

σ−mφξ(σ) < ρ−m0

∫
Σ

he−fdvolΣ
[
1 + α(m− 1)−1

]
.

Using (27), this gives a contradiction.

Proof (Proof of Theorem 6) We follow the argument in [27], [20].
Let A = {ξ ∈ Σ |h(ξ) ≥ 1}. Set ρi = βiρ0, where 2

t < β < 1, t > 2. Define

Ai =
{
ξ ∈ A |φξ(tρ) ≤ α−1tm−1ρ0

[
ψξ(ρ) + µξ(ρ)

]
for some ρ ∈ (ρi+1, ρi)

}
.

It follows from Lemma 3 that A =
⋃∞
i=0Ai. Next, define inductively a sequence

F0, F1, . . . of subsets of A as follows:

1. F0 = ∅;
2. Let k ≥ 1 and assume F0, F1, . . . , Fk−1 have been defined. Let Bk = Ak \⋃k−1

i=0

⋃
ξ∈Fi Sβtρi(ξ).

If Bk = ∅, then put Fk = ∅. If Bk 6= ∅, define Fk to be a finite subset of Bk
such that Bk ⊂

⋃
ξ∈Fk Sβtρk(ξ) and the sets Sρk(ξ) are pairwise disjoint. Then

one checks that the following properties hold:

(a) Fi ⊂ Ai;
(b) A ⊂

⋃∞
i=1

⋃
ξ∈Fi Sβtρi(ξ);

(c) For all i, {Sρi(ξ)}ξ∈Fi is a collection of pairwise disjoint sets.

Let ξ ∈ Fi. Then, by property (a) we have that, for some ρ ∈ (βρi, ρi),

φξ(tρ) ≤ α−1tm−1ρ0
[
ψξ(ρ) + µξ(ρ)

]
.

Thus, since θ ≤ 0, µξ(ρ) is non–decreasing and hence

φξ(βtρi) ≤ φξ(tρ) ≤ α−1tm−1ρ0
[
ψξ(ρ) + µξ(ρ)

]
≤ α−1tm−1ρ0

[
ψξ(ρi) + µξ(ρi)

]
.

Summing over all ξ ∈ Fi and i and using properties (b) and (c) defining
Σs = {ξ ∈ Σ |h(ξ) ≥ s}, we get that

volf (Σ1) =

∞∑
i=1

∑
ξ∈Fi

volf (Sβtρi(ξ) ∩Σ) ≤
∞∑
i=1

∑
ξ∈Fi

φξ(βtρi)

≤
∞∑
i=1

∑
ξ∈Fi

[
α−1tm−1ρ0

(
ψξ(ρi) + µξ(ρi))

)]
≤ α−1tm−1ρ0

[∫
Σ

(|∇h|+ h|Hf |) e−fdvolΣ +

∫
Σ

|∇f |he−fdvolΣ

]
.

Now let s, ε > 0 be arbitrary and let λ ∈ C1(R) be non–decreasing and such
that λ(t) = 0 for t ≤ −ε and λ(t) = 1 for t ≥ 0. Since we have also that

Σs = {ξ ∈ Σ |λ(h(x)− s) ≥ 1} ,
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replacing h by λ(h− s) in the last computation, one obtains

volf (Σs) ≤
α−1

1− α
tm−1

[
c−1m

∫
Σ

λ(h− s)e−fdvolΣ

] 1
m

(33)

×
[∫

Σ

λ′(h− s)|∇h|+ λ(h− s)
[
|Hf |+ |∇f |

]
e−fdvolΣ

]
.

Multiplying both sides of (33) by s
1

m−1 , using the fact that λ(h − s) = 0 for

s ≥ h+ ε, and letting c = α−1(1− α)−1tm−1c
− 1
m

m , we obtain

s
1

m−1 volf (Σs) ≤ c

[∫
Σ

(h+ ε)
m
m−1 e−fdvolΣ

] 1
m

×
[∫

Σ

λ′(h− s)|∇h|+ λ(h− s)
(
|Hf |+ |∇f |

)
e−fdvolΣ

]
.

Finally, we integrate over (0,+∞) with respect to s and let ε→ 0. The desired
inequality (28) follows noting that∫ +∞

0

s
1

m−1 volf (Σs)dt =

∫ +∞

0

s
1

m−1

(∫
Σs

e−fdvolΣ

)
ds

=
m− 1

m

∫
Σ

[∫ h

0

m

m− 1
s

1
m−1 ds

]
e−fdvolΣ

=
m− 1

m

∫
Σ

h
m
m−1 e−fdvolΣ ,∫ +∞

0

λ(h− s)ds ≤ h+ ε,∫ +∞

0

λ′(h− s)ds ≤ 1.

7 Topological results

By Gauss equation it is not difficult to see that, given an f–minimal hyper-
surface x : Σm →Mm+1

f , the Bakry–Émery Ricci tensor of Σ satisfies

Ricf (X,X) = Ricf (X,X)− Sect(X, ν)|X|2 − 〈A2X,X〉, (34)

for any X ∈ TΣ. Assume now that Sect ≤ 0 and Ricf ≥ k. Then

Ricf ≥ k − |A|2, (35)

and, if Indf (Σ) < +∞ and k ≥ 0, we obtain that there exists a solution ϕ > 0
of the differential inequality

∆fϕ+ a(x)ϕ ≤ 0,
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weakly outside a compact set, where a(x) = |A|2 − k. Hence the assumptions
in Corollary 1 are met and we can conclude that Σ has at most finitely many
non–f–parabolic ends. Applying Theorem 6, we can now get the following

Theorem 7 Let Σm be a complete f–minimal hypersurface isometrically im-
mersed with Indf (Σ) < +∞ in a complete weighted manifold Mm+1

f with

Sect ≤ 0 and Ricf ≥ k ≥ 0. Suppose furthermore that f ≤ f∗ < +∞ and
|∇f | ∈ Lm(Σf ). Then Σ has finitely many ends.

Proof By Theorem 6 and using the f–minimality, we have that for every 0 ≤
h ∈ C∞c (Σ)[∫

Σ

h
m
m−1 e−fdvolΣ

]m−1
m

≤ C
[∫

Σ

|∇h|+ h|∇f |e−fdvolΣ

]
.

Since we are assuming that |∇f | ∈ Lm(Σf ), for a suitable compact K we can
suppose that ∥∥∇f∥∥

Lm(Σ\K, e−fdvolΣ)
< C−1.

Then, applying the Hölder inequality, the term involving θ can be absorbed in
the left–hand side, showing that the L1–Sobolev inequality[∫

Σ

h
m
m−1 e−fdvolΣ

]m−1
m

≤ D
[∫

Σ

|∇h|e−fdvolΣ

]
holds for every smooth non-negative function compactly supported in Σ \K
and some constant D > 0. By Remark 6 we hence conclude the proof.

In the discussion just above Theorem 7 we needed the hypothesis on
Indf (Σ), jointly with Ricf ≥ k ≥ 0 in order to guarantee the finiteness of
the Morse index of the operator −∆f − (|A|2 − k). Note that, on the other
hand, in case k ≥ 0 we have even that Ricf ≥ −|A|2. To apply Corollary 1
it thus suffices to guarantee the finiteness of the Morse index of the operator
LA = −∆f − |A|2. In particular, adapting ideas in [24], we are going to show
that this can be done assuming the finiteness of weighted total curvature.

Slightly adapting the proof in [24], it is easy to obtain the following weighted
version of Theorem 2 in [24].

Lemma 4 Let Σm, m ≥ 3, be a complete non–compact Riemannian manifold
enjoing the L2–weighted Sobolev inequality(∫

Σ

h
2m
m−2 e−fdvolΣ

)m−2
m

≤ C(m)

(∫
Σ

|∇h|2e−fdvolΣ

)
∀h ∈ C∞c (Σ).

(36)
Let D ⊆ Σ be a bounded domain. Suppose q(x) is a positive function defined
on D and let µk be the kth eigenvalue for{

∆fψ(x) = −µq(x)ψ(x) on D

ψ|∂D ≡ 0
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Then

µ
m
2

k

∫
D

q
m
2 e−fdvolΣ ≥ kC̃(m).

Using the same idea as in [24], we can prove the following

Proposition 8 Let Σm → Mm+1
f , m ≥ 3, be a complete isometrically im-

mersed hypersurface enjoying the L2–weighted Sobolev inequality (36). Set
LA = −∆f − |A|2. Then

IndLA(Σ) ≤ C̃(m)

∫
σ

|A|me−fdvolΣ .

Proof Up to taking an exhaustion of Σ by compact domains {Ωi}∞i=1, it suffices
to show that

IndLA(Ω) ≤ C̃(m)

∫
Ω

|A|me−fdvolΣ

for any given domain Ω ⊆ Σ. On the other hand, consider the eigenvalue
problem {

∆fψ = −µ|A|2ψ on Ω

ψ|∂Ω ≡ 0.
(37)

It is not difficult to prove that

IndLA(Ω) = ] {µk ≤ 1 | µk is an eigenvalue of (37)} . (38)

Indeed this follows from the identity∫ (
|∇ψ|2 − |A|2ψ2

)
e−fdvolΣ∫

ψ2e−fdvolΣ
=

∫
|A|2ψ2e−fdvolΣ∫
ψ2e−fdvolΣ

[ ∫
|∇ψ|2e−fdvolΣ∫
|A|2ψ2e−fdvolΣ

− 1

]
,

observing that ∫
|∇ψ|2e−fdvolΣ∫
|A|2ψ2e−fdvolΣ

is the quadratic form associated to the operator − ∆f
|A|2 . Hence, if µk is the

greatest eigenvalue of (37) less then or equal to 1, it follows by Lemma 4 that

IndLA = k ≤ C̃(m)µ
m
2

k

∫
Ω

|A|me−fdvolΣ ≤ C̃(m)

∫
Ω

|A|me−fdvolΣ .

As a consequence of Proposition 8 we can now state the announced corollary
of Theorem 7.

Corollary 2 Let Σm be a complete f–minimal hypersurface isometrically im-
mersed in a complete weighted manifold Mm+1

f with Sect ≤ 0 and Ricf ≥ k ≥
0. Assume that |A| ∈ Lm(Σf ). Suppose furthermore that f ≤ f∗ < +∞ and
|∇f | ∈ Lm(Σf ). Then Σ has finitely many ends.
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Doctorat, 2003.

3. B. Bianchini, L. Mari, and M. Rigoli, Spectral radius, index estimates for Schrödinger
operators and geometric applications, J. Funct. Anal. 256 (2009), no. 6, 1769–1820.

4. R. Brooks, A relation between growth and the spectrum of the Laplacian, Math. Z. 178
(1981), no. 4, 501–508.

5. S. M. Buckley and P. Koskela, Ends of metric measure spaces and Sobolev inequalities,
Math. Z. 252 (2006), no. 2, 275–285.
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