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Control of a non-cooperative approach maneuver based on 

debris dynamics feedback 

 
Sabrina Corpino1, Stefano Mauro2, Stefano Pastorelli3, Fabrizio Stesina4, Gabriele Biondi5,  

Loris Franchi6, Tharek Mohtar7  

Politecnico di Torino, Torino, Italy, 10129 

Space Debris removal is a critical issue related to space research. One of the key requirements for a removal 

mission is the assessment of the target rotational dynamics. Ground observations are not sufficient for reaching 

the accuracy level required to guide the chaser spacecraft during the capture maneuver. Moreover, the 

guidance and control strategy for the chaser to approach the target is a critical aspect of such missions. This 

paper present simulation results of two complementary methods, one for estimating the entire rotational 

dynamic state of the target, and the other for accurately controlling the approach maneuver. In particular, the 

information coming from the identification and prediction of the actual motion of the rotation axis of the target 

is exploited by the second method for aligning the docking interface of the chaser with that axis at the instant 

of capture. The dynamic estimation is based on Kalman filtering in an original combination with compressive 

sampling techniques for making the method robust to failures of the observation sensors.  The guidance of the 

chaser is based on a model predictive control law. The combined simulation of the employment of the methods 

has revealed the feasibility of the global approach. 

I. .Introduction 

 

NE of the main concerns in the space field is the high number of objects orbiting the Earth in orbits of interest 

for the accomplishment of scientific and communication missions. Currently, more than 10000 objects bigger than 10 

cm take up Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO) [1].  

In recent years, the international community decided to adopt rules specifically aimed at the Post Mission Disposal 

(PMD). These guidelines require that any orbiting element shall be removed from the operative orbit within 25 years 
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following the end of its service life. However, even if all new spacecraft will comply with the PMD rules, this is not 

sufficient to reduce the risk of overpopulated orbits [2], considering the spacecraft already launched in the previous 

years. The LEGEND model [3] shows how a plan of Active Debris Removal (ADR) of non-collaborative spacecraft 

is strongly required. The general approach for removing space debris consists in the capture of a non-collaborative 

Target using a Chaser spacecraft. Capturing an object in orbit is a complex task, which requires many maneuvers to 

be accomplished, depending on the specific mission. Two of the main issues, common to most debris removal 

missions, is to understand the Target motion that is unknown a priori into the detail, and to plan a set of Chaser’s 

maneuvers to complete the capture. 

The capture of space debris is a deeply theorized problem but there are few examples of programs targeted to Rendez-

Vous and Docking (RVD) missions for active debris removal and they mainly address the technology for the capture. 

One example is the Automated/Autonomous Rendezvous & Docking Vehicle (ARDV), which aims at testing in orbit 

a high performance laser sensors [4]. The CleanSpace One program of the Ecole Polytechnique Federale de Lausenne 

proposes a solution to perform active debris removal with a cost effective microsatellite. The approach and in-orbit 

maneuvering will be performed by a micro-propulsion system and the grabbing will be done by means of a robotic 

claw [5]. Similarly, the Remove DEBRIS mission aims at demonstrating key ADR technologies, including capture 

means (net and harpoon firing on a distant Target), relative navigation techniques (vision-based navigation sensors 

and associated algorithms), and deorbiting technologies (drag sail deployment after the mission followed by an 

uncontrolled reentry) [6]. Astrium Stevenage is developing a new technology (scheduled for launch in 2021) based 

on a harpoon system as debris capture mechanism. [7] 

Other researches, independent from planned missions or official space programs, are ongoing. Sommer and Ahrns [8] 

propose solutions both for the trajectory and the attitude determination and control of a chaser involved in the removal 

of the Envisat satellite. Wertz and Bell [9] give an overview of hardware and software technologies (sensors and 

actuators) required for the autonomous rendezvous and docking of two spacecraft started at a remote distance. Cresto 

Aleina et alii [10] show the system design for a space tug involved in satellite servicing mission, such as the removal 

of out of order satellites. 

From the maneuvers strategies point of view, Di Cairano et alii [11] give a complete overview of the maneuver and 

control capabilities for the capture of a non-rotating and of a rotating target, using a Model Predictive Controller 

(MPC) but limiting the study to planar maneuvers. In [12], the authors study controllers based on Linear Quadratic 



Regulator (LQR) and Proportional Derivative (PD) Control, verifying the performance and robustness of the solutions. 

Similarly, Arantes et alii [13] use the same control laws and presents a comparative analysis between different 

guidance trajectories for important parameters such as time, fuel consumption minimum absolute distance and the 

maximum radial distance from the target. Adaptive control laws for spacecraft rendezvous and docking under 

measurement uncertainty, such as aggregation of sensor calibration parameters, systematic bias, or some stochastic 

disturbances, are proposed in [13],[14]. Aghili [15], and Matsumoto et alii [16] propose control laws solutions for the 

capture of tumbling target using a robotic arm. Authors study how to search an optimal mating point and trajectory, 

and demonstrate with simulations that robots intercept the point of grapple with quasi zero velocity and a high accuracy 

also when the target’s dynamics is not known a priori and with the presence of uncertainties.  

In the present paper, authors present guidance strategies based on Model Prediction Controllers, designed taken into 

account internal and external disturbances and uncertainties on the parameters. The Controller allows to perform a 

series of complex maneuvers that consist of reaching a point on a generic capture axis through a fly-around maneuver 

and then completing the capture along that axis with a straight line maneuver. 

In order to define the best guidance strategy, one of the essential points is the availability of the accurate estimation 

of the kinematic and dynamic behavior of the tumbling uncooperative object. The estimation of the unknown dynamic 

state of space debris is a delicate issue because no direct information about the attitude of the object is available and 

then it must be obtained exploiting external sensors on the chaser. Some important results were obtained in the recent 

past through the usage of 3D active sensors: one example is given in [17], where the geometry and the attitude of 

space debris are determined from range images. Also in [18] a method for the pose estimation of passive space bodies 

based on a laser 3D scanner is presented. This last method covers the possibility of failures during the scanning 

procedure through efficient estimation algorithms but it requires the availability of a CAD model of the object. 

Solutions with passive sensors could be interesting because allow to save energy. Moreover, the exploitation of passive 

sensors permits of recovering the attitude and then the dynamic state of the Target by knowing the location of some 

features on its external surface. A survey of the most common tracking techniques based on stereovision can be found 

in [19]. In [20] and [21] two different methods are presented to maintain, after the rendezvous phase, a Target space 

body into the field of view (FOV) of the cameras on a Chaser spacecraft.  

On the contrary, the main drawback of the techniques based on passive sensors derives from the presence of different 

phenomena, such as occlusions or disturbing reflections that make discontinuous and inaccurate the tracking of the 



natural features of space objects. In spite of this, several authors have recently made some effort in the attempt to 

prove the effectiveness of these systems. In [22], a 3D model matching technique is used in combination with 

stereovision sensors. The considered method requires a high number of detected features and a very detailed model of 

the failed satellite. Segal S., Carmi A.,and Gurfil P. [23] presented a method based on stereovision to track a non-

cooperative spacecraft estimating its complete dynamic state. The method does not require any a-priori information 

about the Target, but it is supposed that the position of several fixed features is always measurable. Thus, if at least 

three features are not temporarily detectable due to occlusions, the method loses its estimation capabilities. In [24], 

the tracking of a Target body with respect to a Chaser is reached through the prediction (based on a kinematic model 

of the object) of the velocities of its features. The problem of recovering the pose and the angular rate of the object 

during occlusions is considered, but no results are shown in case no features are detectable. Besides, when the number 

of detected features decreases, the precision of the estimation drops drastically.  

Although the tumbling motion of an object can be accomplished with a pair of COTS cameras through efficient 

algorithms, one of the main critical points consists of determining the target motion and mass properties in the in 

presence of  occlusions. This paper presents a method to recover the body attitude during occlusion periods: after the 

attitude recovery, the angular rate estimation is pursued Kalman filtering the recovered quaternions. The proposed 

method works under the assumption that the relative position of few detected features is known in some reference 

system, e.g. the one of an approximate CAD model of the target. Angular rate estimation is fundamental for 

appropriately guiding and controlling the Chaser spacecraft during the docking maneuver. 

The work described in this paper has been developed within the CADET research program, which is co-funded by 

Regione Piemonte and carried out by a consortium of SMEs and research centers. CADET aims at the functional 

development of major technologies for the capture and removal of space debris. Within this project, the team of 

Politecnico di Torino is involved in the localization of the center of mass of the reference Targets [25], in the estimation 

of their rotational dynamic state [26], and in the selection and verification of the Chaser guidance and control 

strategies, based on an in-the-loop simulator [27]. 

The present article combines the studies for the determination of the Target’s motion and the choice and application 

of the guidance strategies and control laws for the Chaser. Section 2 describes the mission profile for the capture of 

the reference Target (H10 body) using a Chaser equipped with a grasping mechanism; Section 3 presents the main 

concepts regarding the Target motion determination; Section 4 shows the design of the controllers for the Chaser 



attitude and relative trajectory with respect to the Target. In Section 5 the results are presented and discussed, while 

Section 6 concludes the paper with comments and final remarks. 

II. Reference mission 

The mission profile for the Chaser within the CADET frame can be split into three phases: 

 Observation phase. Chaser shall maintain the initial hold point in order to allow the Target analysis through 

a pair of on board cameras. It means that Chaser stays in the hold point defined by the three component (-30, 

0, 0) m with respect to the mating point, with a relative velocity Chaser/Target of 0±0.1 m/s. Moreover, the 

Chaser reaches and maintains a misalignment between its body Frame and the Local Orbital Frame less than 

0.1 rad for each axis and the relative angular velocity is close to 0±0.01 rad/s. That ensures that the Target 

remain in the Field of View of the cameras [28]. This position is held until the motion of the target is 

estimated. 

 Capture preparation phase. Chaser shall move and reach the docking axis from the hold point. It shall 

perform a fly around maneuver in order to intercept the docking axis. The docking axis is individuated in 

accordance to the estimated motion. The maneuver for carrying out the Chaser on this axis should have an 

accuracy of at least the 5%. 

 Capture phase. Chaser shall perform a straight-line maneuver along the docking axis in order to reach the 

mating point, which is considered as the Target center of mass. This maneuver has to satisfy the mating 

requirements explained in Table 1. The approach velocity is the relative linear velocity between Chaser and 

Target along the capture axis. The lateral misalignment is the distance between the mating point and the 

grasping mechanism in the plane perpendicular to the capture axis. The lateral velocity is the velocity of the 

Chaser with respect to the Target in the directions perpendicular to the capture axis. The angular 

misalignment is the difference between the Target attitude and the Chaser attitude expressed in a Target-

fixed reference frame as well as the relative angular rate is the angular velocity of the Chaser with respect to 

the Target in the same frame.  

 

 

 



Parameter Required performance 

Approach velocity <0.03 m/s 

Lateral misalignment <0.2 m 

Lateral velocity <0.05 m/s 

Angular misalignment <1deg 

Angular rate <0.05 deg/s 

Table 1: Performance for Docking 

The reference mission considers as Target the H10 family spacecraft, the upper stage of Ariane 4 launchers [29]. For 

the purpose of the paper, H10 element is tumbling around an a priori unknown axis, different form its main inertial 

axes.  

Chaser spacecraft has been completely designed within CADET program and its main features are reported in Table 

2. [30].Chaser’s mass do not change during the maneuver because the only variations are given by the propellant 

consumption, negligible compared to the total weight of the spacecraft. 

Properties Value 

Mass 800 Kg 

Dimensions 1.5 m x 1.5 m x 5 m  

Inertia Ix=420 Kg/m2  

Iy=1140 Kg/m2  

Iz=1150 Kg/m2 

Table 2: Chaser properties 

III. Estimation of the Target motion parameters and inertial properties  

A. Attitude information from features 

 

A reference triad of axes attached to the target is constructed considering the trajectories of the feature points and their 

relative positions. The orientation of the aforementioned triad is expressed through quaternions. Given three different 

points that belong to a rigid body in an inertial frame 𝐼, one can define two column vectors, 𝑣̅𝑖 and 𝑣̅𝑢, whose cross 

product is the vector 𝑣̅𝑗, which is perpendicular to both. A third orthogonal column vector, 𝑣̅𝑘, can be simply obtained 

through another cross product between 𝑣̅𝑖 and 𝑣̅𝑗. Then, the orientation of a body-fixed reference frame 𝐷, which is 

generally different from the principal body-fixed frame B, with respect to the inertial frame 𝐼, is given by the following 

expression: 

𝑅𝐼𝐷 = [
𝑣̅𝑖

|𝑣̅𝑖|

𝑣̅𝑗

|𝑣̅𝑗|

𝑣̅𝑘

|𝑣̅𝑘|
]  ∈   𝑆𝑂(3)            (1) 

The feature coordinates, which are originally measured in a chaser-fixed reference frame, can be expressed in an 

inertial frame, as the chaser attitude is assumed to be measurable with high accuracy. The three features have to be 



always the same. Thus, if not detected directly, their coordinates have to be evaluated through the assumed prior 

knowledge of the relative positions between all the detectable features.  

A non-singular mapping between an element of the 𝑆𝑂(3) group and a unit quaternion always exists; one of the four 

possible ways to calculate the quaternion is as follows: 

𝑞𝐼𝐷 =

[
 
 
 
 
 
 ±

1

2
√1 + 𝑅11 + 𝑅22 + 𝑅33

1

4𝑞𝐼𝐷𝑠
(𝑅32 − 𝑅23)

1

4𝑞𝐼𝐷𝑠
(𝑅13 − 𝑅31)

1

4𝑞𝐼𝐷𝑠
(𝑅21 − 𝑅12) ]

 
 
 
 
 
 

              (2) 

In (Eq. 2), 𝑅𝑖𝑗 is an element of matrix 𝑅𝐼𝐷 (the inverse of 𝑅𝐷𝐼), and 𝑞𝐼𝐷𝑠 represents the scalar part of the quaternion 

𝑞𝐼𝐷. This last equation provides evidence that the quaternion −𝑞𝐼𝐷 represents the same orientation as 𝑞𝐼𝐷. This property 

allows this representation to be singularity-free; however, the calculation process requires more than one choice to be 

made. If three particular features of the target body can be always detected and localized with respect to the inertial 

frame 𝐼, a full four dimensional quaternion signal can be obtained. Each component of this signal will show, in general, 

several discontinuities due to the redundancy of the quaternion parametrization. However, a smooth equivalent signal 

could be obtained exploiting one of the existent algorithms for that purpose, e.g., the Stanley method [31]. Inducing 

continuity facilitates the usage of the obtained signal as a surrogate measurement for an appropriate Kalman filter for 

estimating the body angular rate.. 

B. Dealing with occlusions 

 

All the methods for guaranteeing the quaternion continuity assume the attitude information always available. 

Unfortunately, this assumption seems to be excessively strong due to the harsh lighting condition of the space 

environment. Since temporary losses of vision data are rather probable, the quaternion signal is likely to present several 

missing samples. The recovery of the relative original signal depends on whether it may be represented as a sparse 

signal or not. A family of techniques belonging to the so-called compressed sensing (CS) theory allows sparse signals 

to be efficiently recovered via the solution of a generally non-linear optimization program.  

Given a generic mono-dimensional signal (everything can be extended to the multi-dimensional case) 𝜎, whose noisy 

observations are collected in 𝑠 it holds: 

𝑠 =Γ𝜎 + 𝜂                 (3) 



𝜂 represents the noise on the observations while Γ is a generic observation matrix which for instance eliminates several 

samples from the original signal 𝜎. In this last case, Γ would be a rectangular matrix having null columns in 

correspondence to missing samples of the original signal. i.e. ΓT Γ would be a diagonal matrix whose j-th eigenvalue 

is null if corresponds to a time sample at which no measurement is available. Assuming that the original signal is 

sparse in some domain and that a linear transform exists, it holds:  

𝑠 = ΓΦ𝑐 + 𝜂                (4) 

Φ represents the application of a non-singular linear mapping between the signal and some coefficients 𝑐. If the matrix 

ΓΦ, known as sensing matrix satisfy the so-called restricted isometry property (RIP) [32], then an exactly sparse signal 

is optimally recovered by solving: 

argmin 
c

‖c‖1     subject to    ‖𝑠 − ΓΦ𝑐‖2
2 ≤ 𝜀          (5) 

The RIP is essentially satisfied when a submatrix of the sensing matrix have a 𝑙2 norm which is near to be one. 

Typically, this condition is satisfied also when the sensing matrix is a completely random one. Defining a penalization 

parameter 𝜆, the problem stated in Errore. L'origine riferimento non è stata trovata. is completely equivalent, for 

a certain value of 𝜆, to the following problem known as LASSO [33]:  

argmin 
c

1

2
‖ΓΦc − s‖2

2 + λ‖c‖1             (6) 

The last problem in Errore. L'origine riferimento non è stata trovata. can be solved with a variety of algorithms. 

Herein SALSA [34] is proposed. It is a fast iterative algorithm that solves an equivalent problem in which two new 

auxiliary variables, namely 𝑙 and 𝑣, are introduced: 

argmin 
c,v

1

2
‖ΓΦc − s‖2

2 + λ‖𝑣 − 𝑙‖1 +
𝜇

2
‖𝑐 − 𝑣‖2

2           (7) 

𝜇 is a second penalization parameter reinforcing the equality constraint 𝑐 = 𝑣. The core of the algorithm for solving 

the problem in Errore. L'origine riferimento non è stata trovata. is shown below:  

 𝑣𝑘+1 = soft (𝑐𝑘 − 𝑙𝑘 ,
𝜆

𝜇
)  

 𝑐𝑘+1 = (Φ
∗Γ∗ΓΦ + 𝜇𝐼)−1(Φ∗Γ∗𝑠 + 𝜇𝑣𝑘) 

 𝑙𝑘+1 = 𝑣𝑘+1 − 𝑐𝑘+1 

 𝑘 ← 𝑘 + 1 



The soft thresholding function is a pure denoising operator: once the first argument is less than the second, the function 

output is zero; otherwise, the output is the first argument decreased by the second. The shown algorithm is a slight 

modification of the original SALSA. This variation, which considers the presence of the sensing matrix Γ is 

extensively explained in [26]  

The presented approach can be used for recovering each of the quaternion components, under the assumption that they 

are mostly sparse in some domain. The motion of  space debris can be considered as a periodic and slow succession 

of finite rotations. This holds because debris can be considered mostly free of external torques. Indeed, if a limited 

period of time is considered, the effect of the environmental torques is practically unobservable, especially when the 

measured positions of the features are affected by noise. Thus, assuming that each component of the quaternion is 

sparse in the frequency domain seems to be more than reasonable. This means that a possible candidate for the linear 

transformation represented by the matrix Φ may be the inverse discrete Fourier transform (IDFT): 

Φab = 𝑒𝑖 
2𝜋

𝑚
𝑎𝑏                  (8) 

being 𝑚 the dimension of the coefficient vector 𝑐. 

In a first instance, the generic measurements 𝑠 in (4) are replaced with 𝑞𝐼𝐷𝑠, i.e. the indirectly measured scalar part of 

the attitude quaternions. The recovery of each measured component of 𝑞𝐼𝐷 is addressed separately but in parallel 

remembering that at the end of the procedure the complete recovered quaternion must be re-normalized. Indeed, the 

recovery do not consider constraints on the norm of the recovered signal.  

The mentioned recovery presents a main challenge that do not allows for the standard application of the SALSA 

algorithm on the complete measured signal. This challenge consists in the presence of missing samples on the 

measured signal. The entire components of the quaternions appear piece-wise, preventing the application of the 

aforementioned rules to guarantee continuity between the separated parts of the measured signal. This problem 

undermines the assumption of sparsity of the raw measurements. On the other hand, those rules applies separately to 

each of the different parts. Then, this paper proposes a method to patch appropriately the various parts in order to 

pursue an efficient final recovery.  

The procedure starts collecting and recovering the first 5 parts of the signal, which are supposed to be separated by 

many missing samples. It is assumed that each part contains at least 8 samples. If this last assumptions appears not 

consistent for particular application conditions (very fast tumbling for instance), it is possible to collect a few other 



parts. If the total number of measured samples is very low, the success of this first recovery cannot be assured with 

high confidence.  

Considering all the 𝑁 acquired parts, there is the possibility of managing the signal to obtain 2𝑁−1 new signals having 

the same meaning in terms of attitude information. Indeed, except for the first part of the signal, it is possible to modify 

the sign of all the samples of each of the remaining parts so that the continuity of the part remains preserved. Hence, 

the algorithm to solve (7) can be applied to all the obtained signals. An illustrative example of this procedure is given 

in Fig. 1 

 

Fig. 1: several equivalent combinations of a measured scalar part of attitude quaternions. Crosses indicates the 

managed raw data while solid lines correspond to signals recovered with SALSA 



 

Fig. 2: Sparsity of the recovered scalar parts. Sparsest solutions corresponds to signals labeled with 1111 and 

1100  

 

Figure 1 shows the recovery of 16 equivalent scalar parts of measured 𝑞𝐼𝐷. Each signal presents a label of 4 digits that 

shows its relationship with the original raw signal: 0000 corresponds to the original signal, while 1111 indicates that 

all the signs of 𝑞𝐼𝐷𝑠 have been changed. Note that only two recovered signals seem really sparse.  

To quantify this sparsity, one can choose some numerical score for each recovered signal 𝑞̃𝐼𝐷. Herein the following 

score is proposed: 

𝑃𝑆 = 𝑘0‖𝑐‖0 + 𝑘1‖𝑐‖0               (9) 

where 𝑘0 and 𝑘1 are appropriate scaling constant. The computed scores for signals in Fig.1 are resumed in Fig. 2 

through a histogram.  

From the 16 recovered signal only the best two hold. Hence, it is possible to collect new measured samples until a 

new occlusion occurs. An illustrative example of this collection and of the consequent sign adjustments is in Fig. 3.  

The recovery of all the 4 resulting equivalent signals can be pursued another time with SALSA. The procedure repeats 

for an undefined number of acquired parts of the quaternions, each separated by many missing samples. For each 

repetition, all the past-acquired data are exploited; clearly, after few iterations (e.g. 4 or 5) only the best combination 

of the past pieces is considered, maintaining limited the computational effort.  

 



 

Fig. 3: After holding the best recovered signals, a new raw part is considered with both the signs of all its 

samples 

 

Unfortunately, the presented approach cannot strictly work in real-time due to the necessity of patching appropriately 

the pieces of the signal, which is interrupted by several missing parts. However, each recovery step provides a partial 

signal that could be exploited for further computations.  

The peculiar redundancy of the quaternions introduces another issue: the recovered quaternions are useful to observe 

the dynamics of the target through Kalman filtering techniques. In the case of sparse measurements, Kalman filtering 

and compressive sampling techniques can be combined optimally in a unique fashion. One valuable work that treat 

this topic in a general technical context is in [35]. However, these valid approaches are not applicable in the specific 

case examined in this paper. Indeed, the sparsity of the measurements depends strictly on the choices made on all the 

measured samples regarding their sign. As explained in this section, due to the occurrence of occlusions, the final 

choice regarding the signs of the samples of each new acquired part is made a posteriori, once all the possible 

combinations of the other parts have been already recovered.  

Hence, thought this is not a perfect solution, the best possibility to estimate the complete dynamic state of the target 

is represented by the usage of a Kalman filter immediately after the attitude recovery procedure.  

 



C. Estimation of angular rate and inertia ratios 

 

The Target attitude information is typically useful to understand its dynamic state, which comprises the angular rate 

and at least a normalized form of the body inertia tensor. As the object is practically a torque-free body, the actual 

values of the principal inertia moments are not observable, but their relative magnitudes are still observable. An 

Unscented Kalman filter [36] is here proposed for that purpose. The discrete state-space system is the following: 

          𝑥𝑘 =

[
 
 
 
 
𝑞𝐼𝐵𝑡𝑔 
 

 
𝜔 
 
𝐼𝐵𝑡𝑔

𝐼𝐵𝑡𝑔
𝑞𝐵𝐷𝑡𝑔 ]

 
 
 
 

𝑘

    ; 𝑥𝑘+1 = 𝑥𝑘 + 𝑡

[
 
 
 
 

1

2
𝜔 
 
𝐼𝐵𝑡𝑔𝑘
† 𝑞𝐼𝐵𝑡𝑔𝑘 

 

 

 

diag(𝐼𝐵𝑡𝑔𝑘)
 −1 ( 𝜔 

 
𝐼𝐵𝑡𝑔𝑘

× diag(𝐼𝐵𝑡𝑔𝑘  ) 

 𝜔 
 
𝐼𝐵𝑡𝑔𝑘

)

0
0 ]

 
 
 
 

+ 𝑤𝑘

       𝑧𝑘 = 𝑞̃𝐼𝐷𝑘          ; 𝑧𝑘    = 𝑞𝐵𝐷𝑡𝑔𝑘 ⊗ 𝑞𝐼𝐵𝑡𝑔𝑘 + 𝑛𝑘

    (10) 

In Errore. L'origine riferimento non è stata trovata., t is the time step, 𝑞𝐼𝐵𝑡𝑔 
  is the attitude quaternion of a principal 

body-fixed frame 𝐵 with respect to the inertial frame, 𝜔 
 
𝐼𝐵𝑡𝑔 is the absolute body angular rate expressed in the frame 

𝐵, 𝐼𝐵𝑡𝑔  is a normalized vector containing the three principal inertia ratios, and 𝑞𝐵𝐷𝑡𝑔  is a constant offset quaternion 

that rotates the frame 𝐵 into the generic body-fixed frame 𝐷. 𝑤 and 𝑛 identify respectively the process and the 

measurement noise vectors. The symbol ⊗ identifies quaternion multiplication while 𝜔 
 
𝐼𝐵𝑡𝑔

† corresponds to the 

following skew-symmetric matrix:  

𝜔 
 
𝐼𝐵𝑡𝑔

† =

[
 
 
 
 
 

0 − 𝜔 
 
𝐼𝐵𝑡𝑔𝑥 

 −𝜔 
 
𝐼𝐵𝑡𝑔𝑦

−𝜔 
 
𝐼𝐵𝑡𝑔𝑧

𝜔 
 
𝐼𝐵𝑡𝑔𝑥 

 0 𝜔 
 
𝐼𝐵𝑡𝑔𝑧

−𝜔 
 
𝐼𝐵𝑡𝑔𝑦

𝜔 
 
𝐼𝐵𝑡𝑔𝑦

−𝜔 
 
𝐼𝐵𝑡𝑔𝑧

0 𝜔 
 
𝐼𝐵𝑡𝑔𝑥

𝜔 
 
𝐼𝐵𝑡𝑔𝑧

𝜔 
 
𝐼𝐵𝑡𝑔𝑦

−𝜔 
 
𝐼𝐵𝑡𝑔𝑥

0
]
 
 
 
 
 

          (11) 

 

The presence of the offset quaternion 𝑞𝐵𝐷𝑡𝑔 in the state has been already considered in [17]. It is necessary to estimate 

correctly the inertia moments. Actually, the second equation in (10), which comes from the Euler’s equation, would 

be valid also if both the angular rate and the angular momentum were expressed in any body-fixed reference system 

(𝐷 included). Notwithstanding, if the reference system remains generic, it is necessary to estimate the entire inertia 

tensor. Thus, it arises that the observer could also find a diagonal inertia tensor such that the estimated attitude would 

match the recovered 𝑞̃𝐷𝐼. However, this inertia tensor would be the one of a different body from the considered target.  

Instead, the expression of the angular rate in a principal body-fixed frame constraints the estimated inertia tensor to 

be diagonal. Thus, the observer can permute only the numerical order of the three principal moments.  



Due to this possible permutations the observable values of 𝑞𝐷𝐵 are non-unique, but there are only 6 possible rotations 

that maps the attitude of the 6 possible principal reference triads. Moreover, any of the possible solutions have the 

same practical validity.  

Following a similar procedure to the one exposed in [37] for a different estimation problem, we linearized the 

equations in (10) with respect to the considered state variables. Then, after considering random linearization points, 

under the unitary norm constraints for quaternions and inertia ratios, many local observability matrices were evaluated. 

The computed rank for those matrices was always 11. If  𝑞𝐵𝐷𝑡𝑔is considered known, that is equivalent to directly 

measure 𝑞𝐼𝐵𝑡𝑔, the rank becomes 9 against 10 unknown variables: this condition is due to the non-observability of the 

absolute values of the inertia moments. With the introduction of  𝑞𝐵𝐷𝑡𝑔 in the unknown variables, it is necessary to 

know two of the three moments of inertia to gain an equivalent condition (rank 11 against 12 unknowns).  

Actually, the introduced ambiguity does not regard the three values of the principal inertia moments but only their 

order within the state vector. However, as already mentioned, this is not a real problem because the found  𝑞𝐵𝐷𝑡𝑔  and 

𝑞𝐼𝐵𝑡𝑔 would remain always consistent with the found order.  Hence, for instance, one can express the observed angular 

rate in the inertial frame 𝐼 thus to remove any ambiguity about the motion of the target. The numerical results shown 

later on will reflect those considerations.   

For each time step, the Kalman loop can be performed until the inertia ratios converge to stable values. To determine 

this moment the variances of the inertia ratios in a moving time window could be evaluated. Once the biggest of these 

variances is smaller than a reasonable tolerance, the algorithm terminates. The resulting inertia ratios are useful to 

understand the mass distribution of the object and the location of the principal axes of inertia.  

Unscented Kalman filtering is an effective way for estimating the state of systems having a non-linear dynamics. Some 

sigma points in the state space are chosen based on the prior knowledge of the state covariance and of the expected 

value of the state. All the points are propagated undergoing the non-linear model of the system in order to predict a 

new weighted expected value and a new related covariance. Given the generic non-linear state-space equations:  

𝑥𝑘+1 = 𝑓(𝑥𝑘) + 𝑤𝑘    

𝑧𝑘 = ℎ(𝑥𝑘) + 𝑛𝑘

              (11) 



If the state has dimension 𝐿 a number of 2𝐿 + 1 sigma points 𝜒𝑖  are evaluated and propagated in accordance with the 

state covariance 𝑃𝑘 and 𝑥k [38]. The a-priori expected measurements at the instant 𝑘 + 1, which are associated to 

these sigma points, are the so called innovations: 

𝜁𝑖,𝑘+1|𝑘 = ℎ(𝜒𝑖,𝑘+1|𝑘)              ∀ 𝑖 = 0, 1, … , 2𝐿          (12) 

Two covariance matrices, the innovation covariance 𝑃𝑧𝑧𝑘 and the cross covariance 𝑃𝑥𝑧𝑘, can be then evaluated for 

computing the Kalman Gain  

𝐾𝑘 = 𝑃𝑥𝑧𝑘   𝑃𝑧𝑧𝑘
−1                (13) 

The classic additive updating stage of the Kalman loop typically does not preserve the unitary norm of the quaternions. 

For that reason, the quaternions in the state vector are renormalized after each updating stage. This brute-force 

approach is not the most elegant one but is proven to work quite well [39], [40]. 

 

IV. Chaser guidance and control strategies 

 

The chosen guidance and control strategies in the CADET mission are presented in this Section. In order to define the 

strategies, it is important to establish the adopted reference frames:  

 The ECEF (Earth Centered Earth Fixed) frame is considered a quasi-inertial frame for the mission and it has 

origin Oecef in the centre of the Earth, xecef in the equatorial plane, pointing toward the mean of the vernal 

equinox; y-axis in the equatorial plane, such that zecef = xecef × yecef; and zecef is normal to the equatorial plane 

and pointing north.  

 The Spacecraft Local Orbital frame has its origin Oo in the center of mass of the spacecraft; xo is defined 

such that xo = yo × zo (xo is in the direction of the orbital velocity vector but not necessarily aligned with it), 

yo is in the opposite direction of the angular momentum vector of the orbit and zo is radial from the spacecraft 

CoM to the centre of the Earth. In this paper, both the Target Local Orbital (xotg, yotg, zotg) frame and the 

Chaser Local Orbital frame (xoch, yoch, zoch) are taken into account. 

 The Target Body frame has origin Otg in the Target centre of mass, the direction of the axes depending on 

the Target motion and ztg= xtg × ytg forming a right handed system. 



 The Chaser Body frame has origin Och in the Chaser centre of mass, the direction of the axes depending on 

the Target motion and zch= xch × ych forming a right handed system. It is to remark that xch is the axis on 

which are mounted both the docking mechanism and the cameras system. 

A. Guidance strategies 

 

Taking into account the phases described in Section 2, three guidance strategies for each final approach phase have 

been identified: 

 During the Observation phase, the Chaser maintains the initial hold point and mounted cameras point the 

Target. In particular the desired position values are the coordinates of the hold point (-30 0 0) in the Target 

Local Orbital frame and the desired alignment of the Chaser body frame with the Chaser orbital frame is 

expressed by the quaternion qdes=[0 0 0 1].  

 During the Capture preparation phase a first fly-around maneuver leads the Chaser to intercept the capture 

axis maintaining the docking system pointing the Target. The desired final values for this phase are defined 

by the point of the individuated docking axis that is distant 30 m from the Target CoM. The desired attitude 

is defined so that the docking mechanism points the Target: it means that the xch axis shall be aligned with 

the docking axis. 

 During the Capture phase, a straight-line maneuver brings the Chaser to the docking point. The desired final 

position is the docking point that is coincident with Otg. The desired attitude is defined as for the previous 

phase. 

All the guidance strategies follow a closed loop deceleration profile. 

B. Controllers design 

 

In order to guarantee that the Chaser attitude and relative position with respect the Target follows the desired values 

for each phase, a Model Predictive Controller have been designed. 

1. Model predictive control laws 

 

Model Predictive Control (MPC) is a modern control technique, which allows taking into account future value 

prediction of the state space. MPC is based on the optimization criterion defined as: 



𝐽(𝑈(𝑘), 𝑥(𝑘|𝑘)) =  ∑ 𝐿(𝑥(𝑘 + 𝑖|𝑘), 𝑈(𝑘 + 𝑖|𝑘)) + ΦW (𝑥(𝑘 + 𝐻𝑝|𝑘))
𝐻𝑝−1

𝑖=0
     (14) 

where 𝐻𝑝 is the prediction horizon, 𝐿(. ) is the weighting function, ΦW(𝑥(𝑘|𝑘))is the terminal state weighting 

function, and  𝑥(𝑘|𝑘) is the state measurement at time k and U(k+1|k) is the control action at time k+1 given k. In 

particular, the weighting functions are characterized by: 

𝐿(𝑥, 𝑢) = 𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢             (15) 

ΦW(𝑥(𝑘|𝑘)) = 𝑥
𝑇𝑃𝑥              (16) 

where Q, R and P are symmetric positive definite matrices.  

Substituting Errore. L'origine riferimento non è stata trovata. and Errore. L'origine riferimento non è stata 

trovata. in Errore. L'origine riferimento non è stata trovata., the optimization criterion can be written as: 

𝐽(𝑈(𝑘), 𝑥(𝑘|𝑘)) = ∑ 𝑥(𝑘 + 𝑖|𝑘)𝑇𝑄𝑥(𝑘 + 𝑖|𝑘) + 𝑢(𝑘 + 𝑖|𝑘)𝑇𝑅𝑢(𝑘 + 𝑖|𝑘) + 𝑥(𝑘 + 𝐻𝑝|𝑘)
𝑇
𝑃𝑥(𝑘 + 𝐻𝑝|𝑘)

𝐻𝑝−1

𝑖=0
 (17) 

In order to set the optimization problem in a quadratic formulation, Errore. L'origine riferimento non è stata 

trovata. can be rewritten as: 

𝐽(𝑈(𝑘), 𝑥(𝑘|𝑘)) =
1

2
𝑋(𝑘)𝑇𝒬𝑋(𝑘) + 𝑈(𝑘)ℛ𝑈(𝑘)         (18) 

where: 

𝑋(𝑘) = [𝑥(𝑘|𝑘) 𝑥(𝑘 + 2|𝑘) … 𝑥(𝑘 + 𝐻𝑝|𝑘)] 

𝑈(𝑘) = [𝑢(𝑘|𝑘) 𝑢(𝑘 + 1|𝑘) … 𝑢(𝑘 + 𝐻𝑝 − 1|𝑘)] 

ℛ = [
𝑅 … 0
… … …
0 … 𝑅

]          𝒬 = [
𝑄 … 0
… … …
0 … 𝑄

] 

MPC control requires the prediction of the future states until the prediction horizon 𝐻𝑝. This is possible thanks to the 

augmented system described by: 

𝑋(𝑘) = 𝒜𝑥(𝑘|𝑘) + ℬ𝑈(𝑘)              (19) 

where: 

𝒜 = [𝐴 𝐴2 … 𝐴𝐻𝑝]
𝑇             ℬ =

[
 
 
 
 

𝐵 0 … 0 0
𝐴𝐵 𝐵 … 0 0
… … … … …

𝐴𝐻𝑝−2𝐵 𝐴𝐻𝑝−1𝐵 … 𝐵 0
𝐴𝐻𝑝−1𝐵 𝐴𝐻𝑝−2𝐵 … 𝐴2𝐵 𝐴𝐵]

 
 
 
 

 

The cost functions of MPC taken into account the predictions are obtained substituting Errore. L'origine riferimento 

non è stata trovata. in Errore. L'origine riferimento non è stata trovata.: 



𝐽(𝑈(𝑘), 𝑥(𝑘|𝑘)) = [𝒜𝑥(𝑘|𝑘) + ℬ𝑈(𝑘)]𝑇𝒬[𝒜𝑥(𝑘|𝑘) + ℬ𝑈(𝑘)] + 𝑈(𝑘)ℛ𝑈(𝑘) =  [𝑥(𝑘|𝑘)𝑇𝒜𝑇𝒬𝒜𝑥(𝑘|𝑘) +

𝑈(𝑘)𝑇[ℬ𝑇𝒬ℬ + ℛ]𝑈(𝑘) + 2𝑥(𝑘|𝑘)𝑇𝒜𝑇𝒬ℬ𝑈(𝑘)] = 𝑈(𝑘)𝑇𝐻𝑜𝑝𝑡𝑈(𝑘) + 𝑥(𝑘|𝑘)
𝑇𝐹𝑜𝑝𝑡𝑈(𝑘) + 𝐽(̅𝑥(𝑘|𝑘)) (20) 

where 𝐻𝑜𝑝𝑡 = ℬ𝑇𝒬ℬ + ℛ     ;         𝐹𝑜𝑝𝑡 = 2𝒜
𝑇𝒬ℬ 

The final formulation of the control problem is a constrained optimization problem, which must be solved at each time 

step: 

{
  
 

  
 
min 𝐽(𝑈(𝑘), 𝑥(𝑘|𝑘))𝐽 = min𝑈(𝑘)𝑇𝐻𝑜𝑝𝑡𝑈(𝑘) + 𝑥(𝑘|𝑘)

𝑇𝐹𝑜𝑝𝑡𝑈(𝑘)

𝑠. 𝑡.
𝑥(𝑘 + 1|𝑘) = 𝐴𝑥(𝑘|𝑘) + 𝐵𝑢(𝑘):

𝑈(𝑘) ∈ 𝕌

𝑥(𝑘 + 𝑖|𝑘) ∈ 𝕏, 𝑖 = 1,2, … , 𝐻𝑝

𝑥(𝑘 + 𝐻𝑝|𝑘) ∈ 𝕏𝐹 ⊂ 𝕏

     (21) 

where 𝕌, 𝕏 and 𝕏𝐹  are respectively the input constraint set, sate constraint set and terminal constraint set. Considering 

a quadratic criterion and a linear constraint set, the optimization problem becomes a quadratic programming problem. 

The control is applied via the Receding Horizon Principle, which is based on the following procedure at each time 

step: 

 To get the state 𝑥(𝑘) 

 To solve the optimization problem to find the solution 𝑈𝑜(𝑘) =

[𝑢𝑜(𝑘|𝑘) 𝑢𝑜(𝑘 + 1|𝑘) … 𝑢𝑜(𝑘 + 𝐻𝑝|𝑘)] 

 To apply the control action 𝑢(𝑘) = 𝑢𝑜(𝑘, 𝑘) 

2. Tracking Model predictive control 

 

The tracking model prediction control optimizes the reference tracking: in this sense, the optimization criterion 

Errore. L'origine riferimento non è stata trovata. should be modified introducing the reference vector r(k) for the 

prediction. 

𝐽(𝑈(𝑘), 𝑥(𝑘|𝑘)) = ∑ (𝑥(𝑘 + 𝑖|𝑘) − 𝑟(𝑘 + 𝑖))
𝑇
𝑄(𝑥(𝑘 + 𝑖|𝑘)𝑇 − 𝑟(𝑘 + 𝑖)) + 𝑢(𝑘 + 𝑖|𝑘)𝑇𝑅𝑢(𝑘 + 𝑖|𝑘)

𝐻𝑝−1

𝑖=0
  (22) 

Considering the augmented system Errore. L'origine riferimento non è stata trovata. and introducing the 

augmented reference vector 𝑅(𝑘) = [𝑟(𝑘) 𝑟(𝑘 + 1) … 𝑟(𝑘 + 𝐻𝑝)], Errore. L'origine riferimento non è stata 

trovata. can be rearranged as: 



𝐽(𝑈(𝑘), 𝑥(𝑘|𝑘)) = [𝒜𝑥(𝑘|𝑘) + ℬ𝑈(𝑘) − 𝑅(𝑘)]𝑇𝒬[𝒜𝑥(𝑘|𝑘) + ℬ𝑈(𝑘) − 𝑅(𝑘)] + 𝑈(𝑘)ℛ𝑈(𝑘) =

 [𝑥(𝑘|𝑘)𝑇𝒜𝑇𝒬𝒜𝑥(𝑘|𝑘) + 𝑈(𝑘)𝑇[ℬ𝑇𝒬ℬ + ℛ]𝑈(𝑘) + 2𝑥(𝑘|𝑘)𝑇𝒜𝑇𝒬ℬ𝑈(𝑘) − 2𝑅(𝑘)𝑇𝒬𝒜𝑥(𝑘|𝑘) +

2𝑅(𝑘)𝑇𝒬ℬ𝑈(𝑘) + 𝑅(𝑘)𝑇𝒬𝑅(𝑘)]         (23) 

Substituting  

𝐻𝑜𝑝𝑡 = ℬ
𝑇𝒬ℬ + ℛ     ;         𝐹𝑜𝑝𝑡 = 2 [

𝒜𝑇𝒬ℬ
𝒬ℬ

] 

the optimization criterion becomes a quadratic formulation described by: 

𝐽(𝑈(𝑘), 𝑥(𝑘|𝑘)) = 𝑈(𝑘)𝑇𝐻𝑜𝑝𝑡𝑈(𝑘) + [
𝑥(𝑘|𝑘)

𝑅(𝑘)
]
𝑇

𝐹𝑜𝑝𝑡𝑈(𝑘) + 𝐽(̅𝑥(𝑘|𝑘), 𝑅(𝑘))     (24) 

Errore. L'origine riferimento non è stata trovata. is the cost function that substitutes the Errore. L'origine 

riferimento non è stata trovata.. 

C. MPC for the Chaser trajectory 

 

The controllers design starts from the definition of the system that has to be controlled: in particular, it is crucial to 

explain the equations that describe the relationships between the Target and the Chaser motions and the equation of 

the Chaser attitude dynamics and kinematics. 

Thanks to the actual initial relative position and the maneuver time, it is possible to consider the approach as a circular 

orbit and evaluate the relative position and velocity between Chaser and Target through the Hill’s equations as: 

𝜌𝑥̈ − 2𝜃 𝜌𝑧̇ = Δ𝛾𝑥                

𝜌𝑦̈ + 𝜃
2𝜌𝑦 = Δ𝛾𝑦              (25) 

𝜌𝑧̈ + 2𝜃𝜌𝑥̇ − 3𝜃
2𝜌𝑧 = Δ𝛾𝑧               

where 𝜌𝑥, 𝜌𝑦, 𝜌𝑧 determine the relative Chaser position, 𝜃 is the angular frequency of the Target orbit, and Δγi represent 

the sum of the disturbance (i.e. aerodynamic force, solar pressure, J2 orbital perturbation, )and control forces. This 

formulation of the Hill’s equations allows reproducing the maneuver approach of the Chaser with respect to an 

arbitrary axis.  

The MPC design starts from the linearization of these equations that can be represented in the state space form as: 

𝑥̇(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵𝑢(𝑡)            (26) 



where x(t) = [𝜌𝑥 𝜌𝑦 𝜌𝑧 𝜌𝑥̇ 𝜌𝑦̇ 𝜌𝑧̇] is the state vector constituted by the three components of the Chaser position and the 

velocity with respect to the Target frame, u(t)=[Fcx Fcy Fcz] is the vector of the control forces given by the thrusters, 

and A and B are defined as follow 

𝐴 =

[
 
 
 
 
 
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2θ2

0 −θ2 0 0 0 0
0 3θ2 0 −2θ2 0 0 ]

 
 
 
 
 

               𝐵 =

[
 
 
 
 
 
 
 
 
 
0 0 0
0 0 0
0 0 0
1

𝑚𝑐

0 0

0
1

𝑚𝑐

0

0 0
1

 𝑚𝑐]
 
 
 
 
 
 
 
 
 

 

In order to maintain the computational cost acceptable, within the selected time step of 0.5 seconds, a prediction 

horizon of four is employed. 

The next step is the tuning of the MPC weighting matrices Q and R using an approach “trial and error” that leads to 

the final definition.  

𝑄 =

[
 
 
 
 
 
10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 1000 0 0
0 0 0 0 1000 0
0 0 0 0 0 1000]

 
 
 
 
 

       𝑅 = [
0.25 0 0
0 0.25 0
0 0 0.25

] 

With the command constraint given by the thrusters saturation 𝑢𝑚𝑎𝑥 = [8, 8, 8]. 

D. MPC for the Chaser attitude 

 

This section shows the design process for the Chaser attitude controller. For the purpose of the mission, it is possible 

to assume that the Target orbital local frame and the Chaser orbital local frame are oriented in the same way because 

the distance between the spacecraft is very small with respect to the orbit.  

The starting point is the definition of the Chaser attitude dynamics and kinematics equation. The dynamics of the 

attitude of a satellite is based on rigid bodies’ dynamics which gives the angular speed of the Chaser with respect to 

ECEF frame: 

𝜔̇𝐼𝐵𝑐ℎ = 𝑇𝐵𝑐ℎ − 𝐼𝐵𝑐ℎ
−1 𝜔𝐼𝐵𝑐ℎ × 𝐼𝐵𝑐ℎ𝜔𝐼𝐵𝑐ℎ          (27) 



where 𝑇𝐵𝑐ℎ is the sum of the torques acting on the Chaser (i.e. aerodynamic torque, solar pressure torque, gravity 

gradient torque, torque generated internal residual magnetic field), 𝐼𝐵𝑐ℎ is the inertia matrix of the Chaser, 𝜔𝐼𝐵𝑐ℎ  is 

the angular velocity of the Chaser with respect to the inertial frame expressed in the body frame.  

The Chaser angular velocity with respect to the orbital local frame, 𝜔𝑂𝐵𝑐ℎ ,  is: 

𝜔𝑂𝐵𝑐ℎ = 𝜔𝐼𝐵𝑐ℎ − 𝑅𝑂𝐵𝑐ℎ
𝑇 𝜔𝐼𝑂𝑐ℎ            (28) 

where 𝜔𝐼𝑂𝑐ℎis the angular velocity of the orbital frame with respect to the inertial frame and  

𝑅𝑂𝐵  = [

𝑞𝑜𝑏𝑠
2 + 𝑞ob1

1 − 𝑞ob2
2 + 𝑞ob3

2 2(𝑞ob1𝑞ob2 + 𝑞ob3𝑞𝑠𝑜𝑏) 2(𝑞ob1𝑞ob3 − 𝑞ob2𝑞𝑜𝑏𝑠)

2(𝑞ob1𝑞ob2 − 𝑞ob3𝑞𝑜𝑏𝑠) −𝑞ob1
2 + 𝑞ob2

2 − 𝑞ob3
2 + 𝑞𝑜𝑏𝑠

2   2(𝑞ob2𝑞ob3 + 𝑞𝑜𝑏𝑠𝑞ob1)

2(𝑞ob1𝑞ob3 + 𝑞ob2𝑞𝑜𝑏𝑠) 2(𝑞ob2𝑞ob3 − 𝑞ob1𝑞𝑜𝑏𝑠) −𝑞ob1
2 − 𝑞ob2

2 + 𝑞ob3 + 𝑞𝑜𝑏𝑠
2

], and 𝑞𝑂𝐵 =

[𝑞𝑂𝐵𝑆 𝑞OB1 𝑞OB2 𝑞OB3]𝑇 represent the attitude of the Chaser with respect to the orbital frame. 

The attitude kinematic equations are expressed by: 

𝑞̇𝑂𝐵𝑐ℎ = [QOB𝑐ℎ]𝜔𝐼𝐵𝑐ℎ             (29) 

where: 

[QOB𝑐ℎ] = [

−qob1 −𝑞ob2 −𝑞ob3
𝑞𝑜𝑏𝑠 𝑞ob3 −𝑞ob2
−𝑞ob3 𝑞𝑜𝑏𝑠 𝑞ob1
𝑞ob2 −𝑞ob1 𝑞𝑜𝑏𝑠

] 

The first step in the control design is the linearization of these equations about the current quaternion and angular rate 

estimation. A representation as in (26) can be obtained, where 𝑥 =

[𝑞𝑂𝐵𝑠 𝑞𝑂𝐵1 𝑞𝑂𝐵2 𝑞𝑂𝐵3 𝜔𝐼𝐵𝑥 𝜔𝐼𝐵𝑦 𝜔𝐼𝐵𝑧]𝑇, 𝑢 is the control torques given by the thrusters, and  

𝐴 =

[
 
 
 
 
 
 
 
 
04𝑥3 [𝑄𝑂𝐵𝑐ℎ]

03𝑥3
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 0
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0
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]
 
 
 
 
 
 
 
 

        ,          𝐵 =

[
 
 
 
 
 
 
 
 
 
 
0 0 0
0 0 0
0 0 0
0 0 0
1

2𝐼𝑥
0 0

0
1

2𝐼𝑦
0

0 0
1

2𝐼𝑧]
 
 
 
 
 
 
 
 
 
 

 

The next step is the manual tuning of the MPC weighting matrices Q and R using an approach “try and error” that 

leads to the final definition:  

𝑄 =

[
 
 
 
 
 
 
300 0 0 0 0 0 0
0 300 0 0 0 0 0
0 0 300 0 0 0 0
0 0 0 300 0 0 0
0 0 0 0 200 0 0
0 0 0 0 0 200 0
0 0 0 0 0 0 200]

 
 
 
 
 
 

, 𝑅 = [
0.004 0 0
0 0.004 0
0 0 0.004

] 



with the constraints given by the thruster saturation 𝑢𝑚𝑎𝑥 = [4    4    4] 
T. 

V. Results 

In order to test the proposed methodologies, the motions of the target and of the chaser spacecraft have been simulated 

with typical mathematical models. In particular, Euler equations have governed the relative attitude motion. 

Environmental perturbations and gravity gradient torque have been added to the model (see, for instance, [41] for 

more details). The Chaser has been positioned on the initial hold point with an attitude with respect to its own orbital 

frame that is expressed by the quaternion (0 0 0 1). The inertial properties of the target, the initial components of the 

angular rate in principal body axes, and the initial attitude quaternions are shown in Table 3. These values have been 

chosen in accordance with the characteristics of the considered removal mission, but they have been arbitrarily selected 

from a set of plausible values. Therefore, they are completely general from the algorithm’s point of view. 

Parameter Value Normalized Value 

𝑰𝑩𝒕𝒈𝒙 9000 kg ⋅ m2 0.2562 

𝑰𝑩𝒕𝒈𝒚 23200 kg ⋅ m2 0.6604 

𝑰𝑩𝒕𝒈𝒛 24800 kg ⋅ m2 0.7059 

𝝎𝑰𝑩𝒕𝒈𝒙  
 (𝟎) 0.150 rad/s 0.9994 

𝝎𝑰𝑩𝒕𝒈𝒚  
 (𝟎) 0.053 rad/s 0.0353 

𝝎𝑰𝑩𝒕𝒈𝒛  
 (𝟎) 0 rad/s 0 

𝒒𝑰𝑩𝒕𝒈𝑺(𝟎) −0.0220 rad -- 

𝒒𝑰𝑩𝒕𝒈𝟏(𝟎) 0.0405 rad -- 

𝒒𝑰𝑩𝒕𝒈𝟐(𝟎) 

𝒒𝑰𝑩𝒕𝒈𝟑(𝟎) 

𝒒𝑫𝑩𝒕𝒈𝑺 

𝒒𝑫𝑩𝒕𝒈𝟏 

𝒒𝑫𝑩𝒕𝒈𝟐 

𝒒𝑫𝑩𝒕𝒈𝟑 

0.7349 rad 

0.6766 rad 

−0.0022 rad 

0.0424 rad 

0.0734 rad 

0.9964 rad 

-- 

-- 

-- 

-- 

-- 

- 

 

Table 3: Initial Target conditions  

The positions of some features of the Target were calculated for each sample time of the motion simulation in order 

to obtain their trajectories. It is important to note that in real contexts each of the features of the objects could have 

the possibility of exiting from the FOV of the sensors for several time intervals.  

For that reason, the trajectory of each feature is not calculated for the whole period of the simulation but only for the 

time windows in which it is supposed into the FOV of the passive sensors. In particular, a feature is supposed to be 

into the FOV if its position vector and the normal to the Target surface in the point form an acute angle. This idea is 



typical in the field of computer graphics for removing hidden surfaces of represented objects. In particular, the 

related technique is known as backface culling [42].  

A white Gaussian noise with zero mean and 50 mm standard deviation has been added finally to the three 

coordinates of each feature. This value comes from the simulation of the feature tracking via a stereo-rig system. 

The chosen measurement model is similar to the ones in [23]  and in [43]. In particular, the perspective projection 𝜋 

has been considered for each of the two cameras composing the stereo-rig: 

𝜋( 𝜌𝑓 
𝑆 ) = [

𝜌𝑓1

𝜌𝑓2

𝜌𝑓3

𝜌𝑓2
]

 

𝑆

               (30) 

where 𝜌𝑓 
𝑆  is the position of a generic feature expressed in the characteristic reference system 𝑆 of the stereo-rig. The 

origin of 𝑆 is placed on the center of projection of the first camera. The first axis of 𝑆 is aligned with the baseline of 

the system, whose chosen length is  1 m. The third axis of S is directed upward so that the second axis is oriented 

toward depth. The projection 𝜋 has been applied for both the cameras to 106 features uniformly distributed inside a 

3m×10m×3m box having its center at [0 25 0]m in the 𝑆 frame. A white Gaussian noise having zero mean and 

5 ⋅ 10−5 standard deviation has been added to the projected points.  

After the inverse projection, the differences between the found coordinates and the original uncorrupted ones have 

been reported in Fig. 1 through three different histograms. From the latter figure the distributions of the errors 

appear Gaussian-shaped and the standard deviation of the heaviest uncertainty, which is about the depth coordinate,  

 

Fig. 4: distribution of the errors on the coordinates of 𝟏𝟎𝟔 features virtually detected at a sample time by a 

modeled stereo-rig system 



 

amounts to 50 mm. The measured coordinates should be expressed in the inertial frame: this operation is achieved 

by using a known orthonormal rotation matrix. Thought this matrix is time varying, the maximum standard 

deviation of the errors for each axis cannot exceed 50 mm due the mentioned orthonormality. 

A. Estimation of the dynamic state of the target from simulated data 

  

The first phase of the state estimation consists of the attitude recovery. In Fig. 5 the recovered scalar component of 

the quaternion 𝑞̃𝐼𝐷 is shown together with its raw observations. Missing samples have been optimally recovered with 

SALSA [33]. In addition, an efficient denoising has been achieved with this technique.  

 

Fig. 5: recovered attitude information and relative corrupted signal 

Quaternions are used to feed an unscented Kalman filter to obtain angular rate components with respect to the inertial 

frame. The efficacy of the estimation is shown in Fig.3where the estimated components are compared with the 

reference one. The estimated principal normalized moments of inertia are also illustrated inFig.3. The actual absolute 

magnitude of the volume of the inertia ellipsoid does not influence the attitude motion behavior, so the absolute 

magnitudes of the inertia moments are obviously unobservable. Fig. 4 and Fig. 5 illustrate the estimated quaternions 

𝑞𝐼𝐵𝑡𝑔 and 𝑞𝐵𝐷𝑡𝑔 . Note from the last figure that in this considered example the found 𝑞𝐵𝐷𝑡𝑔  coincides with the reference 

one, so the order of the estimated values of the principal inertia moments within the state vector is the same of the one 

of the reference values in Table 3. Due to the non-observability issue introduced by 𝑞𝐵𝐷𝑡𝑔, the found offset quaternions 

could have been different from the reference one, but not the values of the normalized inertia moments, whose order, 

however, would have resulted exchanged. This issue can only provide graphical difficulties in presenting the results 

due, for example, to the permutation of all the components of the angular rate. From the technical point of view no 



difficulties occur because the complete estimated state would remain one of the equivalent valid representations of 

the target dynamics.   

 

Fig. 6: estimated angular rate and inertia ratios. The estimation errors stabilize at about 700 seconds 

(simulation time) 

 

Fig. 7: estimated attitude quaternions 𝒒𝑰𝑩𝒕𝒈 

 

 



 Fig. 8: estimated offset quaternions 𝒒𝑫𝑩 

 

 

The angular rate error behavior is shown in Fig.8. The errors have a non-random behavior, but the mean value of each 

error component is less than 10−5 rad/s. The three root mean square errors (RMSE) are respectively equal to 7 ⋅

10−4 rad/s, 5.5 ⋅ 10−3 rad/s and 5.4 ⋅ 10−3 rad/s. Maximum errors are in the order of 10−2 rad/s. 

The errors in the estimation of the attitude quaternions 𝑞𝐼𝐵𝑡𝑔 are illustrated in Fig. 9. In this case, the errors seem to be 

more randomly distributed, but it is still possible to note low-frequency components. The mean values for the four 

components of the error are in the order of  10−4 rad, while the four RMSE for the quaternion components are all 

similar and in the order of 2 ⋅ 10−3 rad.  

To have a better illustration of the performances of the proposed estimation technique with simulated data, it is possible 

to see the work in [26], in which several application cases are discussed. 

 

Fig. 9: errors in estimating angular rate 

 

Fig. 10: errors in estimating attitude quaternions 𝒒𝑰𝑩𝒕𝒈 

 

 



 

 

 

B. Experimental validation of the technique for the attitude recovery  

 

The proposed method for attitude recovery via compressive sampling techniques was not tested only on simulated 

data but also in a laboratory environment. Clearly, the realization of a mock-up of the target that moves according to 

the laws of the celestial mechanics is an extremely difficult task, also in the case in which only the attitude dynamics 

should be reproduced. Indeed, there are not existent facilities that are capable of fully simulating the mentioned 

dynamics 

The most famous laboratories that simulate the relative dynamics between satellites are more focused on the orbital 

dynamics. Typically, the test-bed comprises a flat-floor or a granite table facility in which frictionless motion is 

achieved by releasing compressed air from appropriate tanks within the mock-ups of the satellites.  Two examples of 

this kind of laboratories can be found in [44] and [23]. There are also few other laboratories in which the mock-ups of 

the satellites are mounted on manipulators to better simulate the relative attitude dynamics. One example is in [45]: 

the air bearings for the two mock-ups support gimbals for allowing a 3 DOF attitude motion for the mock-ups. 

However, with that structure, the rotations of the mock-ups remain limited to few tens of degrees. 

Politecnico di Torino does not own a specific facility for simulating spacecraft in formation flying. However, within 

the CADET program, Aviospace S.r.l. developed a test rig for the partial simulation of the relative motion between 

target and chaser satellites during a removal mission. The developed laboratory environment was called CADETLab 

[30]. This test-bed comprises a cylindrical-shaped target mock-up mounted on a mechanical architecture, which allows 

two rotational degrees of freedom and a translational one. The two rotational degrees of freedom consists of a rotation 

about the axis of symmetry of the mock-up (spinning motion), and of a rotation about a fixed axis that is parallel to 

the floor (tumbling motion). Clearly, with this architecture, the resulting attitude dynamics cannot be comparable to 

the one of a real satellite. The laboratory comprises also a monocular infrared (IR) camera for the target observation. 

A photo of the laboratory is shown in Fig.11 

The algorithms presented in this work were tested in this laboratory. A third company, whose name is Blue 

Engineering s.r.l, was responsible for the CADET research program of a first coarse pose estimation of the target 

employing the mentioned IR.  



Relying on the expectable consistent difference between the temperature of the target and the environment, Blue 

engineering exploited several known filtering algorithms to identify approximately the contour of the target. In the 

CADETLab environment, the target mock-up was appropriately heated by the usage of high-power lamps. 

 

Fig. 11: The CADETLab Environment. The IR camera is mounted on an articulated robotic arm 

 

Fig. 12: Coordinates of the point 𝑷𝟏 after the elaboration of IR images by Blue Engineering during a test 

 

 From the possession of a CAD model of the mock-up, which is equivalent to assuming the knowledge of prior 

information about the target shape, they performed a 3D rendering of the found contour. Thus, they attached three 

points to this rendered model evaluating their position for each time sample. 

The data relative to one of those three points (𝑃1, 𝑃2, 𝑃3) taken during a test are shown in Fig. 12. Note from the 

latter figure that several missing samples are present due to failures of the image elaboration process. During this test 

the target mock-up was moved imposing two constant angular velocities: 0.96 rpm for both the two degrees of 



freedom. Note that the stepper motors used to move the target were open-loop controlled, so the nominal values of 

those velocities cannot be considered perfectly reliable.  

Equation (1) is used to evaluate surrogate quaternion measurements 𝑞𝐷𝐼 to which apply the presented technique for 

recovering attitude. Because of the inconsistency of the time evolution of the recovered attitude with the process in 

(10), the recovered 𝑞̃𝐼𝐷 was used to feed a Kalman filter with a simple triple integrator model: 

                             
            𝑥𝑘+1 =

[
 
 
 
𝑞̃𝐼𝐷 
 

 

𝑞̇̃𝐼𝐷
𝑞̈̃𝐼𝐷 
 ]
 
 
 

𝑘+1

    ; 𝑥𝑘+1 = [
𝟏 𝑡𝟏

𝑡2

2
𝟏

𝟎 𝟏 𝑡𝟏
𝟎 𝟎 𝟏

] 𝑥𝑘 +𝑤𝑘

            

                                             (31) 

where  𝟏  is an identity matrix of proper dimension and 𝟎 is an appropriate null matrix. The inertia ratios are not 

observable due to the mentioned inconsistency. The angular rate 𝜔𝐼𝐷 is obtained through:  

 

𝜔𝐼𝐷 = 2( 𝑞̃𝐼𝐷 
 

𝑆
𝑞̇̃𝐼𝐷𝑉 − 𝑞̃𝐼𝐷 

 
𝑉
𝑞̇̃𝐼𝐷𝑆) − 2 𝑞̃𝐼𝐷 

 
𝑉
× 𝑞̇̃𝐼𝐷𝑉          (32) 

 

where 𝑞̃𝐼𝐷 
 

𝑉
is the vectorial part of the quaternion 𝑞̃𝐼𝐷 

 . The estimated  𝜔𝐼𝐷 is the unique quantity that can be compared 

with the reference values of the angular speed imposed to the two stepper motors that guide the mock-up. Figure 13 

illustrates the result of the estimation after the attitude recovery. Figure 14 and Fig. 15 provide the same estimated 

angular rate split into the two components according to the two motion primitives of the mock-up.  

 

Fig. 13: Estimated angular rate of the target mock-up during a test 



 

Fig. 14: Estimated spinning rate of the target mock-up during a test 

 

 

Fig. 15: Estimated tumbling rate (rotation axis parallel to the floor) of the target mock-up during a test 

 

The two components were obtained by knowing that the constant angle formed by the two rotation axes was 76 deg. 

The mean value of the estimated spin rate is equal to 0.934 rpm, so a bias of  0.026 rpm, equal to 2.7 ⋅ 10−3 rad/s, 

exists with respect to the nominal value of 0.96 rpm. The difference between the maximum and the minimum 

deviations over all the observation time is equal to 0.09 rpm, that is 9.4 ⋅ 10−3 rad/s. 

The mean value of the estimated tumbling rate is equal to 0.965 rpm while the nominal value was 0.96 rpm. Thus, 

bias is negligible in this case. The difference between the maximum and the minimum deviations from the mean value 

is equal to 0.021 rpm, whose corresponding value in rad/s is 2.2 ⋅ 10−3. Those results are quite encouraging and are 

completely in line with the results obtained from simulated data.  

C. Catching maneuver   

 

The second and third phases on the mission profile consist of the execution of the fly around and the straight line 

maneuvers, respectively. Once the angular velocity of the target has been estimated, it is possible to determine the 

rotation axis, considered as mating axis. Starting from the normalized values of the estimated angular velocity (𝜔𝑛𝑜𝑟𝑚
𝑖𝑏 ) 



of target-wrt inertial frame the corresponding value in orbital frame is evaluated via the rotation matrix, characterized 

by the orbital parameters as: 

𝜔𝑇𝑂𝐿
𝑇 = 𝐿𝑏𝑇𝑂𝐿𝜔𝑖𝑏

𝑇  

The desired attitude for the whole duration of the final approach is the target pointing mode as showed in Fig. 16  

 

Fig. 16: Example of chaser pointing attitude 

A simple algorithm is used to compute the director cosines matrix 𝑅𝑇𝑃 (subscript TP indicates target-pointing frame) 

of the reference chaser attitude based on its rotation axis as: 

𝑅𝑇𝑃 = [𝑎1 𝑎2 𝑎3] =            →                    {

𝑎⃗1 = −𝑐𝑎0                  

𝑎⃗3 = 𝑐𝑎0 ∧ 𝑌⃗⃗𝑇𝑂𝐿
𝑎⃗2 = 𝑎⃗3 ∧ 𝑎⃗1        

 

where: 

 𝑐𝑎0is the desired capture axis equal to the instantaneous rotation axis  

 𝑌⃗⃗𝑇𝑂𝐿 = [0 1 0] – Y-axis of the Target orbital local frame 

The director vectors 𝑎1,𝑎2 and 𝑎3 form an orthonormal frame of reference with: 

 X-axis oriented in the same direction of the relative position vector, toward the target. 

 Y-axis oriented normal to X-axis and 𝑌𝑇𝑂𝐿  

 Z-axis which forms a right-handed orthonormal frame 



The Chaser attitude will head towards the target orbital reference frame, in order to guarantee the correct attitude and 

approach to the target, with respect to the capture axis. This reference frame is evaluated with respect to the Y orbital 

local frame due to the unsafe manoeuvre related to a Z (R-bar) approach. 

Fig. 17 reports a representation of the tumbling axis approach manoeuvre: 

 

Fig. 17: Tumbling axis approach manoeuver 

Concerning the motion of the capture axis related to the target body, which describe a cone following the periodic 

motion of the angular momentum vector as shown in Fig. 18, it is possible to estimate the position of the rotation axis 

at the end of the rendezvous maneuver. 

 

Fig. 18: Tumbling axis motion in target orbital reference frame 



This approximation takes into account margin for the uncertainties related to the estimation process, indeed, thanks 

to the chosen approach it is possible to compensate those during the close approach maneuver. 

Normalizing the estimated angular velocity, in orbital reference frame, the estimated mating axis at the end of the 

rendezvous maneuver is defined as [-0.95022, 0.2986, 0.0885]. In this way, it is possible to define the line that has 

origin in OCH and inclination 17.37°, -5.32° and 0.1° with respect to, respectively, x-axis, y-axis and z-axis of the 

Chaser Local Orbital Frame, that are the desired values for the attitude controller.  

Fig. 19 shows the trend in time of the three components of the relative position between Chaser and Target in the 

Target orbital frame. The two phases of maneuver are highlighted: the fly-around maneuver lasts about 245, until the 

tumbling axis is intercepted in the point [-28.88, 8.73, 2.61] m with respect to the Target Local Orbital frame. In the 

second phase, the straight line maneuver along the tumbling axis is performed in about 325 seconds. The complete 

maneuver lasts about 570 seconds.  

 

Fig. 19: Relative position between Chaser and Target Local Orbital frame 

Fig. 20 shows the highlights of the velocity trends in the two phases: the docking point is reached with a lateral 

velocity of 0.008 m/s and an approach 0.009 m/s a. 



 

Fig. 20: Highlights of the relative velocity in the two phases of maneuver 

Fig. 21 shows the trend in time of the Chaser attitude, expressed as Euler angles, on the left. In particular dotted 

lines indicate the desired attitude and the full lines represent the actual attitude value. In particular, the figure shows 

the details of the attitude during the fly-around maneuver (on the left) and the straight-line approach (on the right), 

underlining the capability of the controller to track the reference value. At the mating point, the angular misalignment 

is less than 0.01 deg with respect to the desired attitude for any axis. 

 

Fig. 21: Attitude highlights in the two phases of maneuver 



The Chaser angular velocity for the two phases of maneuver is shown in Fig. 22. During both the phases the angular 

velocity is very low with a peak of less than 0.3 deg/s and, at the mating point, the angular velocity is less than 0.01 

rad/s. 

 

Fig. 22: Chaser angular velocity for the two phases of maneuver 

Table 4 summarizes the final values of the parameters at the docking point. It is noticed that all the performances 

required for a soft-docking approach have been reached. 

 

 

 Final Value  

at mating point 

Required  

Performance 

Approach velocity [m/s] 0.008 <0.03 

Lateral alignment [m] 0.032 <0.20 

Lateral velocity [m/s] 0.011 <0.05 

Angular misalignment [deg] 0.01 <1 

Angular rate [deg/s] 0.009 <0.05 

Table 4: comparison between required and obtained requirements 

VI. Conclusion 

The paper deals with the final approach and mating for spacecraft close proximity operations in missions of active 

debris removal providing new solutions both for the on orbit estimation of the target motion and for the final 

maneuvers strategies. The target motion and physical properties are estimated through the analysis of images taken 

from the final hold point: the target inertial matrix and angular velocities derive from the analysis of particular features 



individuated on the pictures handled thanks to the application of the innovative algorithms proposed in this paper. The 

knowledge of the target motion allows the definition with good confidence of the rotation axis of the target with 

respect to the target body frame. The rotation axis becomes the mating axis in the guidance strategies it means that 

final approach can be performed along a wider range of axes with respect to the well-known and traditional axes 

(mainly, V-bar and R-bar). The proposed controller can drive the chaser spacecraft to the desired position and attitude 

precisely in approach of space target. It takes into account crucial aspects such as the trajectory tracking control and 

the input constraint control.  

The obtained results are very promising and encourage a future deeper investigation. Future works should focus on 

reducing the assumptions needed for an accurate estimation of the target attitude: the current algorithm needs the 

knowledge of the relative positions of the tracked features in a neutral reference frame, such as a CAD model of the 

target. From the guidance point of view, future activities should be addressed to extend the range of possible guidance 

approaches (for example, considering the fly-around maneuvers) in order to cover the widest possible range of final 

approach maneuver. For the control aspects, future works should be based on complicating the problem by extending 

the strategies in this work, considering finite-time control and more stringent input constraints as well as enrich the 

presented model with other uncertainties parameters. 
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