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Capacitive sensor for tagless remote human
identification using body frequency absorption

signatures
Javed Iqbal, IEEE IMS member, Mihai Teodor Lazarescu, IEEE member, Osama Bin Tariq, IEEE member,

Arslan Arif, IEEE member and Luciano Lavagno, IEEE senior member

Abstract—Although useful for many applications, the practical
use of tagless remote human identification is often hampered
by privacy, usability, reliability or cost concerns. In this article,
we explore the use of capacitive sensors, which appear to
address most of these concerns, to identify different persons
based on the unique electric and dielectric properties of their
bodies given by their specific tissue composition. We present
experimental results obtained by measuring the capacitance of a
16 cm×16 cm transducer plate 70 cm in front of different human
bodies at different frequencies in the 5 kHz–160 kHz range. The
measurements show clearly distinct signatures of capacitance
variation with frequency for each person in the experiment, even
after accounting for capacitance variations due to different body
mass or physical dimensions. This work focuses on the contactless
identification of human body using capacitive sensors in smart
home environments.

Index Terms—capacitive sensing; tagless human sensing; tag-
less human identification; body frequency absorption signature;
assisted living; smart home environments

I. INTRODUCTION

Tagless remote human identification is significant for a wide
range of applications, such as security, home and building
automation, gaming and virtual reality, and assisted living. The
latter is a growing issue as the world elderly population (aged
60 years or more) is rapidly increasing [1]. Estimates project
the elderly population to 21.1% of the world population by
2050 [2]. Being at higher risk of health problems or falls [3],
elderly people are a concern especially in highly industrialized
societies [4].

Image- and video-based face and gait recognition are among
the most widely used techniques for indoor human identifi-
cation [5], [6]. C. Ding et al. presented a pose-invariant face
recognition scheme for person identification [7]. A deep learn-
ing based face recognition technique is discussed in [8], while
an unconstrained face detection and recognition approach is
provided in [9]. A gait-based human identification method
using arbitrary view transformation model was proposed by
D. Muramatsu et al. [10]. Another biometric gait identification
solution based on multilayer perception is presented in [11].
Thermal imaging-based face recognition systems can identify
persons even in dark environments [12].

J. Iqbal, M.T. Lazarescu, O. Bin Tariq, A. Arif and L. Lavagno are
with the Department of Electronics and Telecommunications, Politecnico
di Torino, Corso Duca degli Abruzzi, I-10129, Torino, Italy (e-mail:
{javed_iqbal,mihai.lazarescu,osama.bintariq,luciano.lavagno}@polito.it).

The methods proposed in [5]–[12] have good identifica-
tion performance, but are expensive and hardly amenable
for long-term battery-powered operation. Moreover, image-
based techniques generally rise significant privacy concerns
especially for smart home applications, healthcare monitoring
and assisted living.

Pyroelectric infrared (PIR) sensors have been used for
indoor human movement detection and identification, but with
rather poor performance [13]. I. Al Naimi et al. presented
a method for indoor human tracking and identification using
capacitive floor tiles and PIR sensors, but it requires a costly
smart floor to operate [14].

Wi-Fi signals have also been used for indoor person identi-
fication based on unique Wi-Fi spectrum perturbations that are
caused by specific physiological features (e.g., height, weight)
and behavioral traits (e.g., gait and repetitive movements of
various body parts) [15], [16]. Y. Zeng et al. proposed a
method to recognize the gait of a specific person among a
small group of people based on monitoring the Channel State
Information (CSI) of 802.11n devices [17].

Other indoor human identification techniques include Ultra-
Wide Band (UWB) sensors [18], footstep-induced structural
vibrations measured using geophone sensors [19], and ultra-
sonic sensors to detect body shape and movements [20].

Human identification techniques based on wearable Radio
Frequency Identification (RFID) and Bluetooth tags [21], [22],
[23] may often uncomfortably remind the persons that they are
monitored, and the persons may forget to wear the tag which
limits the reliability of the system.

Differences in human body physiological structure and
composition can be detected also using capacitive sensors in
order to identify the persons. The figure in [24, page 43] shows
that the average human body permittivity (ε) and conductivity
(σ) vary with the frequency of the electric fields, and their
values are much different than those of free space. The values
vary also by tissue type [25], [26], [27], e.g., the average
human body permittivity and conductivity are almost two-
thirds those of the muscle tissue [24]. The electric properties
of the human body also vary with age-related and gender-
related changes in the body structure and composition [25],
[28], [29].

In certain privacy-sensitive scenarios, we do not require
too much details about the persons to be identified. For
instance, in smart home applications a typical family may
consist of elderly grandparents, a man, a woman and one
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Fig. 1: Main components of the capacitance of a load mode
capacitive sensor.

or more children, with different ages, weights, heights and
possibly gender. They generally have significant differences
in their body compositions due to factors like age, gender,
weight, height, fat to muscle ratio, etc. In such applications,
the differences in electric and dielectric properties of different
human bodies can be exploited to successfully identify the
members of a family of 4–6 people.

Capacitive sensors, especially those operating in load mode,
are particularly interesting for long term indoor person and
object monitoring and identification due to their relatively
small size, low cost, low interface complexity, and low power
requirements [30], [31], [32], [33], [34], [35]. Load-mode ca-
pacitive sensors operate using a single transducer plate which
forms several capacitances with the environment and with the
human body, such as those shown in Fig. 1: Csb between the
sensor and human body, Cbg between the human body and
ground, and Cse between the sensor and the environment.

We propose in this work a method for human identification
that is based mainly on Csb dependency on the dielectric
properties of the body [36]. In our previous work [35], we
introduced a method for contactless indoor human identi-
fication using capacitive sensors, in which the capacitance
of the human body measured at different frequencies was
correlated with different body structures (see Fig. 2, reported
here from previous work [35] with corrected amplitude gains
and with the addition of the ideal one-pole low-pass gain for
reference). In this work, we propose several improvements on
the previous measurement method, which lead to significantly
more resolution in the experimental results.

The rest of the article is organized as follows. Section II
presents our main contributions, including a comparison with
our previous work [35]. Section III explains the methodology
of our experimentation. In Section IV, we present and discuss
the experimental results. Section V concludes our work and
highlights future developments.

II. MAIN CONTRIBUTIONS

Building on the results of our previous work [35], we first
propose several improvements of the measurement technique
of the capacitance made between the sensor transducer and
the human body, at different frequencies. Then we present
the experimental results obtained using the new measurement
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Fig. 2: Transducer gain dependency on measurement fre-
quency for different body weights from our previous work
[35], reported here with corrected amplitude gain values and
the addition of the ideal low-pass filter response for reference.

method, which demonstrate significant gains in sensitivity and
discrimination of the new method compared to the method
used in our previous work.

Specifically, in our previous setting [35] we connected the
capacitive transducer of the sensor as the capacitor in a first-
order low-pass resistor-capacitor (RC) filter. We set the cutoff
frequency of the filter one decade below the lowest mea-
surement frequency, 5 kHz, and we measured the magnitude
response of the filter for different human bodies over a wide
excitation range, 5 kHz–160 kHz (shown in Fig. 2).

However, this measurement method has several limitations.
First, the gain measurements of the sensor lowpass RC filter

were made at frequencies from 10 to 320 times higher than
the filter cutoff frequency, thus in a frequency range that is
strongly attenuated by the filter (by up to 50 dB). Moreover,
the value of the resistor in the RC filter was very high (11 MΩ)
in order to set its cutoff frequency around 500 Hz, and this
created a high impedance node that is highly susceptible to
induced noise. The effect of the noise on the experimental
results in [35] can be seen in Fig. 2, especially in the flattening
of the sensor response at high frequencies. In fact, in that
region the SNR can be very low, because on the one hand
the signal is strongly attenuated (by up to 50 dB, close to
the ideal LPF levels, and down to a few mV in amplitude),
and on the other hand the noise level remains high due to the
significant sensor susceptibility to noise. Since the RMS-to-DC
detector of the sensor is equally sensitive to both signal and
noise, at higher frequencies the RMS level is mostly given
by the noise level, because the contribution of the signal is
very reduced due to the low SNR. Consequently, the overall
sensor sensitivity to capacitance variations due to specific body
features is low, thus the sensor has a reduced sensitivity to
human body composition and reduced discrimination capacity
between different persons.
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Secondly, because of the high contribution of the noise to
the measurements at higher frequencies, variations of noise
level due to the mere presence and physical form of a human
body in its vicinity (e.g., because the body may partially shield
the sensor from some noise sources) can be much larger than
the usually small variations of an already low level signal (due
to low SNR).

Thirdly, in our previous work we made a single set of
measurements for each subject. For this reason, the previous
results may have been affected by higher variability due to the
high noise susceptibility and also several stochastic factors that
can influence the overall capacitance of sensor transducer, CS,
such as variations in environmental relative humidity (RH),
temperature (T) and other factors,

CS = f (Csb,Cbg,Cse,RH,T, . . .). (1)

Compared to our previous work, the main contributions of
this article are twofold.

First, we propose a significantly improved measurement
method for the capacity of the sensor that addresses the
limitations of the one used in our previous work [35]. The
old method optimized the sensor sensitivity to transducer
capacitance variations at the expense of the SNR. The im-
proved method that we propose in this article avoids, at
the same time, both the uneven attenuation of the various
excitation frequencies, and also reduces the RC lowpass filter
susceptibility to environmental noise. As we will show in the
experimental results, with the new measurement method we
were able to significantly increase the sensitivity of the sensor.

Secondly, we improve the measurement methodology to
reduce the influence of the stochastic factors on the measure-
ments by performing multiple measurements for each subject.

The experimental results that we present later in the article
demonstrate the effectiveness of these improvements on both
sensor sensitivity and its human body discrimination capability
based on person-specific body composition.

III. METHODOLOGY

As mentioned in Section I, the electric and dielectric
properties of different tissues differ from person to person.
C. Gabriel presented a comprehensive set of measurements
of dielectric properties of different kinds of body tissues
[36], which we summarize in TABLE I for the main body
tissues for the frequencies of interest for our sensor. The
measurements show marked differences between the properties
of various tissue types, and since each person has a different
body composition and physiology, we expect to obtain a
body-specific variation pattern of the sensor capacitance when
varying the measurement frequency.

Hence, with our method we measure the variations of the
capacitance formed by a load-mode capacitive sensor with the
body of different persons at various measurement frequencies.
Then, we look at patterns of variation of the capacitance with
the frequency which are person-specific.

A. Experimental procedure
The capacitance of interest for our measurements is formed

between a capacitive sensor operating in load mode and a

Fig. 3: Circuit used to tune the lowpass RCS filter to the lowest
excitation frequency used in our measurements, 5 kHz.

human body, when the distance between the sensor and the
body, and other influencing factors are kept constant.

In this experiment, we measure the capacitance through
its reactive effects at different frequencies. Specifically, we
connect the capacitive sensor CS in a first order lowpass RC
filter configuration as shown in Fig. 3, we apply a sine wave
on input, Vin, with known amplitude and frequency, and we
obtain the output signal, Vout, by reading the filter output using
a high impedance unity gain buffer. In this setting, the value
of the sensor capacitance, CS, determines the amplitude of the
output signal, Vout.

Hence, for an input (excitation) signal

Vin(t) = A sin (2πft+ θ) , (2)

where

f = fm = 5 kHz, (3)

with no person in sensor range we adjust the value of the
lowpass filter resistor R to obtain an output voltage

Vout(t) =
A√
2

sin
(

2πft+ θ − π

4

)
, (4)

which is specific for a first order lowpass RC filter with the
cutoff frequency equal to the excitation frequency, fm. Then
we measure the value of the resistor R and call it Rm (1.1 MΩ
in our case), and use it as base value with which we build a
resistor array as follows: Rm, Rm/2, Rm/4, Rm/8, Rm/16
and Rm/32, as shown in Fig. 4.

There is no need to determine with high precision fm or the
resistor network, since the method is based on relative mea-
surements and systematic errors typically cancel out. Much
more important is the stability of the resistor values and of
the excitation signal, Vin(t), whose frequency we program as

f = 2nfm, (5)

For each generated frequency (5), we select using an analog
switch, S, the value of the resistor R that tunes the lowpass
RC filter to the excitation frequency,

R =
Rm

2n
, (6)

where n = 0, 1, 2, 3, 4, 5.
By satisfying (2)–(6) at the same time, we make sure that the

cutoff frequency of the lowpass RC filter is always tuned to the
excitation frequency. This effectively eliminates the excessive
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TABLE I: Variation of relative permittivity (εr) and electric conductivity (σ) of major body tissues with the frequency.

Frequency Muscle Fat Bones Breast fat
εr σ εr σ εr σ εr σ

(kHz) (S/m) (S/m) (S/m) (S/m)

5 6.0×104 4.0×10−1 1.2×103 1.8×10−2 1.4×103 3.0×10−3 1.0×103 11.0×10−3

10 3.0×104 5.0×10−1 1.0×103 1.8×10−2 1.2×103 3.0×10−3 1.3×102 11.0×10−3

20 1.0×104 6.0×10−1 1.4×102 1.8×10−2 1.1×103 3.0×10−3 1.1×102 11.0×10−3

40 1.4×103 6.0×10−1 1.1×102 1.9×10−2 1.05×103 3.0×10−3 1.0×102 11.0×10−3

80 1.1×103 6.0×10−1 1.0×102 1.9×10−2 1.0×103 4.0×10−3 1.4×101 11.0×10−3

160 2.9×102 7.0×10−1 1.5×101 1.9×10−2 1.9×102 4.0×10−3 1.3×10−1 11.0×10−3

Fig. 4: Resistor network used to build first order lowpass filters
tuned for each excitation frequency used in our measurements,
from 5 kHz to 160 kHz.

attenuation of the higher frequencies from our previous method
[35], significantly improving the sensor SNR. Importantly, in
this case the differences in filter attenuation at various excita-
tion frequencies can be mainly attributed to the differences
in transducer capacitance induced by specific responses of
the different body tissues at various excitation frequencies.
We expect to obtain different attenuation patterns at various
frequencies for different persons, which can ultimately be used
to recognize the person in front of the sensor.

When the signal generator generates the excitation fre-
quency given by (5), the analog switch S selects the resistor
given by (6) to tune the RCS lowpass filter cutoff frequency
to the excitation frequency,

fc(n+1) = 2nfm =
1

2πRm

2n CS

. (7)

Thus, we measure the output voltage, Vout, and calculate the
gain of the lowpass RCS filter as

Gain = 20 log10

(
Vout
Vin

)
(dB), (8)

for each frequency determined by (7).

B. Experimental setup

Fig. 5 shows the experimental setup. Based on our previous
work [31], we have selected for these experiments a capacitive
sensor made of a 16 cm×16 cm metallic plate, installed at
adult chest level. The plate is connected in a lowpass RC filter
configuration as shown in Fig. 3.

Fig. 5: Experimental setup. The microcontroller (MCU) pro-
grams the DDS to set, one at a time, the measurement
excitation signals frequency in the 5 kHz–160 kHz range. To
avoid markedly uneven attenuation for different excitation
frequencies, the MCU selects then the resistor of the RCS
lowpass filter (made with the transducer capacitance), and the
narrow bandpass filter for noise reduction, both tuned to the
excitation frequency.

It is worth noting that the tissue composition of a human
body changes with the height (generally, the human body
composition at chest, abdomen, hips or legs level may be
different). However, the differences in composition are less
important for our proposed method, since we are interested
only in relative measurements. In fact, we aim to distinguish
the persons based on their specific frequency-capacitance
signatures as they are recorded by the sensor from its height.
The mounting height of the sensor should be chosen such way
to include in its sensitivity zone the parts of the human body
that are the most prone to have tissue composition variation
between persons, but we leave this selection for future work.

The excitation frequency is generated using a direct digital
synthesis (DDS) programmable signal generator, AD9837,
programmed by an ATmega328P microcontroller using a serial
peripheral interface (SPI) port. The DDS generates a 600 mVPP
sine wave with 300 mV DC offset, which we remove using a
series capacitor.

The amplifier A1 brings the signal amplitude to 3 VPP, which
then enters the analog switch S. The switch is controlled by
the microcontroller in sync with the DDS, in order to tune the
cutoff frequency of the RC filter (made of the resistor selected
by the switch and the capacitance of the plate) to match the



5

DDS-generated excitation frequency and satisfy (2)–(7).
The output of the lowpass Rm

2n CS filter is buffered and fed
to a filter bank made of narrow band bandpass filters with a
quality factor Q = 5. Each filter is centered on one of the
possible excitation frequencies given by (7) and is used to
reduce the signal noise. The filter is selected by the same
microcontroller using an analog multiplexer, in sync with the
programming of the DDS and with the position of the switch
S.

The amplitude of the signal after the filter is converted to DC
(demodulated) using a precision ∆Σ RMS-to-DC converter
and then measured using the microcontroller analog to digital
converter (ADC).

This setup allows us to measure in sequence the capacitance
of the sensor transducer at all frequencies given by (5), for a
person standing at 70 cm in front of the sensor. Then we repeat
the experiment for each person.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

We used the sensor and the procedure described in Sec-
tion III for four different persons with almost same height and
age group, but with different physiological traits (weight, chest
to waste ratio, Body Mass Index (BMI), hips to waste ratio,
etc.), to ensure that the four selcted persons are significantly
different in their body compositions. In our focused applica-
tion, i.e., smart home environments as mentioned in Section
I, it is intuitive that the family members have comparatively
much different body compositions. Hence, our sensor is ex-
pected to work relatively better in smart home applications.

As discussed in Section II, the capacitance CS depends upon
many variables, some of them stochastic, as shown in (1).
Hence, we made ten measurements for each person.

A. Measurement results

The measurement results and their averages are shown in
Fig. 6 for Persons 1, 2, 3 and 4 respectively. We note that
they have a relatively low variance, which is due to stable
experimental conditions and to the good SNR achieved using
the improved capacitance measurement technique compared to
our previous work [35].

The average attenuations of the lowpass filter for each
person body are compared in Fig. 7. We note that the atten-
uations are shifted at all measurement frequencies by offsets
correlated to the weight difference between the person bodies.
We consider that this correlation has two main components:

1) the direct correlation between the physical body dimen-
sions and the transducer capacitance;

2) the direct correlation between the physical dimensions
of the body and its weight.

For the former, we can see from Fig. 1 that the physical
dimensions of the person body directly influence the Csb com-
ponent of the total transducer capacitance (more specifically,
larger body dimensions increase Csb). For the latter, human
bodies with different weights usually have different physical
dimensions, and heavier bodies are usually associated with
larger dimensions. Hence, we obtain that heavier bodies tend
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Fig. 6: Ten measurements (and their average) of the RCS filter
gain at different frequencies for: Person 1 (a), Person 2 (b),
Person 3 (c), and Person 4 (d).



6
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Fig. 7: Average RCS filter gains at different frequencies for the
four persons. We note that a higher body weight is typically
associated with larger body size, which generally increases
the capacitance of the transducer, hence the attenuation of the
lowpass filter used for capacitance measurement.
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Fig. 9: Measurements distributions at fc = 10 kHz.

to increase Csb, which increases the attenuation of the lowpass
filter (see Fig. 4).

Fig. 8, 9, 10, 11, 12 and 13 show the distributions of the
measured RCS lowpass filter gains for each body at the filter
cutoff frequencies of 5 kHz, 10 kHz, 20 kHz, 40 kHz, 80 kHz
and 160 kHz respectively. As explained for Fig. 7, we note
also here that the separations between the gain distributions for
each body are correlated with the difference in body weights.

For practical uses, an adequate trade-off should be found
between the length of the measurement and the speed of
movement of the subject in front of the sensor, to optimize
the measurement accuracy. Averaging a higher number of
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Fig. 10: Measurements distributions at fc = 20 kHz.
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Fig. 11: Measurements distributions at fc = 40 kHz.
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Fig. 12: Measurements distributions at fc = 80 kHz.
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Fig. 13: Measurements distributions at fc = 160 kHz.

measurements can reduce noise and increase accuracy, while
a significant change in position of the subject during the mea-
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Fig. 14: RCS lowpass filter gain for each person at different
frequencies shows a distinct pattern for each person.

surements can reduce the accuracy. For instance, our sensor
needs 50 ms to acquire one reading, hence ten successive
readings averaged to reduce noise influence will require about
500 ms. This measurement time can be adequate for practical
applications where the subject does not move significantly
within 500 ms, but since the variance of the readings is reduced
(see Fig. 6, 8, 9, 10, 11, 12, 13), the average over a lower
number of successive readings can be used for applications in
which the subject is expected to move faster.

B. Person identification

Using these experimental data, we expect to be able to
identify the person in front of the sensor from a pool of known
persons by examining the relative capacitance values measured
at different frequencies for each person.

For this purpose, in Fig. 14 we show for each person the
variation of the transducer capacitance with the measurement
frequency.

First, we note that the measurements have different levels
for each person. The level shifts can be mostly attributed to
the differences in body dimensions, which are mostly due to
different person weights.

Secondly, we notice a different attenuation pattern for each
person, when the measurement frequency varies. We attribute
the difference in patterns to differences in tissue composition
for each person, which can determine different electric and
dielectric properties for each body according to measurements
in TABLE I.

In Fig. 15 we show how the frequency-dependent attenua-
tion patterns can be processed for automatic identification of
the person using machine learning classification algorithms.
First, each set of attenuations is independently normalized in
order to remove most of its dependencies on body weight.
Then, the classification algorithm uses only the remaining
(inner) normalized values (measured at frequencies between
10 kHz and 80 kHz) for the typical machine learning phases
of training, validation and classification. It should be noted
that the absolute values of the outer frequencies of our
measurement range, 5 kHz and 160 kHz, contribute through
the normalization to the pattern of the inner frequencies nor-
malized values, which is the one used for person identification.

Hence, we consider that the relative variation pattern of
body capacitance with the frequency can constitute a reliable

Fig. 15: Normalized RCS lowpass filter gains at different fre-
quencies show a distinct pattern for each person that depends
on the unique composition of each person body, and which
can be used for person identification.

means to identify the person, because the patterns depend
mostly on person-specific body composition.

Nevertheless, there can be practical cases where the res-
olution of the system is not sufficient to distinguish closely
matching persons. In such cases, we expect poor recognition
results.

V. CONCLUSIONS AND FUTURE WORK

In this article we presented a method for tagless remote
identification of humans that is based on body absorption
signatures detected using a capacitive sensor that operates at
different frequencies. The technique leverages the different
electric and dielectric properties of the main tissues in the
human body, and the fact that each body has a unique
composition.

This method extends and significantly enhances our pre-
vious work [35], improving considerably the sensitivity and
discrimination capability of the sensor.

The experimental results, acquired at 70 cm distance using
a 16 cm×16 cm metallic plate as a capacitive sensor in load
mode, show that four male individuals with different body
compositions produce distinct capacitance variation patterns to
frequencies between 5 kHz and 160 kHz. The patterns remain
well distinct after normalizing them to exclude the capacitive
effects of the different dimensions and mass of the bodies.

The system uses single-plate sensors and can be produced
to be easily installed in the door frames of an indoor space,
where it can monitor the persons passing through the doors.

In future work we intend to explore the variations of sensor
sensitivity with variability factors such as relative humidity,
temperature, clothing, transpiration, distance to human body,
body orientation, measurement frequency ranges, and if the
method can be reliably used for gender identification.

The respose time of our sensor to aquire one set of mea-
surements over all the excitation frequencies is almost 50 mS.
We intend to explore the ways to speed up the measurement
in order to make the method applicable in real life (dynamic)
contexts, to fuse information from multiple sensors to improve
the accuracy in such contexts, to perform automatic person
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identification using machine learning classification, and to
reduce the power consumption for long-term service using
either battery or wireless power.
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