POLITECNICO DI TORINO

Repository ISTITUZIONALE

Waring loci and the Strassen conjecture

Original
Waring loci and the Strassen conjecture / Carlini, Enrico; Catalisano, Maria Virginia; Oneto, Alessandro. - In:
ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 314:(2017), pp. 630-662. [10.1016/j.aim.2017.05.008]

Availability:

This version is available at: 11583/2690269 since: 2017-11-08T15:12:17Z
Publisher:
Elsevier

Published
DOI:10.1016/j.aim.2017.05.008

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
(Article begins on next page)

WARING LOCI: STRASSEN'S AND COMON'S CONJECTURES.

ENRICO CARLINI, MARIA VIRGINIA CATALISANO, AND ALESSANDRO ONETO

Abstract

Given a homogeneous polynomial of degree d, we define a Waring decomposition as an additive decomposition as sum of d th powers of linear polynomials and we say that it is minimal if it has the shortest possible length. A homogeneous polynomial may have infinitely many minimal Waring decomposition and we define its Waring locus as the set of linear forms that can appear in a minimal Waring decomposition; we call locus of forbidden points the complement.

In this paper, we give a complete description of Waring locus (and forbidden points) for quadrics, monomials, binary forms and plane cubics.

1. Introduction

Let $S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]=\bigoplus_{i>0} S_{i}$ be the standard graded polynomial ring in $n+1$ variables and complex coefficients where S_{i} denotes the \mathbb{C}-vector space of degree i homogeneous polynomials, or forms.
A Waring decomposition of $F \in S_{d}$ is an expression of the form

$$
F=L_{1}^{d}+\ldots+L_{r}^{d},
$$

for linear forms $L_{i} \in S_{1}$. The Waring rank, or simply rank, of F is

$$
\operatorname{rk}(F):=\min \left\{r: F=L_{1}^{d}+\ldots+L_{r}^{d}, L_{i} \in S_{1} \text { for } 1 \leq i \leq r\right\} .
$$

In the last decades, there is been a lot of work trying to compute Waring ranks and (minimal) Waring decompositions of homoegeneous polynomials. The main result in this subject is due to J.Alexander and A.Hirschowitz who determined the rank of a generic form [AH95].

This attention is mostly due to the relations with the theory of symmetric tensors and their decompositions as sums of rank 1 tensors which have applications in Algebraic Statistics, Biology, Quantum Field Theory and more, e.g. see [Lan12].
In this paper, we investigate the possible minimal Waring decompositions of a given form F, namely the Waring decompositions where the length is equal to the rank of F. Of particular interest are the cases when the minimal Waring decomposition is unique, called in the literature the identifiable cases, e.g. see [CC06, BCO14, COV15].
Definition 1. Given a form F, we define the Waring locus of F as the set of linear forms that appear in a minimal Waring decomposition of F, namely

$$
\mathcal{W}_{F}:=\left\{[L] \in \mathbb{P}\left(S_{1}\right): \exists L_{2}, \ldots, L_{r} \in S_{1}, F=L^{d}+L_{2}^{d}+\ldots+L_{r}^{d}, r=\operatorname{rk}(F)\right\} ;
$$

and we define the locus of forbidden points as its complement, namely the set of linear forms that cannot appear in a minimal Waring decomposition of F,

$$
\mathcal{F}_{F}:=\mathbb{P}\left(S_{1}\right) \backslash \mathcal{W}_{F} .
$$

Although their approach and their results have a different nature, in [BC13], the authors started to point out the importance of the study of the Waring loci of homogeneous polynomials.
From our definitions, it is clear that in the identifiable cases, or when a form has finitely many minimal Waring decompositions, we have Waring locus equal to a finite set of points; hence, our main contribution is for forms which admit infinitely many minimal Waring decomposition.
In these cases, it is more interesting to describe the structure of the forbidden points and we have been able to give a complete answer in the following cases:
(1) quadrics, i.e. degree 2 forms, see Proposition 3.1;
(2) monomials, see Theorem 3.2;
(3) binary forms, i.e. two variable, see Theorem 3.3;
(4) plane conics, i.e. degree 3 forms in three variables, see Section 3.4.

In Section 2, we introduce the basics facts and our main tool: the Apolarity Lemma, Lemma 2.1. Itprovides a very explicit receipt to find Waring decompositions of an homogeneous polynomials F; in particular, it states that Waring decompositions of F corresponds to ideals of reduced points contained in the perp ideal F^{\perp}, namely the ideal of polynomials annihilating F by acting as differentials. The reason why we have been able to succeed in the computation of forbidden points in the cases listed above is that those are the cases when we can give a very precise description of the perp ideals and then look for all the possible (minimal) set of reduced points contained in them.
In Section 3, we explain in details all our computations and results.
Acknowledgment. The second author wants to thank the first author and the School of Mathematical Sciences, Monash University, for the hospitality during a visit of three months while the work is been mostly done. The visit is been partially supported by $G S$ Magnuson Foundation from Kungliga Vetenskapsakademien.

2. Basics

We introduce first the basic notions on Apolarity theory that we used in our computations; for an extended explanation see also [IK99, Ger96].
We consider two polynomial rings $S=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]=\bigoplus_{i \geq 0} S_{i}$ and $T=\mathbb{C}\left[X_{0}, \ldots, X_{n}\right]=\bigoplus_{i \geq 0} T_{i}$ with standard gradation, where S has the structure of a T-module via differentiation; namely, we consider the apolarity action given by

$$
g \circ F:=g\left(\partial_{x_{0}}, \ldots, \partial_{x_{n}}\right) F, \quad \text { for } g \in T, F \in S
$$

In particular, we define the perp ideal of $F \in S_{d}$ is

$$
F^{\perp}=\{\partial \in T: \partial \circ F=0\} .
$$

We say that $F \in \mathbb{C}\left[y_{0}, \ldots, y_{m}\right]$ essentially involves $n+1$ variables if $\operatorname{dim}\left(F^{\perp}\right)_{1}=m-n$. In other words, if F essentially involves $n+1$ variables, there exist linear forms $l_{0}, \ldots, l_{n} \in \mathbb{C}\left[y_{0}, \ldots, y_{m}\right]$ such that $F \in \mathbb{C}\left[l_{0}, \ldots, l_{n}\right] \simeq S$.
We are interest in finding the minimal Waring decompositions of a form $F \in S_{d}$ and, as already mentioned before, the main tool is the following.

Lemma 2.1 (Apolarity Lemma). Let F be a degree d form. The following are equivalent
(1) there exists a set of reduced points $\mathbb{X} \subset \mathbb{P}^{n}$ such that $I_{\mathbb{X}} \subset F^{\perp}$ and $|\mathbb{X}|=s$;
(2) there exists a set of s linear forms $L_{1}, \ldots, L_{s} \in S_{1}$ such that $F=L_{1}^{d}+\ldots+L_{s}^{d}$.

A set of reduced points $\mathbb{X} \subset \mathbb{P}^{n}$ such that the first condition of Apolarity Lemma holds is said to be apolar to F. Moreover, given a apolar set, say $\mathbb{X}=P_{1}+\ldots+P_{s}$ where $P_{i}=\left[p_{i, 0}: \ldots: p_{i, n}\right] \in \mathbb{P}^{n}$, we have that a Waring decomposition of F is given by the linear forms $L_{i}:=p_{i, 0} x_{0}+\ldots+p_{i, n} x_{n}$.

Example 1. Consider the monomial $M=x y z \in \mathbb{C}[x, y, z]$. It is easy to check that $M^{\perp}=$ $\left(X^{2}, Y^{2}, Z^{2}\right)$; hence, we can easily find the ideal $I=\left(X^{2}-Y^{2}, X^{2}-Z^{2}\right)$ corresponding to the four reduced points $[1: \pm 1: \pm 1]$; thus, we have the Waring decomposition of M as

$$
M=\frac{1}{24}\left[(x+y+z)^{3}-(x-y+z)^{3}-(x+y-z)^{3}+(x-y-z)^{3}\right]
$$

From the Apolarity, we can describe the Waring locus of a form F in terms of the apolar points to F, namely

$$
\mathcal{W}_{F}=\left\{P \in \mathbb{P}^{n}: P \in \mathbb{X}, I_{\mathbb{X}} \subset F^{\perp} \text { and }|\mathbb{X}|=\operatorname{rk}(F)\right\}
$$

The following result, also mentioned in [BL13] in the case of tensors, allows us to study a form F in the ring of polynomials with the essential number of variables. In particular, we want to show that, if $F \in \mathbb{C}\left[y_{0}, \ldots, y_{m}\right]$ essentially involves $n+1$ variables and \mathbb{X} is a minimal set of of points apolar to F, then $\mathbb{X} \subset \mathbb{P}^{m}$ is contained in a n-dimensional linear subspace of \mathbb{P}^{m}. Hence, $\mathcal{W}_{F} \subset \mathbb{P}^{n}$ contains all points belonging to any minimal set of points apolar to F.

Proposition 2.2. Let $F \in k\left[x_{0}, \ldots, x_{n}, x_{n+1}, \ldots, x_{m}\right]$ be a degree d form such that $\left(F^{\perp}\right)_{1}=$ $\left(X_{n+1}, \ldots, X_{m}\right)$. If

$$
F=\sum_{1}^{r} L_{i}^{d}
$$

where $r=\operatorname{rk}(F)$ and the L_{i} are linear forms in $k\left[x_{0}, \ldots, x_{n}, x_{n+1}, \ldots, x_{m}\right]$, then

$$
L_{i} \in k\left[x_{0}, \ldots, x_{n}\right] \subset k\left[x_{0}, \ldots, x_{n}, x_{n+1}, \ldots, x_{m}\right]
$$

for all $i, 1 \leq i \leq r$.
Proof. We proceed by contradiction. Assume that $L_{1}=x_{n+1}+\sum_{i \neq n+1} a_{i} x_{i}$, that is to assume that L_{1} actually involves the variable x_{n+1}. By assumption $\operatorname{rk}\left(F-L_{1}^{d}\right)<r=\operatorname{rk}(F)$. However, since L_{1} is linearly independent with x_{1}, \ldots, x_{n} we can apply the following fact (see [CCC15, Proposition 3.1]): if y is new variable, then

$$
\operatorname{rk}\left(F+y^{d}\right)=\operatorname{rk}(F)+1
$$

Hence, $\operatorname{rk}\left(F-L_{1}^{d}\right)=\operatorname{rk}(F)+1$ and this is a contradiction.
Remark 1. Using the previous result, performing a linear change of variables and restricting the ring, we may always assume that $F \in S_{d}$ essentially involves $n+1$ variables; hence, we always interpret $\mathcal{W}_{F}, \mathcal{F}_{F}$ as subsets of \mathbb{P}^{n}.

3. Results

In this section, we explain in details our computations and results.
3.1. Quadrics. We study first the elements of S_{2}, i.e. quadrics in \mathbb{P}^{n}. We recall that to each quadric Q we can associate a symmetric $(n+1) \times(n+1)$ matrix A_{Q} and that $\operatorname{rk}(Q)$ equals the rank of A_{Q}.
Proposition 3.1. If $Q \in S_{2}$ essentially involves $n+1$ variables, then $\mathcal{F}_{Q}=V(Q) \subset \mathbb{P}^{n}$.
Proof. After a change of variables we may assume that $Q=x_{0}^{2}+\ldots+x_{n}^{2}$. A point $P=\left[a_{0}: \ldots: a_{n}\right]$ is a forbidden point for Q if and only if

$$
\operatorname{rk}\left(Q-\lambda L_{P}^{2}\right)=n+1, \text { for all } \lambda \in \mathbb{C}
$$

where $L_{P}=\sum_{0}^{n} a_{i} x_{i}$. Thus, P is a forbidden point for Q if and only if the symmetric matrix corresponding to the quadratic form $Q-\lambda L_{P}^{2}$ has non-zero determinant for all $\lambda \in \mathbb{C}$ and therefore, P is a forbidden point if and only if the symmetric matrix $A_{L^{2}}$ corresponding to L^{2} only have zero eigenvalues. Since $A_{L^{2}}$ is a rank one matrix, $A_{L^{2}}$ has at most a non-zero eigenvalue. Note that

$$
\left(\begin{array}{lll}
a_{0} & \ldots & a_{n}
\end{array}\right) A_{L^{2}}=\left(a_{0}^{2}+\ldots+a_{n}^{2}\right)\left(\begin{array}{lll}
a_{0} & \ldots & a_{n}
\end{array}\right) .
$$

Also note that, if $\sum_{0}^{n} a_{i}^{2}=0$, then $A_{L^{2}}^{2}=0$ and thus zero is the only eigenvalue. Thus $\sum_{0}^{n} a_{i}^{2}$ is the only possible non-zero eigenvalue of $A_{L^{2}}$. Hence, P is a forbidden point if and only if $\sum_{0}^{n} a_{i}^{2}=0$ and the conclusion follows.
3.2. Monomials. In this section, we consider monomials $x_{0}^{d_{0}} \ldots x_{n}^{d_{n}} \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ where we order the exponents as $0<d_{0}=\ldots=d_{m}<d_{m+1} \leq \ldots \leq d_{n}$. In [CCG12], the authors proved an explicit formula for the Waring rank of monomials, i.e.

$$
\operatorname{rk}\left(x_{0}^{d_{0}} \ldots x_{n}^{d_{n}}\right)=\frac{1}{d_{0}+1} \prod_{i=0}^{n}\left(d_{i}+1\right)
$$

We also know from [BBT13] that minimal sets of apolar points of monomials are complete intersections, namely they are given by the intersection of n hypersurfaces in \mathbb{P}^{n} of degrees $d_{1}+1, \ldots, d_{n}+1$ intersecting properly.
Theorem 3.2. If $M=x_{0}^{d_{0}} \cdots x_{n}^{d_{n}} \in S$ with $0<d_{0}=\ldots=d_{m}<d_{m+1} \leq \ldots \leq d_{n}$, then

$$
\mathcal{F}_{M}=V\left(X_{0} \cdot \ldots \cdot X_{m}\right) \subset \mathbb{P}^{n} .
$$

Proof. It is easy to check that $M^{\perp}=\left(X_{0}^{d_{0}+1}, \ldots, X_{n}^{d_{n}+1}\right)$. Consider any point $P=\left[p_{0}: \ldots: p_{n}\right] \notin$ $V\left(x_{0} \cdot \ldots \cdot x_{m}\right)$, we may assume $p_{0}=1$. We construct the following hypersurfaces in \mathbb{P}^{n}, for any $i=1, \ldots, n$ given by union of $d_{i}+1$ hyperplanes, respectively,

$$
H_{i}= \begin{cases}X_{i}^{d_{i}+1}-p_{i}^{d_{i}+1} X_{0}^{d_{i}+1} & \text { if } p_{i} \neq 0 ; \\ X_{i}^{d_{i}+1}-X_{i} X_{0}^{d_{i}} & \text { if } p_{i}=0 .\end{cases}
$$

The ideal $I=\left(H_{1}, \ldots, H_{n}\right)$ is contained in M^{\perp} and $V(I)$ is the set of reduced points $\left[1: q_{1}: \ldots: q_{n}\right]$ where

$$
q_{i} \in \begin{cases}\left\{\xi_{i}^{j} p_{i} \mid j=0, \ldots, d_{i}\right\}, & \text { if } p_{i} \neq 0, \text { where } \xi_{i}^{d_{i}+1}=1 ; \\ \left\{\xi_{i}^{j} \mid j=0, \ldots, d_{i}-1\right\} \cup\{0\}, & \text { if } p_{i}=0, \text { where } \xi_{i}^{d_{i}}=1 .\end{cases}
$$

Thus, we have a set of $\operatorname{rk}(M)$ distinct points apolar to M and containing the point P; hence, $P \in \mathcal{W}_{M}$. To complete the proof we consider $P \in V\left(X_{0} \cdots X_{m}\right)$. In this case, it follows from a trivial generalization of [CCG12, Remark 3.3] that there is no set of points apolar to M and containing P. Hence, $P \in \mathcal{F}_{M}$.

Remark 2. In the case $d_{0} \geq 2$, the second part of the proof can be explained as a trivial consequence of the formula for the rank of monomials. Indeed, in the same notations as the theorem, for any $i=1, \ldots, m$, from the formula we have that $\operatorname{rk}(M)=\operatorname{rk}\left(\partial_{x_{i}} \circ M\right)$. Therefore, given any minimal Waring decomposition of $M=\sum_{j=1}^{r} L_{j}^{d}$, by differentiating both sides, we need to have $\partial_{x_{i}} \circ L_{j} \neq 0$ for all $i=1, \ldots, m$, which is equivalent to say that $\left[L_{j}\right] \notin V\left(X_{0} \cdot \ldots \cdot X_{m}\right)$.
3.3. Binary forms. In this section we deal with the case $n=1$, that is the case of forms in two variables. The knowledge on the Waring rank of binary forms goes back to J.J. Sylvester [Syl51]. In our terminology, we have that, if $F \in \mathbb{C}[x, y]_{d}$, then $F^{\perp}=\left(g_{1}, g_{2}\right)$ and $\operatorname{deg}\left(g_{1}\right)+\operatorname{deg}\left(g_{2}\right)=d+2$; moreover, if we assume $d_{1}=\operatorname{deg}\left(g_{1}\right) \leq d_{2}=\operatorname{deg}\left(g_{2}\right)$, then $\operatorname{rk}(F)=d_{1}$ if g_{1} is square free and $\operatorname{rk}(F)=d_{2}$ otherwise. See [CS11] for a deeper study about rank of binary forms.

Theorem 3.3. Let F be a degree d binary form and let $g \in F^{\perp}$ be an element of minimal degree. Then,
(1) if $\operatorname{rk}(F)<\left\lceil\frac{d+1}{2}\right\rceil$, then $\mathcal{W}_{F}=V(g)$;
(2) if $\operatorname{rk}(F)>\left\lceil\frac{d+1}{2}\right\rceil$, then $\mathcal{F}_{F}=V(g)$;
(3) if $\operatorname{rk}(F)=\left\lceil\frac{d+1}{2}\right\rceil$ and d is even, then \mathcal{F}_{F} is finite and not empty;
if $\operatorname{rk}(F)=\left\lceil\frac{d+1}{2}\right\rceil$ and d is odd, then $\mathcal{W}_{F}=V(g)$.
Proof. (1) It is is enough to note that the decomposition of F is unique and the unique apolar set of points is $V(g)$.
(2) As mentioned above, in this case we have that $F^{\perp}=\left(g_{1}, g_{2}\right)$, where $d_{1}=\operatorname{deg}\left(g_{1}\right)<\operatorname{deg}\left(g_{2}\right)=$ $d_{2}, d_{1}+d_{2}=d+2, g_{1}$ is not square free, and $\operatorname{rk}(F)=d_{2}$. In particular, g_{1} is an element of minimal degree in the perp ideal. We first show that $\mathcal{F}_{F} \supseteq V\left(g_{1}\right)$. Let $P=V(l) \in V\left(g_{1}\right)$ for some linear form l, that is l divides g_{1}. We want to show that there is no apolar set of points to F containing P. Thus, it is enough to show that there is no square free element of F^{\perp} divisible by l. Since g_{1} and g_{2} have no common factors, and l divides g_{1}, it follows that the only elements of F^{\perp} divisible by l are multiple of g_{1}, thus they are not square free. Hence, $P \in \mathcal{F}_{F}$. We now prove that $\mathcal{F}_{F} \subseteq V\left(g_{1}\right)$ by showing that, if $P=V(l) \notin V\left(g_{1}\right)$, then $P \in \mathcal{W}_{F}$. Note that l does not divide g_{1} and consider

$$
F^{\perp}:(l)=(l \circ F)^{\perp}=\left(h_{1}, h_{2}\right)
$$

where $c_{1}=\operatorname{deg}\left(h_{1}\right), c_{2}=\operatorname{deg}\left(h_{2}\right)$ and $c_{1}+c_{2}=d+1$. Since h_{1} is a minimal degree element in F^{\perp} and l does not divide g_{1}, we have $h_{1}=g_{1}$ and $c_{2}=d_{2}-1$. Thus $\operatorname{rk}(F)=\operatorname{rk}(l \circ F)+1$. Let h be a degree $d_{2}-1$ square free element in $(l \circ F)^{\perp}=F^{\perp}:(l)$. Hence, $P \in V(l h)$ and $V(l h)$ is a set of d_{2} points apolar to F.
(3) Let $F^{\perp}=\left(g_{1}, g_{2}\right), d_{1}=\operatorname{deg}\left(g_{1}\right)$, and $d_{2}=\operatorname{deg}\left(g_{2}\right)$. If d is odd, then $d_{2}=d_{1}+1$ and $\operatorname{rk}(F)=d_{1}$; thus g_{1} is a square free element of minimal degree and F has a unique apolar set of d_{1} distinct points, namely $V\left(g_{1}\right)$. This proves the d odd case. If d is even, then $d_{1}=d_{2}=\operatorname{rk}(F)$ and F has infinitely apolar sets of $\operatorname{rk}(F)$ distinct points. However, for each $P \in \mathbb{P}^{1}$ there is a unique set of $\operatorname{rk}(F)$ points (maybe not distinct) apolar to F and containing P. That is, there is a unique element (up to scalar) $g \in\left(F^{\perp}\right)_{d_{1}}$ vanishing at P. Thus, $P \in \mathcal{F}_{F}$ if and only if g is not square free. There
are finitely many not square free elements in $\left(F^{\perp}\right)_{d_{1}}$ since they correspond to the intersection of the line given by $\left(F^{\perp}\right)_{d_{1}}$ in $\mathbb{P}\left(T_{d_{1}}\right)$ with the hypersurface given by the discriminant; note that the line is not contained in the hypersurface since $\left(F^{\perp}\right)_{d_{1}}$ contains square free elements.

Remark 3. We can provide a geometric interpretation of Theorem 3.3 for F a degree d binary form of rank d, the maximal possible. In this case, after a change of variables, we can assume $F=x y^{d-1}$. To see geometrically that $[0: 1] \in \mathcal{F}_{F}$, we consider the point $\left[y^{d}\right]$ on the degree d rational normal curve of \mathbb{P}^{d}. Note that $[F]$ belongs to the tangent line to the curve in $\left[y^{d}\right]$. Thus, it is easy to see that there does not exist a hyperplane containing $[F]$ and $\left[y^{d}\right]$ and cutting the rational normal curve in d distinct points. To prove geometrically that $\mathcal{F}_{F}=\{[0: 1]\}$ one can argue using Bertini's theorem. However, for forms of lower rank, we could not find a straightforward geometrical explanation.
We can improve part (3) of Theorem 3.3 for d even adding a genericity assumption.
Proposition 3.4. Let $d=2 h$. If $F \in S_{d}$ is a generic form of rank $h+1$, then \mathcal{F}_{F} is a set of $2 h^{2}$ distinct points.
Proof. Let $\Delta \subset \mathbb{P}^{h+1}$ be the variety of degree $h+1$ binary forms having at least a factor of multiplicity two. Note that forms having higher degree factors, or more than one repeated factor, form a variety of codimension at least one in Δ. In particular, a generic line L will meet Δ in $\operatorname{deg} \Delta$ distinct points each point corresponding to a form of the type $B_{1}^{2} B_{2} \ldots B_{h}$ and B_{i} is not proportional to B_{j} if $i \neq j$.
Note that $F^{\perp}=\left(g_{1}, g_{2}\right)$ where $\operatorname{deg}\left(g_{1}\right)=\operatorname{deg}\left(g_{2}\right)=h+1$. Since the Grassmannian of lines in \mathbb{P}^{h+1} has dimension $2 h$, the form F determines a generic line and viceversa. The non square free elements of $\left(F^{\perp}\right)_{h+1}$ corresponds to $L \cap \Delta$ where L is the line given by $\left(F^{\perp}\right)_{h+1}$. By genericity, $L \cap \Delta$ consists of exactly $\operatorname{deg}(\Delta)$ points each corresponding to a degree $h+1$ form f_{i} having exactly one repeated factor of multiplicity two. Since T / F^{\perp} is artinian, then $\operatorname{gcd}\left(f_{i}, f_{j}\right)=1(i \neq j)$. Hence,

$$
\mathcal{F}_{F}=\bigcup_{i} V\left(f_{i}\right)
$$

is a set of $h \operatorname{deg}(\Delta)$ distinct points and the result is now proved.
We can also iterate the use of Theorem 3.3 to construct a Waring decomposition for a given binary form. Let $F \in S_{d}$ with rank r large enough, so that the Waring decomposition is not unique, we can think of constructing such a decomposition one addend at the time.
From our result, we know that in this case the forbidden locus is a closed subset $\mathcal{F}_{F}=V(g)$ where g is an element in F^{\perp} of minimal degree; hence, we can pick any point $\left[L_{1}\right]$ in the open set $\mathbb{P}^{1} \backslash V(g)$ to start our Waring decomposition of F. Consider now $F_{1}=F-L_{1}^{d}$. If the rank of F_{1}, which is simply one less than the rank of F, is still large enough not to have a unique decomposition, we can proceed in the same way as before. We may observe that $\mathcal{F}_{F_{1}}=\mathcal{F}_{F} \cup\left[L_{1}\right]$. Indeed, by Theorem 3.3, $\mathcal{F}_{F_{1}}=V\left(g_{1}\right)$, where g_{1} is an element of minimal degree of F_{1}^{\perp}. Since $\operatorname{rk}\left(F_{1}\right)=\operatorname{rk}(F)-1$, we have that $\operatorname{deg}\left(g_{1}\right)=\operatorname{deg}(g)+1$, in particular it has to be $g_{1}=g L_{1}^{\perp}$, where L_{1}^{\perp} is the linear differential operator annihilating L_{1}.
Hence, we can continue to construct our decomposition for F by taking any point $\left[L_{2}\right] \in \mathbb{P}^{1} \backslash V\left(g_{1}\right)$ and then looking at $F_{2}=F-L_{1}^{d}-L_{2}^{d}$. We can continue this procedure until we get a form F_{i} with a unique Waring decomposition; namely, until $i=r-\left\lceil\frac{d+1}{2}\right\rceil$, if d is odd, and $i=r-\left\lfloor\frac{d+1}{2}\right\rfloor$, if d is even. In other words, we have proven the following result.

Proposition 3.5. Let F be a degree d binary form of rank $r \geq\left\lceil\frac{d+1}{2}\right\rceil$; for any choice of distinct $L_{1}, \ldots, L_{s} \notin \mathcal{F}_{F}$, where $s=r-\left\lceil\frac{d+1}{2}\right\rceil$, if d is odd, and $s=r-\left\lfloor\frac{d+1}{2}\right\rfloor$, if d is even, there exists a unique minimal Waring decomposition for F involving $L_{1}^{d}, \ldots, L_{s}^{d}$.
3.4. Plane cubics. In this section we describe $\mathcal{W}_{F}\left(\right.$ and $\left.\mathcal{F}_{F}\right)$ for $n=2$ and $F \in S_{3}$, that is for plane cubics. For simplicity, we denote $S=\mathbb{C}[x, y, z]$ and $T=\mathbb{C}[X, Y, Z]$.
We use the following characterization of plane cubics adapted from the table given in [LT10].

Type	Description	Normal form	Waring rank	Result
(1)	triple line	x^{3}	1	Theorem 3.2
(2)	three concurrent lines	$x y(x+y)$	2	Theorem 3.3
(3)	double line + line	$x^{2} y$	3	Theorem 3.2
(4)	smooth	$x^{3}+y^{3}+z^{3}$	3	Theorem 4.4
(5)	three non-concurrent lines	$x y z$	4	Theorem 4.4
(6)	line + conic (meeting transversally $)$	$x\left(y z+x^{2}\right)$	4	Theorem 3.7
(7)	nodal	$x y z-(y+z)^{3}$	4	Theorem 3.8
(8)	cusp	$x^{3}-y^{2} z$	4	Theorem 4.5
(9)	general smooth $\left(a^{3} \neq-27,0,6^{3}\right)$	$x^{3}+y^{3}+z^{3}+a x y z$	4	Theorem 3.9
(10)	line + tangent conic	$x\left(x y+z^{2}\right)$	5	Theorem 3.10
	Note. In case $(9), a^{3} \neq 0,6^{3}$ so that the rank is actually 4 and			
	$a^{3} \neq-27$ for smoothness of the Hessian canonical form [Dol12].			

Remark 4. We have already analyzed several cases:
(1),(3),(5): they are monomials and it follows from Theorem 3.2;
(2): these forms can be seen as forms in two variables, hence it follows from Theorem 3.3(3);
(4): smooth plane cubics can be seen as sums of pairwise coprime monomials with high exponents which are analyzed separatly in the next section, see Theorem 4.4;
(8): plane cubic cusps can be seen as the kind of sums of pairwise coprime monomials that we have analyzed in Theorem 4.5.

We now study plane cubics of rank four. First, we need the following lemma.
Lemma 3.6. Let F be a plane cubic and let \mathbb{X} be a set of four distinct points apolar to F. If \mathbb{X} has exactly three collinear points, then F is a cusp, that is F is of type (8).

Proof. We can assume that the three collinear points lie on the line defined by X and the the point not on the line is $[1: 0: 0]$. Thus, $X Y, X Z \in F^{\perp}$ and $F=x^{3}+G(y, z)$. By [CCC15, Proposition 3.1] we have that $\operatorname{rk}(F)=1+\operatorname{rk}(G)$ and thus $\operatorname{rk}(G)=3$. Since all degree three binary cubics of rank three are monomials we get that, after a change of variables, G can be written as $L M^{2}$, where $L, M \in \mathbb{C}[x, y, z]$ are linear forms. Hence, $F=x^{3}+L M^{2}$ and this completes the proof.

Among the rank 4 plane cubics, we have already analyzed the cusps. Now, we consider families (6),(7) and (9). Due to Lemma 3.6, we can actually study these families using the approach described int he following remark.

Remark 5. Let F be a rank four plane cubic which is not a cusp. Since F is not a binary form, $\mathcal{L}=\left(F^{\perp}\right)_{2}$ is a net of conics and we let $\mathcal{L}=\left\langle C_{1}, C_{2}, C_{3}\right\rangle$. Since F is not a cusp, all set of four points apolar to F are the complete intersection of two conics. Thus, when we look for minimal Waring
decomposition of F, we only need to look at pencil of conics contained in \mathcal{L} with four distinct base points.
In particular, fixing a point $P \in \mathbb{P}^{2}$, we can consider the pencil $\mathcal{L}(-P)$ of plane conics in \mathcal{L} passing through P. If $\mathcal{L}(-P)$ has four distinct base points, then $P \in \mathcal{W}_{F}$; otherwise, we have that the base locus of $\mathcal{L}(-P)$ is not reduced and $P \in \mathcal{F}_{F}$. In the plane $\mathbb{P}(\mathcal{L})$, we consider the degree three curve Δ of reducible conics in \mathcal{L}. We recall a pencil of conics \mathcal{L}^{\prime} has four distinct base points, no three of them collinear, if and only if the pencil contains exactly three reducible conics. In conclusion, given a point $P \in \mathbb{P}^{2}$, we consider the line $\mathbb{P}(\mathcal{L}(-P)) \subset \mathbb{P}(\mathcal{L})$: if the line is a proper secant line of Δ, that is it cuts Δ in three distinct points, we have that $P \in \mathcal{W}_{F}$; otherwise, $P \in \mathcal{F}_{F}$. Thus we have to study the dual curve $\check{\Delta} \subset \check{\mathbb{P}}(\mathcal{L})$ of lines not intersecting Δ in three distinct points.
An equation for $\breve{\Delta}$ can be found with a careful use of elimination. To explicitly find \mathcal{F}_{F} we the consider the map:

$$
\phi: \mathbb{P}\left(S_{1}\right) \longrightarrow \check{\mathbb{P}}(\mathcal{L})
$$

such that $\phi([a: b: c])=\left[C_{1}(a, b, c): C_{2}(a, b, c): C_{3}(a, b, c)\right]$. Note that ϕ is defined everywhere and that it is generically $4: 1$. In particular,

$$
\mathcal{F}_{F}=\phi^{-1}(\check{\Delta})
$$

Theorem 3.7. If $F=x\left(y z+x^{2}\right)$, then $\mathcal{F}_{F}=V\left(X Y Z\left(X^{2}-12 Y Z\right)\right)$.
Proof. Let $\mathcal{L}=\left(F^{\perp}\right)_{2}$ and let $\mathcal{C}_{1}: C_{1}=X^{2}-6 Y Z=0, \mathcal{C}_{2}: C_{2}=Y^{2}=0$, and $\mathcal{C}_{3}: C_{3}=Z^{2}=0$ be the conics generating \mathcal{L}. In the plane $\mathbb{P}(\mathcal{L})$ with coordinate α, β and γ, let Δ be the cubic of reducible conics in \mathcal{L}. By computing we get the following equation for Δ :

$$
\operatorname{det}\left[\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \beta & -3 \alpha \\
0 & -3 \alpha & \gamma
\end{array}\right]=0,
$$

that is,

$$
\alpha \beta \gamma-9 \alpha^{3}=0 .
$$

In this case, Δ is the union of the conic $\mathcal{C}: 9 \alpha^{2}-\beta \gamma=0$ and the secant line $r: \alpha=0$. The line r corresponds to $\mathcal{L}(-[1: 0: 0])$ and then, by Remark 5 , we have that $[1: 0: 0] \in \mathcal{F}_{F}$.
By Remark 5, in order to completely describe \mathcal{F}_{F}, we have to study two family of lines in $\mathbb{P}(\mathcal{L})$: the tangents to the conic \mathcal{C} and all the lines passing through the intersection points between the line r and the conic \mathcal{C}, that is through the points $[0: 0: 1]$ and $[0: 1: 0]$. More precisely the point $P=[X: Y: Z]$ is in \mathcal{F}_{F} if and only if the line L (of the plane $\mathbb{P}(\mathcal{L})$)

$$
L: C_{1}(P) \alpha+C_{2}(P) \beta+C_{3}(P) \gamma=0,
$$

that is,

$$
L: \alpha\left(X^{2}-6 Y Z\right)+\beta Y^{2}+\gamma Z^{2}=0,
$$

falls in one of the following cases:
(i) L is tangent to the conic $\mathcal{C}: \beta \gamma-9 \alpha^{2}=0$;
(ii) L passes through the point $[0: 1: 0]$;
(iii) L passes through the point $[0: 0: 1]$.

In case (ii) and (iii) we get that $Y^{2}=0$ and $Z^{2}=0$, respectively. So $V(Y Z) \subset \mathcal{F}_{F}$.
Now, by assuming $P \notin\{Y Z=0\}$. By an easy computation we get that the line L is tangent to the conic \mathcal{C} if $X^{2}\left(X^{2}-12 Y Z\right)=0$.

It follows that $\mathcal{F}_{F}=V\left(X Y Z\left(X^{2}-12 Y Z\right)\right)$. See Figure 1.

Figure 1. The forbidden points of $F=x\left(y z+x^{2}\right)$.

We now consider family (7), that is nodal cubics.
Theorem 3.8. If $F=y^{2} z-x^{3}-x z^{2}$, then

$$
\mathcal{F}_{F}=V\left(g_{1} g_{2}\right)
$$

where $g_{1}=X^{3}-6 Y^{2} Z+3 X Z^{2}$ and $g_{2}=9 X^{4} Y^{2}-4 Y^{6}-24 X Y^{4} Z-30 X^{2} Y^{2} Z^{2}+4 X^{3} Z^{3}-3 Y^{2} Z^{4}-$ $12 X Z^{5}$.

Proof. Note that $[1: 0: 0] \in \mathcal{F}_{F}$. In fact $F+x^{3}=z\left(y^{2}-x z\right)$ represents a conic and a line tangent to it, namely it is in the family (10) and hence it has rank equal to five.
Let $\mathcal{L}=\left(F^{\perp}\right)_{2}$ and denote by $\mathcal{C}_{1}: C_{1}=X Y=0, \mathcal{C}_{2}: C_{2}=X^{2}-3 Z^{2}=0$ and $\mathcal{C}_{3}: C_{3}=$ $Y^{2}+X Z=0$ its generators.
In the plane $\mathbb{P}(\mathcal{L})$ with coordinates α, β, and γ let Δ be the cubic of reducible conics in \mathcal{L}. By computing we see Δ that is defined by

$$
\operatorname{det}\left[\begin{array}{ccc}
\beta & \frac{1}{2} \alpha & \frac{1}{2} \gamma \\
\frac{1}{2} \alpha & \gamma & 0 \\
\frac{1}{2} \gamma & 0 & -3 \beta
\end{array}\right]=0,
$$

that is,

$$
3 \alpha^{2} \beta-12 \beta^{2} \gamma-\gamma^{3}=0
$$

In this case, we have that Δ is an irreducible smooth cubic. Hence, we have that

$$
\begin{equation*}
\mathcal{F}_{F}=\left\{P \in \mathbb{P}^{2}: \mathbb{P}(\mathcal{L}(-P)) \text { is a tangent line to } \Delta \subset \mathbb{P}(\mathcal{L})\right\} . \tag{1}
\end{equation*}
$$

Thus, we are looking for points P such that the line

$$
C_{1}(P) \alpha+C_{2}(P) \beta+C_{3}(P) \gamma=0
$$

is tangent to Δ. We consider two cases, namely $C_{1}(P)=0$ and $C_{1}(P) \neq 0$.
If $C_{1}(P) \neq 0$, we compute α from the equation of the line and we substitute in the equation of Δ. Then it is enough to compute the discriminant D of the following form in β and γ

$$
3\left(C_{2} \beta+C_{3} \gamma\right)^{2} \beta-12 C_{1}^{2} \beta^{2} \gamma-C_{1}^{2} \gamma^{3}
$$

and we get $D=27 C_{1}^{4} g_{1}^{2} g_{2}$. Thus, if $C_{1}(P) \neq 0, P \in \mathcal{F}_{F}$ if and only if $P \in V\left(g_{1} g_{2}\right)$.
If $C_{1}(P)=0$, by direct computation we check that $\mathcal{F}_{F} \cap V\left(C_{1}\right)=V\left(g_{1} g_{2}\right) \cap V\left(C_{1}\right)$. Hence the proof is completed.

Remark 6. In this paper we consider \mathcal{F}_{F}, and \mathcal{W}_{F}, as varieties and not as schemes. However, we found that in Theorem3.8 that the ideal of is $\left(g_{1}^{2} g_{2}\right)$.
Remark 7. The description of the forbidden locus for a plane cubic given in (1) reminds an old observation made by De Paolis. De Paolis gave an algorithm to construct a decomposition of a general plane cubic as sum of 4 cubes of linear forms whenever starting from a given linear form such that, the line defined by the linear form intersect the Hessian of the plane cubic in precisely three points. This algorithm is been recently recalled in [Ban14].

We now consider the case of cubics in family (9) and we use the map ϕ defined in Remark 5.
Theorem 3.9. If $F=x^{3}+y^{3}+z^{3}+$ axyz belongs to family (9), then
(1) if $\left(\frac{a^{3}-54}{9 a}\right)^{3} \neq 27$, then $\mathcal{F}_{F}=\phi^{-1}(\check{\Delta})$ where $\check{\Delta}$ is the dual curve of the smooth plane cubic

$$
\alpha^{3}+\beta^{3}+\gamma^{3}-\frac{\left(a^{3}-54\right)}{9 a} \alpha \beta \gamma=0
$$

(2) otherwise, \mathcal{F}_{F} is the union of three lines pairwise intersecting in three distinct points.

Proof. Let $\mathcal{L}=\left(F^{\perp}\right)_{2}$ and denote by $\mathcal{C}_{1}: C_{1}=a X^{2}-6 Y Z=0, \mathcal{C}_{2}: C_{2}=a Y^{2}-6 X Z=0$, and $\mathcal{C}_{3}: C_{3}=a Z^{2}-6 X Y=0$ its generators. In the plane $\mathbb{P}(\mathcal{L})$ with coordinates α, β, and γ let Δ be the cubic curve of reducible conics. By computing we get an equation for Δ

$$
\operatorname{det}\left[\begin{array}{ccc}
a \alpha & -3 \gamma & -3 \beta \\
-3 \gamma & a \beta & -3 \alpha \\
-3 \beta & -3 \alpha & a \gamma
\end{array}\right]=\left(a^{3}-54\right) \alpha \beta \gamma-9 a \alpha^{3}-9 a \beta^{3}-9 a \gamma^{3}=0 .
$$

In the numerical case $\left(\frac{a^{3}-54}{9 a}\right)^{3} \neq 27$, we have that Δ is a smooth cubic curve. Thus, we have that

$$
\mathcal{F}_{F}=\left\{P \in \mathbb{P}^{2}: \mathbb{P}(\mathcal{L}(-P)) \text { is a tangent line to } \Delta \subset \mathbb{P}(\mathcal{L})\right\}
$$

Hence we get \mathcal{F}_{F} as described in Remark 5 using the map ϕ.
Otherwise, Δ is the union of three lines intersecting in three distinct points Q_{1}, Q_{2} and Q_{3}. Hence,

$$
\mathcal{F}_{F}=\left\{P \in \mathbb{P}^{2}: Q_{i} \in \mathbb{P}(\mathcal{L}(-P)) \text { for some } i\right\}
$$

and the proof is now completed.
Example 2. Consider $a=-6$, thus we are in (1) case of Theorem 3.9. We can compute \mathcal{F}_{F} using Macaulay2 [GS]. We get

$$
\mathcal{F}_{F}=V\left(g_{1}, g_{2}\right)
$$

where $g_{1}=X^{3}+Y^{3}-5 X Y Z+Z^{3}$ and $g_{2}=27 X^{6}-58 X^{3} Y^{3}+27 Y^{6}-18 X^{4} Y Z-18 X Y^{4} Z-$ $109 X^{2} Y^{2} Z^{2}-58 X^{3} Z^{3}-58 Y^{3} Z^{3}-18 X Y Z^{4}+27 Z^{6}$.

We conclude with the family (10), that is cubics of rank five.
Theorem 3.10. If $F=x\left(x y+z^{2}\right)$, then $\mathcal{F}_{F}=\{[1: 0: 0]\}$.
Proof. Let L be a linear form. The following are equivalent:
(1) $[L] \in \mathcal{F}_{f}$;
(2) $\operatorname{rk}\left(F-\lambda L^{3}\right)=5$ for all $\lambda \in \mathbb{C}$;
(3) $F-\lambda L^{3}=0$ is the union of an irreducible conic and a tangent line, for all $\lambda \in \mathbb{C}$;
(4) F and L^{3} must have the common factor L, that is, the line $L=0$ is the line $x=0$.

It easy to show that (1) and (2) are equivalent.
For the equivalence between (2) and (3) see the table in Subsection 3.4.
If (3) holds, then all the elements in the linear system given by F and L^{3} are reducible; note that the linear system is not composed with a pencil. Thus, by the second Bertini's Theorem, the linear system has the fixed component $x=0$.
To see that (4) implies (3), note that for all $\lambda \in \mathbb{C}$, the cubic $x\left(x y+z^{2}+\lambda x^{2}\right)=0$ is the union of an irreducible conic and a tangent line.
3.5. The forms $x_{0}^{a}\left(x_{1}^{b}+\ldots+x_{n}^{b}\right)$ and $x_{0}^{a}\left(x_{0}^{b}+x_{1}^{b}+\ldots+x_{n}^{b}\right)$.

Proposition 3.11. Let $F=x_{0}^{a}\left(x_{1}^{b}+\ldots+x_{n}^{b}\right)$ and $G=x_{0}^{a}\left(x_{0}^{b}+x_{1}^{b}+\ldots+x_{n}^{b}\right)$, where $n \geq 2$, $a+1 \geq b \geq 3$. Then

$$
\mathcal{W}_{F}=\mathcal{W}_{G}=V\left(X_{1} X_{2}, X_{1} X_{3}, \ldots, X_{1} X_{n}, X_{2} X_{3}, \ldots, X_{2} X_{n}, \ldots, X_{n-1} X_{n}\right) \backslash\{[1: 0: \ldots: 0]\},
$$

that is, the coordinate lines through the point $[1: 0: \ldots: 0]$ minus the point $[1: 0: \ldots: 0]$.
Proof. By Propositions 4.4 and 4.9 in [?] we know that

$$
\operatorname{rk}(F)=\operatorname{rk}(G)=(a+1) n .
$$

If $[1: 0: \ldots: 0] \in \mathcal{W}_{F}$, we have $\operatorname{rk}\left(F-\lambda x_{0}^{a+b}\right)<(a+1) n$ for some $\lambda \in \mathbb{C}$. A contradiction, by Propositions 4.9 in [?]. Hence $[1: 0: \ldots: 0] \in \mathcal{F}_{F}$.
Analogously, using Propositions 4.4 in [?], we get that $[1: 0: \ldots: 0] \in \mathcal{F}_{G}$.
Now let $\partial=\alpha_{1} X_{1}+\ldots+\alpha_{n} X_{n}$, where the $\alpha_{i} \in \mathbb{C}$ are non-zero, for every i. By Propositions 4.4 and 4.9 in [?], we have

$$
\operatorname{rk}(\partial \circ F)=\operatorname{rk}(\partial \circ G)=(a+1) n .
$$

Let $I_{\mathbb{X}} \subset F^{\perp}$ be the ideal of a set of points giving a Waring decomposition of F, i.e. the cardinality of \mathbb{X} is equal to $\operatorname{rk}(F)$. Thus, $I_{\mathbb{X}^{\prime}}=I_{\mathbb{X}}:(\partial)$ is the ideal of the points of \mathbb{X} which are outside the linear space $\partial=0$. Since

$$
I_{\mathbb{X}^{\prime}}=I_{\mathbb{X}}:(\partial) \subset F^{\perp}:(\partial)=(\partial \circ F)^{\perp},
$$

we have that

$$
(a+1) n=\operatorname{rk}(F)=|\mathbb{X}| \geq\left|\mathbb{X}^{\prime}\right| \geq \operatorname{rk}(\partial \circ F)=(a+1) n
$$

It follows that \mathbb{X} does not have points on the hyperplane $\partial=0$. Thus

$$
\mathcal{W}_{F} \subseteq V\left(X_{1} X_{2}, X_{1} X_{3}, \ldots, X_{1} X_{n}, X_{2} X_{3}, \ldots, X_{2} X_{n}, \ldots, X_{n-1} X_{n}\right) \backslash\{[1: 0: \ldots: 0] .
$$

The opposite inclusion follows from the proof of Proposition 4.4 in [?].
Similarly for G.

4. Strassen's conjecture

Fix the following notation:

$$
\begin{aligned}
S & =k\left[x_{1,0}, \ldots, x_{1, n_{1}}, \ldots \ldots, x_{m, 0}, \ldots, x_{m, n_{m}}\right], \\
T & =k\left[X_{1,0}, \ldots, X_{1, n_{1}}, \ldots \ldots, X_{m, 0}, \ldots, X_{m, n_{m}}\right] .
\end{aligned}
$$

For $i=1, \ldots, m$, we let

$$
\begin{gathered}
S^{[i]}=k\left[x_{i, 0}, \ldots, x_{i, n_{i}}\right], \\
T^{[i]}=k\left[X_{i, 0}, \ldots, X_{i, n_{i}}\right], \\
F_{i} \in S_{d}^{[i]},
\end{gathered}
$$

and

$$
F=F_{1}+\cdots+F_{m} \in S_{d} .
$$

If we consider $F_{i} \in S$, then we write

$$
F_{i}^{\perp}=\left\{g \in T \mid g \circ F_{i}=0\right\} .
$$

On the other hand, if we consider $F_{i} \in S^{[i]}$, then we also write

$$
F_{i}^{\perp}=\left\{g \in T^{[i]} \mid g \circ F_{i}=0\right\} .
$$

Conjecture 1 (Strassen's conjecture). If $F=\sum_{i=1}^{s} F_{i} \in S$ is a form such that $F_{i} \in S^{[i]}$ for all $i=1, \ldots, s$, then

$$
\operatorname{rk}(F)=\operatorname{rk}\left(F_{1}\right)+\ldots+\operatorname{rk}\left(F_{s}\right) .
$$

Conjecture 2. If $F=\sum_{i=1}^{s} F_{i} \in S$ is a degree $d \geq 3$ form such that $F_{i} \in S^{[i]}$ for all $i=1, \ldots, s$, then any minimal Waring decomposition of F is a sum of minimal Waring decompositions of the forms F_{i}.

In view of Conjecture 2 it is natural to formulate the following conjecture in term of Waring loci. As already explained in Remark 1, we look at $\mathcal{W}_{F_{i}} \subset \mathbb{P}_{X_{i, 0}, \ldots, X_{i, n_{i}}}^{n_{i}} \subset \mathbb{P}^{N}$.
Conjecture 3. If $F=\sum_{i=1}^{s} F_{i} \in S$ is a degree $d \geq 3$ form such that $F_{i} \in S^{[i]}$ for all $i=1, \ldots, s$, then

$$
\mathcal{W}_{F}=\bigcup_{i=1, \ldots, r} \mathcal{W}_{F_{i}} \subset \mathbb{P}^{N}, \quad \text { where } N=n_{1}+\ldots+n_{s}+s-1
$$

Remark 8. Note that Conjectures 2 and 3 are false in degree two. For example, let $F=x^{2}-2 y z$. The rank of F is three, but it is easy to find a Waring decomposition of F that is not the sum of x^{2} plus a Waring decomposition of the monomial $y z$; i.e.

$$
F=(x+y)^{2}+(x+z)^{2}-(x+y+z)^{2} .
$$

Lemma 4.1. Conjecture 2 and Conjecture 3 are equivalent and they imply Strassen's conjecture for $d \geq 3$.
Proof. Clearly Conjecture 2 implies both Conjecture 1 both Conjecture 3 . To complete the proof, we assume that Conjecture 3 holds. If $F=\sum_{i} L_{i}^{d}$ is a minimal decomposition of F, then each L_{i} appears in a minimal decomposition of $F_{j(i)}$, thus L_{i} only involves the variables of $S^{[j(i)]}$. Setting all the variables not in $S^{[j(i)]}$ equal zero in the expression $F=\sum_{i} L_{i}^{d}$, we get a decomposition of $F_{j(i)}$. Note that all the obtained decompositions of the F_{j} are minimal, otherwise $\operatorname{rk}(F)>\sum_{i} \operatorname{rk}\left(F_{i}\right)$. Hence Conjecture 2 is proved by assuming Conjecture 3 .
In order to study our conjectures we prove the following.
Proposition 4.2. Let $F=\sum_{i=1}^{s} F_{i} \in S$ be a form such that $F_{i} \in S^{[i]}$ for all $i=1, \ldots, s$. If the following conditions hold
(1) for each $1 \leq i \leq s$ there exists a linear derivation $\partial_{i} \in T^{[i]}$ such that

$$
\operatorname{rk}\left(\partial_{i} \circ F_{i}\right)=\operatorname{rk}\left(F_{i}\right)
$$

(2) Strassen's conjecture holds for $F_{1}+\ldots+F_{s}$,
(3) Strassen's conjecture holds for $\partial_{1} F_{1}+\ldots+\partial_{s} F_{s}$,
then F satisfies Conjecture 3.
Proof. Let's consider the linear form $t=\alpha_{1} \partial_{1}+\ldots+\alpha_{s} \partial_{s}$, with $\alpha_{i} \neq 0$ for all $i=1, \ldots, s$.
Let $I_{\mathbb{X}} \subset F^{\perp}$ be the ideal of a set of points giving a Waring decomposition of F, i.e. the cardinality of \mathbb{X} is equal to $\operatorname{rk}(F)$. Thus, $I_{\mathbb{X}}:(t)$ is the ideal of the points of \mathbb{X} which are outside the linear space $t=0$. We can look at

$$
I_{\mathbb{X}}:(t) \subset F^{\perp}:(t)=(t \circ F)^{\perp}
$$

By the assumptions we get that $\operatorname{rk}(F)=\operatorname{rk}(t \circ F)$, hence the set of points corresponding to $I_{\mathbb{X}}:(t)$ has cardinality equal to $\operatorname{rk}(F)$; it follows that \mathbb{X} does not have points on the hyperplane $t=0$.
Claim. If $P=\left[a_{1,0}: \ldots: a_{1, n_{1}}: \ldots: a_{s, 0}: \ldots: a_{s, n_{s}}\right]$ belongs to \mathcal{W}_{F} then in the set $\left\{a_{1,0}, \ldots, a_{s, 0}\right\}$ there is exactly one non-zero coefficient.
The claim follows from the first part, since if we have either no or at least two non-zero coefficients in the set $\left\{a_{1,0}, \ldots, a_{s, 0}\right\}$ it is easy to find a linear space $\{t=0\}$ containing the point P and contradicting the assumption that it belongs to the Waring locus of F.
Let's consider $\mathbb{X}_{i}:=\mathbb{X} \backslash\left\{x_{i, 0}=0\right\}$, for all $i=1, \ldots, s$. Similarly as above, by looking at

$$
I_{\mathbb{X}_{i}}=I_{\mathbb{X}}:\left(\partial_{i}\right) \subset F^{\perp}:\left(\partial_{i}\right)=\left(\partial_{i} \circ F_{i}\right)^{\perp}
$$

we can conclude that the cardinality of each \mathbb{X}_{i} is at least $\operatorname{rk}\left(F_{i}\right)$. Moreover, by the claim, we have that the \mathbb{X}_{i} 's are all distinct. By additivity of the rank, we conclude that

$$
\mathbb{X}=\bigcup_{i=1, \ldots, r} \mathbb{X}_{i}, \quad \text { with } \mathbb{X}_{i} \cap \mathbb{X}_{j}=\emptyset, \text { for all } i \neq j, \quad \text { and } \quad\left|\mathbb{X}_{i}\right|=\operatorname{rk}\left(F_{i}\right), \text { for all } i=1, \ldots, s
$$

Hence, we have that the sets \mathbb{X}_{i} give minimal Waring decompositions of the forms $\partial_{i} \circ F_{i}$'s and, by Proposition 1 , they lie in $\mathbb{P}_{X_{i, 0}, \ldots, X_{i, n_{i}}}^{n_{i}}$, respectively. Since \mathbb{X} gives a minimal Waring decomposition of F, specializing to zero the variables not in $S^{[i]}$ we see that \mathbb{X}_{i} gives a minimal Waring decomposition of F_{i}. Hence, it follows $\mathcal{W}_{F} \subset \bigcup_{i=1, \ldots, s} \mathcal{W}_{F_{i}}$.
The other inclusion is trivial.

There are several family of forms for which we can apply Proposition 4.2 as shown in the following lemma.

Lemma 4.3. If F is one of the following degree d forms
(1) a monomial $x_{0}^{d_{0}} \cdot \ldots \cdot x_{n}^{d_{n}}$ with $d_{i} \geq 2$ for $0 \leq i \leq n$;
(2) a binary form $F \neq L M^{d-1}$;
(3) $x_{0}^{a}\left(x_{1}^{b}+\ldots+x_{n}^{b}\right)$ with $n \geq 2$ and $a+1 \geq b>2$
(4) $x_{0}^{a}\left(x_{0}^{b}+x_{1}^{b}+\ldots+x_{n}^{b}\right)$ with $n \geq 2$ and $a+1 \geq b>2$
(5) $x_{0}^{a} G\left(x_{1}, \ldots, x_{n}\right)$ such that $G^{\perp}=\left(g_{1}, \ldots, g_{n}\right), a \geq 2$, and $\operatorname{deg} g_{i} \geq a+1$
then there exists a linear derivation ∂ such that

$$
\operatorname{rk}(\partial \circ F)=\operatorname{rk}(F) .
$$

Proof. (1) Let $F=x_{0}^{d_{0}} \cdots x_{n}^{d_{n}}$ with $d_{0} \leq \ldots \leq d_{n}$, then we know by [CCG12] that $\operatorname{rk}(F)=$ $\left(d_{1}+1\right) \cdots\left(d_{n}+1\right)$. If we let $\partial=X_{0}$, then $\operatorname{rk}(F)=\operatorname{rk}(\partial \circ F)$.
(2) We know that $F^{\perp}=\left(g_{1}, g_{2}\right)$ with $\operatorname{deg}\left(g_{i}\right)=d_{i}, d_{1} \leq d_{2}$ and $d_{1}+d_{2}=d+2$. We have to consider different cases.
a) If $d_{1}<d_{2}$ and g_{1} is square-free, then $\operatorname{rk}(F)=\operatorname{deg}\left(g_{1}\right)$. Consider any linear form $\partial \in T_{1}$ which is not a factor of g_{1}. Then, $(\partial \circ F)^{\perp}=F^{\perp}:(\partial)=\left(h_{1}, h_{2}\right)$, with $\operatorname{deg}\left(h_{1}\right)+\operatorname{deg}\left(h_{2}\right)=$ $d+1$. Since ∂ is not a factor of g_{1}, then we have that $g_{1}=h_{1}$ and, since it is square-free, we have that $\operatorname{rk}(\partial \circ F)=\operatorname{rk}(F)$.
b) If $d_{1}<d_{2}$ and g_{1} is not square-free, say $g_{1}=l_{1}^{m_{1}} \cdots l_{s}^{m_{s}}$, with $m_{1} \leq \ldots \leq m_{s}$, then we have $\operatorname{rk}(F)=\operatorname{deg}\left(g_{2}\right)$. Fix $\partial=l_{1} \in T_{1}$. Then, we have that $(\partial \circ F)^{\perp}=F^{\perp}:\left(l_{1}\right)=\left(h_{1}, h_{2}\right)$ with $\operatorname{deg}\left(h_{1}\right)+\operatorname{deg}\left(h_{2}\right)=d+1$. Since $l_{1}^{m_{1}-1} \cdots l_{s}^{m_{s}} \in(\partial \circ F)^{\perp}$, but not in F^{\perp} it has to be $h_{1}=l_{1}^{m_{1}-1} \cdots l_{s}^{m_{s}}$. In particular, $\operatorname{rk}(\partial \circ F)=\operatorname{deg}\left(h_{2}\right)=\operatorname{deg}\left(g_{2}\right)=\operatorname{rk}(F)$.
c) If $d_{1}=d_{2}$, we can always consider a non square-free element $g \in\left(F^{\perp}\right)_{d_{1}}$. Indeed, if both g_{1} and g_{2} are square-free, then it is enough to consider one element lying on the intersection between the hypersurface in $\mathbb{P}\left(S_{d_{1}}\right)$ defined by the vanishing of the discriminant of polynomials of degree d_{1} and the line passing through $\left[g_{1}\right]$ and $\left[g_{2}\right]$.

Say $g=l_{1}^{m_{1}} \cdots l_{s}^{m_{s}}$, with $m_{1} \leq \ldots \leq m_{s}$. Fix $\partial=l_{1} \in T_{1}$. Hence, we conclude similarly as part b).
(3) If $F=x_{0}^{a}\left(x_{1}^{b}+\ldots+x_{n}^{b}\right)$ with $b, n \geq 2$ and $a+1 \geq b$, then we have that $\operatorname{rk}(F)=(a+1) n$, by [?]. If we set $\partial=X_{1}+\ldots+X_{n}$, then $\partial \circ F=x_{0}^{a}\left(x_{1}^{b-1}+\ldots+x_{n}^{b-1}\right)$ and the rank is preserved.
(4) If $F=x_{0}^{a}\left(x_{0}^{b}+\ldots+x_{n}^{b}\right)$ with $b, n \geq 2$ and $a+1 \geq b$, then we have that $\operatorname{rk}(F)=(a+1) n$, by [?]. If we set $\partial=X_{1}+\ldots+X_{n}$, then $\partial F=x_{0}^{a}\left(x_{1}^{b-1}+\ldots+x_{n}^{b-1}\right)$ and the rank is preserved.
(5) If $F=x_{0}^{a} G\left(x_{1}, \ldots, x_{n}\right)$ with $G^{\perp}=\left(g_{1}, \ldots, g_{n}\right), a \geq 2$, and $\operatorname{deg} g_{i} \geq a+1$, we know that $\operatorname{rk}(F)=d_{1} \cdots d_{n}$, by [?]. If we consider $\partial=X_{0}$, then we have that $\partial \circ F=x_{0}^{a-1} G\left(x_{1}, \ldots, x_{n}\right)$ and the rank is preserved.

We can now prove the following.
Theorem 4.4. Let $F=\sum_{i=1}^{s} F_{i} \in S$ be a form such that $F_{i} \in S^{[i]}$ for all $i=1, \ldots, s$. If each F_{i} is one of the following,
(1) a monomial $x_{0}^{d_{0}} \cdot \ldots \cdot x_{n}^{d_{n}}$ with $d_{i} \geq 2$ for $0 \leq i \leq n$;
(2) a binary form $F \neq L M^{d-1}$;
(3) $x_{0}^{a}\left(x_{1}^{b}+\ldots+x_{n}^{b}\right)$ with $b, n \geq 2$ and $a+1 \geq b$
(4) $x_{0}^{a}\left(x_{0}^{b}+x_{1}^{b}+\ldots+x_{n}^{b}\right)$ with $b, n \geq 2$ and $a+1 \geq b$
(5) $x_{0}^{a} G\left(x_{1}, \ldots, x_{n}\right)$ such that $G^{\perp}=\left(g_{1}, \ldots, g_{n}\right)$, $a \geq 2$, and $\operatorname{deg} g_{i} \geq a+1$
then Conjecture 3 holds for F.
We can prove Conjecture 3 in a few cases without using Proposition 4.2. Note, for example, that Proposition 4.2 cannot be applied if one of the summand is a monomial with lowest exponent equal to one since Lemma 4.3 does not hold.

Theorem 4.5. Conjecture 3 is true for a form F of degree $d \geq 3$

$$
F=x_{0} x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}+y_{0}^{b_{0}} y_{1}^{b_{1}} \ldots y_{m}^{b_{m}} \in k\left[x_{0}, x_{1}, \ldots x_{n}, y_{0}, y_{1}, \ldots y_{m}\right]
$$

with $d=1+\sum_{i=0}^{n} a_{i}=\sum_{i=0}^{m} b_{i}$ and $b_{0} \leq b_{i}(i=1, \ldots, m)$.
We need preliminary results in order to give the proof.
Lemma 4.6. Let $F_{1}, F_{2} \in k\left[z_{1,1}, \ldots, z_{1, n_{1}}, z_{2,1}, \ldots, z_{2, n_{2}}\right]$ be two monomials of the same degree, in different sets of variables, say

$$
F_{1}=z_{1,1}^{d_{1,1}} \cdots z_{1, n_{1}}^{d_{1, n_{1}}} ; \quad F_{2}=z_{2,1}^{d_{2,1}} \cdots z_{2, n_{2}}^{d_{2, n_{2}}}
$$

Then
(i) $\left(F_{1}+F_{2}\right)^{\perp}=\left(F_{1}\right)^{\perp} \cap\left(F_{2}\right)^{\perp}+\left(\Pi d_{2, i}!Z_{1,1}^{d_{1,1}} \cdots Z_{1, n_{1}}^{d_{1, n_{1}}}-\Pi d_{1, i}\right.$! $\left.Z_{2,1}^{d_{2,1}} \cdots Z_{2, n_{2}}^{d_{2, n_{2}}}\right)$;
(ii) length $T /\left(F_{1}+F_{2}\right)^{\perp}=$ length $T /\left(F_{1}\right)^{\perp}+$ length $T /\left(F_{2}\right)^{\perp}-2$,
where $T=k\left[Z_{1,1}, \ldots, Z_{1, n_{1}}, Z_{2,1}, \ldots, Z_{2, n_{2}}\right]$
Proof. The results easily follow by observing that

$$
\begin{gathered}
\left(F_{1}+F_{2}\right)^{\perp}=Z_{1,1}^{d_{1,1}+1}, \ldots, Z_{1, n_{1}}^{d_{1, n_{1}}+1}, Z_{2,1}^{d_{2,1}+1}, \ldots, Z_{2, n_{2}}^{d_{2, n_{2}}+1} \\
Z_{1,1} Z_{2,1}, \ldots, Z_{1, n_{1}} Z_{2,1}, \ldots, Z_{1,1} Z_{2, n_{2}}, \ldots, Z_{1, n_{1}} Z_{2, n_{2}}, \Pi d_{2, i}!Z_{1,1}^{d_{1,1}} \cdots Z_{1, n_{1}}^{d_{1, n_{1}}}-\Pi d_{1, i}!Z_{2,1}^{d_{2,1}} \cdots Z_{2, n_{2}}^{d_{2, n_{2}}} \\
\left(F_{1}\right)^{\perp}=Z_{1,1}^{d_{1,1}+1}, \ldots, Z_{1, n_{1}}^{d_{1, n_{1}}+1}, Z_{2,1}, \ldots, Z_{2, n_{2}} \\
\left(F_{2}\right)^{\perp}=Z_{1,1}, \ldots, Z_{1, n_{1}}, Z_{2,1}^{d_{2,1}+1}, \ldots, Z_{2, n_{2}}^{d_{2, n}+1}
\end{gathered}
$$

and by the exact sequence

$$
0 \longrightarrow T /(I \cap J) \longrightarrow T / I \oplus T / J \longrightarrow T /(I+J) \longrightarrow 0
$$

where I, J are ideals in T.

Lemma 4.7. Let $F=x_{0} x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}+y_{0}^{b_{0}} y_{1}^{b_{1}} \ldots y_{m}^{b_{m}}$ as in Theorem 4.5, then

$$
\text { length } T /\left(F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)\right)=\operatorname{rk} F-2
$$

where $T=k\left[X_{0}, X_{1}, \ldots X_{n}, Y_{0}, Y_{1}, \ldots Y_{m}\right]$.

Proof. We have

$$
\begin{gathered}
F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)=\left(\left(X_{0}+Y_{0}\right) \circ F\right)^{\perp}+\left(X_{0}+Y_{0}\right) \\
=\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}+y_{0}^{b_{0}-1} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(X_{0}+Y_{0}\right)
\end{gathered}
$$

since $X_{0} \in\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}+y_{0}^{b_{0}-1} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}$ this is

$$
=\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}+y_{0}^{b_{0}-1} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(X_{0}, Y_{0}\right) .
$$

Now, if $b_{0}>1$, by Lemma 4.6 we get

$$
\begin{gathered}
\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}+y_{0}^{b_{0}-1} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(Y_{0}\right) \\
=\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp} \cap\left(y_{0}^{b_{0}-1} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(\left(b_{0}-1\right)!\Pi_{i=1}^{m} b_{i}!X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}-\Pi_{i=1}^{n} a_{i}!Y_{0}^{b_{0}-1} Y_{1}^{b_{1}} \cdots Y_{m}^{b_{m}}\right)+\left(Y_{0}\right) \\
=\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp} \cap\left(y_{0}^{b_{0}-1} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(\left(b_{0}-1\right)!\Pi_{i=1}^{m} b_{i}!X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}\right)+\left(Y_{0}\right)
\end{gathered}
$$

since $Y_{0} \in\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp}$ this is

$$
=\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp} \cap\left(\left(y_{0}^{b_{0}-1} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(Y_{0}\right)\right)+\left(X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}\right)
$$

and since $X_{1}^{a_{1}} \cdots X_{n}^{a_{n}} \in\left(y_{0}^{b_{0}-1} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}$:

$$
=\left(\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp}+\left(X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}\right)\right) \cap\left(\left(y_{0}^{b_{0}-1} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(Y_{0}\right)\right) .
$$

So by the exact sequence (1) we get

$$
\begin{gathered}
\text { length } T /\left(F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)\right) \\
=\text { length } T /\left(\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp}+\left(X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}\right)\right)+\text { length } T /\left(\left(y_{0}^{b_{0}-1} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(Y_{0}\right)\right) \\
- \text { length } T /\left(\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp}+\left(X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}\right)+\left(\left(y_{0}^{b_{0}-1} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(Y_{0}\right)\right)\right. \\
=\text { length } T /\left(\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp}+\left(X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}\right)\right)+\text { length } T /\left(\left(y_{0}^{b_{0}-1} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(Y_{0}\right)\right)-1 \\
=\Pi_{i=1}^{n}\left(a_{i}+1\right)-1+\Pi_{i=1}^{m}\left(b_{i}+1\right)-1=\operatorname{rk} F-2 .
\end{gathered}
$$

In case $b_{0}=1$, since $F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)=\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}+y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(X_{0}, Y_{0}\right)$, by Lemma 4.6 we get

$$
\begin{gathered}
\text { length } T /\left(F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)\right)=\text { length } \widetilde{T} /\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}+y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp} \\
=\text { length } \widetilde{T} /\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp}+\widetilde{T} /\left(y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}-2=\operatorname{rk} F-2
\end{gathered}
$$

where $\widetilde{T}=k\left[X_{1}, \ldots X_{n}, Y_{1}, \ldots Y_{m}\right]$.

Lemma 4.8. Notation as in Lemma 4.7. Let

$$
F=x_{0} x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}+y_{0}^{b_{0}} y_{1}^{b_{1}} \ldots y_{m}^{b_{m}}
$$

with $d=1+\sum_{i=0}^{n} a_{i}=\sum_{i=0}^{m} b_{i} \geq 3$ and $b_{0} \leq b_{i}(i=1, \ldots, m)$, then

$$
\mathcal{W}_{F} \subset\left\{X_{0} Y_{0}=0\right\} \subset \mathbb{P}^{n+m+1}
$$

Proof. Let $I_{\mathbb{X}} \subset F^{\perp}$ be a minimal set of apolar points for F, thus

$$
|\mathbb{X}|=\operatorname{rk} F .
$$

It is enough to show that there are no points of \mathbb{X} lying on the hyperplanes $\lambda X_{0}+\mu Y_{0}=0$, for $\lambda \mu \neq 0$. After a change of coordinates, we may assume $\lambda=\mu=1$.
We consider $I_{\mathbb{X}^{\prime}}=I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)$ the ideal of the set of points in \mathbb{X} which do not lie on $X_{0}+Y_{0}=0$.
The cardinality of \mathbb{X}^{\prime} is at least the length of the ring $T /\left(F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)\right)$, that is, by Lemma 4.7,

$$
\left|\mathbb{X}^{\prime}\right| \geq \operatorname{rk} F-2 .
$$

It follows that on the hyperplane $X_{0}+Y_{0}=0$ we have at most two points of \mathbb{X}.
Claim: In degree 1, the ideal $I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)$ differs from $F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)$.
Proof of Claim. As already computed in the proof of Lemma 4.7, we have that $F^{\perp}:\left(X_{0}+Y_{0}\right)+$ ($X_{0}+Y_{0}$) contains two linear forms, namely X_{0} and Y_{0}.
Now assume that

$$
L=\alpha_{0} X_{0}+\ldots+\alpha_{n} X_{n}+\beta_{0} Y_{0}+\ldots+\beta_{m} Y_{m} \in I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)
$$

Thus, we have that $L\left(X_{0}+Y_{0}\right) \in I_{\mathbb{X}} \subset F^{\perp}$.
In case $b_{0}>1$, since $X_{0}^{2}, X_{0} Y_{0}, \ldots, X_{0} Y_{m}, X_{1} Y_{0}, \ldots, X_{n} Y_{0} \in F^{\perp}$ we get

$$
\left(\alpha_{1} X_{0} X_{1}+\ldots+\alpha_{n} X_{0} X_{n}+\beta_{0} Y_{0}^{2}+\beta_{1} Y_{0} Y_{1}+\ldots+\beta_{m} Y_{0} Y_{m}\right) \circ F=0
$$

and from this easily follows that $\alpha_{1}=\ldots=\alpha_{n}=\beta_{0}=\beta_{1}=\ldots=\beta_{m}=0$. Hence, $L=\alpha_{0} X_{0}$ and so $\alpha_{0} X_{0}\left(X_{0}+Y_{0}\right) \in I_{\mathbb{X}}$.
Now consider the hyperplane $Y_{0}=0$.
By Lemma 4.6 we get

$$
\begin{gathered}
F^{\perp}+\left(Y_{0}\right)=\left(x_{0} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp} \cap\left(y_{0}^{b_{0}} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(\Pi b_{i}!X_{0} X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}-\Pi a_{i}!Y_{0}^{b_{0}} Y_{1}^{b_{1}} \ldots Y_{m}^{b_{m}}\right)+\left(Y_{0}\right)= \\
=\left(x_{0} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp} \cap\left(y_{0}^{b_{0}} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(X_{0} X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}\right)+\left(Y_{0}\right) \subseteq \\
\subseteq\left(\left(x_{0} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp}+\left(X_{0} X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}, Y_{0}\right)\right) \cap\left(\left(y_{0}^{b_{0}} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(X_{0} X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}, Y_{0}\right)\right)= \\
=\left(\left(x_{0} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp}+\left(X_{0} X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}\right)\right) \cap\left(\left(y_{0}^{b_{0}} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(Y_{0}\right)\right)
\end{gathered}
$$

Hence

$$
\begin{aligned}
& \text { length } T /\left(F^{\perp}+\left(Y_{0}\right)\right) \\
& \geq \text { length } T /\left(\left(x_{0} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp}+\left(X_{0} X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}\right)\right)+\text { length } T /\left(\left(y_{0}^{b_{0}} y_{1}^{b_{1}} \ldots y_{m}^{b_{m}}\right)^{\perp}+\left(Y_{0}\right)\right)-1 \\
& =2 \Pi_{i \geq 1}\left(a_{i}+1\right)+\Pi_{i \geq 1}\left(b_{i}+1\right)-2=\operatorname{rk} F+\Pi_{i \geq 1}\left(a_{i}+1\right)-2>\operatorname{rk} F .
\end{aligned}
$$

So

$$
\text { length } T /\left(F^{\perp}+\left(Y_{0}\right)\right)>\operatorname{rk} F
$$

Hence Y_{0} is not a zero divisor for $I_{\mathbb{X}}$ and there are points of \mathbb{X} lying on the hyperplane $Y_{0}=0$. Since, by [CCC15], there are no points of \mathbb{X} on the linear space defined by the ideal (X_{0}, Y_{0}), and since $\alpha_{0} X_{0}\left(X_{0}+Y_{0}\right) \in I_{\mathbb{X}}$, it follows that $\alpha_{0}=0$. So $I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)$ contains only the linear form $X_{0}+Y_{0}$, and thus in case $b_{0}>1$ the Claim is proved.
In case $b_{0}=1$, since $X_{0}^{2}, X_{0} Y_{0}, \ldots, X_{0} Y_{m}, Y_{0}^{2}, X_{1} Y_{0}, \ldots, X_{n} Y_{0} \in F^{\perp}$ we get

$$
\left(\alpha_{1} X_{0} X_{1}+\ldots+\alpha_{n} X_{0} X_{n}+\beta_{1} Y_{0} Y_{1}+\ldots+\beta_{m} Y_{0} Y_{m}\right) \circ F=0
$$

and so $\alpha_{1}=\ldots=\alpha_{n}=\beta_{1}=\ldots=\beta_{m}=0$. Hence, $L=\alpha_{0} X_{0}+\beta_{0} Y_{0}$ and $L\left(X_{0}+Y_{0}\right)=$ $\left(\alpha_{0} X_{0}+\beta_{0} Y_{0}\right)\left(X_{0}+Y_{0}\right) \in I_{\mathbb{X}}$.
Now consider the hyperplanes $X_{0}=0$ and $Y_{0}=0$.
By Lemma 4.6 we get

$$
\begin{gathered}
F^{\perp}+\left(X_{0}\right)=\left(x_{0} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp} \cap\left(y_{0} y_{1}^{b_{1}} \ldots y_{m}^{b_{m}}\right)^{\perp}+\left(\Pi b_{i}!X_{0} X_{1}^{a_{1}} \ldots X_{n}^{a_{n}}-\Pi a_{i}!Y_{0} Y_{1}^{b_{1}} \ldots Y_{m}^{b_{m}}\right)+\left(X_{0}\right)= \\
=\left(x_{0} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp} \cap\left(y_{0} y_{1}^{b_{1}} \ldots y_{m}^{b_{m}}\right)^{\perp}+\left(Y_{0} Y_{1}^{b_{1}} \ldots Y_{m}^{b_{m}}\right)+\left(X_{0}\right) \subseteq \\
\subseteq\left(\left(x_{0} x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp}+\left(Y_{0} Y_{1}^{b_{1}} \ldots Y_{m}^{b_{m}}, X_{0}\right)\right) \cap\left(\left(y_{0} y_{1}^{b_{1}} \ldots y_{m}^{b_{m}}\right)^{\perp}+\left(Y_{0} Y_{1}^{b_{1}} \ldots Y_{m}^{b_{m}}, X_{0}\right)\right)= \\
=\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp} \cap\left(\left(y_{0} y_{1}^{b_{1}} \ldots y_{m}^{b_{m}}\right)^{\perp}+\left(Y_{0} Y_{1}^{b_{1}} \ldots Y_{m}^{b_{m}}\right)\right) .
\end{gathered}
$$

Hence

$$
\begin{gathered}
\text { length } T /\left(F^{\perp}+\left(X_{0}\right)\right) \\
\geq \text { length } T /\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp}+\text { length } T /\left(\left(y_{0} y_{1}^{b_{1}} \ldots y_{m}^{b_{m}}\right)^{\perp}+\left(Y_{0} Y_{1}^{b_{1}} \ldots Y_{m}^{b_{m}}\right)\right)-1 \\
=\Pi_{i \geq 1}\left(a_{i}+1\right)+2 \Pi_{i \geq 1}\left(b_{i}+1\right)-2=\operatorname{rk} F+\Pi_{i \geq 1}\left(b_{i}+1\right)-2>\operatorname{rk} F .
\end{gathered}
$$

It follows that

$$
\text { length } T /\left(F^{\perp}+\left(X_{0}\right)\right)>\operatorname{rk} F \text {. }
$$

Analogously we have

$$
\text { length } T /\left(F^{\perp}+\left(Y_{0}\right)\right)>\operatorname{rk} F \text {. }
$$

So X_{0} and Y_{0} are not zero divisors for $I_{\mathbb{X}}$. Hence there are points of \mathbb{X} lying both on the hyperplane $X_{0}=0$ and on $Y_{0}=0$.
Since, by [CCC15], there are no points of \mathbb{X} on the linear space defined by the ideal $\left(X_{0}, Y_{0}\right)$, and since $\left(\alpha_{0} X_{0}+\beta_{0} Y_{0}\right)\left(X_{0}+Y_{0}\right) \in I_{\mathbb{X}}$, it follows that $\alpha_{0}=\beta_{0}=0$. Thus $I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)$ contains only the linear form $X_{0}+Y_{0}$, and the Claim is proved also in case $b_{0}=1$.

Now, the idea is to show that $I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)$ differs from $F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)$ also in degree $d-1$. From this, and the Claim above, it would follow that the cardinality of \mathbb{X}^{\prime} is actually $\operatorname{rk} F$ and then we have no points of \mathbb{X} over the hyperplane $X_{0}+Y_{0}=0$.
Consider first the case $b_{0}>1$. In this case, since (see the proof of Lemma 4.7)

$$
F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)=\left(\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}\right)^{\perp}+\left(X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}\right)\right) \cap\left(\left(y_{0}^{b_{0}-1} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(Y_{0}\right)\right),
$$

hence in degree $d-1$ we have that $F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)=T_{d-1}$, the whole vector space. We will prove that $\left(I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)\right)_{d-1} \neq T_{d-1}$. Since, from the Claim, $I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)$ differs from $F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)$, then $\left|\mathbb{X}^{\prime}\right| \geq 1+$ length $T /\left(F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)\right)=$ $\operatorname{rk} F-1$. Hence there is at most one point of \mathbb{X}, say P, lying on the hyperplane $X_{0}+Y_{0}=0$. Since there are no points on the linear space $\left(X_{0}, Y_{0}\right)$, we can write $P=\left[1, u_{1}, \ldots, u_{n},-1, v_{1}, \ldots, v_{m}\right]$.
Let

$$
H=X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}-u_{1}^{a_{1}} \cdots u_{n}^{a_{n}} X_{0}^{d-1} .
$$

If we assume, by contradiction, that $I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)$ contains all the forms of degree $d-1$, we have that

$$
H \in I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)
$$

that is,

$$
H+\left(X_{0}+Y_{0}\right) G \in I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)
$$

for some $G \in T_{d-2}$.
Since $H+\left(X_{0}+Y_{0}\right) G$ vanishes at P and at the points of \mathbb{X}^{\prime}, we actually have that

$$
H+\left(X_{0}+Y_{0}\right) G \in I_{\mathbb{X}} \subset F^{\perp}
$$

and from this

$$
\left(H+\left(X_{0}+Y_{0}\right) G\right) \circ F=0 .
$$

But

$$
\begin{aligned}
& \left(X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}-u_{1}^{a_{1}} \cdots u_{n}^{a_{n}} X_{0}^{d-1}+\left(X_{0}+Y_{0}\right) G\right) \circ F= \\
& =\Pi a_{i}!x_{0}+G \circ\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}+y_{0}^{b_{0}-1} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)=0,
\end{aligned}
$$

and this is impossible, since $G \circ\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}+y_{0}^{b_{0}-1} y_{1}^{b_{1}} \ldots y_{m}^{b_{m}}\right)$ cannot be $-\Pi a_{i}!x_{0}$.
Now let $b_{0}=1$. In this case we have

$$
F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)=\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}+y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)^{\perp}+\left(X_{0}, Y_{0}\right),
$$

hence in degree $d-1$

$$
\operatorname{dim}\left(F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)\right)_{d-1}=\operatorname{dim} T_{d-1}-1
$$

Since, from the Claim, $I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)$ differs from $F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)$, then $\left|\mathbb{X}^{\prime}\right| \geq 1+$ length $T /\left(F^{\perp}:\left(X_{0}+Y\right)+\left(X_{0}+Y_{0}\right)\right)=\operatorname{rk} F-1$. Hence there is at most one point of \mathbb{X}, say P, lying on the hyperplane $X_{0}+Y=0$. Since there are no points on the linear space $\left(X_{0}, Y_{0}\right)$, we can assume that $P=\left[1, u_{1}, \ldots, u_{n},-1, v_{1}, \ldots, v_{m}\right]$.
Let

$$
\begin{aligned}
H_{1} & =X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}-u_{1}^{a_{1}} \cdots u_{n}^{a_{n}} X_{0}^{d-1} \\
H_{2} & =Y_{1}^{b_{1}} \cdots Y_{m}^{b_{m}}-v_{1}^{b_{1}} \cdots v_{m}^{b_{m}} Y_{0}^{d-1}
\end{aligned}
$$

We will prove that $H_{1} \notin I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)$. In fact, if $H_{1} \in I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)$ we have

$$
H_{1}+\left(X_{0}+Y_{0}\right) G_{1} \in I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)
$$

for some $G_{1} \in T_{d-2}$. But $H_{1}+\left(X_{0}+Y_{0}\right) G_{1}$ vanishes at P and at the points of \mathbb{X}^{\prime}, so we have

$$
H_{1}+\left(X_{0}+Y_{0}\right) G_{1} \in I_{\mathbb{X}} \subset F^{\perp}
$$

and from this

$$
\left(H_{1}+\left(X_{0}+Y_{0}\right) G_{1}\right) \circ F=0 .
$$

But

$$
\begin{gathered}
\left(H_{1}+\left(X_{0}+Y_{0}\right) G_{1}\right) \circ F=\left(X_{1}^{a_{1}} \cdots X_{n}^{a_{n}}-u_{1}^{a_{1}} \cdots u_{n}^{a_{n}} X_{0}^{d-1}+\left(X_{0}+Y_{0}\right) G_{1}\right) \circ F= \\
=\Pi a_{i}!x_{0}+G_{1} \circ\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}+y_{0}^{b_{0}-1} y_{1}^{b_{1}} \cdots y_{m}^{b_{m}}\right)=0
\end{gathered}
$$

and this is impossible, since $G_{1} \circ\left(x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}+y_{0}^{b_{0}-1} y_{1}^{b_{1}} \ldots y_{m}^{b_{m}}\right)$ cannot be $-\Pi a_{i}!x_{0}$.

Analogously we can show that $H_{2} \notin I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)$. Since H_{1} and H_{2} are linearly independent forms of degree $d-1$, and

$$
H_{1}, H_{2} \notin\left(I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)\right)_{d-1},
$$

then

$$
\operatorname{dim}\left(I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)\right)_{d-1} \leq \operatorname{dim} T_{d-1}-2 .
$$

It follows that

$$
\left(I_{\mathbb{X}}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)\right)_{d-1} \neq\left(F^{\perp}:\left(X_{0}+Y_{0}\right)+\left(X_{0}+Y_{0}\right)\right)_{d-1}
$$

Proof of Theorem 4.5. We know by Lemma 4.8, that the Waring locus of F is contained in the union of the two hyperplanes $X_{0}=0$ and $Y_{0}=0$. Moreover, it is easy to check that, given \mathbb{X} an apolar set of F, we have exactly $\left(a_{1}+1\right) \cdots\left(a_{n}+1\right)$ points of \mathbb{X} on the hyperplane $y_{0}=0$ and $\left(b_{1}+1\right) \cdots\left(b_{n}+1\right)$ points of \mathbb{X} on the hyperplane $x_{0}=0$. Then, the claim follows from Remark 1.

References

[AH95] J. Alexander and A. Hirschowitz. Polynomial interpolation in several variables. Journal of Algebraic Geometry, 4(4):201-222, 1995.
[Ban14] Maurizio Banchi. Rank and border rank of real ternary cubics. arXiv preprint arXiv:1409.8447, 2014.
[BBT13] Weronika Buczyńska, Jarosław Buczyński, and Zach Teitler. Waring decompositions of monomials. Journal of Algebra, 378:45-57, 2013.
[BC13] Edoardo Ballico and Luca Chiantini. Sets computing the symmetric tensor rank. Mediterranean journal of mathematics, 10(2):643-654, 2013.
[BCO14] Cristiano Bocci, Luca Chiantini, and Giorgio Ottaviani. Refined methods for the identifiability of tensors. Annali di Matematica Pura ed Applicata (1923-), 193(6):1691-1702, 2014.
[BL13] Jarosław Buczyński and Joseph M Landsberg. Ranks of tensors and a generalization of secant varieties. Linear Algebra and its Applications, 438(2):668-689, 2013.
[CC06] Luca Chiantini and Ciro Ciliberto. On the concept of k-secant order of a variety. Journal of the London Mathematical Society, 73(02):436-454, 2006.
[CCC15] Enrico Carlini, Maria Virginia Catalisano, and Luca Chiantini. Progress on the symmetric strassen conjecture. Journal of Pure and Applied Algebra, 219(8):3149-3157, 2015.
[CCG12] E. Carlini, M. V. Catalisano, and A. V. Geramita. The solution to the Waring problem for monomials and the sum of coprime monomials. Journal of Algebra, 370:5-14, 2012.
[COV15] Luca Chiantini, Giorgio Ottaviani, and Nick Vannieuwenhoven. On generic identifiability of symmetric tensors of subgeneric rank. arXiv preprint arXiv:1504.00547, 2015.
[CS11] G. Comas and M. Seiguer. On the rank of a binary form. Foundations of Computational Mathematics, 11(1):65-78, 2011.
[Dol12] Igor V Dolgachev. Classical algebraic geometry: a modern view. Cambridge University Press, 2012.
[Ger96] A. V. Geramita. Inverse systems of fat points: Waring's problem, secant varieties of veronese varieties and parameter spaces for gorenstein ideals. In The Curves Seminar at Queen's, volume 10, pages 2-114, 1996.
[GS] D. R. Grayson and M. E. Stillman. Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.
[IK99] A. Iarrobino and V. Kanev. Power sums, Gorenstein algebras, and determinantal loci. Springer, 1999.
[Lan12] J. M. Landsberg. Tensors: Geometry and applications, volume 128. American Mathematical Soc., 2012.
[LT10] Joseph M Landsberg and Zach Teitler. On the ranks and border ranks of symmetric tensors. Foundations of Computational Mathematics, 10(3):339-366, 2010.
[Syl51] James Joseph Sylvester. Lx. on a remarkable discovery in the theory of canonical forms and of hyperdeterminants. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(12):391-410, 1851.
(E. Carlini) Disma- Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy

E-mail address: enrico.carlini@polito.it
(M. V. Catalisano) Dipartimento di Ingegneria Meccanica, Energetica, Gestionale e dei Trasporti, Universita degli studi di Genova, Genoa, Italy
E-mail address: catalisano@diptem.unige.it
(A. Oneto) Department of Mathematics, Stockholm University, SE-106 91, Stockholm, Sweden E-mail address: oneto@math.su.se

