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Experimental Validation of Time-Synchronized
Operations for Software-defined Elastic Optical

Networks
Anderson Bravalheri, Miquel Garrich A., Abubakar Siddique Muqaddas, Paolo Giaccone and Andrea Bianco

Abstract—Elastic Optical Networks (EON) have been proposed
as a solution to efficiently exploit the spectrum resources in the
physical layer of optical networks. Moreover, by centralizing
legacy Generalized Multi-Protocol Label Switching (GMPLS)
control-plane functionalities and providing a global network
view, Software Defined Networking (SDN) enables advanced
network programmability valuable to control and configure the
technological breakthroughs of EON. In this paper, we review
our recent proposal [1] of time-synchronized operations (TSO)
to minimize disruption time during lightpath reassignment in
EON. TSO have been recently standardized in SDN and here
we discuss its implementation using NETCONF and OpenFlow
in optical networks. Subsequently, we update our analytical
model considering an experimental characterization of the WSS
operation time. Then, we extend our previous work with an
experimental validation of TSO for lightpath reassignment in a
five-node metropolitan optical network test-bed. Results validate
the convenience of our TSO-based approach against a traditional
asynchronous technique given its reduction of disruption time
while both techniques maintain a similar network performance
in terms of optical signal-to-noise ratio (OSNR) and optical power
budget.

Index Terms—Elastic optical networks; Software defined net-
works; Time-synchronized operations.

I. INTRODUCTION

TRAFFIC volumes in carrier networks keep growing dra-
matically, driven by the proliferation of high-bandwidth

services and applications. To address this challenge, Elas-
tic Optical Networking (EON) enables an efficient use of
spectrum resources valuable to extend the lifetime of already
deployed optical fibers [2]. EON performs flexible frequency
allocation in the network using reconfigurable optical add/drop
multiplexers (ROADMs) [3] and bandwidth-variable transmis-
sion techniques [4]. In particular, EONs use the spectrum
resources of the data plane following the guidelines reported in
the ITU-T Recommendation G.694.1 from 2012 [5]. However,
the migration from classical wavelength division multiplexed
(WDM) fixed-grid spectrum allocation towards flexible EON
may require notable long-term investments [6] or gradual
migration of the wavelength selective switch (WSS) equip-
ment [7]. Moreover, telecom operators face operational chal-
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lenges in order to manage such a diverse multi-technology sce-
nario which may also include multi-vendor equipment interop-
erability issues [8]. In more detail, [8] reports a demonstration
of interoperability between multi-vendor optical equipment
with the need to adapt several interfaces just to perform an
experimental end-to-end resource provisioning. Indeed, these
operational challenges may endanger the potential deployment
of next-generation flexible-rate transponders and EONs [9].

To address these challenges, novel Software Defined Net-
working (SDN) approaches [10] enable advanced control and
configuration features suitable for the breakthrough technolo-
gies of the EON data plane. Although legacy Generalized
Multi-Protocol Label Switching (GMPLS) / Path Computation
Element (PCE) architectures already offered a fully separated
control plane from the control plane, SDN enhances network
programmability via open programmatic interfaces, reduces
vendor lock-in issues, and permits innovation and evolution
of the network infrastructure [11]. In particular, academic ini-
tiatives to control optical components recently proposed open
YANG models [12] for EON [13]. In this research direction,
YANG models have been proposed for monitoring function-
alities in EONs [14] and specific models to manage sliceable
transponders [15]. More recently, specific NETCONF protocol
features and YANG models have also been proposed to address
optical network failure issues [16]. On the industrial side, the
recent OpenROADM standardization initiative [17], proposes
an interface for multi-vendor ROADM access and configura-
tion based on YANG models. More specifically, OpenROADM
targets the disaggregation of traditionally proprietary ROADM
systems and SDN-enablement of traditionally fixed ROADMs.

In the EON data plane, routing and spectrum assignment
(RSA) schemes allocate lightpaths ensuring that a set of
frequency slots (FS) are continuous throughout the routing
path [18]. Connections in EON are established (and removed)
dynamically, thus potentially leaving sparse FS that become
difficult to use by the RSA to reduce blocking probability.
This fragmentation problem has been recently addressed with
hitless defragmentation techniques able to reallocate the light-
path frequencies without traffic disruption. Examples are the
push-pull technique [19], which allows spectrum retuning only
over contiguous vacant FS from the source to the destination
frequency; and the hop-retuning technique [20], which strictly
requires a number of photodetectors equal to the number of
FS. Due to system complexity, the former technique is usually
preferred over the latter. However, even with RSA schemes
combined with push-pull [21], high-load scenarios may drive
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the network towards the so called “end-of-line situations” lim-
iting the potential benefits of EON [22]. End-of-line situations
are defined by [22] as cases in which a lightpath obstructs
push-pull spectrum defragmentation or non-continuous vacant
FS contribute to network blocking. These situations require
lightpath rerouting to exploit the remaining capacity not being
used by existing RSA and defragmentation techniques, albeit
in a non hitless manner.

In this context, SDN could be exploited to address this
challenge. In particular, time-synchronized operations (TSO),
have been recently proposed in the form of southbound pro-
tocol extensions to coordinate distributed operations simulta-
neously [23]. Indeed, TSO are gaining interest in the research
community as an SDN feature capable to improve network
performance [24] and to develop novel applications [25].

In this paper, we review our recent proposal [1] of TSO for
EON to address end-of-line situations efficiently performing
lightpath rerouting to minimize the disruption time. We discuss
the implementation of our proposal using the existing proto-
cols, and we show the benefits in a test scenario comparing
performance against traditional asynchronous operations.

The novel contribution with respect to [1] is an exper-
imental validation of TSO for lightpath reassignment in a
five-node metropolitan optical network test-bed. We compare
the network performance in terms of optical signal-to-noise
ratio (OSNR) and optical power budget between our TSO-
based approach and the traditional asynchronous technique.
We observe that both techniques maintain a similar network
performance, thus validating the convenience of the TSO-
based approach given its reduction of disruption time.

II. AN END-OF-LINE SCENARIO: NON-CONTINUOUS
VACANT FS

In this section, we provide an example of end-of-line situa-
tion to illustrate the need for lightpath rerouting to better ex-
ploit the remaining optical spectrum resources. Then, we detail
the traditional asynchronous technique commonly employed in
non SDN-enabled networks to address these situations

Fig. 1 shows an example of end-of-line situation due to
non-continuous vacant FS in a network assuming 6 FS per
link. The numbers in the spectrum indicate the number of
allocated FS. Initially, assume that there are 4 lightpaths in the
network. Thus 1 FS is available in both A-B-D and A-C-D
paths. Let us assume a new lightpath requests 2 FS from A to
D. Note that defragmentation would not increase the available
FS in each link to accommodate this new lightpath. Therefore,
either this new request is rejected or existing lightpaths need
to be rerouted. The latter case is preferred, as shown in
Fig. 2, because it reduces the network blocking probability.
Rerouting in Fig. 1 requires swapping lightpaths to achieve
the configuration in Fig. 2.

We define as asynchronous (ASY) approach the technique
that executes the operations asynchronously as depicted in
Fig. 3a. The ASY approach addresses the end-of-line situation
shown in Fig. 1 to achieve the network state in Fig. 2
performing the following four operations. First, L3 is disrupted
sending tear-down requests to all the nodes. Second, L1 is
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Fig. 2: Re-routing to accommodate a new lightpath

rerouted from A-C-D to A-B-D with two commands tear-
down and setup for its migration. Third, L3 is now setup in
its new route A-C-D. Finally, the new lightpath L5 can be
allocated on A-B-D and the network state depicted in Fig. 2
is achieved. Note that this operation of lightpath swapping
implies a non-negligible disruption time for L3. Nonetheless,
it worthwhile mentioning that differently from the sequence
illustrated in Fig. 3a, the reassignment of L1 could be per-
formed without any disruption time just by implementing
Make-before-Break (MbB) technique as specified in RSVP-
TE [26]. In particular, given that spectrum resources are made
available using overprovisioning in the A-C-D path by tearing
down L3, L1 can be setup in this new route before tearing
down its initial allocation in A-B-D. However, note that MbB
for L1 does not reduce the disruption time for L3.

III. TIME-SYNCHRONIZED OPERATIONS FOR EON

In this section, we review our recent proposal [1] of time-
synchronized operations (TSO) for EON which leverage on
recently provided features in SDN. Simultaneous operations
can be coordinated using timestamps within industry-standard
southbound configuration messages. In the case of lightpath
swapping, our approach operates as shown in Figs. 3b and 3c.

In case of NETCONF, time extensions to the protocol
have been recently published as an RFC [27]. The SDN
controller sends a scheduled-RPC message to the optical node
to execute an operation at a specific time. Note that NETCONF
does not provide the capability to bundle operations natively.
Therefore, one command per operation is issued and scheduled
using timestamps in a sequential manner accounting for the
configuration time as shown in Fig. 3b (i.e. four operations
same as ASY). We refer to this implementation as Native-
NETCONF (N-NC). Indeed, similarly as for the ASY case,
the commands required to reroute L1 could be inverted (i.e.,
setup before tear down) implementing the MbB approach so
that L1 does not experience any disruption time. Nonetheless,
an Intelligent Agent can be implemented either at the SDN
controller or at the optical node that processes NETCONF
(IA-NC) messages to group several operations into a single
configuration [28].

In case of OpenFlow (OF), two features are included in its
latest version 1.5 [29]: a bundle of operations can be executed
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Fig. 3: Asynchronous vs. TSO-based approaches in NETCONF and OpenFlow. Source node corresponds to A, intermediate
nodes correspond to B and C, and destination node corresponds to D, respectively, in Figs. 1 and 2.

simultaneously [10], and this bundle can be scheduled for
execution at a given time, as shown in Fig. 3c. The scheduling
of the bundle depends on the node with the maximum sum of
the configuration time plus the half round trip time (RTT).
In Fig. 3c, we assume that this is the case of the destination
node and it starts to execute the bundle of operations at time
TX and it acknowledges the SDN controller at time TY after
it finishes its configuration. Given that all other nodes have
a configuration time smaller than the destination node, their
configuration can be done within the time interval between TX

and TY . By doing so, the smaller configuration times in other
nodes compared to the maximum case (destination node in Fig.
3(c)) become transparent to the disruption time. Indeed, this
relaxes the requirement of full time-synchronization for the
OF approach. Bundling commands in OF requires opening
a session by the SDN controller to the optical node with a
bundle-open message. Thereafter, multiple commands are sent
to the optical node to be added to the bundle. This is followed
by a bundle-commit message to specify the time at which
the bundle should be executed. Note that bundling network
operations by means of the OF bundling feature differs from
launching an application (e.g., script file or program) at the
SDN controller that issues multiple commands to a given
network node. For instance, multiple WSS configurations for
different spectrum filtering patterns could be merged into a
single WSS filtering pattern modification within a bundle.
However, the approach using the multiple-command applica-
tion would update the WSS filtering pattern upon receiving
each command separately. It is worthwhile mentioning that OF
and IA-NC cause the same disruption as both implementations
permit to bundle several operations as a single configuration.
Hence, we refer to them as OF/IA-NC while evaluating their
performance.

The temporal accuracy of the time-synchronized approach
depends on the maximum value of two contributions. On the
one hand, we consider the worst-case configuration time of

all optical nodes involved in the reconfiguration. This time
depends on several factors including the common coexistence
of data-plane devices from different vendors in carrier-grade
optical networks, the dependence of the configuration time on
current load of the agent at the optical node, aging issues or
other random behaviors. However, this worst-case configura-
tion time can be estimated with some error considering the
average reconfiguration time with respect to the load (see Fig.
4(b)). On the other hand, worst-case synchronization error
among devices needs to be taken into account. To this end,
local clocks at the optical nodes can be synchronized with a
reference clock using Precision Time Protocol (PTP), or an
improved version named ReversePTP [30]. Indeed, given the
accuracy of up to 1 µs provided by ReversePTP makes its
contribution to the TSO inaccuracy negligible compared to
optical configuration times which are in the order of seconds.

In summary, the efficiency of the TSO approach improves
with better time accuracy and better knowledge of the recon-
figuration time. In this work, given that all the schemes under
analysis (ASY, N-NC, OF) are affected by these worst-case
considerations, the current conclusions hold. Consequently, we
leave further analyses on these two problems outside the scope
of our work.

IV. ANALYTICAL EVALUATION OF TSO

In this section, we evaluate the disruption time of ASY,
N-NC and OF/IA-NC, considering the lightpath swapping
scenario of Sec. II.

We assume that each node i has a constant configuration
time ci regardless of the operation. The ASY approach is com-
posed of four operations: tear down L3, tear down L1, setup L1

and setup L3. Each operation lasts for top = maxi(RTTi+ci),
where RTTi is the Round Trip Time between the SDN con-
troller and node i. Thus, the total disruption time experienced
by lightpath L3 is tASY = 4×top−mini(RTTi/2), where the
second term is subtracted because the disruption starts when
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the nearest node receives the tear-down message from the
controller. The N-NC approach concatenates four operations,
similar to ASY. Hence, the disruption time is tN−NC =
3maxi(ci) + maxi(ci + RTTi/2), where the second term is
due to the last operation in which the controller receives an
ACK. The OF/IA-NC permits simultaneous operations, thus
the disruption lasts for tOF/IA−NC = maxi(ci +RTTi/2).

In order to evaluate the impact of the configuration time
of the WSS devices on the lightpath disruption time, we
review our recently reported experimental results [28], [31]. In
particular, a SDN controller makes use of a standard protocol
(e.g., a REST interface) to communicate with the firmware
of the WSS (Fig. 4(a)). Leveraging on YANG models, the
SDN controller can issue specific requests to the firmware
of the WSS. For example, the attenuation of any given WSS
device at any desirable position of the optical spectrum can
be arbitrarily set by the controller. Fig. 4(b) reports the time
that is required to perform a change of attenuation in the WSS
device as a function of the number of wavelengths for which
the attenuation is being adjusted. More specifically, the empty
squares report the time requirement as specified by the WSS
device manufacturer. The solid squares report the time required
to complete the operation inclusive of the control signaling,
the firmware execution time and the WSS operation. (The
signaling propagation time between the SDN controller and the
optical node is negligible.) During the experiment, the applied
attenuation for a given group of wavelengths is changed
from maximum to minimum and vice versa. The number of
wavelengths being switched is varied. Results reported in Fig.
4(b) are the average of ten experiments in two WSS devices
and exhibit a linear dependence on the number of channels
to be configured with minimal standard deviation (confidence
intervals using vertical lines are not reported for the sake of
legibility) as in [31]. The curve indicates that the time required
to complete the adjustment of the WSS-applied attenuation
is proportional to the number of wavelengths for which the
attenuation is being adjusted.

Considering the above reported experimental results that

Fig. 4: (a) System modules for WSS control in the optical
network test-bed. (b) Time required for a single WSS operation
vs. the number of wavelengths. Empty squares report manu-
facturer specifications (upper bound for the WSS hardware
configuration time) and solid squares report experimental
measurements of a complete operation cycle, i.e., service time
(average of ten experiments in two WSS devices)[28], [31].
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characterize the WSS operation time, Fig. 5 shows the dis-
ruption time as a function of maxi(ci) ∈ [3, 7] and number
of wavelengths ∈ [1, 80] with constant RTT . Note that
the proportional dependence between the configuration time
required by a WSS and the number of wavelengths it is
required to adjust permits the double x-axis depicted in Fig. 5.
OF and IA-NC outperform ASY and N-NC as they bundle all
the operations in a single configuration instead of four, thus
reducing the disruption time by 75%.

Finally, Fig. 6 explores the disruption time for a constant
ci = 50ms, ∀i, small enough to observe the impact of the
maxi(RTTi). Note that a ci = 50ms is consistent with Mi-
croelectromechanical systems (MEMS) technology employed
in fiber switches [32]. As in the previous analysis, the bundling
feature in OF and IA-NC reduces the communication rounds
between the optical nodes and the controller, thus reducing the
disruption time due to RTT . Consequently, as RTT increases,
the reduction grows from 75% to 83.3% when comparing
OF and IA-NC against ASY. Furthermore in this case, N-NC
performs better than ASY but worse than OF/IA-NC.

V. EXPERIMENTAL VALIDATION OF TSO

In this section, we first provide an overview of the five-node
metropolitan optical network test-bed where the experiments
are performed. Then, we detail the experimental setup that
emulates the end-of-line scenario shown in Fig. 1. Finally, we
report and discuss the experimental results.

A. Optical network test-bed overview

The experimental results of this work are obtained using an
SDN-enabled five-node metropolitan optical network test-bed
located at CPqD [28]. More specifically, the network test-bed
comprises 4 ROADMs of degree 3 and a central ROADM of
degree 4 interconnected to form a partial mesh topology using
100-km single mode fiber (SMF) links as shown in Fig. 7
The ROADM nodes architecture is broadcast-and-select (B&S)
using one splitter per input port and one WSS per output port.
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In particular, The WSS devices are from Finisar and belong
to its ROADMs & Wavelength Management product portfolio.
More specifically, 1×5 Flexgrid® WSSs1 acquired in 2010 are
used in the central ROADM, whereas 1×4 Flexgrid® WSSs2

acquired in 2012 are used in the ROADMs at the edges of the
network. EDFAs are placed at each input and output port to
compensate for span and node losses. No physical dispersion
compensation modules are used. The transmitter is composed
of 80 continuous wave (CW) lasers with 50 GHz channel
spacing. Each CW is modulated by four multiplexed lines of
32 Gb/s (PRBS 231 − 1), obtaining 80 128-Gb/s DP- QPSK
orthogonal channels. Transmission impairments and non-linear
effects are assumed to be compensated at the receiver (out of
the scope of this work).

B. Experimental setup

In order to investigate the approaches described in Sec-
tions II and III for introducing new connections in an end-
of-line situation, two experimental tests are carried out using

1Product Code: 10WSPA05ZZL. Discontinued product. Preliminary
version of the current 1×9 and 1×20 WSS devices detailed in
https://www.finisar.com/roadms-wavelength-management/10wsaaxxfll3

2Product Code: EWP-AA-104-96F-ZZ-L https://www.finisar.com/roadms-
wavelength-management/ewp-aa-010x-96f-zz-l

TABLE I: Lightpath characteristics before (top) and after
(bottom) the introduction of L5. The listed channels are
represented by the central frequency.

No. Channels Physical Path First Channel Last Channel

L1 13 p2 192.8 THz 194.0 THz
L2 20 p2 194.1 THz 196.0 THz
L3 20 p1 192.8 THz 194.7 THz
L4 13 p1 194.8 THz 196.0 THz

L1 13 p1 193.5 THz 194.7 THz
L2 20 p2 194.1 THz 196.0 THz
L3 20 p2 192.1 THz 194.0 THz
L4 13 p1 194.8 THz 196.0 THz
L5 13 p1 192.2 THz 193.4 THz

the metropolitan optical network test-bed. Both tests consist
of configuring the network to present an initial state and after
it requiring the establishment of a new lightpath.

In the first experiment, the SDN controller is configured
to sequentially send commands corresponding to setup and
tear-down operations for each individual lightpath, according
to the ASY approach. By contrast, in the second experiment,
the SDN controller is configured to send only one command
for each piece of equipment, reconfiguring all the lightpaths
simultaneously, according to the TSO approach.

During the tests, a set of lightpaths Ln similar to those
shown in Fig. 1 and Fig. 2 are defined, although, the branched
topology is replaced by a plain one, with all lightpaths starting
at node 1 for simplicity. The set of lightpaths are routed in the
test-bed though two link-disjoint physical paths composed by
the outermost nodes of the test-bed. In particular, as shown in
Fig. 7, p1 traverses nodes 1, 3 and 4; and p2 traverses nodes 1,
2 and 4. Table I shows detailed information of each lightpath.

Note that when the DWDM 80-channel comb is launched
into the network, the WSS at the first ROADM is used to
filter undesired (interleaved) channels in order to generate a
40-channel scenario. This spacing is used to observe the noise
power, thus the OSNR can be precisely estimated.

In the first experiment, the sequence of the SDN controller
actions start at six different moments (likewise Fig. 3a):

t0 – stablish initial state
t1 – tear-down L3

t2 – tear-down L1

t3 – setup L1

t4 – setup L3

t5 – setup L5

On the other hand, in the second experiment, the sequence
of the SDN controller actions start at two different moments
(likewise Fig. 3b):

t0 – stablish initial state
t1 – reroute lightpaths
After each action of the SDN controller, the optical spectra

and powers for all nodes of the network are measured with an
optical spectrum analyzer. The average OSNR and spectrum
tilt (maximum difference of power among all channels) are
also calculated at the last node of the physical paths. Since
the first node of the path is used to select the input channels,
the acquisition is performed after the WSS of this node, and
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Fig. 8: Optical spectrum of the received signal at the last node
of p1, before (top) and after (bottom) the introduction of L5

for both techniques.

due to the node architecture, the measured power corresponds
to 3/40 of the WSS output power. For the other nodes, the
acquisition is performed before the WSS, and due to the node
architecture the measured power corresponds to 1/6 of the am-
plifier output power. Therefore, different power levels between
the first ROADM and the subsequent ones are expected due
to the different monitoring points inside the B&S architecture.
Finally, it is worth mentioning that the attenuation performed
at the WSSs is only applied to route the channel signals across
the network, and is not applied to equalize each individual
signal power. This choice is meant to better explore the
physical layer implications in terms of power tilt across the C-
band, and enables us to properly focus on the performance of
the TSO-based approach against the traditional asynchronous
technique. Future works may combine the current proposal in
simultaneous operation with equalization techniques.

C. Experimental results and discussion

Figs. 8 and 9 show the optical spectrum of the signal
received at the last node of each optical path, for both
approaches in the initial and final states. In all charts, the curve
for the TSO-based approach virtually overlaps the curve for
the ASY technique. This result was already expected, since the
channel configuration is the same, regardless of the technique,
before and after the rerouting procedure. Interestingly, the
optical power for the individual channels changes after the
techniques are applied, as noticeable in the spectral region
around 195 THz. These changes are a consequence of the
non-linear dynamic behavior of the optical amplifiers whose
gain profile depends on the input spectrum shape as a whole,
but not only on the input power. A power tilt variation between
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Fig. 9: Optical spectrum of the received signal at the last node
of p2, before (top) and after (bottom) the introduction of L5

for both techniques.

initial and final states can be observed (but not between the
two approaches), since no flattening technique is used neither
in the amplifiers nor in the WSSs, and this power tilt also
changes after the introduction of the lightpath L5.

The impression that the chosen technique do not impact
in the system performance in terms of signal quality, as
suggested by the previous figures, is quantized by Table II,
where performance indicators for the final state of the network
are compared. The indicators for both techniques are hardly
distinguishable.

Fig. 10 illustrates the changes in the optical power for
all nodes, after each action of the SDN controller (here
represented by the aforementioned time instants tn). The
optical power measured in the first node is one order of
magnitude (in dB) lower than the other nodes because it is
acquired in a different monitoring point, with a different split
ratio as previously mentioned. As the total number of optical
channels increase with the introduction of L5 and not all the
optical amplifiers are operating under saturation condition, an
overall power increasing is experienced between the initial

TABLE II: Comparison of the two methodologies showcasing
total power, average channel OSNR and spectrum tilt mea-
sured at the final node of the physical paths after the rerouting
procedure.

ASY TSO
p1 p2 p1 p2

Power (dBm) 4.66 2.81 4.62 2.80
OSNR (dB) 28.11 27.00 28.11 26.98
Tilt (dB) 17.44 16.95 17.47 16.96
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Fig. 10: Power fluctuations in each node of the test-bed during
the rearrangements for both techniques.
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Fig. 11: Average OSNR variation during the rearrangements
for both techniques.

and final states of the experiments. Moreover, during the first
experiment, the optical power initially decreases in the first
node, due the two consecutive tear-down operations, but raises
again with the setup operations. The curves for subsequent
nodes follow this shape, with the exception of node 4 for p1,
clearly due to a saturated amplifier.

Finally, Fig. 11 illustrates the changes in the OSNR of the
received signal in the last node after the actions of the SDN
controller. In a contrary way to the power behavior, the overall
OSNR trend decreases despite of the intermediary increase in
the first experiment. This is also a result of the non-linear
dynamic behavior of the amplifier, because with low total input
power (i.e., low number of channels) its performance in terms
of OSNR improves.

VI. CONCLUSIONS

This paper reviewed our recent proposal time-synchronized
operations (TSO) in software-defined elastic optical networks.
In particular, we employed TSO to minimize disruption time
during lightpath reassignment in EON and we discussed the
SDN implementation details with NETCONF and OpenFlow
exploiting their specific time-extensions. Then, we analytically
elaborated that a joint combination of synchronization and
bundling operations provides benefits in terms of minimizing

the lightpath disruption when swapping is required. Specifi-
cally, the TSO-based approaches OF and IA-NC outperform
the ASY and N-NC implementations.

Subsequently, as mentioned in [1], here we extended our
prior work with an experimental validation of our TSO-based
proposal in a five-node metropolitan optical network test-
bed. We developed an SDN application that emulates the
operations required by the ASY approach to compare its
performance against the TSO-based approach. Our reported
results validated the convenience of the TSO-based approach
against a traditional ASY technique given its reduction of
disruption time while both techniques exhibited close network
performance indicators (e.g., OSNR, power budget, spectrum
tilt) after preforming the lightpath swapping.
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