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Abstract Consider a coherent system with possibly dependent components having lifetime T , and

assume we know that it failed before a given time t > 0. Its inactivity time t− T can be evaluated

under different conditional events. In fact, one might just know that the system has failed and then

consider the inactivity time (t−T |T ≤ t), or one may also know which ones of the components have

failed before time t, and then consider the corresponding system’s inactivity time under this con-

dition. For all these cases we obtain a representation of the reliability function of system inactivity

time based on distortion functions, which, in turn, includes a description of the structure of depen-

dence between components through the copula of the vector of components’ lifetimes. Making use

of these representations, new stochastic comparison results for inactivity times under the different

conditional events are provided, as well as comparison results for inactivity times of systems having

different structure functions. These results also apply to order statistics, being the order statistics

particular cases of coherent systems (k -out-of-n systems).
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1 Introduction

In reliability theory, analysis of coherent systems is a relevant topic since most of multi–component

systems can be modeled through them (see, e.g., [1] and [10] for a detailed introduction to this

subject, related properties and examples of application). Series systems, parallel systems, k -out-of-n

systems (order statistics) are examples of coherent systems. In this field, it is important to study the

performance of a system composed by different kinds of units, maybe having dependent lifetimes,

in order to evaluate their reliability or to provide bounds for related quantities such as their failure

rates or expected lifetimes. Some results on this topic were given, e.g., in [14,20–22,26] and the

references therein.

In particular, special attention has been paid in the study of the system residual lifetime under

different assumptions (see, e.g., [11,12,14,15,25]). Thus, for example, at a given time t > 0 we may

just now that the system is working or we may have more information about the component states

(all of them are working, some of them are working and some have failed before t, etc.). However,

in some situations, the interest may be on the past lifetime of a system and not only on the future,

i.e., on its inactivity time, having observed that the system is failed at a given time t (see [7,11,28,

29]).

Let T be the lifetime of the system, and let Xi, i = 1, . . . , n, be the lifetimes of its components.

Dealing with inactivity times, different conditions can be assumed observing that the system has

failed at a time t > 0 . In fact, one can just know that the system lifetime is smaller than t, i.e., T < t,

or one can know, for example, that all its components have failed before t, i.e., Xi < t, ∀i = 1, . . . , n.

In this particular case, one can believe that the inactivity time in the first case is smaller, in some

stochastic sense, than the inactivity time in the second case. That is, for example, one can affirm

that the stochastic inequality

(t− T |T ≤ t) ≤ST (t− T |X1 ≤ t, . . . ,Xn ≤ t) ∀t ≥ 0, (1.1)

holds true for every coherent system (a formal definition of the stochastic comparison ≤ST will be

given in Section 3). However, as shown in the Example 4 (see Section 5), this assertion is not always

satisfied.

Motivated by this example, this paper provides a study on the inactivity time of coherent systems

formed by a number n of components with possibly dependent lifetimes, considering different condi-

tioning events on the failed components in the system. For all of them we give new representations

for the reliability functions of the corresponding inactivity times, and we apply them proving simple

conditions for comparisons of inactivity times according to the most important stochastic orders

considered in reliability theory.

The paper is organized as follows. Section 2 firstly recall the notion of distortion functions, which

have been recently introduced in the literature and used to formally describe how the dependence

structure between components affects the lifetime of a system (see [18,22,23]). Then, the representa-

tions of the reliability function of inactivity times of coherent systems based on distortion functions,
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under different conditioning, are provided, and some immediate consequences of these representa-

tions are described. Section 3 contains conditions to compare inactivity times under the different

conditional events, as well as, comparison results for inactivity times of systems having different

structure functions. The final Section 4 is devoted to some illustrative examples and counterexam-

ples.

Throughout the paper, the notation (X|A) is used to represent a random variable whose distri-

bution is the conditional distribution of X given the event A (assuming Pr(A) > 0). Also, whenever

we consider a ratio a
b , we assume b 6= 0 unless otherwise indicated. The notation g′ represents the

derivative of the function g and, whenever we write g′, we assume that this derivative exists. Finally,

the terms “increasing” and “decreasing” are used in non-strict sense.

2 Representation of inactivity times through distortion functions

Some basic notions of coherent systems are provided now. Given a multicomponent system, its

structure function φ : {0, 1}n → {0, 1} is a function that maps the state vector (x̂1, . . . , x̂n) of its

n components (where x̂i = 1 if component i is working and x̂i = 0 if it is failed) to the state

ŷ ∈ {0, 1} of the system itself. The system is said to be coherent whenever every component is

relevant (i.e., it affects the working or failure of the system) and the structure function is monotone

in every component. Also, given a coherent system with n possibly dependent components having

lifetimes X1, . . . , Xn ≥ 0, the relationship between the vector (X1, . . . , Xn) of component’s lifetimes

and system’s lifetime T is described by the relation T = τ(X1, . . . , Xn), where the coherent life

function τ : Rn → R is defined as

τ(x1, . . . , xn) = sup{t ≥ 0 : φ(x̂1,t, . . . , x̂n,t) = 1},

where x̂i,t = 1 if xi > t, or x̂i,t = 0 if xi ≤ t, for i ∈ {1, . . . , n}.
For the sequel it will be useful to recall that a subset C ⊆ {1, . . . , n} of the components indices

is said to be a cut set if the system does not work whenever the components indexed in C do not

work. The set is a minimal cut set if it is a minimal set of elements whose failure causes the system

to fail. Similarly, a subset P ⊆ {1, . . . , n} is a path set if the system works whenever the components

indexed in P work, and it is called minimal path set if it does not contain other path sets. We refer

the reader to [1] for further details on coherent systems.

We now recall the concept of copula of a random vector, which is needed for the representation

of the distribution of inactivity times of systems through distortion functions. First, recall that, for

every dimension n ≥ 2 a copula is an n-dimensional distribution function concentrated on [0, 1]n

whose univariate marginals are uniformly distributed on [0, 1] ⊆ R (see the monographs [5] or [24]

for details). Let (X1, . . . , Xn) be a random vector with joint distribution function F and marginal

distribution functions Fi, i ∈ {1, . . . , n}. Then the joint distribution F can be represented as

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

for a copula C. Notice that, as affirmed by the well-known Sklar’s theorem, if the marginal distri-

bution functions Fi are continuous, then the copula C of the vector (X1, . . . , Xn) is unique and it is

given by

C(u1, . . . , un) = F (F−11 (u1), . . . , F−1n (un)),
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for all ui ∈ [0, 1], i ∈ {1, . . . , n}, where the F−1i are the pseudo-inverses of the Fi. We will assume

here, and everywhere throughout the paper, such a continuity property.

In a similar way the joint reliability function F can be represented as

F (x1, . . . , xn) = C(F 1(x1), . . . , Fn(xn))

where F i, i ∈ {1, . . . , n} are the marginal reliability functions and C is a copula called survival copula

of (X1, . . . , Xn). Similarly as above,

C(u1, . . . , un) = F (F
−1
1 (u1), . . . , F

−1
n (un)),

for all ui ∈ [0, 1], i ∈ {1, . . . , n}.
Let now T be the lifetime of a coherent system with structure function φ and with n possibly

dependent components having lifetimes X1, . . . , Xn ≥ 0. Denote with F the joint distribution func-

tion of the vector of components’ lifetimes, with C its copula, and with Fi the distribution function

of Xi, i = 1, . . . , n. Analogously, let F denotes the joint reliability function of (X1, . . . , Xn), with

C its survival copula, and with F i the reliability functions of the component’s lifetimes. Then a

representation of the distribution of T similar to the above copula representations was obtained in

[23] (see also [17,22]). According to such a representation, the system reliability FT (t) = Pr(T > t)

can be written as

FT (t) = Q(F 1(t), . . . , Fn(t)), (2.1)

where Q : [0, 1]n → [0, 1] is a continuous increasing function satisfying Q(0, . . . , 0) = 0 and

Q(1, . . . , 1) = 1, which only depends on the system structure φ and on the survival copula C of

the vector (X1, . . . , Xn). In other words, Q is simply a continuous aggregation function (for def-

inition and examples of aggregation functions see, e.g., [4,8]). It should be pointed out that the

function Q is not necessarily a copula. In fact, Q can be expressed in terms of the survival copula C

as follows. Assume that the system admits a number r of minimal path sets P1, . . . ,Pr, and denote

Ir = {1, . . . , r}. Then

Q(u1, . . . , un) =
∑
∅6=I⊆Ir

(−1)|I|+1CI(u1, . . . , un) (2.2)

where |I| is the cardinality of the set I, CI(u1, . . . , un) = C(ũI1, . . . , ũ
I
n) and ũIk = uk whenever

k ∈ ∪m∈IPm, or ũIk = 1 whenever k 6∈ ∪m∈IPm. A similar representation holds for the respective

distribution function:

FT (t) = Q(F1(t), . . . , Fn(t)), (2.3)

where, similarly as above, assuming that the system admits minimal cut sets C1, . . . , Cs, it holds

Q(u1, . . . , un) =
∑
∅6=I⊆Is

(−1)|I|+1CI(u1, . . . , un) (2.4)

where Is = {1, . . . , s}, CI(u1, . . . , un) = C(ũI1, . . . , ũ
I
n) and ũIk = uk whenever k ∈ ∪i∈ICi, or ũIk = 1

whenever k /∈ ∪i∈ICi. In the particular case that the Xi are independent, then the previous expression

for Q reduces to

Q(u1, . . . , un) =
∑
∅6=I⊆Is

(−1)|I|+1
∏

k∈∪i∈ICi

uk. (2.5)

It should be observed that

Q(u1, . . . , un) = 1−Q(1− u1, . . . , 1− un)
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for all (u1, . . . , un) ∈ [0, 1]n. Representations (2.1) and (2.3) are equivalent but sometimes it is better

to work with (2.1) instead of (2.3) (and vice versa). When the components are identically distributed,

that is, F1 = · · · = Fn, these representations can be reduced to

FT (t) = q(F 1(t)) (2.6)

and

FT (t) = q(F1(t)), (2.7)

where q(u) = Q(u, . . . , u) and q(u) = Q(u, . . . , u) = 1 − q(1 − u), u ∈ [0, 1]. The distributions

that can be written as in (2.6) and (2.7) are called distorted distribution and the functions q and

q are called respectively distortion and dual distortion functions (see, e.g., [16] and the references

therein). The distributions that can be written as in (2.1) and (2.3) are called generalized distorted

distributions (see [17,18,20]). The functions Q and Q are called generalized distortion functions.

In particular, for the series system with n components, we have T = X1:n = min(X1, . . . , Xn)

and

F 1:n(t) = C(F 1(t), . . . , Fn(t)),

that is, Q1:n = C (and it is obviously a copula). If the components are identically distributed, then

q1:n is the diagonal section of C (i.e., the function δ : [0, 1] → [0, 1] defined as δ(u) = C(u, . . . , u)

for all u ∈ [0, 1]). Analogously, for the parallel system with n components, we have T = Xn:n =

max(X1, . . . , Xn) and

Fn:n(t) = C(F1(t), . . . , Fn(t))

that is, Qn:n = C. If the components are identically distributed, then qn:n is the diagonal section of

C.

Now, we provide similar representations for the distributions of inactivity times of the system,

that is, the time without service (t − T |At) under different assumptions At which imply T ≤ t. In

fact, assuming that a coherent system starts to work at time 0 and it is failed at time t > 0, we might

have different information about the states of the components. We can thus consider the following

reasonable cases.

Case 1: The less informative case is to consider that we only know that the system has failed

at time t. Then it is easy to observe that the system inactivity time is

Tt = (t− T |T ≤ t).

Its reliability function is obtained in the following proposition. Before we need to note that if Fi(t) >

0, then the reliability function F i,t of the ith component inactivity time (t−Xi|Xi ≤ t) is given by

F i,t(x) = Pr(t−Xi > x|Xi ≤ t) =
Fi(t− x)

Fi(t)
(2.8)

for x ∈ [0, t] and i = 1, . . . , n. These reliability functions will be used to represent the reliability

function of the system inactivity time.
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Proposition 1 If Fi(t) > 0 for i = 1, . . . , n, then the reliability function of Tt can be written as

F t(x) = Qt(F 1,t(x), . . . , Fn,t(x)) (2.9)

for x ∈ [0, t], where

Qt(u1, . . . , un) =
Q(u1F1(t), . . . , unFn(t))

Q(F1(t), . . . , Fn(t))

is a generalized distortion function which depends on the distortion function Q defined in (2.4) and

on the values Fi(t), i = 1, . . . , n.

Proof For x ∈ [0, t], from (2.3), we have

F t(x) = Pr(t− T > x|T ≤ t) =
Pr(T < t− x)

Pr(T ≤ t)

=
FT (t− x)

FT (t)
=
Q(F1(t− x), . . . , Fn(t− x))

Q(F1(t), . . . , Fn(t))

=
Q(F1(t)F 1,t(x), . . . , Fn(t)Fn,t(x))

Q(F1(t), . . . , Fn(t))
= Qt(F 1,t(x), . . . , Fn,t(x))

which finishes the proof.

Case 2: Here we assume that we know the set W ⊆ {1, . . . , n} of indices of components that

are working at time t (and so the set W c = {1, . . . , n} − W of those that have failed), that is,

At = {XW > t,XW c ≤ t}, where XW = mini∈W Xi (lifetime of the series system with components

W ), XW c

= maxi∈W c Xi (lifetime of the parallel system with components W c). Of course, this

assumption implies that the components may work even if the system has failed, and that {XW c ≤ t}
implies {T ≤ t} (i.e. W c is a cut set). Also W 6= {1, . . . , n}. Then we can consider the following

system inactivity time

TW
t = (t− T |XW > t,XW c

≤ t).

Note that here we include the particular case in which all the components have failed at time t, that

is, W = ∅ and W c = {1, . . . , n}. We obtain a representation similar to (2.9) for TW
t in the following

proposition.

Proposition 2 If Fi(t) > 0 for i = 1, . . . , n, then the reliability function of TW
t can be written as

F
W

t (x) = Q
W

t (F 1,t(x), . . . , Fn,t(x)) (2.10)

for x ∈ [0, t], where the reliability functions F i,t(x) are defined as in (2.8) and Q
W

t is a generalized

distortion function. If C1, . . . , Cs are the minimal path sets of the system, then Q
W

t is given by

Q
W

t (u1, . . . , un) =

∑
∅6=I⊆Is

∑
A⊆W (−1)|I|+|A|+1CI,A,W (u1, . . . , un)∑

A⊆W (−1)|A|CA,W (F1(t), . . . , Fn(t))
, (2.11)

where CI,A,W (u1, . . . , un) = 0 when W ∩ ∪i∈ICi 6= ∅ or

CI,A,W (u1, . . . , un) = C(ũI,A,W
1 , . . . , ũI,A,W

n )

when ∪i∈ICi ⊆W c, where ũI,A,W
k = Fk(t) whenever k ∈ A∪ (W c−∪i∈ICi), or ũI,A,W

k = 1 whenever

k ∈W −A, or ũI,A,W
k = ukFk(t) whenever k ∈ ∪i∈ICi, and where

CA,W (u1, . . . , un) = C(ũA,W
1 , . . . , ũA,W

n )

and ũA,W
k = uk whenever k ∈ A ∪W c, or ũA,W

k = 1 whenever k ∈W −A.
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Proof From the definition, we have

F
W

t (x) = Pr(t− T > x|XW > t,XW c

≤ t)

=
Pr(T < t− x,XW > t,XW c ≤ t)

Pr(XW > t,XW c ≤ t)
.

If C1, . . . , Cr are the minimal cut sets and denoting again XC = maxi∈C Xi, one has

F
W

t (x) =
Pr(T < t− x,XW > t,XW c ≤ t)

Pr(XW > t,XW c ≤ t)

=
Pr(minj=1,...,sX

Cj < t− x,XW > t,XW c ≤ t)
Pr(XW > t,XW c ≤ t)

=
Pr(∪j=1,...,s{XCj < t− x}, XW > t,XW c ≤ t)

Pr(XW > t,XW c ≤ t)
.

The denominator in the preceding expression can be written in terms of C and F1, . . . , Fn, as

D = Pr(XW > t,XW c

≤ t) =
∑
A⊆W

(−1)|A|CA,W (F1(t), . . . , Fn(t))

where CA,W is defined in the statement.

A similar representation holds for the numerator

N = Pr(∪i=1,...,s{XCi < t− x}, XW > t,XW c

≤ t)

=
∑
∅6=I⊆Is

(−1)|I|+1 Pr(X∪i∈ICi < t− x,XW > t,XW c

≤ t)

=
∑
∅6=I⊆Is

∑
A⊆W

(−1)|I|+|A|+1CI,A,W (F 1,t(x), . . . , F 1,t(x))

where CI,A,W is defined in the statement.

Therefore, the final expression for Q
W

t is obtained by using such expressions for N and D.

ut

Note that Q
W

t only depends on ui for i ∈W c (i.e., it is constant in ui for i ∈W ). As a particular

case, whenever W = ∅, then (2.11) reduces to

Q∅t (u1, . . . , un) =

∑
∅6=I⊆Is(−1)|I|+1CI,∅,∅(u1, . . . , un)

C(F1(t), . . . , Fn(t))
(2.12)

where CI,∅,∅(u1, . . . , un) = C(ũI,∅,∅1 , . . . , ũI,∅,∅n ) and where ũI,∅,∅k = Fk(t) whenever k /∈ ∪i∈ICi, or

ũI,∅,∅k = ukFk(t) whenever k ∈ ∪i∈ICi.

Let us see now two examples showing how these representations can be obtained.

Example 1 The simplest case of application of the above representations is in a series system with

two possibly dependent components, i.e., with lifetime T = min(X1, X2). Its reliability function is

FT (t) = C(F 1(t), F 2(t))

and its distribution function is

FT (t) = Pr(min(X1, X2) ≤ t) = F1(t) + F2(t)− C(F1(t), F2(t)) = Q(F1(t), F2(t))

7



where F1, F2 are the components’ continuous distribution functions and

Q(u1, u2) = u1 + u2 − C(u1, u2) = 1− C(1− u1, 1− u2).

In case of independence between lifetimes’ components, clearly Q(u1, u2) = Q⊥(u1, u2) = u1 + u2 −
u1u2.

If at time t > 0 we just know that the system has failed, that is, T ≤ t, then the reliability

function of (t− T |T ≤ t) is

F t(x) =
FT (t− x)

FT (t)
= Qt(F 1,t(x), F 2,t(x))

for x ∈ [0, t], where

Qt(u1, u2) =
Q(u1F1(t), u2F2(t))

Q(F1(t), F2(t))
=
u1F1(t) + u2F2(t)− C(u1F1(t), u2F2(t))

F1(t) + F2(t)− C(F1(t), F2(t))

is a generalized distortion function. In particular, if the components are independent, then

Qt(u1, u2) =
u1F1(t) + u2F2(t)− u1u2F1(t)F2(t)

F1(t) + F2(t)− F1(t)F2(t)
.

Another option is to assume that at time t > 0 we know that the first component is working and

the second has failed, that is, W = {1}. Then the series system has failed, T ≤ t, and the reliability

function of T
{1}
t = (t− T |X1 > t,X2 ≤ t) is

F
{1}
t (x) =

Pr(T < t− x,X1 > t,X2 ≤ t)
Pr(X1 > t,X2 ≤ t)

, x ∈ [0, t],

where

Pr(T < t− x,X1 > t,X2 ≤ t) = Pr(X2 < t− x,X1 > t) = Pr(X2 < t− x)− Pr(X1 ≤ t,X2 < t− x)

and

Pr(X1 > t,X2 ≤ t) = Pr(X2 ≤ t)− Pr(X1 ≤ t,X2 ≤ t).

Then

F
{1}
t (x) = Q

{1}
t (F 1,t(x), F 2,t(x)) (2.13)

where

Q
{1}
t (u1, u2) =

u2F2(t)− C(F1(t), u2F2(t))

F2(t)− C(F1(t), F2(t))

is a generalized distortion function. Note that Q
{1}
t only depends on u2. In particular, if the compo-

nents are independent, then

Q
{1}
t (u1, u2) =

u2 − u2F1(t)

1− F1(t)
= u2,

that is, (t− T |XW > t,XW c ≤ t) has the same law as (t− T ∗|XW c ≤ t), where T ∗ is the lifetime of

the system obtained from the original one by deleting the cut sets which have at least an element in

W (i.e., T ∗ = min{j:Cj∩W=∅}X
Cj , T ∗ = X2 in this example), as one can expect. The representation

for the case in which the first component has failed and the second is working can be obtained in a

similar way.
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In this example we can also consider the case W = ∅ (note that we cannot consider W = {1, 2}
since XW > t implies T > t). The reliability function of T ∅t = (t−T |X1 < t,X2 < t) is, for x ∈ [0, t],

F
∅
t (x) =

Pr(T < t− x,X1 < t,X2 < t)

Pr(X1 < t,X2 < t)

=
Pr(X1 < t− x,X2 < t) + Pr(X1 < t,X2 < t− x)− Pr(X1 < t− x,X2 < t− x)

Pr(X1 < t,X2 < t)

= Q
∅
t ((F 1,t(x), F 2,t(x)),

where

Q
∅
t (u1, u2) =

C(u1F1(t), F2(t)) + C(F1(t), u2F2(t))− C(u1F1(t), u2F2(t))

C(F1(t), F2(t))

is a generalized distortion function. In particular, if the components are independent, then

Q
∅
t (u1, u2) = u1 + u2 − u1u2 = Q⊥(u1, u2),

where Q⊥ is the generalized distortion function of the series system in the case of independent

components. ut

Example 2 Let us consider the system with lifetime T = min(X1,max(X2, X3)). It may represent,

for example, a server and two computers supporting the web page of a shop. The system works if

the server works and, at least, a computer works. Its minimal cut sets are C1 = {1} and C2 = {2, 3}
and its distribution function is

FT (t) = Pr(min(X1,max(X2, X3)) ≤ t)

= F1(t) + C(1, F2(t), F3(t))− C(F1(t), F2(t), F3(t))

= Q(F1(t), F2(t), F3(t)),

where Q(u1, u2, u3) = u1 +C(1, u2, u3)−C(u1, u2, u3) and F1, F2, F3 are the continuous component

distribution functions. Whenever the component’s lifetimes are independent, then Q(u1, u2, u3) =

Q⊥(u1, u2, u3) = u1 + u2u3 − u1u2u3
If at time t > 0, we just know that the system has failed, that is, T ≤ t, then the reliability

function of (t− T |T ≤ t) is

F t(x) =
FT (t− x)

FT (t)
= Qt(F 1,t(x), F 2,t(x))

for x ∈ [0, t], where the reliability functions F i,t(x) are defined as in (2.8) and

Qt(u1, u2, u3) =
Q(u1F1(t), u2F2(t), u3F3(t))

Q(F1(t), F2(t), F3(t))

=
u1F1(t) + C(1, u2F2(t), u3F3(t))− C(u1F1(t), u2F2(t), u3F3(t))

F1(t) + C(1, F2(t), F3(t))− C(F1(t), F2(t), F3(t))

is a generalized distortion function.

Another option is to assume that, at time t > 0, we know that all the components have failed,

that is, W = ∅. Then the system has failed, T ≤ t, and the reliability function of T ∅t = (t− T |X1 ≤
t,X2 ≤ t,X3 ≤ t) is

F
∅
t (x) =

Pr(T < t− x,X1 ≤ t,X2 ≤ t,X3 ≤ t)
Pr(X1 ≤ t,X2 ≤ t,X3 ≤ t)

,
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where

Pr(T < t− x,X1 ≤ t,X2 ≤ t,X3 ≤ t) = Pr(X1 < t− x,X2 ≤ t,X3 ≤ t)

+ Pr(X1 ≤ t,X2 < t− x,X3 < t− x)

− Pr(X1 < t− x,X2 < t− x,X3 < t− x),

and

Pr(X1 ≤ t,X2 ≤ t,X3 ≤ t) = C(F1(t), F2(t), F3(t)).

Then

F
∅
t (x) = Q

∅
t (F 1,t(x), F 2,t(x), F 3,t(x)), (2.14)

where

Q
∅
t (u1, u2, u3) =

C(u1F1(t), F2(t), F3(t)) + C(F1(t), u2F2(t), u3F3(t))

C(F1(t), F2(t), F3(t))

− C(u1F1(t), u2F2(t), u3F3(t))

C(F1(t), F2(t), F3(t))

is a generalized distortion function. In particular, if the components are independent, then

Q
∅
t (u1, u2, u3) = u1 + u2u3 − u1u2u3 = Q⊥(u1, u2, u3),

where Q⊥ is the generalized distortion function of the system in the case of independent components.

Another option is to assume that at time t > 0, the only working component is the third

component, that is, W = {3}. Then the system has failed, T ≤ t, and the reliability function of

T
{3}
t = (t− T |X1 ≤ t,X2 ≤ t,X3 > t) is

F
{3}
t (x) =

Pr(T < t− x,X1 ≤ t,X2 ≤ t,X3 > t)

Pr(X1 ≤ t,X2 ≤ t,X3 > t)
,

where

Pr(T < t− x,X1 ≤ t,X2 ≤ t,X3 > t) = Pr(X3 > t,X1 < t− x,X2 ≤ t)

= Pr(X1 < t− x,X2 ≤ t)− Pr(X1 < t− x,X2 ≤ t,X3 ≤ t)

and

Pr(X1 ≤ t,X2 ≤ t,X3 > t) = Pr(X1 ≤ t,X2 ≤ t)− Pr(X3 ≤ t,X1 ≤ t,X2 ≤ t).

Then

F
{3}
t (x) = Q

{3}
t (F 1,t(x), F 2,t(x), F 3,t(x)), (2.15)

where

Q
{3}
t (u1, u2, u3) =

C(u1F1(t), F2(t), 1)− C(u1F1(t), F2(t), F3(t))

C(F1(t), F2(t), 1)− C(F1(t), F2(t), F3(t))

is a generalized distortion function. Note that it only depends on u1. In particular, if the components

are independent, then

Q
{3}
t (u1, u2, u3) =

u1 − u1F3(t)

1− F3(t)
= u1

that is, (t− T |X1 ≤ t,X2 ≤ t,X3 > t) has the same distribution of (t−X1|X1 ≤ t). The represen-

tations for the other cases can be obtained in a similar way. ut

The property obtained in the preceding examples for TW
t in the case of independent components

and when W = ∅ is actually a general property that can be stated as follows.
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Proposition 3 If T is the lifetime of a coherent system with independent components, then Q
∅
t =

Q⊥.

The proof is obtained from (2.12) by replacing C with the product copula.

An immediate consequence of the previous proposition is described in the following statement.

The proof is straightforward and therefore omitted.

Corollary 1 If the components are independent, then (t − T |XW > t,XW c ≤ t) has the same

distribution of (t − T ∗|XW c ≤ t), where T ∗ is the lifetime of the system obtained from the original

one by deleting the cut sets which have at least an element in W (i.e., T ∗ = min{j:Cj∩W=∅}X
Cj ).

3 Stochastic comparisons

First, we briefly recall the definitions of the stochastic orders that will be used throughout this paper

to compare random lifetimes or inactivity times. Let X and Y be two absolutely continuous random

variables having a common support (0, β), for a β ∈ R ∪ {∞}, distribution functions F and G,

reliability (survival) functions F = 1−F and G = 1−G and density functions f and g, respectively.

Then we say that X is smaller than Y :

• in the stochastic order (denoted by X ≤ST Y ) if F ≤ G in (0, β);

• in the hazard rate order (denoted by X ≤HR Y ) if the ratio G/F is increasing in (0, β);

• in the reversed hazard rate order (denoted by X ≤RHR Y ) if the ratio G/F is increasing in (0, β);

• in the likelihood ratio order (denoted by X ≤LR Y ) if the ratio g/f is increasing in (0, β);

• in the mean residual life order (denoted by X ≤MRL Y ) if, and only if, E[Xt] ≤ E[Y t] for all

t ∈ (0, β).

We address the reader to [27] for a detailed description of these stochastic orders and to [1] for a

list of examples of applications in the reliability theory. Here, in particular, we just point out that:

• X ≤HR Y if, and only if, (X − t|X > t) ≤ST (Y − t|Y > t) for all t ∈ (0, β),

• X ≤RHR Y if, and only if, (t−X|X ≤ t) ≥ST (t− Y |Y ≤ t) for all t ∈ (0, β)

• X ≤LR Y if, and only if, (X| a ≤ X ≤ b) ≤ST (Y | a ≤ X ≤ b) for all 0 ≤ a ≤ b ≤ β.

Hence, the hazard rate order and the reversed hazard rate order are equivalent to compare residual

lifetimes and inactivity times of systems, respectively, at any age t ≥ 0. Analogously, the likelihood

ratio order can be used to compare both residual lifetimes and inactivity times, while this is not the

case for the weaker stochastic order. Moreover, the following relationships are well known:

X ≤LR Y ⇒ X ≤HR Y ⇒ X ≤MRL Y

⇓ ⇓ ⇓
X ≤RHR Y ⇒ X ≤ST Y ⇒ E(X) ≤ E(Y ).

In the previous section we have obtained representations for Tt and TW
t as generalized distorted

distributions based on the same baseline distributions. Now we can use these representations, and

the results for generalized distorted distributions described in [16,18,19], to compare the inactivity
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times Tt and TW
t for any W . We can also compare TW

t for different sets W or inactivity times for

different system structures. For it, we first recall some useful properties proved in recent literature.

In the case of distorted distributions (i.e., n = 1 in (2.3)), we have the following ordering prop-

erties, extracted from Theorems 2.4 and 2.5 in [16] and Theorem 2.3 in [19].

Proposition 4 Let Fq1 = q1(F ) and Fq2 = q2(F ) be two distorted distributions (of two random

variables X1 and X2) based on the same distribution function F and on the distortion functions q1

and q2, respectively. Let q1 and q2 be the respective dual distortion functions. Then:

(i) X1 ≤ST X2 for all F if and only if q1 ≤ q2 in (0, 1).

(ii) X1 ≤HR X2 for all F if and only if q2/q1 is decreasing in (0, 1).

(iii) X1 ≤RHR X2 for all F if and only if q2/q1 is increasing in (0, 1).

(iv) X1 ≤LR X2 for all F if and only if q′2/q
′
1 is decreasing in (0, 1).

(v) If there exists u0 ∈ (0, 1] such that q2/q1 is decreasing in (0, u0) and increasing in (u0, 1), then

X1 ≤MRL X2 for all F such that the means of the respective distorted distributions are ordered

(in the same sense).

In the general case (i.e. for generalized distorted distributions) we have the following results,

extracted from Proposition 2.2 in [18].

Proposition 5 Let FQ1
= Q1(F1, . . . , Fn) and FQ2

= Q2(F1, . . . , Fn) be two generalized distorted

distributions (of two random variables X1 and X2) based on the same distribution functions F1, . . . , Fn

and on the generalized distortion functions Q1 and Q2, respectively. Let Q1 and Q2 be the respective

generalized dual distortion functions. Then:

(i) X1 ≤ST X2 for all F1, . . . , Fn if and only if Q1 ≤ Q2 in (0, 1)n.

(ii) X1 ≤HR X2 for all F1, . . . , Fn if and only if Q2/Q1 is decreasing in (0, 1)n.

(iii) X1 ≤RHR X2 for all F1, . . . , Fn if and only if Q2/Q1 is increasing in (0, 1)n.

Note that both propositions provide necessary and sufficient conditions to obtain distribution-

free orderings (except in the case of the mrl order). Now it is immediate to obtain the corresponding

results to get distribution-free comparisons between Tt and TW
t . Note that we can also compare TW

t

and TW∗

t for different W and W ∗. For example, the results to compare Tt and TW
t can be stated as

follows. The proofs are immediate from representations (2.9) and (2.10) and Propositions 4 and 5.

Proposition 6 Let T be the lifetime of a coherent system with components having a common con-

tinuous distribution function F . Then:

(i) Tt ≤ST TW
t (≥ST ) for all F if and only if qt ≤ qWt (≥) in [0, 1].

(ii) Tt ≤HR TW
t (≥HR) for all F if and only if qWt /qt is decreasing (increasing) in (0, 1).

(iii) Tt ≤RHR TW
t (≥RHR) for all F if and only if qWt /qt is increasing (decreasing) in (0, 1).

(iv) Tt ≤LR TW
t (≥LR) for all F if and only if (qWt )′/q′t is decreasing (increasing) in (0, 1).

(v) If there exists u0 ∈ (0, 1] such that qWt /qt is decreasing (increasing) in (0, u0) and increasing

(decreasing) in (u0, 1), then Tt ≤MRL T
W
t (≥MRL) for all F such that E(Tt) ≤ E(TW

t ) (≥).

Proposition 7 Let T be the lifetime of a coherent system with components having distribution

functions F1, . . . , Fn. Then:
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(i) Tt ≤ST TW
t (≥ST ) for all F1, . . . , Fn if and only if Qt ≤ Q

W

t (≥) in (0, 1)n.

(ii) Tt ≤HR TW
t (≥HR) for all F1, . . . , Fn if and only if Q

W

t /Qt is decreasing (increasing) in (0, 1)n.

(iii) Tt ≤RHR TW
t (≥RHR) for all F1, . . . , Fn if and only if QW

t /Qt is increasing (decreasing) in

(0, 1)n.

A simple example of application of the previous results, dealing with the comparison of inactivity

times Tt = (t− T |T ≤ t) for series and parallel systems of two components, is given now.

Example 3 Consider two components having possibly dependent lifetimes X1 and X2, with the

same distribution F , and consider Tmax = max(X1, X2) and Tmin = min(X1, X2), lifetimes of the

corresponding parallel and series system. It is rather intuitive, and actually easy to analytically

verify, that if the components have independent lifetimes then the inactivity times Tmax
t and Tmin

t

are comparable in the likelihood order, i.e., it holds Tmax
t ≤LR Tmin

t for any t > 0. However, using

Proposition 4,(iv) one can verify that this inequality does not necessary hold for any dependence

structure (copula) of the vector (X1, X2).

In fact, denoting with C the copula of the vector (X1, X2), one has

P (t− Tmin > x|Tmin ≤ t) = qmin
t (F t(x)),

where F t(x) = F (t− x)/F (t) and

qmin
t (u) =

2uF (t)− C(uF (t), uF (t))

2F (t)− C(F (t), F (t))
=

2uF (t)− δ(uF (t))

2F (t)− δ(F (t))
,

being δ the diagonal section of the copula C. Similarly,

P (t− Tmax > x|Tmax ≤ t) = qmax
t (F t(x)),

where

qmax
t (u) =

C(uF (t), uF (t)

C(F (t), F (t))
=
δ(uF (t))

δ(F (t))
.

Observe that, by Proposition 4, (iv), the inequality Tmax
t ≤LR Tmin

t holds if and only if

d qmin
t (u)/du

d qmax
t (u)/du

=
δ(F (t))

2F (t)− δ(F (t))

2F (t)− F (t)δ′(uF (t))

F (t)δ′(uF (t))

is decreasing in u, thus if

2− δ′(uF (t))

δ′(uF (t))

is decreasing in u. The latter is satisfied if and only if δ(u) is convex in (0, 1). A list of copulas

have convex diagonal section (such as: Marshall-Olkin for any value of the parameters, FGM with

negative value of the parameter θ, i.e., θ ∈ (−1, 0], Gumbel copulas, Clayton and other Archimedean

copula, etc.). However, do not exist copulas having a concave diagonal section. A copula whose

diagonal section is neither convex nor concave is the FGM with θ ∈ (0, 1]. Thus, for this copula

the stated property does not hold. Note that for the product copula we have δ(u) = u2 which is a

convex function. So the stated property holds in the case of independent components. Proceeding

in a similar way and by using Proposition 4, (ii), one can prove that Tmax
t ≤HR Tmin

t holds for any

t > 0 if and only if δ(u)/u is increasing in [0, 1]. ut
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Under the assumption of independence between components’ lifetimes, a simple proof of the

inequality (1.1) mentioned in the Introduction follows by a direct application of Proposition 7.

Using this result, in fact, it is possible to prove the stochastic comparisons between the inactivity

time of a system conditioning on the fact that it failed before a time t or that all its components

have failed before time t.

Proposition 8 If T is the lifetime of a coherent system formed by n components having independent

lifetimes X1, . . . , Xn, then

(t− T |T < t) ≤ST (t− T |X1 < t, . . . ,Xn < t) ∀t ≥ 0. (3.1)

Proof Let F1, . . . , Fn denote the distribution functions of X1, . . . , Xn. From (2.9), the reliability

function of Tt = (t− T |T ≤ t) can be written as

F t(x) = Qt(F 1,t(x), . . . , Fn,t(x))

for x ∈ [0, t], where F i,t(x) = Fi(t − x)/Fi(t) is the reliability function of the inactivity time

Xi,t = (t−Xi|Xi ≤ t) of the ith component for i = 1, . . . , n, and where

Qt(u1, . . . , un) =
Q(u1F1(t), . . . , unFn(t))

Q(F1(t), . . . , Fn(t))

is a generalized distortion function.

On the other hand, from Proposition 3, the reliability function T ∅t = (t− T |X1 < t, . . . ,Xn < t)

can be written as

F t(x) = Q(F 1,t(x), . . . , Fn,t(x))

for x ∈ [0, t], where Q is the generalized distortion function of T in the case of independent compo-

nents.

Therefore, from Proposition 7(i), Tt ≤ST T ∅t holds for all F1, . . . , Fn, if and only if

Q(u1F1(t), . . . , unFn(t))

Q(F1(t), . . . , Fn(t))
≤ Q(u1, . . . , un)

holds for all u1, . . . , un ∈ [0, 1]. Hence, Tt ≤ST T ∅t holds for all F1, . . . , Fn, and for all t, if and only

if

Q(u1v1, . . . , unv1) ≤ Q(u1, . . . , un)Q(v1, . . . , vn) (3.2)

for all u1, . . . , un, v1, . . . , vn ∈ [0, 1]. Now we use the fact that Q is the reliability structure (dual

generalized distortion) function of the dual system (since the minimal path sets of the dual systems

are the minimal cut sets of T and C = C in the case of independent components). Moreover, it is

well known that (3.2) holds for reliability structure functions in the case of independent components

(see (5.2) in [1], p. 183). This completes the proof. ut

Actually, even if the stochastic inequality (3.1) is in general false, Proposition 8 can be gen-

eralized to systems with dependent components under additional assumptions on the structure of

dependence among them.

14



Proposition 9 If T is the lifetime of a coherent system formed by n components having lifetimes

(X1, . . . , Xn) with a continuous joint distribution such that

(t−XA|XA < t,XAc

≥ t) ≤ST (t−XA|X1 < t, . . . ,Xn < t) (3.3)

for all nonempty set A ⊆ {1, . . . , n}, then

(t− T |T < t) ≤ST (t− T |X1 < t, . . . ,Xn < t) for all t > 0.

Proof Denote with C1, . . . ,Cs, all the cut sets of the system where Cs = {1, . . . , n} (note that here

we consider all the cut sets, and not only the minimal ones). Then it holds that

{T < t} = ∪si=1{XCi
< t,XCc

i ≥ t}

for any x ≥ 0. Note that it is a union of disjoint events.

For any x, t ≥ 0, let

ai = Pr(XCi < t,XCc
i ≥ t) and bi = Pr(T < t− x,XCi < t,XCc

i ≥ t).

Then we have

Pr(Tt > x) = Pr(t− T > x|T < t) =
Pr(T < t− x, T < t)

Pr(T < t)

=

∑s
i=1 Pr(T < t− x,XCi

< t,XCc
i ≥ t)∑s

i=1 Pr(XCi
< t,XCc

i ≥ t)
=

∑s
i=1 bi∑s
i=1 ai

.

The lifetime T can be written as T = τ(X1, . . . , Xn). For any cut set Ci, let Ti = τi(XCi) be the

lifetime of the system obtained from T by assuming that all the components not included in Ci are

always working. Of course, we have T ≤ Ti for all i.

Then for any i = 1, . . . , s

bi
ai

= Pr(T < t− x|XCi
< t,XCc

i ≥ t) = Pr(τ(X) < t− x|XCi
< t,XCc

i ≥ t)

= Pr(τi(XCi
) < t− x|XCi

< t,XCc
i ≥ t) = Pr(τi(t−XCi

) > x|XCi
< t,XCc

i ≥ t)

≤ Pr(τi(t−XCi
) > x|XCs

< t) = Pr(t− Ti > x|XCs
< t)

≤ Pr(t− T > x|XCs < t) = Pr(T < t− x|XCs < t) =
bs
as
,

where the first inequality is obtained from assumption (3.3) and the second from T ≤ Ti. Thus

asbi ≤ aibs and

asb1 + · · ·+ asbs ≤ a1bs + · · ·+ asbs.

Hence

Pr(t− T > x|T < t) =

∑s
i=1 bi∑s
i=1 ai

≤ bs
as

= Pr(t− T > x|XCs < t)

and the stated result holds. ut
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An example where the assumptions of the previous proposition are satisfied for any non empty

set A ⊆ I and t ≥ 0 is when the vector of lifetimes (X1, . . . , Xn) has an MTP2 joint density f , i.e.,

when f satisfies f(x)f(y) ≤ f(x ∨ y)f(x ∧ y) for any x, y ∈ Rn. See, e.g., [6] or [9] for the formal

definition and examples of random vectors satisfying the MTP2 property. The proof of this assertion

is similar to the proof of Theorem 11.2.2 in [12], and therefore omitted.

Further simple conditions may be stated for the case of series systems with two dependent

components, as described in the following statement.

Proposition 10 If T = min(X1, X2) and the copula C of (X1, X2) satisfies the conditions

zC(x, y) ≥ yC(x, z), for all 0 ≤ x ≤ 1, 0 ≤ y ≤ z ≤ 1, (3.4)

and

zC(x, y) ≥ xC(z, y), for all 0 ≤ x ≤ z ≤ 1, 0 ≤ y ≤ 1, (3.5)

then (t− T |T ≤ t) ≤ST (t− T |X1 ≤ t,X2 ≤ t).

Proof From Example 1, the dual distortion functions of Tt = (t − T |T ≤ t) and T ∅t = (t − T |X1 ≤
t,X2 ≤ t) are, respectively,

Qt(u1, u2) =
u1F1(t) + u2F2(t)− C(u1F1(t), u2F2(t))

F1(t) + F2(t)− C(F1(t)F2(t))

and

Q
∅
t (u1, u2) =

C(u1F1(t), F2(t)) + C(F1(t), u2F2(t))− C(u1F1(t), u2F2(t))

C(F1(t), F2(t))
.

Thus, the stated result holds if and only if these two distortion functions satisfy

Qt(u1, u2) ≤ Q∅t (u1, u2) (3.6)

By taking x = F1(t), y = u2F2(t) and z = F2(t) in (3.4) we get

F2(t)C(F1(t), u2F2(t)) ≥ u2F2(t)C(F1(t), F2(t)).

Analogously, by taking x = u1F1(t), y = F2(t) and z = F1(t) in (3.5) we get

F1(t)C(u1F1(t), F2(t)) ≥ u1F1(t)C(F1(t), F2(t)).

Hence (3.6) holds if

C(F1(t), F2(t))C(u1F1(t), u2F2(t)) + F1(t)C(F1(t), u2F2(t))− F1(t)C(u1F1(t), u2F2(t))

− C(F1(t), F2(t))C(F1(t), u2F2(t)) ≥ 0

and

C(F1(t), F2(t))C(u1F1(t), u2F2(t)) + F2(t)C(u1F1(t), F2(t))− F2(t)C(u1F1(t), u2F2(t))

− C(F1(t), F2(t))C(u1F1(t), F2(t)) ≥ 0

hold. The first term can be written as

(F1(t)− C(F1(t), F2(t)))(C(F1(t), u2F2(t))− C(u1F1(t), u2F2(t)))

and the second one as

(F2(t)− C(F1(t), F2(t)))(C(u1F1(t), F2(t))− C(u1F1(t), u2F2(t))).

Hence both terms are nonnegative since C is increasing and C(u, 1) = C(1, u) = u. ut
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Remark 1 Conditions (3.4) and (3.5) can be seen as positive dependence properties (weaker than

TP2 property). In fact, letting x = F1(t), z = F2(t) and y = F2(s), with s ≤ t, one can immediately

observe that (3.4) is equivalent to

Pr(X1 < t|X2 < s) ≥ Pr(X1 < t|X2 < t), for all s ≤ t, (3.7)

and, similarly, one can see that (3.5) is equivalent to

Pr(X2 < t|X1 < s) ≥ Pr(X2 < t|X1 < t), for all s ≤ t. (3.8)

Hence, (3.4) and (3.5) hold if Pr(X1 < t|X2 < s) and Pr(X2 < t|X1 < s) are decreasing in s for

s ≤ t, i.e., if X2 is Left Tail Decreasing (LTD) in X1 and X1 is LTD in X2. The LTD notion is a

well know property describing positive dependence among random variables; see, e.g., [24], Chapter

5, or [3] on its formal definition and applications in modeling dependence. ut

4 Illustrative examples

A list of examples of applications of the theoretical results described in previous sections are provided

here. The first one proves that the ordering in (1.1) is not always true.

Example 4 Consider the lifetime T = min(X1, X2) of a series system formed by two components

having non independent lifetimes X1 and X2. Observe that for this system we have

Pr(t− T ≤ x|T ≤ t) =
Pr(t− x ≤ min(X1, X2) ≤ t)

Pr(min(X1, X2) ≤ t)
=
F (t− x, t− x)− F (t, t)

1− F (t, t)
= p1,t(x)

and

Pr(t− T ≤ x|X1, X2 ≤ t) =
F (t− x, t− x)− F (t− x, t)− F (t, t− x) + F (t, t)

1− F (0, t)− F (t, 0) + F (t, t)
= p2,t(x),

where F denotes the joint reliability function of (X1, X2).

Assume now that the pair (X1, X2) has a Gumbel’s bivariate exponential distribution, i.e., let

F (x1, x2) = Pr(X1 > x1, X2 > x2) = exp(−α1x1 − α2x2 − θα1α2x1x2), αi ≥ 0, θ ∈ (0, 1)

It can be numerically verified that in this case the inequality p1,t(x) ≤ p2,t(x) does not holds for all

x ≤ t (see, e.g., Figure 1, in which α1 = 4, α2 = 1, θ = 1/2 and t = 1), i.e., inequality (1.1) does not

hold for all t > 0.

ut

Two examples where Proposition 10 can be applied are described now.

Example 5 Recall that a copula C is called Archimedean if it can be written in the form

C(u1, u2) = φ−1(φ(u1) + φ(u2)), (4.1)

for any continuous and strictly decreasing function φ : [0, 1] 7→ [0,∞] such that φ(1) = 0. In this case,

the function φ is called generator of the Archimedean copula. In [2], Proposition 6.1, it is proved

that any Archimedean copula is Totally Positive of order 2 (TP2), i.e., it satisfies

C(x1, y1)C(x2, y2) ≥ C(x1, y2)C(x2, y1) ∀ 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1, (4.2)
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Fig. 1 Plot of the difference Pr(t− T ≤ x|X1, X2 ≤ t)− Pr(t− T ≤ x|T ≤ t) for T = min(X1, X2) when t = 1 and

the vector (X1, X2) has Gumbel’s bivariate exponential distribution with α1 = 4, α2 = 1 and θ = 1/2.

if the inverse φ−1 of its generator function is log-convex. Examples of Archimedean copulas for which

(4.2) holds are, for example, the Clayton or the Gumbel-Hougaard copulas, for any values of their

parameters. Ali-Mikhail-Haq copulas, for positive values of the parameter, also satisfy this property.

Let now T = min(X1, X2) be the lifetime of a series system with two dependent components

having an Archimedean copula C. Since the property (4.2) clearly implies (3.4) and (3.5), then (3.6)

holds whenever C is Archimedean with log-convex inverse generator φ−1. ut

Example 6 Let T = min(X1, X2) be the lifetime of a series system with two dependent components

having dependent lifetimes X1 and X2 connected by a Farlie-Gumbel-Morgenstern (FGM) copula,

i.e., the copula defined as C(x, y) = xy[1 + α(1 − x)(1 − y)] with −1 ≤ α ≤ 1. For 0 ≤ α < 1 it is

easy to verify that

zxy[1 + α− αx− αy + αxy] ≥ xyz[1 + α− αx− αz + αxz], for y ≤ z

and

zxy[1 + α− αx− αy + αxy] ≥ xzy[1 + α− αy − αz + αyz], for x ≤ z.

Thus, both (3.4) and (3.5) hold, and so (3.6) holds too. ut

The next example shows that (3.7) and (3.8) are not necessary conditions for the stochastic

comparison (3.1) where T = min(X1, X2).

Example 7 Let (X1, X2) have Gumbel’s bivariate exponential distribution as seen in Example 4,

with α1 = α2 = 1, θ = 0.5. The copula C of this vector does not satisfy conditions (3.4) and (3.5),

otherwise inequality (t− T |T < t) ≤ST (t− T |X1 < t,X2 < t) would be satisfied in Example 4, by

Proposition 10. However, for this particular choice of the parameters αi and θ, and letting t = 1,

the stochastic inequality (t− T |T < t) ≤ST (t− T |X1 < t,X2 < t) is satisfied. This can be verified

numerically: Figure 2 shows the plots of Pr(t− T ≤ x|T ≤ t) (black) and Pr(t− T ≤ x|X1, X2 ≤ t)
(red) for x ∈ (0, 1]. ut
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Fig. 2 Plots of Pr(t − T ≤ x|T ≤ t) (black) and Pr(t − T ≤ x|X1, X2 ≤ t) (red), for α1 = α2 = 1, θ = 0.5 and

t = 1, with x ∈ (0, 1], when (X1, X2) is described as in Example 7.

Example 8 Consider a k-out-of-n system whose lifetime T corresponds to the k-th failure of a com-

ponent, and let the Xi, i = 1, . . . , n be the lifetimes of the n components. Assuming that the Xi

are independent ad identically distributed, with cumulative distribution F , by Proposition 9 fol-

lows that the inactivity time Tt under the general condition that the system is failed in t is always

stochastically bounded by (t− T |X1 < t, . . .Xn < t) that is, ∀x ∈ (0, t) it holds

Pr(t− T > x|T < t) ≤ Pr(t− T > x|Xn:n < t)

=
Pr(Xk:n < t− x,Xn:n < t)

Pr(Xn:n < t)
=

∑n
j=k

(
n
j

)
F j(t− x)Fn−j(t)

Fn(t)

ut

We conclude the section observing that a statement somehow related to Proposition 8 has been

provided in [11], where, in Theorem 4, it is proved that

(max{X1, X2})t ≤HR max{X1,t, X2,t} and (min{X1, X2})t ≥HR min{X1,t, X2,t} (4.3)

for independent components having lifetimes X1 and X2, and inactivity times X1,t and X2,t. Actu-

ally, Proposition 8 is clearly different, since the inequalities in (4.3) compare the inactivity time of

systems with the maximum, or minimum, among inactivity times of their components. Moreover,

the following example proves that inequality (3.1) does not holds in general for the ≤HR order.

However, it also shows that (3.1) can be satisfied for the ≤LR order whenever T is the lifetime of a

series system having independent and identically distributed lifetimes of the components.

Example 9 Let us consider a series system with two independent components and lifetime T =

min(X1, X2). From Example 1, the dual distortion functions of Tt and T ∅t are

Qt(u1, u2) =
u1F1(t) + u2F2(t)− u1u2F1(t)F2(t)

F1(t) + F2(t)− F1(t)F2(t)

and

Q
∅
t (u1, u2) = Q(u1, u2) = u1 + u2 − u1u2.
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From Proposition 8, we know that Tt ≤ST T ∅t holds for all t and all continuous distributions F1, F2.

To study if Tt ≤HR T ∅t holds, we consider the ratio

Rt(u1, u2) =
Q
∅
t (u1, u2)

Qt(u1, u2)
=

(u1 + u2 − u1u2)(F1(t) + F2(t)− F1(t)F2(t))

u1F1(t) + u2F2(t)− u1u2F1(t)F2(t)
.

It can be seen that if F1(t) = 0.5, F2(t) = 0.7, then this ratio is increasing in u1 when u2 = 0.1 and

it is decreasing when u2 = 0.9. Therefore Tt ≤HR T ∅t does not hold.

However, if we assume that the components are IID (i.e., F1 = F2 = F ), then we should study

the ratio

rt(u) =
q∅t (u)

qt(u)
=

(2u− u2)(2F (t)− F 2(t))

2uF (t)− u2F 2(t)
=

(2− u)(2− F (t))

2− uF (t)

whose derivative satisfies

r′t(u) =sign −2 + 2F (t) ≤ 0.

Therefore, rt is decreasing and Tt ≤HR T ∅t holds for all t and for all IID components. Even more, to

study if Tt ≤LR T ∅t holds we consider the ratio

gt(u) =
(q∅t )′(u)

q′t(u)
=

(1− u)(2− F (t))

1− uF (t)

whose derivative satisfies

g′t(u) =sign −1 + F (t) ≤ 0.

Therefore, gt is decreasing and Tt ≤LR T ∅t holds for all t and for all IID components. ut
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