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Abstract
Population growth, socio-economic development and climate changes are placing increasing
pressure on water resources. Crop water footprint is a key indicator in the quantification of such
pressure. It is determined by crop evapotranspiration and crop yield, which can be highly
variable in space and time. While the spatial variability of crop water footprint has been the
objective of several investigations, the temporal variability remains poorly studied. In particular,
some studies approached this issue by associating the time variability of crop water footprint only
to yield changes, while considering evapotranspiration patterns as marginal. Validation of this
Fast Track approach has yet to be provided. In this Letter we demonstrate its feasibility through a
comprehensive validation, an assessment of its uncertainty, and an example of application. Our
results show that the water footprint changes are mainly driven by yield trends, while
evapotranspiration plays a minor role. The error due to considering constant evapotranspiration
is three times smaller than the uncertainty of the model used to compute the crop water
footprint. These results confirm the suitability of the Fast Track approach and enable a simple,
yet appropriate, evaluation of time-varying crop water footprint.
1. Introduction

Global food demand and rising living standard
increased the global water use by 6–8 times from
1900 to 2010 [1, 2], highlighting the growing
importance of each drop of water as water consump-
tion gets closer to water availability [3].

The concept of ‘water footprint’ [4, 5] provides a
useful tool to quantify the efficiency of water used for
food production. The water footprint of a generic
product measures the water volume required for its
production; it is also known as the virtual water
content of the product because it represents the water
amount conceptually embedded (though not physi-
cally present) in the good [6].

In light of the fact that agriculture is the major
water-consuming sector, with irrigation accounting
for 70% of freshwater withdrawal [7–9], many studies
have focused on the crop water footprint, CWF, which
is quantified as the volume of water evapotranspired
during the growing season divided by the crop yield
[10, 5]. It has been shown that crop water footprint is
© 2017 IOP Publishing Ltd
highly heterogeneous in space due, e.g. to different
climate and soil conditions, fertilizer application rates,
and agricultural mechanization level, even at the sub-
national scale [10–13].

While a great deal of attention has been devoted to
the CWF variability in space, less attention has been
paid to its variability in time even though climatic
fluctuations and yield variations have been remarkable
in the past decades [14–16]. To date, only local studies
have evaluated a time-varying crop water footprint
[17–19], with particular regard to the Chinese case
[20–22].

A larger number of studies investigated the
temporal evolution and dynamics of the virtual water
trade (VWT) associated to the international trade of
agricultural goods [23]. The VWT has been recog-
nized for its ability to improve access to water for food
production in those countries where water scarcity is a
major concerning issue, i.e. through the import of
water-intensive products [24, 25]. It has been shown
how both the virtual water volume embedded in
internationally-traded goods and the number of trade
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relations grew significantly between 1986 and 2010
[26, 27], mainly driven by population, GDP, and
geographical distance between countries [28, 29].
These studies approached the time variability of the
VWT using annual trade data of agricultural goods,
i.e. available on the FAOSTAT database, and time-
averaged crop water footprint, i.e. provided by
Mekonnen et al (2010, 2011) [10]. At the same time,
also some local studies dealt with the time variability of
the VWT using constant CWF values [30, 31].

However, considering constant crop water foot-
prints precludes analyses on the implications of
climate patterns and yield trends on the virtual water
content and, thus, on the virtual water trade. In order
to keep pace with this issue, a number of studies have
adopted a simple approach that ascribes the time
variability of virtual water content only to yield trends,
leaving out the effects of evapotranspiration variations
[32–35]. This approach has been adopted both for
global [36–38] and local [39, 40] water footprint
assessments. But feasibility of this approach has yet to
be proved. Can this approach capture the main CWF
temporal variability? How big is the error arising with
the assumption of constant evapotranspiration? What
is the effect of CWF variability on the virtual water
trade? This Letter addresses these questions by (i)
providing a systematic validation of the method (here
referred as the Fast Track method), (ii) furnishing a
comprehensive assessment of the associated uncer-
tainty, and (iii) giving an example of application to
highlight its relevance.
2. Materials and methods
2.1. Fast Track approach
Recent literature on virtual water testifies a growing
application of a Fast Track (FT) approach for
introducing the time dependency in crop water
footprint assessment, with the main objective of
calculating the volumes of virtual water embedded in
internationally-traded agricultural goods.

According to the FT approach, the crop water
footprint of country c in year t, CWFc,t (Y), is only
driven by crop yield variations, Yc,t [ton⋅ha�1], while
evapotranspiration depth, ET c;T [mm], is kept
constant to an average value typical of a reference
year or period (T), namely

CWFc;tðY Þ ¼ 10
ET c;T

Y c;t

m3

ton

� �
; ð1Þ

where, 10 is a numerical factor to convert the
evapotranspiration depth from mm to m3⋅ha�1. With
this formulation, it is implicitly assumed that the
variations of crop evapotranspiration have negligible
effects on the crop water footprint when compared to
the effects of yield variations and thus the ET c;T value
2

can be fixed for any year t. The advantage behind
equation (1) is that yield time-series data are easily
available at the country scale (e.g. FAOSTAT
database), and thus the CWF variability can be
obtained without the adoption of computationally
demanding models that are generally used to estimate
evapotranspiration. Equation (1) has been adopted in
previous studies to include time variations in the
analyses of virtual water trade [32–35] for all years
lacking annual ET, but without testing the suitability
nor the uncertainty of the adopted methodology.
Validation of the FT approach is the main purpose of
this letter.

The FT approach allows one to exploit average
crop water footprint estimates determined over a
period T, CWFc;T . Literature accounts a number of
CWF estimates at different spatial scale and averaged
over different time intervals [10, 11, 13]. These time-
averaged crop water footprints can be scaled with yield
variations, according to

CWFc;tðY Þ ¼
CWFc;T ·Y c;T

Y c;t

m3

ton

� �
; ð2Þ

in order to make them time dependent. Y c;T is
the average crop yield over T while Yc,t is the yield
of year t. Equation (2) has been recently applied, e.g.
by Duarte et al (2016) [38] to compute annual virtual
water flows from 1965 to 2010 for 133 products.

To date, equations (1, 2) have been applied only at
the country scale. However, they can be applied at any
spatial resolution, depending on the goals and data
availability. Thus, symbol c can refer also to a region, a
province or a cell and the time-interval T can indicate
both a single year or a temporal window of two or
more years length.

2.2. Validation of the Fast Track approach
Here we test and validate the assumption of constant
evapotranspiration that grounds the FT approach.
The aim of validation is twofold: (i) to support
previous studies that have applied the method without
examining in depth its feasibility and (ii) to foster its
adoption to deal with temporal variability in future
water footprint assessment. In order to test the
method, we compare theCWF estimates obtained with
the FT approach to the estimates accomplished
through a more refined model accounting for both
the inter-annual yield and evapotranspiration changes.
The two different estimates are obtained as detailed in
the following for wheat, rice, maize, and soybean.
These crops provide more than 50% of the global
caloric content of human diet [41], they contribute for
more than 50% to the global water footprint [10] and
they account for over 30% of the global virtual water
trade of agricultural goods [28]. The validation could
be accomplished for any other product, provided that
data are available (see below).
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2.2.1. Evaluation of the crop water footprint through
the FT approach
Annual CWF estimates are carried out according to
equation (2) applied at the country scale for the period
1961–2013. Equation (2) requires as input the time-
averaged crop water footprint ðCWFc;T Þ, the time-
averaged yield ðY c;TÞ, and the annual yield from 1961
to 2013 (Yc,t). The average crop water footprint values
are provided by Tuninetti et al (2015) [13] for the
period T = 1996–2005 at 5 × 5 arc minute resolution.
To obtain country averages, these gridded estimates
are aggregated through a production-weighted mean
(see Tuninetti et al (2015) [13] for further details). The
country yield averages Y c;T are obtained by averaging
the annual FAOSTAT data available for each produc-
ing-country from 1996 to 2005; finally, the annual
yield values Yc,t are derived from the same database but
with t running from 1961 to 2013.
2.2.2. Evaluation of the crop water footprint with
the detailed method
The CWFc,t(Y) estimates obtained with the FT
approach are compared with the annual water
footprint estimates achieved when both the yield
and the evapotranspiration changes are taken into
account. To this purpose, we adapted the model
proposed by Tuninetti et al (2015) [13] for time-fixed
assessments, by introducing the time variability of
both yield and evapotranspiration.

The yield- and evapotranspiration -dependent
annual crop water footprint in cell i of year t belonging
to the range 1961:2013, CWFi,t (Y, ET), reads

CWFi;tðY ; ETÞ ¼ 10·ETi;t

Y i;t

m3

ton

� �
: ð3Þ

In this case, both the crop evapotranspiration, ETi,t,
and the crop yield, Yi,t , are time dependent, differently
from equations (1, 2) where the ET values are assumed
constant and averaged over T.

The annual ETi,t value is the water depth actually
evapotranspired by the crop during the growing
season of year t. It is determined [42] as the product
between the potential evapotranspiration (ET0), a
crop coefficient (which is characteristic of the crop
height, canopy resistance, and soil evaporation rate),
and a water stress coefficient obtained through a daily
water balance (as in Tuninetti et al (2015) [13]). We
assume that crop properties (e.g. planting date, length
of the growing period) and soil characteristics (e.g.
available soil water content) remain constant along
the study period due to lack of more detailed data.
Differently, we account for inter-annual fluctuations
of potential evapotranspiration and precipitation
integrating the annual climatic data provided by the
CRU database [43] and the GAEZ database [14]. The
CRU database covers the period between 1961 and
2013 providing for each year gridded potential
3

evapotranspiration and precipitation at 30 � 30 arc
minute resolution on monthly basis. The values given
by the GAEZ database cover the period between 1961
and 2000 with yearly temporal resolution on a
50 � 50 grid. The combination of the two databases
allows one to achieve the best spatio-temporal
resolution in the estimation of the ET0 values and
precipitation.

For the crop yield, time series of gridded yield data
are not available at the spatial resolution required by
equation (3) for the period 1961–2013. Therefore, in
order to obtain time-variable gridded data, we adjust
the values provided by Monfreda et al (2008) [44] at
50 � 50 resolution for year t ¼ 2000, i.e. YMo

i;t¼2000, with
two factors, namely

Y i;t ¼ acl
i;t ·a

man
c;t ·YMo

i;t¼2000

ton

ha

h i
: ð4Þ

The factor acl
i;t accounts for climate-driven yield

changes while the factor aman
c;t accounts for the yield

changes induced by technological advances and
agricultural improvements, ascribable to the anthropic
(man) role in agriculture. Depending on data
availability, acl

i;t can be defined at the cell level while
aman
c;t can only be defined at the country scale.
The factor acl

i;t accounts for yearly fluctuations of
crop yield at the cell level, due to year-to-year changes
in crop evapotranspiration. Such changes are assumed
to impact the yield according to the relation proposed
by Doorenbos et al (1979) [45],

1� Ycl
i;t

Y i;t¼2000
¼ ky · 1� ETi;t

ETi;t¼2000

� �
; ð5Þ

where, Y cl
i;t is the yield in year t when only variations

in crop evapotranspiration are considered. Thus, the
subscript cl marks the new yield determined by
climatic changes only. Equation (5) relates the relative
change in evapotranspiration to the relative change in
crop yield through the yield response factor, ky [45].
We refer the changes to year t ¼ 2000 because the
yield dataset YMo

i;t¼2000 [44], is representative for that
year. The value of acl

i;t is determined by equations (4)
and (5) assuming aman

c;t ¼ 1 and thus Y i;t ¼ Ycl
i;t ,

namely

acl
i;t ¼ 1� ky · 1� ETi;t

ETi;t¼2000

� �
: ð6Þ

When only climatic variations are taken into account,
the yield value reads

Y cl
i;t ¼ acl

i;t ·Y
Mo
i;t¼2000: ð7Þ

Gridded yield values obtained with equation (7) are
then aggregated at the country scale through a
weighted mean, i.e.

Ycl
c;t ¼

P
i ∈ cY

cl
i;t ·Ai;t¼2000P

i ∈ cAi;t¼2000
; ð8Þ
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Figure 1. Comparison of the annual CWF estimates obtained by the Fast Track approach, CWF (Y), with the values obtained with
the detailed methodology accounting for both yield and evapotranspiration variations, CWF (Y, ET). The comparison is made at the
country scale across the period between 1961 and 2013 for wheat (a), rice (b), maize (c), and soybean (d). The R2 value indicates the
coefficient of determination between the two estimates. The inset of each panel reports the global trend of the average crop water
footprint evaluated with the FT method. Such annual global value is obtained through a weighted mean of the country estimates,
using the annual country production as weight.
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using the gridded harvested area of year 2000,
Ai,t¼2000, provided by Portmann et al (2010) [46] as
weight. These country values are used in the following
to determine the aman

c;t factor.
The aman

c;t factor expresses the yield variability due
technological and mechanical advances in the
agricultural management (e.g. use of pesticides,
application of fertilizers, extensive irrigation) and it
is thought as a correction factor to the Ycl

c;t values in
order to account for all other aspects beyond climate.
It is defined as the ratio between the FAO country
scale yield, Y FAO

c;t , and the national Ycl
c;t values

calculated with equation (8)

aman
c;t ¼ Y FAO

c;t

Y cl
c;t

: ð9Þ

With the adoption of equations (3, 4) it is now possible
to determine the annual crop water footprint in each
cell. Country estimates of CWFc,t (Y, ET) are then
obtained through a production-weighted mean of the
gridded values, where cell production is given by the
product between the Yi,t values (expressed in
4

ton⋅ha�1) and the harvested area Ai,t¼2000 (in ha)
provided by Portmann et al (2010) [46].

3. Results
3.1. Validation of the FT approach
In figure 1 we compare the annual CWF estimates
obtained with the Fast Track approach (CWFc,t (Y)),
only accounting for the yield variability, with
those accomplished by the detailed method (CWFc,t
(Y, ET)) accounting not only for yield but also for the
evapotranspiration variability. Each point in the
scatter represents the national crop water footprint in
year t within the period 1961–2013. The estimates
obtained with the two approaches compare well for
all crops: in fact, all points are mostly aligned along
the 1:1 line with limited scatter, as confirmed by the
values of the coefficient of determination, R2 (that
read 0.977 for wheat, 0.965 for rice, 0.973 for maize,
and 0.914 for soybean). The overall agreement
between the two methods confirms that the temporal
variability of the crop water footprint is mainly driven
by yield variations, while the variability of crop



Table 1. Statistics of the error, �, associated to the methodology described by Tuninetti et al (2015) [13] and statistics of the error, �0,
associated to the FT method assumption of invariable evapotranspiration. The l (�) and l (�0) values indicate the length of the error
samples available for each crop.

log (�) log (�0)
l (�) m� s� l (�0) m�0 s�0

Wheat 5689 �0.001 0.296 107 �0.022 0.093

Rice 5405 0.012 0.286 97 �0.016 0.099

Maize 6958 0.036 0.266 126 �0.066 0.104

Soybean 3680 0.041 0.254 73 �0.086 0.135
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evapotranspiration, that is kept constant over time in
the FT method (and not in the refined method),
appears to play a negligible role. We remark that this
does not correspond to neglect the relevance of the
climatic variations on the CWF: as the climatic
signature remains in the yield time series. In fact Ray
et al (2015) [47] have found that around 30% of the
wheat, rice, maize and soybean yield variability is
explained by climate variability through the inter-
annual fluctuations of precipitation and temperature
values.

Moreover, the FTmethod performs well indepen-
dently of the presence of yield trends. In fact, there are
countries in the database where yield has improved
over time inducing the decrease in CWF; whereas, in
other countries, yield has stagnated or decreased,
making the CWF values remain constant or increase.
According to Ray et al (2012) [16], wheat, rice, maize,
and soybean are experiencing yield increases in around
70% of their harvested areas, stagnation in over 20% of
the areas and collapse in the remaining areas. Despite
the strong spatial heterogeneity of the CWF trends
worldwide, the global average water footprint of each
crop has sharply decreased from 1961 to 2013, as
shown by the red lines in the insets of figure 1 (�68%
for wheat,�62% for rice,�66% for maize, and�52%
for soybean).

3.2. Uncertainty in the FT approach
The uncertainty of the FT approach is now assessed
and decomposed in its main components. Denoting
the real (unknown) crop water footprint of country c
in year t asCWFr

c;t , the error structure is here assumed
to be multiplicative to account for the fact that crop
water footprint is positive-valued, namely

CWFc;tðY Þ ¼ CWFr
c;t ·�c;T ·�

0
c;t : ð10Þ

The �c,T error is due to the type of model adopted to
calculate the crop water footprint; it impacts the ET
value in equation (1) and the CWF value in equation
(2). The �0c;t error arises from the assumption of
constant evapotranspiration in the FT approach.

The �c,T error depends on the model and data
used to estimate the crop evapotranspiration (e.g. the
data regarding cultivated and irrigated areas, growing
periods, crop parameters, soil, climate) and the yield
data. In order to quantify such error, we compare the
5

average CWF estimates derived from Tuninetti et al
(2015) [13], and already used in equation (2) at the
country scale, with the country estimates given by
Mekonnen et al (2011) [10] which constitutes the
overriding reference study in the literature of water
footprint assessment. Both estimations are referred to
the period T ¼ 1996–2005; we denote as CWF

Me
c;T the

estimates by Mekonnen et al (2008) and CWF
Tu
c;T the

values derived from Tuninetti et al (2015).
We calculate, for each country and for each crop,

the corresponding �c,T error, as

�c;T ¼ CWF
Tu
c;T

CWF
Me
c;T

: ð11Þ

We thus obtain four samples of �c,T values, one for
each crop (the length of each sample is reported in
table 1). We find that each sample is fitted by a two-
parameter log-normal distribution, with parameters
m and s representing the average and standard
deviation of the log-transformed data, given in
table 1. Overall, m is around 0 for all crops while s is
between 0.25 and 0.30. These relatively large s values
imply a high sensitivity of the crop water footprint to
the model parameters and input data used, as
previously shown in other studies [10, 12]. In figure
2 we compare the CWF

Tu
c;T and CWF

Me
c;T estimates;

each circle represents a producing-country and the
size of the circle indicates the share of the country
in the global production. The largest producer of
each crop is highlighted by a red circle. Generally,
the estimates compare well for all crops with
average coefficients of determination, R2, always
higher than 0.7. However, when weighted by country
production the R2

w values suggest better or worse
agreement between the estimates provided by
Tuninetti et al (2015) and Mekonnen et al (2011)
depending on the crop. For rice and maize (panels
(b,c)), the agreement between the two studies is
particularly high, with R2

w equal to 0.89 and 0.83,
respectively. Conversely, for wheat and soybean the
R2
w values are lower, particularly for soybean

ðR2
w ¼ 0:41Þ.
The proposed assessment of model uncertainty

can be extended to other crops and derived crops using
the dataset provided by Mekonnen et al (2011) [10],
which is (to the best of our knowledge) the most
complete one.
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The �0c;t error is determined as the ratio between
the CWFc,t (Y) values, estimated with the Fast Track
approach according to equation (2), and the
CWFc,t (Y, ET) values achieved with the refined
method, i.e.

�0c;t ¼
CWFc;tðY Þ

CWFc;tðY ; ETÞ : ð12Þ

As for the �c,T errors, we find that the �0c;t values
follow a log-normal distribution; the m and s values
are shown in table 1 together with the length of the �0c;t
samples. For all crops, the precision of the estimates is
high, with a standard deviation of the error around 0.1,
confirming the good agreement between the two
estimators previously shown in figure 1.

The uncertainty in the annual CWF estimates
ascribable to the assumption of constant evapotrans-
piration (in the FT approach) results three times
lower than the model uncertainty, evaluated as a
comparison between the outcomes provided by
Mekonnen et al (2011) and those derived from
Tuninetti et al (2015). Therefore, the FT approach is
appropriate to deal with the time variability of crop
water footprint.
6

3.3. Example of application: the case of virtual water
trade
The time dependent CWFc,t (Y) estimates, obtained
for wheat, rice, maize, and soybean with the FT
approach, are now used to assess the temporal
variations of the virtual water volumes embedded in
the international trade. To this aim, we calculate the
annual virtual water embedded in each crop exported
by country c in year t, VWc,t , as the product between
the weight of crop, Wc,t , (in tonnes) exported by
country c and the annual water footprint of the crop,
CWFc,t (Y), for the period between 1986 and 2011. The
Wc,t values are available from the FAOSTAT database,
whereas the crop water footprint values have been
estimated by equation (2). The total virtual water
trade, VWTt , is then built by summing up theVWc,t of
all crops and countries, and shown by the solid line in
figure 3. During the period 1986–2011 countries have
been displacing growing volumes of virtual water,
embedded in the four study crops, worldwide: from
300 km3 in 1986 to 540 km3 in 2011 (refer to the solid
line, figure 3).

In order to provide evidence of the importance
of using time dependent CWF values, we report in
the same graph the annual virtual water trade data



1990 1995 2000 2005 2010
t

6.5

6

5.5

5

4.5

4

3.5

3

2.5

x 1011

90% confidence interval
CWFc,t(Y)

CWFc,T

V
W

T t
 [m

3 ]

Figure 3. Temporal trend of the virtual water volume associated to the international trade of wheat, rice, maize, and soybean in the
period between 1986 and 2011. The black dashed line represents the virtual water trade evaluated with the time-averaged CWFc;T

values; the black solid line refers to the VWTobtained using the annual CWFc,t (Y) values estimated with the FTmethod. The green
area displays the 90% confidence interval of the FT method error, due to the assumption of constant crop evapotranspiration.
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obtained using the annual trade from the FAOSTAT
database and the average CWF

Tu
c;T values over the

period 1996–2005 taken from Tuninetti et al (2015)
[13]. In this case, the virtual water content of each crop
is kept constant over time and the VWT trend is only
driven by the amount of products that are interna-
tionally exchanged over time, i.e. Wc,t. We observe
significant differences between the trend obtained with
the time variable CWFc,t (Y) and the time-averaged
CWF

Tu
c;T virtual water content: e.g. in year 2011 the

difference is around 100 km3. Such comparison
exemplifies for the four study crops the gap existing
in the VW trade estimations between the two
approaches.

Finally, the green area in figure 3 depicts the 90%
confidence interval of the VWT estimation. The
confidence interval is determined as VWTt ±
z� · sVWT, where z

� is the 95th percentile of a standard
normal variate and sVWT is the standard deviations of
the total virtual water flow. The square value s2

VWT is
equal to the sum of the variance associated to the
virtual water trade of each crop cr (assuming
independence of the four virtual water flows). Such
variance is calculated as the product among (i) the
variance of the �0 errors (see equation (12) and table 1),
s2
�0cr
, (ii) the square of the total trade of each crop

averaged over the period 1986–2011,W
2
cr , and (iii) the

square of the global average crop water footprint over
the same period, CWFcr

2
, i.e.

s2
VWT ¼

Xcr¼4

cr¼1

s2
�0cr ·W

2
cr ·CWF

2
cr

¼
Xcr¼4

cr¼1

s2
�0cr ·VW

2
cr : ð13Þ

The product between Wcr (expressed in ton) and
CWFcr (expressed in m3⋅ton�1) gives the average
water volume virtually embedded in the traded crops,
i.e. VWcr .
7

The width of the 90% confidence interval with
respect to the distance between theCWFc,t (Y) line and
the CWFc;T line suggests that assuming constant
evapotranspiration over time has less impact on the
VWT estimates than the adoption of a time-constant
crop water footprint.
4. Conclusion

In this Letter, we demonstrate the feasibility of the Fast
Track approach to provide estimates of the temporal
variability of crop water footprint. The method is
tested by comparing the annual CWF country values
of wheat, rice, maize, and soybean obtained through
the FT approach with those obtained by a detailed
model accounting for the changes of yield and
evapotranspiration over time. The two estimates
compare well with a coefficient of determination
close to 1 for all crops. This suggests that inter-annual
variations of crop water footprint is mostly driven by
yield variability, while the effects of evapotranspiration
not embedded in yield variations [16, 47] seem to be
marginal when compared to yield, thus confirming the
assumption of the FT approach.

To accomplish the assessment of the FT approach,
we have evaluated the associated uncertainty due to
considering constant evapotranspiration, finding a
general low uncertainty of the CWF estimates with a
standard deviation of the error around 0.1. Such
uncertainty is three times lower than that of the model
used to estimate the crop water footprint. Finally, the
time dependent crop water footprint estimates have
been applied to evaluate the virtual water volume
associated to the international trade of wheat, rice,
maize, and soybean over the period 1986–2011.
Comparing this pattern with the one obtained using
constant CWF values, as previous studies did [26, 28],
confirms the importance of including time dependent
crop water footprint in the computation of virtual
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water trade. Our results prove the suitability of the FT
approach, which represents a very useful tool thanks to
its low computational cost, and its easy and fast
applicability.
Acknowledgments

The authors acknowledge funding support provided
by the European Research Council (ERC) through the
project ‘Coping with water scarcity in a globalized
world’ (ERC-2014 CoG, project 647473). Data are
available upon request.
References

[1] Falkenmark M 1997 Meeting water requirements of an
expanding world population Phil. Trans. R. Soc. Lond. B
352 929–36

[2] Vörösmarty C J, Green P, Salisbury J and Lammers R B
2000 Global water resources: vulnerability from climate
change and population growth Science 289 284–8

[3] Wada Y et al 2016 Modeling global water use for the 21st
century: water futures and solutions (WFAS) initiative and
its approaches Geosci. Model. Dev. 9 175–222

[4] Chapagain A and Hoekstra A 2003 Virtual water trade: a
quantification of virtual water flows between nations in
relation to international trade of livestock and livestock
products Proc. of the International Expert Meeting on
Virtual Water Trade, UNESCO-IHE (Delft: United Nations
Educational, Scientific and Cultural Organization-Institute
for Water Education)

[5] Aldaya M, Chapagain A, Hoekstra A and Mekonnen M
2011 The Water Footprint Assessment Manual: Setting the
Global Standard (London: Taylor & Francis)

[6] Allan J A 2003 Virtual water-the water, food, and trade
nexus. Useful concept or misleading metaphor? Water Int.
28 106–13

[7] Döll P and Siebert S 2002 Global modeling of irrigation
water requirements Water Resour. Res. 38 8–1–10

[8] Falkenmark M and Rockström J 2011 Balancing Water for
Humans and Nature: The New Approach in Ecohydrology
(New York: Earthscan)

[9] FAO The State of the World’s Land and Water Resources for
Food and Agriculture (Rome: Food and Agriculture
Organziation of the United Nations)

[10] Mekonnen M and Hoekstra A 2011 The green, blue and
grey water footprint of crops and derived crop products
Hydrol. Earth Syst. Sci. Discuss. 8 1577–600

[11] Siebert S and Döll P 2010 Quantifying blue and green
virtual water contents in global crop production as well as
potential production losses without irrigation J. Hydrol. 384
198–217

[12] Zhuo L, Mekonnen M and Hoekstra A 2014 Sensitivity and
uncertainty in crop water footprint accounting: a case study
for the Yellow river basin Hydrol. Earth Syst. Sci. Discuss. 11
135–67

[13] Tuninetti M, Tamea S, D’Odorico P, Laio F and Ridolfi L
2015 Global sensitivity of high-resolution estimates of crop
water footprint Water Resour. Res. 51 8257–72

[14] New M, Lister D, Hulme M and Makin I 2002 A high-
resolution data set of surface climate over global land areas
Clim. Res. 21 1–25

[15] Tilman D, Cassman K G, Matson P A, Naylor R and
Polasky S 2002 Agricultural sustainability and intensive
production practices Nature 418 671–7

[16] Ray D K, Ramankutty N, Mueller N D, West P C and Foley
J A 2012 Recent patterns of crop yield growth and
stagnation Nat. Commun. 3 1293
8

[17] Sun S, Wu P, Wang Y and Zhao X 2013 Temporal
variability of water footprint for maize production: the case
of Beijing from 1978 to 2008 Water Resour. Manag. 27
2447–63

[18] Xu Y, Huang K, Yu Y and Wang X 2015 Changes in water
footprint of crop production in Beijing from 1978 to 2012:
a logarithmic mean divisia index decomposition analysis J.
Clean. Prod. 87 180–7

[19] Pute W, Yubao W, Xining Z, Shikun S and Jiming J 2015
Spatiotemporal variation in water footprint of grain
production in China Front. Agr. Sci. Eng. 2 186–93

[20] Sun S, Wu P, Wang Y, Zhao X, Liu J and Zhang X 2013 The
impacts of interannual climate variability and agricultural
inputs on water footprint of crop production in an irrigation
district of China Sci. Total Environ. 444 498–507

[21] Zhuo L, Mekonnen M M, Hoekstra A Y and Wada Y 2016
Inter-and intra-annual variation of water footprint of crops
and blue water scarcity in the Yellow river basin (1961–
2009) Adv. Water Resour. 87 29–41

[22] Zhuo L, Mekonnen M M and Hoekstra A Y 2016 The effect
of inter-annual variability of consumption, production,
trade and climate on crop-related green and blue water
footprints and inter-regional virtual water trade: a study for
China (1978–2008) Water Res. 94 73–85

[23] Allan J A 1997 ‘Virtual Water’: A Long Term Solution for
Water Short Middle Eastern Economies (London: School of
Oriental and African Studies, University of London)

[24] Chapagain A K and Hoekstra A Y 2008 The global
component of freshwater demand and supply: an assessment
of virtual water flows between nations as a result of trade in
agricultural and industrial products Water Int. 33 19–32

[25] Hanjra M A and Qureshi M E 2010 Global water crisis and
future food security in an era of climate change Food Policy
35 365–77

[26] Carr J A, D’Odorico P, Laio F and Ridolfi L 2012 On the
temporal variability of the virtual water network Geophys.
Res. Lett. 39 L06404

[27] Carr J A, D’Odorico P, Laio F and Ridolfi L 2013 Recent
history and geography of virtual water trade PloS One 8
e55825

[28] Tamea S, Carr J, Laio F and Ridolfi L 2014 Drivers of the
virtual water trade Water Resour. Res. 50 17–28

[29] Tuninetti M, Tamea S, Laio F and Ridolfi L 2016 To trade
or not to trade: link prediction in the virtual water network
Adv. Water Resour. in preparation

[30] Jiang W and Marggraf R 2015 Bilateral virtual water trade
in agricultural products: a case study of Germany and
China Water Int. 40 483–98

[31] Shi J, Liu J and Pinter L 2014 Recent evolution of China’s
virtual water trade: analysis of selected crops and
considerations for policy Hydrol. Earth. Syst. Sci. 18
1349–57

[32] Konar M, Dalin C, Suweis S, Hanasaki N, Rinaldo A and
Rodriguez-Iturbe I 2011 Water for food: the global virtual
water trade network Water Resour. Res. 47 W05520

[33] Konar M, Dalin C, Hanasaki N, Rinaldo A and Rodriguez-
Iturbe I 2012 Temporal dynamics of blue and green virtual
water trade networks Water Resour. Res. 48 W07509

[34] Dalin C, Konar M, Hanasaki N, Rinaldo A and Rodriguez-
Iturbe I 2012 Evolution of the global virtual water trade
network Proc. Natl Acad. Sci. 109 5989–94

[35] Dalin C, Suweis S, Konar M, Hanasaki N and Rodriguez-
Iturbe I 2012 Modeling past and future structure of the
global virtual water trade network Geophys. Res. Lett. 39
L24402

[36] Schwarz J, Mathijs E and Maertens M 2015 Changing
patterns of global agri-food trade and the economic
efficiency of virtual water flows Sustainability 7 5542–63

[37] Cazcarro I, Duarte R, Martín-Retortillo M, Pinilla V and
Serrano A 2015 How sustainable is the increase in the water
footprint of the Spanish agricultural sector a provincial
analysis between 1955 and 2005–2010 Sustainability 7
5094–119

https://doi.org/10.1098/rstb.1997.0072
https://doi.org/10.1126/science.289.5477.284
https://doi.org/10.5194/gmd-9-175-2016
https://doi.org/10.1080/02508060.2003.9724812
https://doi.org/10.1029/2001wr000355
https://doi.org/10.1016/j.jhydrol.2009.07.031
https://doi.org/10.1016/j.jhydrol.2009.07.031
https://doi.org/10.5194/hessd-11-135-2014
https://doi.org/10.5194/hessd-11-135-2014
https://doi.org/10.1002/2015wr017148
https://doi.org/10.3354/cr021001
https://doi.org/10.1038/nature01014
https://doi.org/10.1038/ncomms2296
https://doi.org/10.1007/s11269-013-0296-1
https://doi.org/10.1007/s11269-013-0296-1
https://doi.org/10.1016/j.jclepro.2014.08.103
https://doi.org/10.15302/j-fase-2015060
https://doi.org/10.1016/j.scitotenv.2012.12.016
https://doi.org/10.1016/j.advwatres.2015.11.002
https://doi.org/10.1016/j.watres.2016.02.037
https://doi.org/10.1080/02508060801927812
https://doi.org/10.1016/j.foodpol.2010.05.006
https://doi.org/10.1029/2012gl051247
https://doi.org/10.1371/journal.pone.0055825
https://doi.org/10.1371/journal.pone.0055825
https://doi.org/10.1002/2013wr014707
https://doi.org/10.1080/02508060.2015.1022848
https://doi.org/10.5194/hess-18-1349-2014
https://doi.org/10.5194/hess-18-1349-2014
https://doi.org/10.1029/2010wr010307
https://doi.org/10.1029/2012wr011959
https://doi.org/10.1073/pnas.1203176109
https://doi.org/10.1029/2012gl053871
https://doi.org/10.1029/2012gl053871
https://doi.org/10.3390/su7055542
https://doi.org/10.3390/su7055094
https://doi.org/10.3390/su7055094


Environ. Res. Lett. 12 (2017) 074010
[38] Duarte R, Pinilla V and Serrano A 2016 Understanding
agricultural virtual water flows in the world from an economic
perspective: a long term study Ecol. Indic. 61 980–90

[39] Dalin C and Conway D 2016 Water resources transfers
through southern African food trade: water efficiency and
climate signals Environ. Res. Lett. 11 015005

[40] Konar M and Caylor K 2013 Virtual water trade and
development in Africa Hydrol. Earth. Syst. Sci. 17 3969–82

[41] D’Odorico P, Carr J A, Laio F, Ridolfi L and Vandoni S
2014 Feeding humanity through global food trade Earth’s
Future 2 458–69

[42] Allen R G, Pereira L, Raes D and Smith M 1998 FAO
Irrigation and Drainage Paper no. 56 (Rome: Food and
Agriculture Organization of the United Nations) pp 26–40

[43] University of East Anglia 2014 Climatic Research Unit
(www.cru.uea.ac.uk/data)
9

[44] Monfreda C, Ramankutty N and Foley J A 2008 Farming
the planet: 2. Geographic distribution of crop areas,
yields, physiological types, and net primary production
in theyear 2000 Glob. Biogeochem. Cycles 22
GB1022

[45] Doorenbos J, Kassam A and Bentvelsen C 1979 Yield
response to water FAO Irrigation and Drainage Paper (Food
and Agriculture Organization of the United Nations)

[46] Portmann F T, Siebert S and Döll P 2010 MIRCA2000
global monthly irrigated and rainfed crop areas around the
year 2000: a new high-resolution data set for agricultural
and hydrological modeling Glob. Biogeochem. Cycles 24
GB1011

[47] Ray D K, Gerber J S, MacDonald G K and West P C 2015
Climate variation explains a third of global crop yield
variability Nat. Commun. 6

https://doi.org/10.1016/j.ecolind.2015.10.056
https://doi.org/10.1088/1748-9326/11/1/015005
https://doi.org/10.5194/hess-17-3969-2013
https://doi.org/10.1002/2014ef000250
http://www.cru.uea.ac.uk/data
https://doi.org/10.1029/2007gb002947
https://doi.org/10.1029/2007gb002947
https://doi.org/10.1029/2008gb003435
https://doi.org/10.1029/2008gb003435
https://doi.org/10.1038/ncomms6989

	A Fast Track approach to deal with the temporal dimension of crop water footprint
	1. Introduction
	2. Materials and methods
	2.1. Fast Track approach
	2.2. Validation of the Fast Track approach
	2.2.1. Evaluation of the crop water footprint through the FT approach
	2.2.2. Evaluation of the crop water footprint with the detailed method


	3. Results
	3.1. Validation of the FT approach
	3.2. Uncertainty in the FT approach
	3.3. Example of application: the case of virtual water trade

	4. Conclusion
	Acknowledgements
	References




