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Abstract

The spatio-temporal features of the velocity field of a fully-developed
turbulent channel flow are investigated through the natural visibility graph
(NVG) method, which is able to fully map the intrinsic structure of the
time-series into complex networks. Time-series of the three velocity com-
ponents, (u, v, w), are analyzed at fixed grid-points of the whole three-
dimensional domain. Each time-series was mapped into a network by
means of the NVG algorithm, so that each network corresponds to a grid-
point of the simulation. The degree centrality, the transitivity and the
here proposed mean link-length were evaluated as indicators of the global
visibility, inter-visibility, and mean temporal distance among nodes, re-
spectively. The metrics were averaged along the directions of homogeneity
(x, z) of the flow, so they only depend on the wall-normal coordinate, y+.
The visibility-based networks, inheriting the flow field features, unveil key
temporal properties of the turbulent time-series and their changes moving
along y+. Although intrinsically simple to be implemented, the visibil-
ity graph-based approach offers a promising and effective support to the
classical methods for accurate time-series analyses of inhomogeneous tur-
bulent flows.

Keywords: Turbulent channel flows; Complex networks; Time-series analysis;
Visibility graph; Direct numerical simulations.

1 Introduction

One of the most challenging research topic in classical physics is represented by
turbulent flows. Their great importance is evident through a number of natural
phenomena (e.g., rivers, atmospheric and oceanic streams), industrial and civil
applications (e.g., flow through pumps, heat exchangers, wake flows of vehicles
and aircraft, wind-building interactions) in which turbulence is involved. The
study of wall-bounded turbulent flows, in particular, is a very active research
field, due to the great attention paid to the fluid-structure interaction. Al-
though deeply studied from a phenomenological and theoretical point of view,
the turbulence dynamics, due to their complexity, are still not fully understood
[1, 2]. Nowadays, several numerical simulations and experiments are performed,
providing a massive amount of spatio-temporal data that needs to be properly
examined. Different approaches, mainly relying on statistical techniques, are
then typically used to explore and analyze turbulent flows.

Among all the proposed techniques, time-series analysis is a broadly adopted
approach to study the temporal evolution of dynamical systems, specifically
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those with high intrinsic complexity. Different methods, such as Fourier and
wavelet transforms [3, 4], as well as nonlinear approaches [5, 6, 7], have been
developed so far to extract information from time-series. However, since each
method unavoidably loses some information about the temporal structure of the
series analyzed, new approaches are continuously required to fill this lack. In
the last decades, complex networks, by combining elements from graph theory
and statistical physics [8, 9, 10], have turned out to be powerful tools to study
complex systems, specifically by mapping time-series to extract non-trivial in-
formation [11]. Recently, several improvements were gained in this field and
numerous advances were proposed based on different approaches [12], such as
correlation [13, 14], visibility [15, 16], phase-space reconstruction [17, 18], recur-
rence quantification [19, 20, 21], and transition probabilities [22, 23] algorithms.
Beside the well-established applications to Internet, World Wide Web, economy
and social dynamics [24, 25], growing attention has been given nowadays to the
application of complex networks to fluid flows and different flow regimes have
been explored, such as two-phase flows [18, 20, 26], geophysical flows [27, 28],
turbulent jets [23, 29], reacting flows [30], as well as fully developed turbulent
flows [31, 32] and isotropic turbulence [33, 34].

In this work, the natural visibility algorithm is exploited to investigate the
spatio-temporal characterization of a fully-developed turbulent channel flow,
solved through a direct numerical simulation (DNS) and available from the
Johns Hopkins Turbulence Database (JHTDB) [35, 36]. Time-series of the three
velocity components were analyzed at fixed spatial positions, and a single net-
work was built at each point. In so doing, an ensemble of networks was obtained,
where each network corresponds to a time-series. This novel approach allows us
to capture some important aspects of the temporal structure of the signal and
how these features change along the wall-normal direction. In fact, we can sys-
tematically extract information about the occurrence and temporal collocation
of extreme events (i.e., peaks) and irregularities, which are fundamental fea-
tures to characterize turbulent flows. The statistical tools classically adopted in
turbulence, such as correlation function, higher-order statistics, structure func-
tions, energy spectrum and probability density functions, all fail in preserving
and discerning the temporal structure of a time-series (e.g., two different tempo-
ral signals can have the same probability density function or energy spectrum).
The visibility approach here presented is instead able to fully inherit and point
out the temporal structure of the turbulent series: the different temporal dislo-
cation of events such peaks and fluctuations will lead, case by case, to a different
network topology.
A systematic approach to highlight temporal features of the time-series through
the most significant network metrics is thus proposed and discussed. Particular
care is given not only to relate the network topology to the temporal structure of
the series, but also paying attention to the physical interpretation of the results.
New insights into how the network topology is affected by important temporal
features of the mapped signal are thus provided. Specific combinations of the
trend of the network metrics are able to shed light into the time-series structure.
Furthermore, a qualitative correspondence between the network metrics and the
flow dynamics is presented, underlying the ability of the method to identify
different flow regions.

2



2 Methods

2.1 Database description

The data here used were extracted from a DNS of a fully developed turbu-
lent channel flow [37], available from the JHTDB [35, 36]. The simulation is
performed at Reτ = 1000, where Reτ = huτ/ν is the friction velocity Reynolds
number, h = 1 is the half-channel height, ν = 5·10−5 Ubh is the viscosity, Ub = 1
is the bulk channel velocity, and uτ = 5·10−2 is the friction velocity (all physical
parameters are dimensionless). Periodic boundary conditions in the streamwise
(x) and spanwise (z) directions are adopted, while the no-slip condition is im-
posed at the top and bottom walls, y/h = ±1 (y is the direction normal to the
wall). Once the statistically stationary conditions were reached, the simulation
was carried on for approximately one flow-through time, t ∈ [0, 26]h/Ub, with a
storage temporal step δt = 0.0065. Thus Nt = 4000 temporal frames are avail-
able. Velocity (u, v, w) and pressure (p) fields were computed over the physical
domain, (Lx × Ly × Lz) = (8πh× 2h× 3πh), and stored with a grid resolution
(Nx ×Ny ×Nz) = (2048× 512× 1536). Other simulation parameters and flow
statistics are given elsewhere [37].

In this study, a subset of the domain was taken into account, exploiting the
geometrical features of the flow field along the three directions (x, y, z). In the
wall-normal direction, y, due to the geometric symmetry, only grid-points from
the bottom wall to the half-channel height, −1 ≤ y/h ≤ 0, were considered. As
a result, the values of the dimensionless distance from the wall, y+, defined as
[38] y+ = (y/h+1)Reτ , ranges in the interval [0, 103]. Along the y-direction the
distance between consecutive grid-points was selected to increase gradually from
the wall towards the center of the channel. Indeed, close to the wall the flow
is strongly inhomogeneous, and a finer spatial resolution is necessary to better
capture the features of the flow field. Differently, along the x and z directions,
a coarse uniform storage was adopted. In fact, along these two directions the
flow is statistically homogeneous and fewer uniformly spaced grid-points are
sufficient to guarantee the statistical stationarity of the results.
The selected sub-domain size is (SX×SY ×SZ) = (64×70×12), where the first
grid-point Y = 0 corresponds to the wall coordinates y/h = −1 and y+ = 0.
Details of the sub-domain structure are reported in Appendix A.

2.2 Mapping time-series into networks: the visibility al-
gorithm

In the time-series analysis, complex networks represent a recent and promis-
ing tool to highlight and characterize important structural properties[7, 9]. In
the present work, the natural visibility algorithm proposed by Lacasa and co-
authors [15] was adopted. According to this method, two values (ti, s(ti)) and
(tj , s(tj)) of a univariate time-series s(tn), n = {1, 2, ..., N}, have visibility, and
consequently are two connected nodes of the associated network, if the following
condition

s(tk) < s(tj) + (s(ti)− s(tj))
tj − tk
tj − ti

, (1)

is fulfilled for any ti < tk < tj (or equivalently i < k < j). From a geometrical
point of view, two nodes are linked if there is a straight line connecting them
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without intersecting any intermediate data. The natural visibility criterion is,
therefore, a convexity criterion. A geometrically simpler version of the NVG can
be obtained considering only horizontal lines among data, defining the so called
horizontal visibility graph [16]. In this case, the horizontal visibility satisfies an
ordering criterion.

The visibility algorithm is simple to implement and has been applied in
many different fields (e.g., [39, 40, 41, 42, 43]), including fluid flows [31, 29, 30,
32, 44, 45]. However, the visibility approach has some drawbacks, related to
the fact that it is invariant under affine transformations [15] (i.e., rescaling and
translation of both horizontal and vertical axes), so this could lead to a lost of
information in mapping the time-series. Moreover, if time-series with a consid-
erable number of observations (indicatively Nt > 104) are analyzed, then the
condition (1) requires to be verified many times. In these situations, as in this
study, an optimized approach is crucial to sharply decrease the computational
costs (e.g., see [46]).

2.3 Complex network metrics

A summary of the network metrics investigated in the present work is here
reported [9, 24, 10]. A network is defined as a graph G(N,E) = (V, E), where
V = {1, 2, ..., N} is a set of N labeled nodes (or vertices) and E = {1, 2, ..., E} is
a set of E links (or edges), with non-trivial topological features. The adjacency
matrix, Aij , defined as

Aij =

{
0, if {i, j} 6∈ E ,
1, if {i, j} ∈ E , (2)

determines the existence of a link between a pair {i, j} of nodes. Beside being
unweighted (A is a binary matrix), in this study we only consider undirected
networks (Aij = Aji) with no self-loops (Aii = 0).

In general, two kinds of metrics can be defined: metrics associated to nodes,
namely local metrics, and metrics related to the entire network, here referred
as global metrics. In the following, the 〈•〉 notation is adopted to indicate that
global metrics were obtained by averaging (over all nodes in the network) the
corresponding local metrics.

The degree centrality of a node is defined as

ki =

N∑
j=1

Aij , (3)

and gives the number of topological neighbors of node i, that is the number of
nodes linked to it (the set of neighbors is called the neighborhood, Γi, of node
i). In particular, if all N nodes in a network are linked each other, the network
is said fully-connected and the degrees are all constant and equal to N − 1. The
average degree centrality of a network is then

〈k〉 =
1

N

N∑
i=1

ki. (4)

As a centrality measure, the degree, ki, is an indicator of the most important
vertices in a network. The fraction of nodes in the network that have degree
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k is the degree distribution, pk, and it also represents the probability that a
randomly chosen node has degree k. In many real networks, pk is heavy-tailed,
because of an intrinsic noise due to the finiteness of the time-series [9]. In these
cases it may be useful to evaluate the cumulative degree distribution [10]:

Pk =

∞∑
k′=k

pk′ , (5)

which is the probability to find a degree greater than or equal to k. The statis-
tical fluctuations present in the tails of the pk distribution are smoothed if Pk
is used [9].

The transitivity, Tr, is a global clustering metric and is defined as [24]

Tr =
3N∆

N3
, (6)

where N∆ and N3 are the number of triangles and the number of connected
triples in the network, respectively. A triangle is a set of three nodes linked
between them. A connected triple, instead, is a set of three nodes where two of
them must be directly linked to the third node. The transitivity, 0 ≤ Tr ≤ 1,
is therefore a measure of the presence of triangles in the network. Another
commonly used clustering metric is the clustering coefficient, Ci [9]. Both the
transitivity and the clustering coefficient are measures of the presence of trian-
gles in the network, but Ci tends to weight the contributions of low-ki vertices
more heavily that Tr [10], being its denominator proportional to k2

i , and mak-
ing its interpretation less clear and general. For this reason, in the following we
only focus on the transitivity to capture the inter-node relations among nodes.

Finally, we propose a new local metric, based on the temporal length between
two mutually visible vertices [47], defined as the mean link-length:

d1n(i) =
1

ki

∑
j∈Γi

|tj − ti|, (7)

where Γi and ki are the neighborhood and the degree centrality of node i,
respectively. From a time-series point of view, each node represents a temporal
event and, then, the physical distance between two nodes i and j can be defined
as |tj − ti|. It follows that d1n increases when a node is linked to nodes far
in time from it. Averaging over all nodes in the network, a global measure is
obtained:

〈d1n〉 =
1

N

N∑
i=1

d1n(i). (8)

2.4 Building the networks

In this study, the velocity field (u, v, w) was focused on, being one of the most
basic and significant field to analyze a turbulent flow. Exploiting the visibility-
invariance under affine transformations, in the following each time-series is nor-
malized as u∗(ti) = (u(ti)−µ)/σ, where µ and σ are the local mean and standard
deviation values of u(ti), respectively. By following the classical decomposition
adopted for the statistical description of turbulence [38], the resulting signal,
u∗, has zero mean value and standard deviation equal to 1. At fixed point,
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(u∗, v∗, w∗) represent the net turbulent fluctuations of the velocity field. The
adopted decomposition allows one to separate the complete signal, u(t), into a
mean term constant in time, µ, and a fluctuating temporal part, u∗(t). In so
doing, we can focus on the temporal variations only, by comparing normalized
signals having the same mean and standard deviation values. Turbulent fluc-
tuations are the basis of the statistical description of turbulence. For example,

root-mean-square velocity, urms =

√
u∗(t)2 (the overbar represents the tem-

poral average), is usually defined to quantify the turbulence strength. A high
urms indicates an elevate level turbulence. Thus, (u∗, v∗, w∗) hold the primary
indication of the turbulence intensity of a velocity field.
For each grid-point in space, all the Nt = 4000 time frames were then exploited
to build the networks, being the velocity series dependent only on the time
(i.e., the series are univariate at fixed coordinates). Therefore, Sx × Sy × Sz =
53760 networks were constructed for each velocity component. According to
the visibility algorithm — since each of the resulting networks is connected (i.e.
every node has at least one neighbor) [15] — each temporal instant corresponds
to a node. Consequently, all the 53760 networks have the same number of
nodes N = Nt = 4000. The number of links of each network, E, instead, can
be obtained from the average degree values by applying the general relation,
E = 〈k〉N/2. A sensitivity analysis on the number of nodes N is reported in
Appendix B, for which different temporal discretizations (namely 2 δt and 4 δt,
where δt = 0.0065 is the temporal discretization leading to 4000 time frames)
are considered, resulting in different cardinality of the networks.

We recall that in a fully developed turbulent channel flow the velocity and
pressure fields are statistically homogeneous along the streamwise, x, and span-
wise, z, directions. The wall normal coordinate, y+, is then the only direction
where spatial inhomogeneities develop. Since network measures inherit the prop-
erties of the mapped time-series [15], also the global metrics (i.e. averaged over
the nodes of each network) were assumed as statistically homogeneous in the x-z
directions (more details are reported in Appendix C, where few representative
plots of the global metrics calculated at fixed x and z locations are reported).
Consequently, the global metrics were firstly calculated for each single network.
Subsequently, such global metrics were averaged over the Sx × Sz grid-points
as:

F̃(Y ) =
1

SxSz

∑
X

∑
Z

F(X,Y, Z), (9)

where where F represents the specific metric considered, namely F = {〈k〉;Tr; 〈d1n〉}.
In so doing, we obtained three averaged quantities: k̃, T̃ r, and d̃1n, where the

notation (̃•) indicates the average over grid-points in the directions of spatial
homogeneity of the flow. This operation makes the above averaged metrics
dependent only on the wall normal coordinate y+ and their plots statistically
meaningful.

3 Relating time-series structure and network met-
rics

It is known that the general structure of time-series is preserved in the topology
of the associated natural visibility graphs, as shown by Lacasa et al. [15] and
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as emerges from successive works [29, 39, 30, 32, 31, 41]. Specifically, periodic
time-series are converted into regular networks, i.e. graphs where nodes have
constant degrees related to the periods of the series. Fractal series, instead,
convert into networks with power-law degree distributions [48]. In particular,
fractional Gaussian noise with Hurst exponent equal to 0.5 (i.e., uncorrelated
random series) are mapped by the NVG method into networks with power-law
degree distribution with exponent, γ, equal to 4 [48].
Here, particular attention is paid relating the network topology and the tem-
poral structure of the series to a physical interpretation of the network metrics,
with respect to the flow dynamics. In fact, although the overall features of
the time-series are inherited by the corresponding visibility graphs, it is not
straightforward how topological network metrics are affected by different tem-
poral behaviors of the series. In order to explore this gap, we qualitatively relate
the global metrics behavior to the temporal structure of the corresponding time-
series.

In general, if two different time-series are compared, they can differ in several
ways. In this analysis, we focused on the presence of peaks and irregularities. A
point of a time-series, s(ti), is said a peak if it is a local (or global) maximum of
s(ti), with order of magnitude comparable with the maximum excursion of the
series, ∆ = smax − smin. Peaks generally have higher probabilities to connect
to other points in the series, because obstacles to the visibility are avoided from
higher positions. However, in turn, the long-term visibility of points in the sur-
roundings of peaks is obstructed by the peaks, thus creating local barriers to the
visibility of lower points of the series. Irregularities are temporal variations with
order of magnitude much smaller than ∆, and defined as local barriers decreas-
ing the visibility of the surrounding points. Peaks and irregularities are focused
mainly for two reasons. First, the occurrence and temporal collocation of ex-
treme events (i.e., peaks) and irregularities represent some of the fundamental
features to characterize turbulent flows. Second, the NVG is a suitable method
to evidence this kind of flow properties and translate them into the network
topology. In particular, among all the topological parameters investigated, the
transitivity, Tr, the global mean link-length, 〈d1n〉, and the average degree, 〈k〉,
turned out to be the metrics that better capture the temporal structure of the
time-series in terms of peaks and irregularities, inheriting important features of
the turbulent flow dynamics.

In order to schematize how the occurrence of peaks and irregularities affects
the temporal structure and in turn the network topology, we consider four exem-
plifying time series, as reported in Fig. 1. The starting series (panel a) is a sine
function. With respect to panel (a), in panels (b)-(d) a uniform random noise
is added to account for irregularity, while in panels (c) and (d) the periodicity
is halved. The graphical representation of the networks corresponding to each
time-series is reported on the right panels of Fig. 1.

3.1 Transitivity analysis

Let us first focus on the transitivity, Tr. We recall that, since each pair (j, l) ∈ Γi
(Γi is the neighborhood of node i) always forms a connected triple with node
i, the total number of triples in the network depends on the size of all the
neighborhoods Γ. On the other hand, triangles are formed only if the nodes
(j, l) ∈ Γi are also linked, that is if Aij = Ail = Ajl = 1. In general, short-term
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connections are the most probable ones because time-series are not expected to
sharply change in time (except for random series), so that nodes which are close
in time are more likely to form triangles. If two neighbors (j, l) ∈ Γi are far in
time, instead, there are many nodes in between j and l so that there is a high
probability to find a node that obstructs the inter-visibility of j and l. As a
result, the total number of triangles and triples, and therefore the transitivity,
strongly depend on the inter-visibility of nodes inside each neighborhood. The
transitivity can be then interpreted as a measure to characterize the typical
convexity properties on some intermediate time-scale (i.e., the neighborhood
temporal lengths) [41].

To better describe the effects of peaks and irregularities on the transitivity,
let us consider the time-series, s(ti), and the corresponding networks, G, re-
ported in Fig. 1. Time-series s(ti)(a),(c) are clearly more regular than the series
s(ti)(b),(d), while s(ti)(c) and s(ti)(d) have three peaks instead of two. Therefore,
while the networks G(a) and G(c) are well organized in clusters (one cluster for
G(a), two for G(c)), G(b) and G(d) appear more complex (right panels of Fig. 1).
This happens because in G(b),(d) there are many nodes with low visibility due
to the presence of irregularities.

More in detail, any point in the ranges ti = (1− 50) and ti = (51− 100) of
s(ti)(c) has basically the same inter-visibility of corresponding points in s(ti)(a)

(i.e., nodes at the same relative altitude), because there are no substantial local
changes of regularity between s(ti)(a) and s(ti)(c). As a consequence, the value
of transitivity of G(a) and G(c) are expected to be scarcely affected by different
occurrence of peaks, as evident from the Fig. 2 where Tr(c) and Tr(a) are
actually almost the same. The presence of more (or less) peaks in a time-series
then does not significantly modify the inter-visibility (i.e., the transitivity) of
nodes. Therefore, also Tr of G(b) and G(d) are almost equal (see Fig. 2), being
the irregularities of time-series s(ti)(b) and s(ti)(d) very similar.

On the other hand, the time-series s(ti)(b),(d) clearly display irregularities
if compared with time-series s(ti)(a),(c). The inter-visibility among neighbors
of a generic node is obstructed because of the irregularities in the time-series.
Let us consider an arbitrary node, for example i = 34, highlighted as a green-
colored dot in panels (a) and (b) of Fig. 1. While in G(a) the neighborhood
Γ34,(a) (highlighted in yellow in Fig. 1) includes either short-term, medium-
term, and long-term links, in G(b) the neighborhood Γ34,(b) includes only short-
term and long-term connections. Therefore, the number of triangles (relative
to the number of triples) in which is involved a generic node (e.g., i = 34)
is generally lower in irregular networks than in regular ones. As a result, the
values of Tr(b) and Tr(d) are much lower than Tr(a) and Tr(c), as observed in
Fig. 2. Summarizing, the transitivity is much more affected by local variations
due to the presence of irregularities rather than the presence of local peaks in
the series. In terms of flow dynamics, the transitivity is related to the presence
of local fluctuations between consecutive peaks. Recalling that the all signals
are normalized with respect to their mean and standard deviation values, the
transitivity is thus a net measure of the intrinsic fluctuation level of the time-
series.
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3.2 Mean link-length analysis

The second metric considered is the global mean link-length, 〈d1n〉. If peaks
often occur in a series (as in Fig. 1, panels (c) and (d)), points far from each
other are not visible because far connections are hampered by peaks, and 〈d1n〉 is
consequently strongly reduced. The visibility of a generic node in the networks
G(c) and G(d) is limited by the peak at i = 50 (green-colored dot in Fig. 2),
which in turn divides the networks into two main clusters (see bottom right
panels of Fig. 2). The value of 〈d1n〉(c) and 〈d1n〉(d) are indeed much lower
than 〈d1n〉(a) and 〈d1n〉(b), respectively, as can be seen in Fig. 2. On the other
hand, 〈d1n〉 is not essentially affected by the irregularities of a series. Indeed,
irregularities mostly prevent medium-term connections than short and long-
term links but, averaging over all nodes in the network, a value of the order of
medium-term links is generally obtained for 〈d1n〉. In fact, in Fig. 2 the value
of 〈d1n〉(b) is approximately equal to 〈d1n〉(a), while 〈d1n〉(d) is almost the same
of 〈d1n〉(c), indicating that there are no relevant changes in the global mean
link-length due to irregularities. To conclude, the global mean link-length is
strongly influenced by the occurrence of peaks, being slightly affected by the
irregularities. The mean link-length measures how isolate and sporadic extreme
events (i.e., peaks) are, with low 〈d1n〉 values when the recurrence of peaks is
high. Differently to high-order statistics (such as, for example, kurtosis), 〈d1n〉
is able to fully capture the temporal dislocation of such extreme events along
the time-series.

3.3 Combining Tr and 〈d1n〉
As a consequence of the previous observations, the visibility algorithm turns out
to be able to capture two main features of the temporal structure of a series:
the recurrence of peaks and the presence of irregularities. It is worth noting
that the two global (i.e., those associated to networks) measures analyzed so
far inherit the local structural features of the mapped time-series. Therefore, a
comparative temporal characterization of the time-series can be carried out by
combining the behaviors of the global metrics.

If Tr and 〈d1n〉 are focused on, a time-series can differ from another through
a combination of the metrics behaviors, namely Tr and 〈d1n〉 can increase,
decrease, or remain almost constant. Excluding the combination in which both
Tr and 〈d1n〉 are almost constant (i.e., the two compared time-series share the
same temporal features), four different cases can occur and they are explained
in table 1. Therefore, given the metric trends, it is possible to infer from table
1 how time-series differ in terms of peaks and irregularities.

Being the degree centrality, k, a direct measure of the visibility of nodes, it
can contemporarily account for both the recurrence of peaks and the presence
of irregularities. In other words, 〈k〉 combines the features of both Tr and 〈d1n〉
in a single global metric. Therefore, due to its intrinsic definition, the degree
variation in general cannot be univocally related to a specific temporal fea-
ture (either peaks or irregularities occurrence). For this reason, although being
conceptually one of the easiest measure to interpret, here the degree centrality
will be mainly discussed as a posteriori validation of the transitivity and global
mean-length behaviors.
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4 Results

The procedure described in the previous section is adopted to analyze the ve-
locity time-series of the turbulent channel flow, starting from the streamwise
component, u∗, and then considering the other velocity components, v∗ and w∗.

4.1 Streamwise velocity component, u∗

In Fig. 3 the metrics
(
k̃, T̃ r, d̃1n

)
are plotted as a function of the wall-normal

coordinate, y+. Substantial variations of these metrics occur moving along the
wall-normal direction, exhibiting clear and regular trends. The three metrics
have overall similar behaviors, rising from the wall up to a maximum value, then
decreasing to y+ ' 100 − 200 and, finally, barely changing towards the center

of the channel. The maximum values of k̃, T̃ r, and d̃1n are not exactly at the
same value of y+, but they are quite close in the range y+ ' 4− 7. The global
network-metrics {〈k〉;Tr; 〈d1n〉}, computed for each of the Sx × Sz grid-point,
have regular trends similar to the averaged ones shown in Fig. 3, which are thus
representative of the global metrics measured along the wall-normal direction
and in different (x, z) coordinates (see also Fig. C9 in Appendix C).

To infer the temporal structure of time-series along the wall-normal coor-
dinate, we start from time-series close to the wall and then proceed towards
the center of the channel. In particular, we focus on three representative y+

stations, i.e. y+ = 0.017, 15.4, 996.3. The three time-series, u∗(t), at the se-
lected y+ stations are shown in Fig. 4(a), while a graphical representation of
the corresponding networks is displayed in Fig. 4(b), revealing the presence of
different topological features at different distances from the wall.

Starting from the time-series at y+ = 0.017, this series appears globally quite
smooth, with relatively slow variations in time, resulting in few pronounced
peaks. Moving from y+ = 0.017 to y+ = 15.4, the Fig. 3 shows that the

transitivity, T̃ r, consistently increases, while the average mean link-length, d̃1n,
and the average degree, k̃, noticeably decrease. This combination of metrics
corresponds to the Case D in table 1 (here TS(1) and TS(2) correspond to time-
series at y+ = 15.4 and y+ = 0.017, respectively). A normalized time-series
extracted at y+ = 15.4 is then expected to be (on average) more regular than a

series extracted at y+ = 0.017 (indicated by the growth of T̃ r), and with a more

frequent occurrence of peaks (indicated by the drop of d̃1n). The reduction of k̃
suggests that the increasing occurrence of peaks affects the global visibility more
than the reduction in the irregularities. Looking at the time-series extracted at
y+ = 15.4 of Fig. 4(a), it is indeed with more peaks than the series extracted
at y+ = 0.017. This aspect is also evident in a more clustered topology of the
network built on the time-series at y+ = 15.4 (see Fig. 4(b)). The regularities
appear globally similar but, as zoomed in the inset of Fig. 4(a), the two time-
series are locally different. In particular, the time-series at y+ = 0.017 appears
more irregular, as indicated by the transitivity.

From y+ = 15.4 to y+ = 996.3 (i.e., close to the center of the channel,
h), all the average metrics substantially decrease. This combination of metrics
corresponds to the Case C in table 1. Accordingly, we expect that a time-series
extracted at the center of the channel is (on average) less regular than a series
at y+ = 15.4 and with a more frequent recurrence of peaks. This behavior
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can be clearly seen in Fig. 4 where the time-series at the center of the channel
is more fluctuating than the time-series at y+ = 15.4, and the corresponding
network appears more clustered and disordered. It is interesting to note that
from y+ ≈ 102 to the center of the channel, the three metrics barely change.

In summary, the temporal features of the series are actually as predicted by
combining the network metrics. Through the behavior of the metrics along the
y+ direction, Fig. 3 yields first important results on the presence, dislocation
and structure of extreme events and irregularities of the time-series. This kind of
information can enrich the comprehension of the flow dynamics. It is important
to remark that the behavior of a single metric is not a sufficient information,

but a combination of the two metrics, T̃ r and d̃1n, instead, determines how two
time-series differ in terms of recurrence of peaks and/or irregularities. Moreover,
we do not refer to the specific value assumed by the metric, but the analysis
is comparative as it focuses on the trend each metric assumes as a function of
the distance from the wall. Specifically, comparing time-series at the wall and
at the center of the channel, peaks are expected to be remarkably closer, while

irregularities do not substantially change (d̃1n decreases while T̃ r slightly in-
creases). In fact, as shown in Fig. 4(a), in the center of the channel peaks occur
more frequently but the irregularity between them remains basically unvaried.
However, this trend is not monotonic along y+, since the time-series locally
(around y+ = 15.4) change their regularity. In terms of the network topology,
as displayed in Fig. 4(b), close to the wall the network is composed by dif-
ferent subnetworks, corresponding to the peaks of the series, which are widely
connected with each other and internally. Going towards y+ = 15.4, the simul-

taneous decrease of d̃1n and increase of T̃ r mainly break down long connections

among the subnetworks. The drop of d̃1n plays a major role here, acting to split

long-term links. The subsequent decrease of both d̃1n and T̃ r (from y+ = 15.4
to y+ = 996.3) breaks principally intra-network connections. At this stage, the
prevailing effect is locally induced by the increase of irregularity, which leads to
a ramification of each subnetwork.
A comment on the degree centrality can be eventually carried out. A high
value of k̃ indicates a globally convex time-series, while low values indicate a
strong fragmentation of the visibility network [41]. As a result, considering

the behavior of k̃ in Fig. 3, at high values of y+ the time-series are globally
more fragmented than the time-series close to the wall, confirming what found

observing the trends of T̃ r and d̃1n.
Finally, the average cumulative degree distributions, P̃k, are illustrated in

Fig. 5 (semi-log plot). As for the metrics, a degree distribution was computed for
each network and all the distributions were then averaged over the homogeneous
directions. The Pk of a visibility network can be thought of as a measure of
the (linear and nonlinear) temporal dependences existing in the time-series [16].
However, differently from the horizontal visibility algorithm, the behavior of
the degree distribution also depends on the probability density function (pdf)
of the mapped time-series when the natural visibility algorithm is applied [49].
As evident from the Fig. 5, the tail of the distributions reveals decreasing
exponential trends, i.e. the higher degree values (i.e., the hubs) are generally

very infrequent. In particular, the exponent of the fitting, γ, of the P̃k increases
(in modulus) from the wall towards the center of the channel, y = h. This is
consistent with the temporal integral scale measurements [50], which decrease
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from the wall to the center of the channel.
In order to isolate (from the pdf contribute) the net impact of (linear and non-
linear) dependences in the turbulent time-series, we built four series by shuffling
four velocity time-series (at arbitrary (x, z) locations) at the same wall-normal
distances considered, i.e., y+ = (0.017, 15.4, 106.2, 996.3). As shown in Fig. 5
(and highlighted in the inset), the slopes of Pk from the shuffled series are sub-
stantially steeper than the turbulent time-series. This demonstrates the key role
of the (linear and nonlinear) correlation aspects of the turbulent series.

Up to now, we pointed out the ability of the visibility-based networks to shed
light on the temporal structure of the corresponding mapped time-series. Now
we try to relate the network metrics with the flow dynamics, that are responsible
for the time-series behavior. Looking at the Fig. 3, three regions are particularly
interesting (i.e. y+ . 7, 7 . y+ . 150, and y+ & 150) where the average
metrics mostly change their trend. It should be noted that the values of y+

delimiting such regions are very close to the limit values, y+ = 5 and y/h = 0.1,
of the viscous sub-layer and inner layer, respectively [38]. In particular, for
Reτ = 1000, the inner layer limit is about y+ = 100. The region for y+ < 5 is
characterized by slow moving fluid and the flow dynamics are dominated by the
viscous shear stresses. The normalized time-series u∗(ti) here can be assumed to
roughly share a similar temporal structure (although their mean and standard
deviation values clearly change along y+). The corresponding metrics (see Fig.
3) highlight this behavior resulting in barely increasing trends. As previously
observed, around y+ ' 4 − 7 (which is the upper bound of the viscous sub-
layer) the three metrics reach their maximum values. Here we expect, in terms
of time-series shape, a minimum number of peaks along with the minimum
irregularities. Recalling that all signals are normalized with the local mean and
standard deviation, a possible interpretation is the following. Around y+ ' 4−7,
we are approaching the buffer layer (5 < y+ < 30), an intermediate region where
viscous shear stress starts decreasing while turbulence activity begins to grow.
However, at the very beginning (y+ ' 4 − 7), turbulent processes are very
low, thus resulting in a minimum of irregularities, which act over a signal that
is still affected by slow temporal variations (i.e., low number of peaks). The
combination of these dynamics reasonably explains the maxima reached by all
the metrics around the region y+ ' 4 − 7. For y+ > 5 the flow dynamics are
more affected by the Reynolds shear stresses, and the flow shows a tendency
to organize into coherent turbulent patterns [38]. The structure of the time-
series is then affected by turbulent processes (e.g., ejections and sweeps [38]),
leading to rapid temporal variations. This behavior could be recognized in the
drop of the average metrics (Fig. 3). As y+ further increases (y+ > 100),
the turbulent patterns are less affected by the wall and they can develop in
larger structures. However, the coexistence of multiple scales and the more
complicated flow structure [51] seems not to translate into a clear trend for the
network metrics.

4.2 Transversal and spanwise velocity components, (v∗, w∗)

In Fig. 6, the three metrics T̃ r, d̃1n and k̃ are displayed for all the velocity
components, (u∗, v∗, w∗) to facilitate the comparison. In general, the mean link-
length and the average degree measured on the time-series of v∗ and w∗ show
trends similar to those of u∗, while different trends are obtained considering the
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transitivity.

More in particular, for d̃1n the trends over y+ for the three velocity compo-
nents are similar, but values for the streamwise velocity, u∗, are overall higher
than those displayed by v∗ and w∗. The relative difference decreases towards
the center of the channel. The scenario for the degree centrality, k̃, is analo-
gous. Differences for the k̃ values of the three components are marked close to
the wall, while k̃ values tend to coincide approaching the channel center. This
behavior can be explained by considering that close to the wall the presence
of the wall itself strongly influences and differently characterizes the flow dy-
namics in the three directions of the velocity, and consequently the networks
based on the corresponding time-series are affected. On the contrary, the wall
effects decrease moving far from the wall (y+ > 100), thus differences among the

metrics built on u∗, v∗ and w∗, reduce. As for the transitivity, T̃ r, the metric
difference among velocity components is even more accentuated. In fact, in the
region y+ < 100, not only values are different but also metrics display differ-
ent trends. In particular, the wall-normal velocity component, v∗, is strongly
affected by the presence of the wall (recall that close to the wall the motion
corresponds to flow in planes parallel to the wall [38]) and this in turn involves
the transitivity. For example, spikes with large negative values can be found
in the time-series of v∗ as a consequence of strong events that appear only in
the very near-wall region, revealed by high kurtosis levels [52]. Since these deep
peaks are negative and relatively short, the degree and the mean link-length of
the corresponding networks are barely affected, while the transitivity is strongly

reduced. Towards the channel center, similarly to the mean link-length d̃1n, the
transitivity differences for the three velocity components tend to reduce.

In the end, the cumulative degree distributions, P̃k, of the networks built on
the three velocity components, (u∗, v∗, w∗), and averaged over the grid-points
in the homogeneous directions are displayed in Fig. 7. At fixed positions from
the wall ((a): y+ = 0.0017, (b): y+ = 15.4, (c): y+ = 996.3), the slope of the
three components is pretty similar, confirming that a steeper decay is present
when moving far from the wall (from y+ = 0.0017 to y+ = 996.3).

5 Conclusions

In this work, the application of the natural visibility graph to time-series of
a fully-developed turbulent channel flow was studied. Our attention was fo-
cused on the streamwise velocity component, u, although the other velocity
components were also explored. Velocity time-series were adopted to build the
corresponding networks as the velocity field is one of the most intuitive quantity
to characterize a fluid flow. However, the visibility graph method can be applied
to other quantities of turbulence interest, such as the Reynolds shear stress, the
kinetic energy, or the vorticity field. Firstly, we provided some novel insights
into how the network metrics are affected by the different temporal structure of
the mapped time-series. The average transitivity, T̃ r, the here introduced mean

link-length, d̃1n, and the average degree, k̃, were chosen as the most represen-
tative metrics. Their trends turned out to effectively highlight the temporal
features, in terms of peaks and irregularities, of the mapped time-series along
the wall-normal coordinate, y+. Furthermore, the cumulative degree distribu-
tions are found to show a decreasing exponential tendency, but with fitting
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exponent values at least one order of magnitude greater than uncorrelated ran-
dom series. Different metrics variations were also quite well associated to the
flow dynamics, as responsible of the time-series behavior.

Despite several statistical techniques are available to study nonlinear time-
series, specifically regarding turbulence, most of them are invariant under dif-
ferent temporal structures of the time-series. The visibility-network analysis,
instead, reveled to be a powerful and synthetic tool to handle big-data and to
explore specific temporal features of the mapped series, without losing infor-
mation about their temporal structures and also capturing the underlying flow
dynamics. In fact, each network is built holding the temporal dislocation of im-
portant temporal features, such as extreme events and irregularities. To extract
and handle this information is crucial for a deeper understanding of the flow
dynamics, since the most common statistical tools adopted in turbulence, from
spectral analysis to higher-order moments, are not able to retain the tempo-
ral collocation of such phenomena. Our network-based approach demonstrates
that visibility graph method is able to give much information about tempo-
ral structure of turbulent time-series and it will deserve future efforts, such as
community and neighborhood detection, to better explore the network topol-
ogy and its physical meaning. Future works can also involve simulations with
different Reynolds numbers, and weighted or directed networks may be consid-
ered. Furthermore, finer spatial and temporal simulation resolutions may be
considered.

Based on present findings, the proposed procedure may thus provide a
promising support to the classical methods for accurate time-series analyses
of inhomogeneous turbulent flows. In particular, given a time-series and the
behaviors of the network metrics as a function of the distance from the wall, it
is possible to qualitatively infer the behavior of the time-series at another wall-
normal distance. This method can be then particularly useful as a predictive
and supportive tool when experimental measurements are difficult.
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Appendix A

The selected grid-points of the sub-domain (Sx, Sy, Sz) ⊂ (Nx ×Ny ×Nz) are
reported below (according to the labeling of the online database) in the form
(a : d : b), where a and b are respectively the first and the last index of a
uniformly spaced interval, and d is a grid step size (e.g., (1 : 2 : 9) takes the
indices {1; 3; 5; 7; 9}):
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• wall-normal direction,

Y =



(0 : 1 : 21)
(23 : 2 : 39)
(42 : 3 : 54) and (58 : 3 : 79)
(84 : 5 : 169)
(179 : 10 : 239)
255, i.e. y+ = 996.3;

• streamwise direction, X = (0 : 32 : 2016);

• spanwise direction, Z = (110 : 128 : 1518).

Appendix B

A sensitivity analysis on the number of nodes N is here reported, by varying the
temporal discretization and consequently the cardinality of the corresponding
network. We recall that δt = 0.0065 leads to a number of nodes, N = 4000.
Two other time steps, namely 2 δt, and 4 δt, have been considered, resulting in
networks with N = 2000 and N = 1000, respectively. In Fig. B8, the metrics
as function of y+ are displayed for the three temporal samplings, c δt, with
c = 1, 2, 4. Mean link-length and degree centrality are reported as scaled with

c (namely c d̃1n and c k̃), to facilitate the comparison between samplings. The

transitivity, T̃ r, is not scaled with c as by definition varies between 0 and 1. It
can be observed that, apart from the specific values reached by the transitivity,
the metrics behavior along the wall-normal direction y+ is not sensitive to the
choice of the temporal discretization (i.e., the number of nodes).

Appendix C

In this section we report few representative plots of the global metrics calculated
on networks at different single streamwise, x, and spanwise, z, locations. In Fig.
C9 we illustrate the behavior of the transitivity, the mean link-length and the
degree centrality as a function of y+ before the averaging operation, performed
according to the Eq. (9), and compare them with the averaged behavior (as
shown in Fig. 3). Specifically, in Fig. C9, we plotted 48 curves for each met-
ric, obtained from 48 uniformly spaced grid-points in the (x, z) directions and
covering the whole domain. As can be seen, the averaged behaviors (reported
in black in Fig. C9) are representative of the behavior of the global metrics for
different streamwise and spanwise grid-points. The distributions of the mean
link-length and the degree centrality appear less noisy (especially at the center
of the channel) than the plots of the transitivity because the latter is globally
evaluated for each network (see Eq. (6)), while 〈k〉 and 〈d1n〉 are defined as
averages over nodes (see Eq. (4) and Eq. (8)). Therefore, we can conclude that
the statistics homogeneity of the flow is inherited by the visibility networks,
making the average behavior along y+ statistically meaningful.
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Figure Legends

Fig. 1 (Left) Examples of sine time-series with different temporal features. In
panels (a) and (b), the green-colored dot indicates the point s(ti = 34), while
yellow points highlight its neighborhood, Γ34. In panels (c) and (d), the green-
colored dot evidences the point s(ti = 50). (Right) Networks corresponding to
the time-series on the left.
Fig. 2 Bar plot of the transitivity (blue) and global mean link-length (yellow)
values for the four time-series of Fig. 1.
Fig. 3 Global metrics averaged over the Sx × Sz networks as function of y+,
reported in a log-linear plot. The values of the metrics at the wall (y+ = 0) are(
k̃, T̃ r, d̃1n

)
= (1.9995, 0, 1), resulting from constant time-series and thus not

shown here. Three representative values of y+ are also highlighted.
Fig. 4 (a) Normalized time-series, u∗(ti), at the grid-points X = 1601, Z = 750
and y+ = 0.017, 15.4, 996.3. The choice of the coordinate in the homogeneous
directions, x and z, is arbitrary. In the inset the time-series at y+ = 0.017 (blue)
and y+ = 15.4 (red) are highlighted and compared in the range ti ∈ [300, 800].
(b) Graphical representation of the networks extracted from the time-series of
panel (a).

Fig. 5 Cumulative degree distributions, P̃k, averaged over the grid-points in
the homogeneous x and z directions, reported in a linear-log plot. The distribu-
tions close to the vertical axis (highlighted in the inset) correspond to networks
built on shuffled time-series at wall-normal distances: (×), y+ = 0.017; (◦),
y+ = 15.4; (�), y+ = 106.2; (M), y+ = 996.3. The fittings were performed as
Pk ∼ exp(γk), with a trust-region method of optimization. The resulting values
of γ are (−1.01,−1.08,−2.85,−2.86) · 10−2 from y+ = 0.017 to y+ = 996.3, re-
spectively; the slope for the shuffled series is about γ ≈ 2 · 10−1. The coefficient
of determination, R2, of the fittings is always above 0.99.

Fig. 6 Average metrics T̃ r, d̃1n, and k̃ evaluated from time-series extracted
from the velocity field, (u∗, v∗, w∗).
Fig. 7 Cumulative degree distributions of the networks built on the time-series
of three velocity components, (u∗, v∗, w∗), and averaged over the grid-points in
the homogeneous directions. (a): y+ = 0.0017, (b): y+ = 15.4, (c): y+ = 996.3.

Fig. B1 Averaged metric behaviors, T̃ r, cd̃1n, ck̃, as function of y+ for three
different time sampling of the streamwise velocity time-series, u∗. The curves
are obtained with cδt, where the sampling is c = 1 (blue), which corresponds to
the case in Fig. 3, c = 2 (red), c = 4 (green).
Fig. C1 Metrics behaviors of networks built on the streamwise velocity com-
ponent, u∗, and extracted at 48 different uniformly spaced (x, z) locations. The
black plots correspond to the averaged behavior, as shown in Fig. 3.

20



Table 1: Scheme of the ways two time-series, TS(1) and TS(2), can differ and
corresponding behaviors of the global network-metrics, Tr and 〈d1n〉.

Cases Temporal structure
features

Metric behaviors TS1 TS2

Case A Peaks occur more frequently in
TS(2) than in TS(1)

Tr(2) ≈ Tr(1)
〈d1n〉(2) < 〈d1n〉(1)

Case B TS(2) is more irregular than
TS(1)

Tr(2) < Tr(1)
〈d1n〉(2) ≈ 〈d1n〉(1)

Case C Peaks occur more frequently in
TS(2) than in TS(1), and TS(2)

is more irregular than TS(1)

Tr(2) < Tr(1)
〈d1n〉(2) < 〈d1n〉(1)

Case D Peaks occur less frequently in
TS(2) than in TS(1), and TS(2)

is more irregular than TS(1)

Tr(2) < Tr(1)
〈d1n〉(2) > 〈d1n〉(1)
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Fig. 4:
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