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EMBEDDED EIGENVALUES FOR WATER-WAVES IN A THREE
DIMENSIONAL CHANNEL WITH A THIN SCREEN

VALERIA CHIADÓ PIAT, SERGEY A. NAZAROV, AND JARI TASKINEN

Abstract. We construct asymptotic expansions as ε → +0 for an eigenvalue
embedded into the continuous spectrum of water-wave problem in a cylindrical
three dimensional channel with a thin screen of thickness O(ε). The screen may
be either submerged or surface-piercing, and its wetted part has a sharp edge.
The channel and the screen are mirror symmetric so that imposing the Dirichlet
condition in the middle plane creates an artificial positive cut-off-value Λ† of the
modified spectrum. Depending on a certain integral characteristic I of the screen
profiles, we find two types of asymptotics of eigenvalues, � λε = Λ† − O(ε2) and
λε = Λ† −O(ε4) in the cases I > 0 and I = 0, respectively. We prove that in the
case I < 0 there are no embedded eigenvalues in the interval [0,Λ†], while this
interval contains exactly one eigenvalue, if I ≥ 0. For the justification of these
result, the main tools are a reduction to an abstract spectral equation and the use
of the max-min-principle.

1. Introduction
sec1sec1.1

1.1. Formulation of the problem. Spectral � elliptic problems modelling physi-
cal phenomena in unbounded domains nearly always have continuous spectra, which
allow wave processes in the related frequency ranges in the physical systems under
consideration. The spectrum may also contain eigenvalues embedded in the con-
tinuous spectrum. Eigenfunctions corresponding to these eigenvalues have finite
energy and usually decay rapidly at infinity, which means that they are localized in
a bounded region and for this reason called ”trapped modes”. Such trapped modes
prevent wave propagation and promote the accumulation of energy, and thus are
related with interesting physical phenomena. They may be unwanted, as they may
cause damage to mechanical structures, or wanted, for example for the design of
wave filters and dampers.

The physical system considered in this paper is the linearised water-wave model.
We investigate the interaction of water-waves with a thin screen, which is submerged
or surface piercing in a cylindrical three dimensional channel. The channel is infinite
and invariant along the longitudinal x1-direction, moreover, it and the screen are
assumed to be mirror symmetric � with respect to the transversal x2-direction. The
wave motion is supposed to take place in an incompressible and inviscid fluid. Our
aim is to discuss the existence and uniqueness of an eigenvalue embedded in the
continuous spectrum. The main results, Theorems 1.1 and 3.1, state that such an
eigenvalue exists depending on the behaviour of a certain integral characteristic I(h)

Key words and phrases. linear water wave system, cylindrical channel, Steklov condition, as-
ymptotic analysis, artificial Dirichlet condition, continuous spectrum, embedded eigenvalue.
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to be defined later. Indeed, we shall show that, in the case I(h) < 0, no eigenvalues
exist in the interval (0,Λ†), where Λ† is a positive, artificial cut-off point, and that
for I(h) ≥ 0 an eigenvalue does exist in (0,Λ†). However, in the cases I(h) > 0 and
I(h) = 0 the eigenvalues have different asymptotic behaviour. For a sufficiently thin
screen an eigenvalue is shown to be unique in (0,Λ†) so that the inequality I(h) ≥ 0
becomes a criterion for a trapped mode. The edge of the screen is assumed to be
sharp, which simplifies our justification scheme but on the other hand requires an
elaborate analysis of singularities of solutions on the edge, see Section 3.3.

The special feature of the linear-water wave equation is the appearance of spectral
parameter in the Steklov boundary condition of the free water surface. This makes
a direct application of the classical Sobolev-space methods difficult, see for example
the review paper [14] and the monograph [13], especially for an approach based
on the application of the Dirichlet-to-Neumann-(or Steklov-Poincaré-)operator. We
follow here the modified techniques used for example in [18, 25] which are based,
among other things, on an unconventional definition of the problem operator with
mixed types of inner products containing both volume and surface integrals; see
(4.13). This method has been used to proving or disproving the existence of an
eigenvalue in some interval, but here we use it, together with a new asymptotic
approach, for obtaining precise information on the position of the lowest embedded
eigenvalue. (We expect the method will eventually make it possible to find a point
with complex resonance, if the symmetry assumed in this paper is broken. However,
this study is postponed to a planned forthcoming paper, since it will require new
techniques.)

Let us proceed by describing the water domain in detail. We define a cylindrical
three dimensional channel (Fig. 1.1.a) by

Π = {x = (x1, x2, x3) = (x1,x
′) : x1 ∈ R,x′ ∈ $} = R×$,1 (1.1)

where the cross-section $ ⊂ R2 is a bounded domain, the boundary ∂$ of which
consists of the line segment

γ = {x′ = (x2, x3) : z = x3 = 0, |x2| < l} , l > 0,2 (1.2)

and of a smooth arc ς ⊂ R2
− = {(x2, x3) : x3 < 0} connecting the points P± =

(±l, 0).
The thin screen Θε depending on the small parameter ε > 0 is described as follows.

Let θ ⊂ R2 an open subset of $, such that P± /∈ θ = θ∪∂θ. Assuming that two, not
identically zero profile functions h± ∈ C2(θ) are given such that h = h+ + h− ≥ 0,
we define the thin screen, flat screen and the profile boundary, respectively, by

Θε = {x : x′ ∈ θ,−εh−(x′) ≤ x1 ≤ εh+(x′)} ,3 (1.3)

Θ0 = {x : x′ ∈ θ, x1 = 0},10 (1.4)

θε± = {x : x′ ∈ θ, x1 = ±εh±(x′)} .4 (1.5)

By rescaling we reduce the characteristic size of the cross section $ to one and,
therefore, make the Cartesian coordinates x and all geometric parameters dimen-
sionless. � For the sake of simplicity we assume that the curve ψ = ∂θ∩$ is smooth
and that ψ and ς both intersect γ at right angle α = π/2. Note in particular that
in this case the boundary is certainly non-cuspidal; � cuspidal boundaries, possibly
causing non-empty continuous spectra and thus wave processes even in finite volume
domains, were studied in [24].



EMBEDDED EIGENVALUES FOR WATER-WAVES 3

b)

x
2

a)

x
1

z=x
3

Figure 1.1. Three dimensional channel, its two-dimensional cross-
section and the projection of the screen onto the cross-section (shaded) fig1

We denote by Ωε = Π \ Θε, ε ≥ 0, the channel (1.1) with the thin or flat verti-
cal screen (1.3), Fig. 1.2.a, and consider the propagation of water-waves along the
horizontal free surface

Γε = Γ \Θε,5 (1.6)

where � Γ = R× γ is the intact channel surface . Notice that Γ can be pierced by
the screen, but in the case ∂θ ∩ γ = ∅ the obstacle Θε is submerged, and, therefore
Γε = Γ. The bottom and walls Σ = R × ς of the channel Π can be touched by the
obstacle, too, and we denote

Σε = Σ \Θε.6 (1.7)

Our analysis is based on the usual assumptions of the linear water-wave theory:
the motion is irrotational and of small amplitude. These assumptions and the in-
compressibility of the fluid allow us to define a three-dimensional velocity potential,
W ε = W ε(x, t), which satisfies the Laplace equation in the water domain. On the
free surface we impose kinematic and dynamic boundary conditions which, ignoring
surface tension, translate to continuity of the normal velocity and the pressure. We
take the constant ambient pressure above the free surface to be zero. For small–
amplitude waves, it makes sense to consider linearised equations of motion and,
assuming that the motion is time harmonic along the cylinder in the x1-direction,
we thus seek for a velocity potential of the form W ε(x, t) = Re

(
uε(x) ei(kx1−ω

εt)
)
,

where both the radian frequency ωε and the wave number k are taken real, say
k > 0, so that the solution stays bounded for all x and t. Due to small surface
elevations, the boundary condition on the free surface is written at a flat horizontal
surface. On substituting W ε into the linearised equations of motion, we obtain the
following equations. For any ε > 0, the velocity potential uε satisfies the Laplace
equation

−∆uε(x) = 0, x ∈ Ωε,7 (1.8)

the Neumann (no-flow) boundary condition on the wetted surfaces (1.7) and (1.5),

∂νu
ε(x) = 0, x ∈ Σε ∪ θε+ ∪ θε−,8 (1.9)

and the kinematic condition on the � linearised water surface (1.6)

∂zu
ε(x) = λεuε(x), x ∈ Γε.9 (1.10)
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Figure 1.2. � a) Channel with a thin screen, b) a surface- pearcing
screen, c) a submerged screen, d) a screen as a protrusion of the
bottom. fig2

We denote the gradient and Laplacian with respect to the variable x by ∇ and ∆,
while ∂z and ∂ν stand for the partial derivative with respect to z = x3 and the
outer unit normal, respectively. Moreover, λε = g−1(ωε)2 is a spectral parameter,
where g > 0 is the acceleration of gravity. � Since the boundary ∂Ωε has an edge-
type irregularity, we impose the traditional Meixner condition [16], which implies the
square integrability of the velocity vector∇uε. This condition is assumed throughout
the paper, see Section 3.3.

We make the following assumptions on symmetry and shape of the screen, the
role of which will be discussed in Section 1.3.

1◦. Both $ and θ are symmetric with respect to the axis {x′ : x2 = 0}.
2◦. Both profile functions h± in (1.3), (1.5) are even in x2.
3◦. We have h±(x′) = 0 for x′ ∈ ψ = ∂θ \ γ.

sec1.2
1.2. Main results and plan of the paper. It is known that the spectrum of the
problem (1.8)–(1.10) is continuous and coincides with the intact closed positive semi-
axis R+ = [0,+∞) ⊂ C, see [13]. However, it may contain embedded eigenvalues
associated with exponentially decaying eigenfunctions. The main purpose of our
paper is to derive and justify an asymptotic formula for such eigenvalues as well as
to prove a uniqueness result. To this end we shall use in Section 1.3 the symmetry
assumptions 1◦−3◦ to introduce a problem (1.15)–(1.18) with an artificial Dirichlet
condition on the symmetry plane. The continuous spectrum of this problem is known
to be the interval [Λ†,+∞), where the threshold Λ† is positive. In Sections 2 and 3
we construct formal asymptotics for an eigenvalue

λε = Λ† − λ̂ε , λ̂ε → +0 as ε→ +0.23 (1.11)

of the problem (1.15)–(1.18); λε is also an eigenvalue of the problem (1.8)–(1.10).

� Two different cases with λ̂ε ∼= λ0ε
2, (2.1), and λ̂ε ∼= λ1ε

4, (3.2), will be found. In
Section 2 we introduce an integral characteristic (2.28), denoted by I(h), such that

for I(h) > 0 the correction term λ̂ε ≈ λ0ε
2 is positive, but for I(h) < 0 it is not.

Accordingly, we formulate the first main result of our paper as follows

NDC Theorem 1.1. Assume that the conditions 1◦–3◦ hold true. Then, there exists ε1 =
ε1(θ, h±) > 0 such that



EMBEDDED EIGENVALUES FOR WATER-WAVES 5

1) if I(h) < 0, the problem (1.8)–(1.10) has no eigenvalue in the segment [0,Λ†],
when ε ∈ (0, ε1],
2) if I(h) > 0, the problem (1.8)–(1.10) has for every ε ∈ (0, ε1] a unique eigenvalue
(1.11) inside the segment [0,Λ†]. The coefficient λ0 > 0 is given by (2.31), (2.28)

and the asymptotic remainder λ̃ε = λε−(Λ†−λ0ε
2
0) = λ0ε

2
0−λ̂ε satisfies the estimate

|λ̃ε| ≤ c1ε
5/2,59 (1.12)

where c1 is independent of the small parameter ε.

The most complicated case I(h) = 0 will be examined in Section 3, where � a

new characteristic J(h) > 0, (3.22), as well as the formula λ̂ε ≈ λ1ε
4 will be derived.

The related calculations become much more complicated, and they crucially rely on
the assumption 3◦. The corresponding result is formulated as Theorem 3.1, below.

For the proofs we shall apply asymptotic analysis, which involves rectifying the
screen Θε and transferring the Neumann boundary conditions onto the faces of the
flat screen Θ0. The asymptotic procedure will be justified in the last two sections. In
Section 4 we prove uniqueness assertions, namely, we verify that in the case I(h) < 0
the interval (0,Λ†) does not contain eigenvalues at all, but in the case I(h) ≥ 0 the
eigenvalue λε ∈ (0,Λ†) is unique. In Section 5 we show that indeed, the eigenvalue
λε exists and has the asymptotic form claimed in Theorems 1.1 and 3.1. Moreover,
we give estimates for the asymptotic remainders. All these results are based on
the reduction of water-wave problem (1.15)–(1.18) to the abstract spectral equation
(4.18) and the application of basic theory of self-adjoint Hilbert space operators, cf.
[2, 26].

We finish the paper with several particular conclusions, possible generalisations
and open questions.

sec1.3
1.3. Role of symmetry restrictions. The operator theoretic methods, which
work efficiently for the discrete spectrum, cannot be directly applied, since the con-
tinuous spectrum covers the whole semi-axis R+ = [0,+∞) and thus the problem
(1.8)–(1.10) cannot have isolated eigenvalues. To create an artificial positive cut-off
value Λ† we borrow an elegant idea [6] of the Dirichlet boundary condition on the
midplane of the waveguide Πε, for which we need the symmetry assumptions 1◦, 2◦.
These requirements allow us to restrict the problem (1.8)–(1.10) to the half-channel
Ωε,

Ωε
r = {x ∈ Ωε : x2 > 0},11 (1.13)

and to impose the artificial Dirichlet condition on the middle plane

Υε = {x ∈ Ωε : x2 = 0} = Υ \Θε ,

Υ = υ × R , υ = {x′ ∈ $ : x2 = 0}.12 (1.14)

All objects restricted to the domain (1.13) are supplied with the subscript r so that
the new problem reads as

−∆uε(x) = 0, x ∈ Ωε
r,13 (1.15)

∂νu
ε(x) = 0, x ∈ Σr ∪ θε+,r ∪ θε−,r14 (1.16)

∂zu
ε(x) = λεru

ε(x), x ∈ Γr,15 (1.17)

uε(x) = 0, x ∈ Υε.16 (1.18)
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� As motivation for studying this problem with the artificial boundary condition we
mention that the continuous spectrum of the problem (1.15)–(1.18) coincides with
the ray [Λ†,+∞), where Λ† > 0 (see below). Hence, there may still exist discrete
spectrum of (1.15)–(1.18) contained in the interval (0,Λ†), and if this happens, one
can make an odd, smooth and harmonic extension of a corresponding eigenfunction
uε ∈ H1(Ωε

r; Υε) of (1.15)–(1.18), which thus becomes an eigenfunction of the orig-
inal problem (1.8)–(1.10). This gives us a way to study eigenvalues embedded into
the interval (0,Λ†) of the continuous spectrum. Notice that Λ† is nothing but the
first eigenvalue of the model problem on the half $r of the cross-section $:

−∆′U(x′) = 0, x′ ∈ $r,17 (1.19)

∂νU(x′) = 0, x′ ∈ ςr18 (1.20)

∂zU(x′) = ΛU(x′), x′ ∈ γr,19 (1.21)

U(x′) = 0, x′ ∈ υ.20 (1.22)

Here, ∆′ is the Laplacian in the coordinates x′. Due to the Dirichlet condition
(1.22), the first eigenvalue Λ = Λ† is positive and can be computed from the max-
min-principle

Λ† = inf
V

‖∇′V ;L2($r)‖2

‖V ;L2(γr)‖2
,21 (1.23)

where � ‖ · ;L2(D)‖ denotes the standard norm of the Lebesgue L2-space on a
domain D, the infimum is taken over all V ∈ H1

0 ($r, υ) \H1
0 ($r, γr) and H1

0 ($r, ω)
is the Sobolev space of functions vanishing in the subdomain ω ⊂ $. According
to the strong maximum principle the corresponding eigenfunction U† can be chosen
positive in $r and subject to the normalization condition

l∫
0

|U†(x2, 0)|2dx2 = 1.22 (1.24)

Since the cut-off value (1.23) is positive, the problem (1.15)–(1.18) may still have
non-empty discrete spectrum in the interval (0,Λ†). Moreover, the odd extension �
with respect to x2 of an eigenfunction uε ∈ H1(Ωε

r; Υε) of (1.15)–(1.18) is smooth
and harmonic, and therefore it becomes an eigenfunction of the original problem
(1.8)–(1.10). In this way, eigenvalues embedded into the interval (0,Λ†) can be
examined using operator theory.

sec1.4 Remark 1.2. It was observed in [20], in connection with a different spectral problem,
that the existence of the eigenvalue (1.11) for (1.8)–(1.10) implies that the limit
problem corresponding to ε = 0,

−∆u0(x) = 0, x ∈ Ω0
r = Πr \Θ0

r,24 (1.25)

∂νu
0(x) = 0, x ∈ Σr ∪ θ0

+,r ∪ θ0
−,r25 (1.26)

∂zu
0(x) = Λ†u

0(x),x ∈ Γr,26 (1.27)

u0(x) = 0, x ∈ Υ0,27 (1.28)

� � has a solution, which is stabilizing at infinity (i.e. asymptotically equal to a
function depending on x′ only). In our case this stabilizing at infinity-solution can
be readily found: it is

u(0)(x) = U†(x
′),28 (1.29)
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where U† is the eigenfunction of (1.19)–(1.22) associated with the eigenvalue Λ†.
Indeed, on the surfaces θ0

± = {x : x′ ∈ θ, x1 = 0} of the flat screen (1.4), the
derivative ∂ν equals � ∓∂1 = ∓∂/∂x1 , while the standing wave (1.29) does not
depend on the longitudinal coordinate x1.

sec1.5
1.4. Literature review. The � first example of a � (non-embedded) eigenvalue
belonging to the discrete spectrum of a problem on oblique waves for a submerged
circular cylinder was proposed in [27]. An eigenvalue embedded in the continuous
spectrum was constructed in [12] by means of the semi-inverse method. The results
in these pioneering papers were obtained by analytic calculations, and they have
inspired many other publications with analytic, operator theoretic, or numerical
methods (see the reviews in [13] and [14]). In particular, the existence of eigenvalues
below the continuous spectrum has been verified with the help of a comparison
principle in the paper [28], which also extends the results of [27] to a cylinder with
an arbitrary cross-section with positive area.

� In the paper [18] the existence of an embedded eigenvalue is shown in the cases
of a two-dimensional deep water-domain and a three-dimensional channel, which is
similar to the one in the present work, but instead of a thin screen contains a massive
body as an obstacle. In both cases the problem is assumed to have the geometric
symmetry 1◦–2◦, which concerns both the water container and the submerged or
surface-piercing body. We remark that by the results of [18], an absolutely flat
(h = 0) transversal screen (1.4) does not support a trapped mode, but its inclination
does. More accurate information on the trapping for small inclination angles in the
two-dimensional case is obtained in [30] by using asymptotic analysis. � The result
on the flat screen cannot directly be obtained from [27], [28], because the volume of
Θε vanishes at h = 0.

In comparison with the present work, [18] cannot yield a uniqueness statement
or precise information of the position of the embedded eigenvalue λε, since it does
not include the elaborate asymptotic construction and matching of the outer and
inner expansions of the eigenfunction uε and the resulting asymptotic formulas for
λε. The approach in the references relies upon a reformulation of the water-wave
problem as a self-adjoint operator in a specific Hilbert space and an application of
the max-min-principle, see e.g. [2, Thm. 10.2.2.] and [26]. This method has given
rather simple proofs of known facts and also new results; � the reason is mainly
that in certain geometric situations it is possible to construct trial functions, which
help to evaluate properly the Rayleigh quotient in the max-min-principle. In this
paper, these approximations of eigenvalues and eigenfunctions are made much more
precise by perfecting the mentioned method with the help of asymptotic analysis.
In Section 6.1 we shall make some further remarks on the relations of [18] and the
present work.

In addition to the above described approach of [6], which requires the symme-
try conditions 1◦ and 2◦, there exists another method [20, 22] to detect embedded
eigenvalues. This is based on the asymptotic analysis of the so-called augmented
scattering matrix, which provides a criterion for the existence of trapped modes.
This approach does not require the symmetry of the domains $, θ, or the evenness
of the profile functions h±. Instead, it uses the natural instability of embedded
eigenvalues � (indeed, their position is sensitive even to small changes of the geom-
etry of the problem domain) and performs a very fine tuning of several geometric
parameters of the screen shape in order to keep an eigenvalue in the continuous
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spectrum. We emphasize that the embedded eigenvalue λε � of this paper (see
(2.1), (2.31), (3.2), (3.25)) is stable, when h± are perturbed with functions even in
x2, but asymmetric perturbations may lead λε out of the spectrum and turn it into
a point of complex resonance, cf. [1, 21].

The method of matched asymptotic expansions, cf. [29, 9] will be employed in
Sections 2 and 3 by applying the interpretation of [19, 20]. Related asymptotic pro-
cedures have also been used in [8, 7, 19, 3, 4] etc. to describe asymptotic behaviour
of eigenvalues in cylindrical waveguides with small regular and singular perturba-
tions, but these works differ from the present one, since in our case the obstacle is
not small in x2− and z-directions.

Methods of asymptotic analysis are also used in the paper [30], which treat prob-
lems for two-dimensional water-wave and acoustic waveguides with screens similar
to this paper. However, the present work is quite different in several aspects; let us
conclude this section by discussing these.

� First of all, the flat screen (1.4), which is the defect in the reference waveguide
Ω0 = Π \ Θ0 is still large in the sense that it is not contained in a ball of radius ε,
contrary to the previous citation.

As usual, a more simple ansatz and other technical reasons imply that asymp-
totic analysis is much simpler in dimension 2. This in particular makes it possible in
[30] to control the boundary layer terms of the asymptotic ansätze (describing the
eigenfunction in the vicinity of the obstacle) for fairly general linear screens. Corre-
sponding boundary layers have not been investigated yet in dimension 3, nor can we
present their structure here. Thus, we unfortunately have to accept the restriction
3◦: this makes the edge of the screen

2929 (1.30) Ψ = {x : x1 = 0,x′ ∈ ψ}

dihedral or cuspidal, see Fig. 1.2.b-d, but it also makes the boundary layer effect to
lose its significance. We refer to Section 6.2 of the present paper for a discussion on
the boundary layer phenomenon in some special cases and also to [15, Part IV] for
particular results.

Second, we deal with screens which pierce the free surface, Fig. 1.2.b, and abut the
walls and bottom, Fig. 1.2.d, while in [30] the screen is situated inside the channel,
Fig. 1.2.c. Note that in the case of a surface-piercing screen Θε we are able to single
out shapes, which do not support trapped modes for any λε ∈ (0,Λ†), while screens
which always trap a wave are outlined in Fig. 1.2.c,d.

Third, although the sharp edge (1.30) of the screen causes singular behaviour of
the velocity potential uε, the assumption 3◦ enables the use of asymptotic methods
generated by regular perturbations of the boundary.

Finally, we shall find two different types of asymptotic expansions of the eigenvalue
(1.11), which depend on some integral characteristics of the screen and which are in
full agreement with the sufficient condition for the existence of trapped modes, see
Section 6.1. In this way the sufficient condition of [18] becomes also a necessary one
for a small ε.

2. Asymptotic analysis. Non-degenerate case
sec2sec2.1

2.1. Outer expansions. In � this section we propose an asymptotic representation
for an eigenvalue λε of (1.15)–(1.18) under the assumption that the integral char-
acteristic I(h), (2.28), below, does not vanish. We shall establish the asymptotic
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representation

λε = Λ† − ε2λ0 + λ̃ε,31 (2.1)

and find a sufficient condition for the crucial property λ0 > 0 (see Theorem 1.1).

The estimate |λ̃ε| ≤ c1ε
5/2 for the remainder will be obtained in Section 5.4.

� We assume the following asymptotic ansatz for a trapped wave:

uε(x) = c±(ε)e∓µ(ε)x1V (ε; x′) + . . . , ±x1 � 1.32 (2.2)

This involves exponential waves in the intact channel (1.1) at the spectral parameter
(2.1), while the screen effects the expansion only through the coefficients c±, which
have the Taylor expansion c±(ε) = c±(0) + εc′±(0) +O(ε2). The dots in (2.2) stand
for higher order terms, and the couple {µ(ε), V (ε; x′)} is a solution of the following
problem in a two-dimensional domain,

−∆′V (ε; x′) = µ(ε)2V (ε; x′), x′ ∈ $r,

∂νV (ε; x′) = 0, x′ ∈ ςr, V (ε; x′) = 0, x′ ∈ υ,33 (2.3)

∂zV (ε; x′) = λεV (ε; x′), x′ ∈ γr.
Perturbation theory of linear operators, see e.g. [10, Ch. 6], yields the representations

µ(ε) = 0 + εµ0 + µ̃(ε) , V (ε; x′) = U†(x
′) + ε2V0(x′) + Ṽ (ε; x′)34 (2.4)

(U† as in (1.24)) the following problem for the correction terms in (2.4),

−∆′V0(x′) = µ2
0U†(x

′), x′ ∈ $r,35 (2.5)

∂νV0(x′) = 0, x′ ∈ ςr , V0(x′) = 0, x′ ∈ υ,36 (2.6)

∂zV0(x′) = Λ†V0(x′)− λ0U†(x
′),x′ ∈ γr,37 (2.7)

as well as the error estimates

|µ̃(ε)| ≤ cε2 , ‖Ṽ (ε, ·);H1($r)‖ ≤ cε3.38 (2.8)

We mention that (2.3) is obtained by inserting the exponential waves e±µ(ε)x1V (ε,x′)
into the problem (1.15)–(1.18), while (2.5)–(2.7) follows by substituting (2.1), (2.4)
into (2.3) and extracting terms of order ε2.

Since Λ† is a simple eigenvalue of the � model problem (1.19)–(1.22) in $r, the
Fredholm alternative yields only one compatibility condition, which by the Green
formula turns into

µ2
0

∫
$r

|U†(x′)|2dx′ = −
∫
$r

(
U†(x

′)∆′V0(x′)− V0(x′)∆′U†(x
′)
)
dx′

=

∫
∂$r

(
V0(x′)∂νU†(x

′)− U†(x′)∂νV0(x′)
)
dsx′ = λ0

l∫
0

|U†(x2, 0)|2dx2.

This was obtained by taking into account the differential equations (1.19) and (2.5)
as well as the boundary conditions (1.20)-(1.22) and (2.6), (2.7). Moreover, accord-
ing to the normalization condition (1.24) we have

µ0 = ‖U†;L2($r)‖−1λ
1/2
0 .39 (2.9)

As a consequence, the outer expansions (2.2) looks as follows:

uε(x) = c±(0)U†(x
′) + ε

(
c′±(0)U†(x

′)∓ c±(0)µ0x1U†(x
′)
)

+ . . . , ±x1 � 1.40 (2.10)
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sec2.2
2.2. Inner expansion. In a bounded part of the channel Ωε

r, e.g. near the screen
Θε
r, we can take a traditional expansion for a trapped mode:

uε(x) = v0(x) + εv1(x) + . . . ,41 (2.11)

where the dots indicate terms of order at most O(ε2). The matching procedure, cf.
[29, 9, 19, 20], requires that the behaviour of v0(x) and v1(x) as x1 → ±∞ is given
by the similar terms in (2.10). Thus, as the first step we notice that � v0 behaves
at infinity as the standing wave U†, that is,

v0(x) = c±(0)U†(x
′) + . . . for x1 → ±∞.

Recalling the solution (1.29) of the limit problem (1.25)–(1.28), we have to set

c±(0) = 1 and v0(x) = U†(x
′).42 (2.12)

To derive a problem for the correction term v1 in (2.11) we first observe that
passing to the limit ε → 0+ flattens the curved screen Θε into the planar one Θ0,
cf. formulas (1.3) and (1.4). Hence, the equation (1.15) in Ω and the Neumann
condition (1.16) on Σε

r yield

−∆v1(x) = 0 , x ∈ Ω ,43 (2.13)

−∂νv1(x) = 0 , x ∈ Σ0
r, ,44 (2.14)

In the same way, the artificial Dirichlet condition (1.18) turns into

v1(x) = 0 , x ∈ Υ0,45 (2.15)

while the spectral condition (1.17) gains the threshold parameter because of the
relation λε = Λ† +O(ε2), so that

−∂νv1(x) = Λ†v1(x) , x ∈ Γ0
r, ,46 (2.16)

It remains to transfer the Neumann condition (1.16) from the curved surfaces
θε±,r onto the flat ones θ0

±,r. To do so, we recall definition (1.3) and write the
representation

νε±(x′) =
(
1 + ε|∇′h±(x′)|

)−1/2(± 1, ε∇′h±(x′)
)

for the unit normal vector. Hence,(
1 + ε2|∇′h±(x′)|2

)1/2
∂νε± = ∓∂1 + ε∇′h±(x′) · ∇′,47 (2.17)

where ∇′ = (∂2, ∂3), ∂j = ∂/∂xj and the central dot stands for the scalar product
in R2. This and the Taylor formula with respect to x1 yield(

1 + ε2|∇′h±(x′)|2
)1/2

∂νε±v(±εh±(x′),x′)

= ±∂1v(±εh±(x′),x′) + ε∇′h(x′) · v(±εh±(x′),x′)

= ±∂1v(±0,x′)− εh±(x′)∂2
1v(±0,x′)

+ε∇′h±(x′) · ∇′v(±0,x′) + . . . , x′ ∈ θ.48 (2.18)

Finally, inserting (2.11), (2.12) into (2.18) and extracting terms O(ε) yield the fol-
lowing Neumann conditions on the faces θ0

±r of the planar � screen Θ0
r:

∓∂1v1(±0,x′) = −∇′h±(x′) · ∇′U†(x′) , x′ ∈ θr.49 (2.19)
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sec2.3
2.3. Solutions of the limit problem at threshold and the matching pro-
cedure. As � mentioned in the beginning of Section 2.2, the behaviour of the
correction term v1(x) as x1 → ±∞ in the inner expansion (2.11) is to be matched
with the coefficients of ε in the outer expansion (2.10). Thus, we need a solution v1

of (2.13)–(2.16), (2.19) with linear growth at infinity. We shall next find this and
then perform the matching, which will yield a formula for the number λ0 in (2.1).

To construct v1 we observe that in addition to the solution (1.29) (even in x1),
the limit problem (1.25)–(1.28) in Ω0

r has a solution, which is odd in x1 and has the
representation

u(1)(x) = ũ(1)(x) +
∑
±

χ±(x1)(x1 ± b)U†(x′),50 (2.20)

where the remainder ũ(1)(x) decays exponentially as x1 → ±∞, b is a constant
depending on $, θ, and χ± are smooth cut-off functions such that

χ±(x1) = 1 for ± x1 > 2 , χ±(x1) = 0 for ± x1 < 1 , 0 ≤ χ± ≤ 1.500 (2.21)

There are no other solutions with at most polynomial growth at infinity. � These
facts follow from general results of the elliptic theory in domains with cylindrical
outlets to infinity, see e.g. [23, Ch. 5]. They can also be obtained using the Fourier
method by reducing the problem (1.25)–(1.28) to the quarter

Πr,+ = {x ∈ Π : x1 > 0, x2 > 0}51 (2.22)

of Π and imposing either the Neumann condition (even case) or the Dirichlet condi-
tion (odd case) on the subset {x : x1 = 0,x′ ∈ $r\θr} of the end of the semi-infinite
cylinder (2.22).

By similar arguments we can find out that the problem (2.13)–(2.16), (2.19) in
Ω has a solution v1 with linear growth at infinity. Since it is only defined up to a
linear combination c0u

(0) + c1u
(1), we may choose the coefficients c0, c1 such that

v1(x) = ṽ1(x) +
∑
±

χ±(x1)
(
b1

1|x1| ± b0
1

)
U†(x

′),52 (2.23)

see (1.29), (2.20). The remainder ṽ1(x) decays exponentially and the coefficients b1
1,

b0
1 are now uniquely defined. We do not need an explicit expression for b0

1, and �
concerning this coefficient we thus only note that in the special case h+ = h− in
(2.19), the function (2.23) is even in x1 and therefore b0

1 = 0.
Let us compute b1

1. We insert v1 and u(0) into the Green formula on the truncated
channel Ω0

r(R) = {x ∈ Ωr : |x1| < R} and obtain, � recalling that h = h+ + h−,

0 =

∫
∂Ω0

r(R)

(
U†(x

′)∂νv1(x)− v1(x)∂νU+(x′)
)
dsx

=
∑
±

−
∫
θr

U†(x
′)∇′h±(x′) · ∇′U†(x′)dx′ +

∑
±

±
∫
$r

U†(x
′)∂νv1(±R,x′)dx′

= −
∫
θr

U†(x
′)∇′h(x′) · ∇′U†(x′)dx′ + 2b1

1

∫
$r

|U†(x′)|2dx′ + o(1)53 (2.24)

as R → +∞. Here we have used the boundary conditions on ∂Ω0
r, in particular

(2.19), and the asymptotic expansion (2.23) at x1 = ±R. Passing to the limit
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R→ +∞ in (2.24) yields

b1
1 = −1

2
‖U†;L2($r)‖−2I(h),54 (2.25)

where we have after integration by parts

I(h) =

∫
θr

h(x′)U†(x
′)∆′U†(x

′)dx′ +

∫
θr

h(x′)|∇′U†(x′)|2dx′

−
∫
∂θr

h(x′)U†(x
′)∂νU†(x

′)dsx′ .567 (2.26)

The first integral on the right vanishes due to (1.19), and our assumption 3◦ reduces
the last term to an integral over the set �

φr = γr ∩ ∂θr55 (2.27)

(the bold segment in Fig. 1.1.b), where ∂νU† = ∂zU† = Λ†U† according to (1.21).
Thus, �

I(h) =

∫
θr

h(x′)|∇′U†(x′)|2dx′ − Λ†

∫
φr

h(x′)|U†(x′)|2dx2.56 (2.28)

Notice that I(h) > 0 for sure, if h does not vanish identically and the set (2.27) is
empty, i.e., the screen is submerged.

Finally, we match the behaviour of the correction term v1(x) as x1 → ±∞ in the
inner expansion (2.11) with the coefficients of ε in the outer expansion. Comparing
the linear functions in (2.10) and (2.23) we see that

∓µ0 = ±b1
1 and c′±(0) = ±b0

1,68 (2.29)

� where µ0 > 0 is taken from (2.9). Hence, the relations (2.9) and (2.25) lead us to
the formula

‖U†;L2($r)‖−1λ
1/2
0 = µ0 = −b1

1 =
1

2
‖U†;L2($r)‖−2I(h).57 (2.30)

� This can hold true with a nonzero b1
1 only, if I(h) > 0, and in this case we have

λ0 =
1

4
‖U†;L2($r)‖−2I(h)2.58 (2.31)

Moreover, if I(h) < 0, (2.30) implies that λ0 cannot be positive. Formula (2.31) for
λ0 completes the formulation of Theorem 1.1; its proof will be completed in Sections
4 and 5.

The degenerate case I(h) = 0 will be considered in the next section.

3. Asymptotic analysis. Degenerate case.
sec3sec3.1

3.1. Modified asymptotic ansätze. Next � we perform the asymptotic analysis
in the case the integral characteristic used in the previous section vanishes. Precisely,
we assume that I(h) = 0 in Sections 3.1–3.2 and 3.4, although this assumption is
relieved in the discussion of Section 3.3. Consequently, the leading correction term
in the asymptotic ansatz (2.1) for the eigenvalue λε vanishes, since by (2.25), (2.29),
and (2.9), we get

b1
1 = 0 and λ0 = 0, µ0 = 0.60 (3.1)
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The linear growth of the solution (2.23) of the problem (2.13)–(2.16), (2.19) is lost
and thus the matching, performed in the last section, fails. As we still want to
ensure the inclusion λε ∈ (0,Λ†), we amend the ansatz (2.1) by setting

λε = Λ† − ε4λ1 + λ̃ε , λ1 > 0.61 (3.2)

We also have to modify the ansätze (2.4) as follows:

µ(ε) = 0 + ε2µ1 + µ̃(ε) , V (ε,x′) = U†(x
′) + ε4V1(x′) + Ṽ (ε; x′)62 (3.3)

Accordingly, estimates (2.8) must turn into

|µ̃(ε)| ≤ cε4 , ‖Ṽ (ε, ·);H1($r)‖ ≤ cε6.63 (3.4)

The pair {µ1, V1} in (3.3) satisfies the problem (2.5)–(2.7), which is again derived
from (2.9) with evident changes. The compatibility condition in this problem is
converted into the relation

µ1 = ‖U†;L2($r)‖−1λ
1/2
1 .64 (3.5)

Finally, applying the above mentioned modifications to the outer expansions (2.2)
results into the following ansatz,

uε0 = c±(0)U†(x
′) + εc′±(0)U†(x

′)

+ε2
(
c′′±(0)U†(x

′)∓ c±(0)µ1x1U†(x
′)
)

+ . . . , ±x1 >> 1.65 (3.6)

Then, the inner expansion (2.11) becomes

uε0(x) = v0(x) + εv1(x) + ε2v2(x) + . . . .66 (3.7)
sec3.2

3.2. First asymptotic terms. Let � us derive formuli for the terms v1 and v2 in
(3.7). The equations (2.12) still hold, and they can be obtained in the same way
as in Section 2.2. Moreover, as was noticed in (3.7), the coefficient (2.25) in the
decomposition (2.23) vanishes so that the function v1 is reduced to

v1(x) = ṽ1(x) +
∑
±

±χ±(x1)b0
1U†(x

′).67 (3.8)

Matching the multiplier of ε in (3.6) with with the corresponding term in (3.8) gives
the second relation in (2.29).

Let us compose a boundary value problem in Ωε
r for the term v2 in (3.7). Of course

this function satisfies the differential equation (2.13) and the boundary conditions
(2.14)–(2.16), when the subscripts are changed from 1 to 2. To derive the boundary
conditions on the faces θ0

±,r, we refine the decomposition (2.18) and write(
1 + ε2|∇′h±(x′)|2

)1/2
∂νε±
(
v0(x′) + εv1(±εh±(x′),x′) + ε2v2(±εh±(x′),x′)

)
= 0 + ε

(
± ∂1v1(±0,x′) +∇′h(x′) · ∇′v0(x′)

)
+ε2

(
± ∂1v2(±0,x′) +∇′h±(x′) · ∇′v1(±0,x′)− h±(x′)∂2

1v1(±0,x′)
)

+ . . . ;69 (3.9)

the desired boundary condition for v2 follows from the requirement that in (3.9),
terms of order O(ε2) or larger must vanish. Since the coefficient of ε is null due to
(2.19), it is enough to annul the coefficient of ε2 in (3.9) by imposing the Neumann
conditions

±∂1v2(±0,x′) = −∇′h±(x′) · ∇′v1(±0,x′)− h±(x′)∆′v1(±0,x′)

= −∇′ ·
(
h±(x′)∇′v1(±0,x′)

)
, x′ ∈ θr.70 (3.10)
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Thus, the function v2 is determined from the problem (2.13), (2.14)–(2.16) (with
the above mentioned change of the index), and (3.10).

sec3.3
3.3. Properties of the singularities of the solutions. The boundary value prob-
lems under consideration have been posed on domains with corner points and edges,
which may cause singular behaviour for their solutions. Actually, some of our geo-
metric assumptions in Section 1 were made in order to reduce the influence of the
singularities to the asymptotic procedure.

First of all we mention that the eigenfunction U† of the problem (1.19)–(1.22) is
infinitely differentiable everywhere in $r, because the arc ςr is smooth and meets
the x2- and x3-axis at the right angle. A reason for the exclusion of the singularities
can be found, e.g., in [23, § 2.4].

The behaviour of the solution v1 of the problem (2.13)–(2.16), (2.19) near the
edge Ψr of the screen Θr may be quite complicated because of the endpoints of the
arc ψr, which are tops of polyhedral angles. As known e.g. by [23, Ch. 10, Ch. 11],
the behaviour of v1 in the interior of Ψ is determined by the functions

Kj(s)r
j/2 cos(jϕ/2) , j = 0, 1, 2, . . . ,S1 (3.11)

where s ∈ (0, L) is the arc length along ψ � such that s = 0 and s = L correspond
to the tops of the polyhedral angles, and (r, ϕ) ∈ R+×(0, 2π) is the polar coordinate
system in planes, which are perpendicular to Ψ. The function (3.11) with j = 0
is smooth so that the main singularities of the derivatives of v1 are produced by
K1(s)r1/2 cos(ϕ/2). The coefficient function K1 is called the intensity factor in the
mechanics of solids, and since the data � (the right hand side and the curve ∂θ) in
(2.19) is infinitely differentiable, it belongs to C∞(0, L). However, K1 may become
singular at the tops s = 0 and s = L of the polyhedral angles.

As for the point s = 0, which is marked by � in Fig. 1.1.b, the function K1 is
smooth there, since v1 can be extended as an odd function with respect to x2 from
Ω0
r onto Ω0 (recall the artificial Dirichlet condition): such an extension preserves the

differentiability properties of the data and renders the point in the middle of the
smooth edge Ψ. However, K1 may be only Hölder-continuous at the point s = L
which is marked by • in Fig. 1.1.b; that is, K1 ∈ C0,δ[0, L] for any δ ∈ (0, 1), while

|∂psK1(s)| ≤ C(L− s)1−p , p = 0, 1, 2, . . . .S2 (3.12)

Let us explain this last fact. According to the general procedure, e.g. [23,
Ch. 10, Ch. 11], the asymptotic expansion of v1 near the endpoint of s = L of the
edge Ψ includes the power-law solutions

%βφ(ϑ)S3 (3.13)

of the Laplace-Neumann problem in the polyhedron K, which is the complement of
the quadrant {x : x1 = 0, x2 > x0

2, x3 < 0} in the lower half-space. In (3.13), (%, ϑ)
are the polar coordinates, β is a real number specified below, and φ is a function
in the lower hemisphere without half of the meridian, Fig. 3.1.b. We extend this
model problem evenly with respect to x1 through the horizontal plane, and this
turns it into the Neumann problem in the domain, which is the full space R3 with
unbounded incision of the shape of the half-plane. The power-law solutions (3.13)
with non-negative exponents β of this problem look like

%k/2φk(ϑ) = rk/2 cos(πk/2) , k = 0, 1, 2, . . . ,S4 (3.14)
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Figure 3.1. Hemisphere with incision. fig3

cf. (3.11). In this way the extension turns the endpoint s = L into an interior point
of a smooth edge. At the same time the Neumann boundary condition on the plane
{x : z = 0} (the horizontal one in Fig. 3.1.a) was obtained by neglecting the term
Λ†v1 in the Steklov condition (2.16). Thus, there emerges a discrepancy, the main
term of which is Λ†K1(L)r1/2 cos(ϕ/2), and this has to be compensated by a solution
of the following model problem in K:

%3/2
(
C0φ3(ϑ) ln %+ φ′3(ϑ)

)
=

1

2
C0r

3/2 ln(r2 + z2) cos
(3

2
ϕ
)

+ (r2 + z2)3/4φ′3(ϑ).S5 (3.15)

The first term on the right (with cos(3ϕ/2)) does not affect the singularity of (3.11)
(which is cos(ϕ/2) anyway), but the second term may cause a peculiar behaviour of
K1(s) as s→ L− 0, and this is apparent in the estimates (3.12).

The asymptotic expansion of v1 could be studied further, in particular it would be
possible to verify that the derivative ∂sK1 is Hölder continuous. However, this would
require a much more elaborate analysis, while the information contained in (3.12)
suffices in order to conclude that the problem (2.13)–(2.16), (3.10) has a solution
which belongs to H1(Ω0

r(R)) for any R > 0. The inclusion v2 ∈ H1
loc(Ω

0
r) is obtained

from the Hardy-type inequality∫
θ0±,r

r−1(1 + | ln r|)−2|w(0,x′)|2dx′ ≤ c

∫
Ω0

r(R)

(
|∇w(x)|2 + |w(x)|2

)
dx,S6 (3.16)

and the weak formulation of the problem in a weighted space with detached asymp-
totics, cf. [23, Ch. 6]. Instead of using these involved techniques one may directly
observe that the right hand sides g±(x′) in (3.10) satisfy the bound |g±(x′)| ≤
cr−1/2(1 + r/%) as a consequence of the assumption 3◦.

We shall return to a discussion on the singularities in Section 6.3 and now finalize
our consideration by writing down the following expansion near the edge:

v1(x) = v̂1(x) +K0(s) +K1(s)r1/2 cos(ϕ/2).S7 (3.17)

Here, K0 ∈ C∞[0, L], K1 belongs to C∞[0, L) and satisfies (3.12), and the remainder
satisfies the estimates

r−1|v̂1(x)|+ |∇v̂1(x)| ≤ C ,

|∇pv̂1(x)| ≤ cr−p+3/2(1 + | ln(L− s)|) , p = 2, 3, . . .S8 (3.18)
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for small r > 0. Notice that the first of these estimates follow from the smooth term
K2(s)r1 cos(ϕ), see (3.11) with j = 2, but the last one indicates the singularities
K3(s)r3/2 cos(3ϕ/2) and (3.15). We emphasize that he singularities in (3.17) and
(3.18) satisfy the traditional Meixner condition [16] mentioned in Section 1.1.

sec3.4
3.4. Asymptotics of v2 at infinity. We � next apply the approach of Section 2.3
to find the term of v2 with linear growth as x1 → ±∞. Indeed, the determining
problem for the function v2, i.e. (2.13)–(2.16), (3.10), is the same as that for v1

except for the last boundary condition, which is (2.19) for v1 instead of (3.10) for
v2. However, the right hand sides of these two conditions differ only in the compact
set θr, and we can conclude that v2 admits the same representation (2.23) as v1:

v2(x) = ṽ2(x) +
∑
±

χ±(x1)
(
b1

2|x1| ± b0
2

)
U†(x

′).71 (3.19)

Let us compute the coefficient b1
2. Using integration by parts inside Ω0

r(R) and along
θ0
±,r we obtain, similarly to (1.12),

2b1
2

∫
$r

|U†(x′)|2dx′ = lim
R→+∞

∑
±

±
∫
$r

U†(x
′)∂1v2(±R,x′)dx′

=
∑
±

±
∫
θr

U†(x
′)∂1v2(±R,x′)dx′

=
∑
±

∫
θr

U†(x
′)∇′ ·

(
h±(x′)∇′v1(±0,x′)

)
dx′

=
∑
±

(
−
∫
θr

h±(x′)∇′U†(x′) · ∇′v1(±0,x′)
)
dx′

+

∫
φr

h±(x2, 0)U†(x2, 0)∂zv1(±0, x2, 0)
)
dx2

=
∑
±

(∫
θr

v1(±0,x′)∇′h±(x′) · ∇′U†(x′)dx′

+

∫
θr

v1(±0,x′)h±(x′)∆′U†(x
′)dx′

+

∫
φr

h±(x2, 0)
(
U†(x2, 0)∂zv1(±0, x2, 0)− v1(±0, x2, 0)∂zU†(x2, 0)

)
dx2

)
.72 (3.20)

The last and second but last integrals vanish, due to the Steklov conditions (1.21),
(2.16) and the Laplace equation (1.19), respectively. Hence, similarly to (2.25), we
have

b1
2 = −1

2
‖U†;L2($r)‖−2J(h),73 (3.21)

where J(h) is obtained by taking (2.19) into account and integrating by parts in Ω0
r:

J(h) =
∑
±

∓
∫
θr

v1(±0,x′)∂1v1(±0,x′)dx′



EMBEDDED EIGENVALUES FOR WATER-WAVES 17

=

∞∫
−∞

(∫
$r

|∇v1(x)|2dx′ − Λ†

l∫
0

|v1(x1, x2, 0)|2dx2

)
dx1.74 (3.22)

We emphasize that the representation (3.8) of the bounded solution v1 guarantees
that the integrand

j(v1;x1) =

∫
$r

|∇v1(x)|2dx′ − Λ†

l∫
0

|v1(x1, x2, 0)|2dx275 (3.23)

decays exponentially at infinity: in view of (1.19)–(1.22), we have j(U†) = 0 and
hence, constant terms become null in the asymptotics of (3.23) as x1 → ±∞. It
is worth mentioning that the convergence of all integrals in (3.20) follows from the
material in Section 3.3.

sec3.5

3.5. Asymptotics of the eigenvalue. In Section 4.1 we shall verify that the in-
equality

J(h) > 076 (3.24)

� always holds under the general assumption of our paper. We are now in position
to complete the matching procedure and to derive a formula for the correction term
in (3.2). Recalling the conclusions (2.12) and (2.29) we compare linear terms in the
coefficients of ε2 in (3.6) and (3.7). According to (3.5), (3.19), and (3.21) we see
that, first, ∓µ1 = ±b1

2, and, second,

‖U†;L2($r)‖−1λ
1/2
1 = µ1 = −b1

2 =
1

2
‖U†;L2($r)‖−2J(h).

Because of (3.24) we can write

λ1 =
1

4
‖U†;L2($r)‖−2J(h),77 (3.25)

� and formulate the main result on the asymptotics of the embedded eigenvalue in
the case of the degenerate integral characteristic. The proof will be completed in
Sections 4 and 5.

DGC Theorem 3.1. Assume that the conditions 1◦–3◦ hold true and that I(h) = 0, see
(2.28). Then, there exist ε2 = ε2(θ, h±) > 0 and c2 > 0 such that the problem (1.8)–
(1.10) has for every ε ∈ (0, ε2] a unique eigenvalue (3.2) inside the segment (0,Λ†].
The correction term λ0 > 0 is given by (3.25), (3.22) and the asymptotic remainder
meets the estimate

|λ̃ε| ≤ c2ε
9/2.78 (3.26)

4. Uniqueness of the embedded eigenvalue.
sec4sec4.1

4.1. Absence of trapped modes at the threshold. Section � 4 is devoted to
the proof of the uniqueness statements in Theorems 1.1 and 3.1. Sections 4.1 and
4.2 contain preliminary results on eigenvalues at the threshold situation and in a
truncated water domain. We start by proving that the problem (1.25)–(1.28) has no
trapped modes at the threshold Λ = Λ†, cf. Section 2.3 and Theorems 1.1, 3.1. Let
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u0 ∈ H1
0 (Ω0

r; Υ0) be a solution of this homogeneous problem. The Green formula
gives �∫

Ω0
r

∣∣∣∂u0

∂x1

(x)
∣∣∣2dx +

∫
Ω0

r

|∇′u0(x)|2dx− Λ†

∫
Γ0
r

|u0(x1, x2, 0)|2dx1dx2 = 0.79 (4.1)

The max-min-principle (1.23) implies for all V ∈ H1
0 ($r; υ)∫

Ω0
r

|∇′V (x′)|2dx′ ≥ Λ†

∫
γr

V (x2, 0)dx2.80 (4.2)

Setting V (x′) = u0(x1,x
′) in (4.2) and integrating the result in x1 ∈ (−∞, 0) ∪

(0,+∞) shows that the difference of the second and third integrals in (4.1) is non-
negative. Hence, ∫

Ω0
r

|∂1u
0(x)|2dx ≤ 0

and therefore u0 does not depend on the longitudinal variable x1. Owing to the
decay of u0 at infinity, this is possible only, if u0 = 0.

A similar consideration proves the key inequality (3.24) of Section 3.5. Indeed,
we have

J(h) =

∫
Ω0

r

∣∣∣∂1v1(x)
∣∣∣2dx +

∞∫
−∞

j(v1;x1)dx1,

where the first integral converges, because the x1-derivative of the function (2.23)
decays exponentially. The integrand (3.23) is non-negative due to the inequality
(4.2), and thus J(h) ≥ 0. � The equality J(h) = 0 is possible only in the case
∂1v1 = 0 in Ω0

r. The asymptotic behaviour (3.8) shows that v1(x) = ±b0
1U†(x

′) for
±x1 > 0, and due to the continuity of v1, this is possible only if b0

1 = 0, i.e. v1 = 0.
But of course, the null function cannot be a solution of the problem (2.13)–(2.16)
with inhomogeneous boundary conditions (2.19).

sec4.2
4.2. Asymptotics of eigenvalues in a bounded domain. In the next section
we shall need some information on the eigenvalues of the problem

−∆wε(x) = 0, x ∈ Ωε
r(R),07 (4.3)

∂νw
ε(x) = 0, x ∈ Σε

r(R) ∪
⋃
±
(
θε+,r ∪$r(±R)

)
,08 (4.4)

∂zw
ε(x) = βεwε(x), x ∈ Γεr(R),09 (4.5)

wε(x) = 0, x ∈ Υε(R)00 (4.6)

in the bounded domain Ωε
r(R) = {x ∈ Ωε

r : |x1| < R} with some fixed R > 0; the
sets Σε

r(R), Γεr(R), and Υε(R) are defined similarly. On the truncated cross-sections
$r(±R), an artificial Neumann condition is imposed in (4.4), and the other condi-
tions are inherited from (1.16)–(1.18). � Fixing R, we next derive an asymptotic
formula for the lowest eigenvalue of this problem as ε→ 0.

Putting ε = 0 turns the problem (4.3)–(4.6) into the limit problem in the bounded
cylinder Πr(R) = (−R,R)×$r with the incision Θ0

r. For this problem, we readily
find the eigenvalue β0

1 = Λ† and the corresponding eigenfunction w0
1(x) = U†(x

′).
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Since U† > 0 in $r, the strong maximum principle shows that this is the first, simple
eigenvalue. We shall also need the second eigenvalue

β0
2 > β0

1 = λ†,81 (4.7)

which of course may be multiple.
In view of the assumption 3◦, Section 1.2 and the definition (1.3) of Θε, there

exists a diffeomorphism κ of class H1,∞ which transforms Ωε
r(R) into Ω0

r(R) and
which is ”almost identical”,

|κε(x)− x| ≤ cε ,
∣∣∣dκε

dx
− Id

∣∣∣ ≤ cε.

According to [10, 7.6.5], see also [23, Ch. 5], this means that βεp = β0
p +O(ε) and in

particular

βε2 > Λ† for ε ∈ (0, ε0]82 (4.8)

by virtue of (4.8). Let us compute the asymptotics of βε1.
In spite of the edge Ψ, the transition from Θε

r to Θ0
r can be regarded as a regular

perturbation of the boundary, cf. Section 3.3, and we thus choose the standard
ansätze for the eigenvalue and the corresponding eigenfunction

βε1 = Λ† − αε+ β̃ε1,83 (4.9)

wε1(x) = U†(x
′) + εW (x) + w̃ε1(x).

We insert them into the problem (4.3)–(4.6), repeat the arguments of Section 2.2
and thus obtain the following problem for the correction terms in (4.9):

−∆W (x) = 0, x ∈ Ω0
r(R),

∂νW (x) = 0, x ∈ Σ0
r(R) , ±∂1W (±R,x′) = 0, x ∈ $r,

±∂1W (±0,x′) = −∇′h±(x′) · ∇′U†(x′), x′ ∈ θr
∂zW (x) = Λ†W (x)− αU†(x′),x ∈ Γ0

r(R),

W (x) = 0, x ∈ Υ0(R).

Moreover, since the eigenvalue Λ† is simple, the only compatibility condition in this
problem reads as

0 =

∫
∂Ω0

r

(
U†(x

′)∂νW (x)−W (x)∂νU†(x
′)
)
dsx

= −α
∫

Γ0
r(R)

|U†(x2, 0)|2dx1dx2 −
∑
±

∫
θr

U†(x
′)∇′h±(x′) · ∇′U†(x′)dx′.

Hence, (1.24), (2.26), (2.28) imply

α = (2R)−1I(h).84 (4.10)

Finally, again according to [10, 7.6.5], the remainder in (4.9) can be bounded by

|β̃ε1| ≤ cε2.85 (4.11)

FINITE Remark 4.1. We emphasize the obvious difference of the asymptotic ansätze (2.1)
and (4.9) for the eigenvalues in the infinite waveguide Ωε

r and its truncated part
Ωε
r(R). Moreover, the relations (2.31) and (4.10) have been derived with crucially

different arguments. These observations are discussed in detail in the paper [19].
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sec4.3
4.3. Max-min-principle. We � now complete the uniqueness proof by using the
methods of [18], which involve the introduction of an abstract linear operator T ε in
a Sobolev-type Hilbert space and the use of the max-min-principle. We equip the
Sobolev-space Hε = H1

0 (Ωε
r; Υε) with the scalar product

〈uε, vε〉 = (∇uε,∇vε)Ωε
r

86 (4.12)

and define the operator T ε by the identity

〈T εuε, vε〉 = (uε, vε)Γε
r
,87 (4.13)

where (·, ·)Ξ stands for the natural scalar product of the Lebesgue space L2(Ξ). The
inequality

‖uε;L2(Ωε
r)‖2 + ‖uε;L2(Γεr)‖2 ≤ c‖∇uε;L2(Ωε

r)‖288 (4.14)

follows from the standard Friedrichs inequality in the truncated channel,

‖uε;L2(Ωε
r(R))‖2 + ‖uε;L2(Γεr(R))‖2 ≤ c‖∇uε;L2(Ωε

r(R))‖2,89 (4.15)

and the trace inequality in the cross-section $,

‖U ε;L2($r)‖2 + ‖U ε;L2(γr)‖2 ≤ c‖∇′U ε;L2($r)‖2.90 (4.16)

These inequalities are valid owing to the Dirichlet conditions (1.18) and (1.22),
respectively. In (4.16) we set U ε(x′) = uε(x) and in addition integrate over x1 ∈
(−∞,−R)∪(R,+∞). The constant c in (4.15) does not depend on ε, since the parts
of the surface ∂Ωε

r which are inside Πr can be considered as graphs of functions in
the variable x′, cf. [30].

The inequality (4.14) and the definition of the inner product (4.12) imply that the
operator T ε is continuous, positive, and symmetric, hence, self-adjoint. Moreover,
by (4.12) and (4.13), the variational formulation of the problem (1.15)–(1.18),

(∇uε,∇vε)Ωε
r

= λε(uε, vε)Γε
r
∀vε ∈ H1

0 (Ωε
r; Υε),(4.17)

can be formulated as the abstract equation

T εuε = τ εuε in Hε,92 (4.18)

with the new spectral parameter

τ ε = 1/λε.93 (4.19)

This relation implies that the continuous spectrum of T ε is � [0,Λ−1
† ]. Moreover,

the operator −T ε (with the minus sign) is bounded from below and eigenvalues
τ ε1 , . . . , τ

ε
N in its discrete spectrum can be obtained from the max-min-principle

−τ εn = max
Hε

n

min
vε∈Hε

n\{0}

−〈T εvε, vε〉
〈vε, vε〉

,94 (4.20)

where Hε
n is any subspace of Hε with codimension n− 1. More precisely, Theorem

10.2.2. of [2] or � Theorem XIII.1 of [26] state that if the right hand side of (4.20)
is less than Λ−1

† , then the discrete spectrum of T ε contains at least n points, which
thus are isolated eigenvalues. By the relation (4.19) this also means that the discrete
spectrum of the problem (1.15)–(1.18) contains at most n points.
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Let us assume that I(h), (2.28), is negative. Then, by (4.10) and (4.11), the first
eigenvalue (4.9) of the auxiliary problem (4.3)–(4.6) in the bounded domain satisfies
βε1 ≥ λ† for small ε ∈ (0, ε0] and therefore we have the inequality 1

‖∇vε;L2(Ωε
r(R))‖2 ≥ βεp‖vε;L2(Γεr(R))‖2.95 (4.21)

We take the inequality (4.2) with V (x′) = vε(x1,x
′), integrate it in x1 ∈ (−∞,−R)∪

(R,+∞), add it to (4.21) and obtain

‖∇vε;L2(Ωr)‖2 ≥ Λ†‖vε;L2(Ωr)‖2.96 (4.22)

Thus, for all vε ∈ Hε we have

−〈T εvε, vε〉
〈vε, vε〉

= − ‖v
ε;L2(Γεr)‖2

‖∇vε;L2(Ωε
r)‖2

≥ − 1

Λ†
,97 (4.23)

so that the right hand side of (4.20) with n = 1 exceeds−λ†. By the above mentioned
theorems of [2] and [26], the discrete spectrum of T ε is empty. � By the remark
after (4.20), this means that the discrete spectrum of the problem (1.15)–(1.18) is
empty as well, and as explained above Remark 1.2, this implies that there are no
embedded eigenvalues for the problem (1.8)–(1.10) contained in the interval [0,Λ†].
The first assertion of Theorem 1.1 has thus been verified.

Let I(h) ≥ 0. We now deal with the second eigenvalue βε2 and introduce the
subspace of codimension 1,

Hε
⊥ =

{
vε ∈ H1

0 (Ωε
r; Γεr) :

∫
Ωε

r(R)

vε(x)wε1(x)dx = 0
}
.98 (4.24)

In (4.24), wε1 is the first eigenfunction of the problem (4.3)–(4.6). Owing to the
orthogonality condition in (4.24), any function vε ∈ Hε

⊥ satisfies the relation (4.21)
� with p = 2, which is an inequality of Poincaré type. We obtain the formula (4.22)
by (4.7) and (4.2) and conclude that

inf
vε∈Hε\{0}

−〈T εvε, vε〉
〈vε, vε〉

= − sup
vε∈Hε\{0}

‖vε;L2(Γεr)‖2

‖∇vε;L2(Ωε
r)‖2

≥ − 1

Λ†
≥ − 1

Λ†
.

Once more, the above mentioned theorems of [2] or [26] implies that the discrete
spectrum of the operator T ε can � contain at most one eigenvalue. As in the previ-
ous case we deduce that the problem (1.8)–(1.10) can have at most one eigenvalue
in the interval [0,Λ†].

The uniqueness statements in Theorems 1.1, (2), and 3.1 have been confirmed.

5. Existence of an eigenvalue.
sec5sec5.1

5.1. Searching for an eigenvalue. We shall construct a non-trivial function uεas ∈
H1(Ωε

r, υ
ε) and find positive numbers � τ εas, δ such that

‖T εuεas − τ εasu
ε
as;Hε‖ = δ‖uεas;Hε‖,B1 (5.1)

τas − δ > Λ−1
† .B77 (5.2)

A classical lemma on ”approximate eigenvalues”, see e.g. [31], and the formulas
(5.1), (5.2) guarantee that the segment [τ εas − δ, τ εas + δ] does not intersect the con-
tinuous spectrum [0, λ−1

† ] and contains an eigenvalue τ ε1 of the operator T ε. Then,

1This inequality is quite similar to (4.2) and both of them can be derived by using a reduction
to an abstract equation and applying the min-principle.
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the relation (4.19) of the spectral parameters implies the existence of the eigen-
value λε1 = 1/τ ε1 ∈ (0,Λ†) of the problem (1.15)–(1.18) � and thus of the problem
(1.8)–(1.10), as well as the estimate

|λε1 − λεas| ≤ Cεδ with λεas =
1

τ εas

, Cε =
δ

τ εas(τas − δ)
.B2 (5.3)

In the previous section we have proved that an eigenvalue in (0,Λ†) is unique, if it
exists. That is why the above mentioned lemma additionally yields an eigenfunction
uε1 ∈ H1

0 (Ωε
r; Υε), which corresponds to λε1, but is not necessarily normalized in Hε,

and satisfies the estimate

‖uε1 − uεas;Hε‖ ≤ δ‖uεas;Hε‖.B3 (5.4)

The simplest way to derive these and similar facts is to apply elementary tools
of the theory of the spectral measure; in this way the reduction to the abstract
equation becomes very important. In particular, the key estimate

|τ ε1 − τ εas| ≤ δB4 (5.5)

is a consequence of the spectral decomposition of the resolvent, see [2, §6.2], which
includes an estimate of the distance of a point to the spectrum in terms of the norm
of the resolvent, see (5.1). The estimate (5.4) for the eigenfunction follows by using
the spectral projection. A detailed explanation of this technique is given for example
in [25].

sec5.2
5.2. Approximate eigenvalue and eigenfunction. We assume the condition
I(h) > 0 and set

λεas = Λ† − ε2λ0B0 (5.6)

and correspondingly τ εas = (Λ†− ε2λ0)−1; here λ0 is taken from (2.31). Moreover, by
{µas(ε), Vas(ε; x

′)} we understand the solution (2.4) of the model problem (2.3) on
$r with the spectral parameter (5.6).

We � connect the inner and outer expansions (2.11) and (2.2) of Section 2 by
using the smooth cut-off functions (2.21) and the function

Xε(x1) = 1 for |x1| < 1/ε , Xε(x1) = 0 for |x1| > 1 + 1/ε , 0 ≤ Xε ≤ 1.B5 (5.7)

Namely, we set

uεas(x) = Xε(x1)
(
v0(x) + εv1(x)

)
+
∑
±

χ±(x1)(1± εβ0
1)e∓µ(ε)x1V (ε; x′)

−Xε(x1)
∑
±

χ±(x1)
(
1 + ε(β1

1 |x1| ± β0
1)
)
U†(x

′).B6 (5.8)

The supports of the cut-off-functions (2.21) and (5.7) overlap like in Fig. 5.1.a.
Therefore the terms which have been matched in Section 2.3 are taken into ac-
count twice in the first and second terms, but this duplication is compensated by
subtracting the third term.

We emphasize that in the case h± > 0, when Θ0 ⊂ Θε and θε± lays inside Π± =
{x ∈ Π : ±x1 > 0}, we may just use the function v1 in (5.8), but in the case when
the surfaces θε± penetrate in Θ0, this function must be substituted by its extension
v±1 through the screen Θ0

r. For example, if −h− < h+ < 0 in θ, see Fig. 3.1.b, v1

must be extended from Π+,r to the domain

{x ∈ Πr : x1 > 0 for x′ ∈ $r \ θr, x1 > εh+(x′) for x′ ∈ θr}.B7 (5.9)
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Figure 5.1. a) Cut-off-functions with overlapping supports. b) Ex-
tension through the screen. fig4

We take a smooth extension, which has a singularity at the edge (1.30); the larger
domain is shaded in Fig. 5.1.b. More precisely, we use the representation (3.17) near
the edge and keep the form of K0(s), K1(s)r1/2 cos(ϕ/2) unchanged and handle the
remainder v̂1 only. In this way the extensions v̂±1 will still satisfy the estimates
(3.18).

To avoid superfluous technical details we describe the first case and only comment
on the second one at the end.

Let us derive a lower estimate for the L2-norm of the function (5.8) written in the
form

uεas(x) =
(

1−
∑
±

χ±(x1)
)
U†(x

′) +Xε(x1)εṽ1(x)

+
∑
±

χ±(x1)(1± εb0
1)e∓µ(ε)U†(x

′),

where the formulas (2.12) for v0 and (2.23) for v1 were applied. The first term on the
right has compact support and the second one decays exponentially, but, according
to (2.4), the decay of the third term is very slow. Thus,

‖uεas;L
2(Ωε

r)‖2 ≥ ‖uεas;L
2(Ωε

r \ Ωε
r(2))‖2

≥ C1

∞∫
2

e−2εµ0|x1|d|x1| − C0ε ≥
C2

ε
, Cp > 0,B99 (5.10)

� where Ωε
r(2) is as in (4.3).

sec5.3
5.3. Calculation of the discrepancies. Let us compute in the equation (1.15)
the discrepancy of the function (5.8), which is written more briefly as follows:

uεas = Xεu
ε
in +

∑
±

χ±u
ε
out,± −Xε

∑
±

χ±u
ε
mat,±.B8 (5.11)

We denote by [∆, Xε] the commutator of the Laplace operator with the cut-off-
function Xε and observe that

[∆, Xεχ±] = χ±[∆, Xε] + [∆, χ±],

hence,

∆uεas = Xε∆u
ε
in +

∑
±

χ±
(
∆uεout,± −Xεu

ε
mat,±

)
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+
∑
±

χ±[∆, Xε]
(
uεin,± − uεmat,±

)
+
∑
±

[∆, Xε]
(
uεout,± − uεmat,±

)
.B9 (5.12)

Since uεin, uεout,±, and uεmat,± are harmonic, the first two terms on the right vanish.

Coefficients of the differential operator χ±[∆, Xε] are supported in {x ∈ Πr : ±x1−
1/ε ∈ [0, 1]}, where the difference uεin−uεmat,± = εṽ1 is exponentially small, see (2.12)
and (2.23). Recalling the asymptotic formulas (2.4) and (2.8) and the decomposition
(2.10) specified in (2.9), (2.12), (2.29), and (2.25), we conclude that the difference
uεout,± − uεmat,± is of the order ε2 in the set {x ∈ Πr : 1 ≤ ±x1 ≤ 2}. In this set the
commutator [∆, χ±] is not null, in view of (2.21). Hence,

|∆uεas(x)| ≤ Cε2e−α0|x1| for some α0 > 0.B10 (5.13)

On the cylindrical surface ∂Π the normal derivative annihilates all three cut-
off functions depending on the longitudinal variable only. We thus find that the
asymptotic solution (5.8) satisfies the Neumann condition

∂νu
ε
as(x) = 0 , x ∈ Σε

r ,B11 (5.14)

and the discrepancy in the Steklov condition looks as follows:

∂zu
ε(x)− (Λ† − ε2λ0)uεas(x) = ε2λ0Xε(x1)

(
uεin(x)−

∑
±

χ±(x1)uεmat,±(x)
)

= ε2λ0

(
1−

∑
±

χ±(x)
)
U†(x

′) +Xε(x1)ε3ṽ1(x) , x ∈ Γεr.

Recalling the exponential decay of the remainder in (2.23) we see that

|∂zuε(x1, x2, 0)− λεasu
ε(x1, x2, 0)| ≤ cε2e−α0|x1| , x ∈ Ωε

r.B12 (5.15)

We are left with examining the boundary conditions (1.16) on the screen surfaces
(1.5). Clearly, uεas(x) = U†(x

′) + εv1(x) in a neighbourhood of Θε
r. We use the

representation (2.17) for the normal derivative and the relation (2.19). As a result,
we obtain(

1 + ε2|∇′h±(x′)|2
)1/2

∂νε±
(
U†(x

′) + εv1(x)
)∣∣∣
x1=±εh(x′)

= ε(∇′h±(x′) · ∇′U†(x′)∓ ∂1v1(±εh±(x′),x′) + ε∇′h±(x′) · ∇′v1(±εh±(x′),x′)

= ±ε(∂1v1(±0,x′)− ∂1v1(±εh±(x′),x′) + ε2∇′h±(x′) · ∇′v1(±εh±(x′),x′)

Applying the Taylor formula and the estimates

|∇pv(x)| ≤ cp(1 + r−p+1/2 + r1/2(L− s)1−p) , p = 0, 1, 2,(5.16)

which follow for example from the relations (3.17) and (3.18), yield the inequality∣∣∂νε±(U†(x′) + εv1(±εh±(x′),x′)
)∣∣ ≤ cε2r−1/2 , x ∈ θε±,r.B13 (5.17)

sec5.4
5.4. Final estimate. By the definition of the Hilbert space norm and the formulas
(4.12), (4.13) we have

‖T εuεas − τ εasu
ε
as;Hε‖ = inf

∣∣〈T εuεas, w
ε〉 − τ εas〈uεas, w

ε〉
∣∣

= τ εas inf
∣∣λεas(u

ε
as, w

ε)Γε
r
− (∇uεas,∇wε)Ωε

r

∣∣
= τ εas inf

∣∣∣(∆uεas,∇wε)Ωε
r
− (∂zu

ε
as − λεasu

ε
as, w

ε)Γε
r
−
∑
±

(∂νε±u
ε
as, w

ε)θε±,r

∣∣∣.
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Here, the infimum is calculated over all functions vε ∈ Hε such that

‖wε;Hε‖ = ‖∇wε;L2(Ωε
r)‖ = 1;

according to (4.15) and (3.16), these functions also satisfy

‖wε, L2(Ωε
r)‖+ ‖wε, L2(Γεr)‖+

∑
±

‖r−1/2(1 + | ln r|)−1wε;L2(θε±,r)‖ ≤ C.BB1 (5.18)

Now the estimates (5.13), (5.15), and (5.17) imply the inequality

‖T εuεas − τ εasu
ε
as;Hε‖ ≤ cε2,B14 (5.19)

which together with (5.10) show that the factor in (5.1) does not exceed cε5/2, and
therefore (5.2) is true. Hence, the operator T ε has an eigenvalue τ ε1 ∈ [τ εas−δ, τ εas +δ].
Finally, the calculation (5.3) and the formula (5.6) assure the relations (2.1) and
(1.12) for the eigenvalue λε = λε1 = (τ ε1 )−1 of the problems (1.15)–(1.18) and (1.8)–
(1.10). Theorem 1.1 is proved.

Let us comment on the case h+ < 0 depicted in Fig. 5.1.b, and outlined at the end
of Section 3.3. The formulas (5.14) and (5.17) remain unchanged. The extension
v+

1 is not harmonic in the thin domain Ξε
+ = {x : 0 > x1 > εh+(x′), x′ ∈ θr}, and

therefore

∆uεas(x) = 0 in Π+,r but ∆uεas(x) = ε∆v+
1 (x) in Ξε

+.(5.20)

However, according to the relations (3.17), (3.18) and the Taylor formula in the
variable x1, we have

|∇v+
1 (x)| = |∆v+

1 (x)−∆v+
1 (+0,x′)| ≤ C|x1|r−3/2(1 + | ln %|).

Furthermore, a direct consequence of the Newton-Leibnitz formula∫
Ξε
+

|wε(x)|2dx ≤ cε

∫
Ωε

r

(
|∇wε(x)|2 + |wε(x)|2

)
dxB15 (5.21)

shows that

ε
∣∣∣ ∫
Ξε
+

wε(x)∆v+
1 (x)dx

∣∣∣2

≤ cεε1/2‖wε; Ωε
r(R)‖

( 0∫
εh+(x′)

|x1|2
∫
θr

r−3(1 + | ln %|)2dx′dx1

)1/2

≤ cε3
(∫
θr

h+(x′)3r−3(1 + | ln %|)2dx′
)1/2

≤ cε3.

Here we used the relation (5.18) for wε and observed that the last integral converges
because the singular factor r−3 is compensated by h+(x′)3, owing to the assumption
3◦. A similar calculation shows that∣∣(∂zuεas − λεasu

ε
as, w

ε)Γε
r

∣∣ ≤ cε2,B16 (5.22)

and hence our previous conclusion (5.19) as well as Theorem 1.1, (2) are still valid.
It should be mentioned that instead of (5.21) the derivation of (5.22) can be based
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on the estimate

l∫
0

0∫
εh+(x2,0)

|wε(x1, x2, 0)|2dx1dx2 ≤ cε(1 + | ln ε|)2‖wε;H1(Ωε
r(R))‖2

which follows from a Hardy-type trace inequality analogous to (3.16).
Theorem 1.1 can be proven in the same way but the extension of the asymptotic

ansätze in Section 3.1 requires much more cumbersome but still routine calculations,
which we omit here for brevity.

6. Concluding remarks.
sec6sec6.1

6.1. Discussion. In the previous sections we have studied the position of the lowest
embedded eigenvalue λε of the linear water-wave problem (1.8)–(1.10) in a straight
channel containing a thin screen. The thickness of the screen has been considered
as a small parameter of order ε > 0, and we have assumed that the geometry of the
problem is symmetric along the longitudinal mid-plane. Our results in Theorems 1.1
and 3.1 show how the integral characteristic I(h), (2.28), and the lowest eigenvalue
Λ† of the associated water-wave problem with artificial boundary condition (1.15)–
(1.20) play crucial roles in the determination of the asymptotic position of λε.
� Our formal analysis, with small modifications, can be applied to asymmetric

screens, but this topic will be postponed to a planned forthcoming paper, since
the justification scheme would require essential changes. Asymmetry of the screen
may lead to complex resonances or unstable embedded eigenvalues. (Notice that the
eigenvalue found above belongs to the discrete spectrum of the problem (1.15)–(1.18)
with the artificial Dirichlet condition, and it is therefore stable for small, symmetric
perturbations of the profile functions h± in (1.3).)

As for possible other embedded eigenvalues, we have not made any effort to analyse
for example eigenvalues above the threshold Λ†. Embedded eigenvalues are in general
unstable by nature. This has to be taken into account in the asymptotic analysis
of eigenvalues larger than Λ†, and the investigation of such eigenvalues should be
based on the fine-tuning procedure of [21, 22] mentioned already in Section 1.2; this
also allows one to stabilise the eigenvalues to stay in the continuous spectrum. Since
the present approach does not include a stabilisation procedure, we refrain from the
computing of numerical examples, which would require ideas beyond the scope of
the paper.

Let us make some further comments on the relation with the results of [18]. The
sufficient condition for the existence of a trapped mode in [18] was formulated as
the inequality ∫

Θε
r

|∇′U†(x′)|2dx− Λ†

∫
Γ∩Θε

r

|U†(x′)|2dx1dx2 ≥ 0.R1 (6.1)

This turns into the inequality εI(h) ≥ 0, (2.28), by using (1.3) and an integration
with respect to x1. If 3◦ is in addition assumed, Theorems 1.1 and 3.1 yield a positive
number ε0(θ, h±) depending on the screen profiles such that if 0 < ε < ε0(θ, h±),
then (6.1) is also a necessary condition for a unique trapped mode, thus improving
the results of [18]. For large ε this necessity and uniqueness may of course be lost.
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a) b)

c)
d)

Figure 6.1. Ellipsoidal (a) and penny-shaped (b) screens having
boundary layer effects. Scaled domains (c,d) for the description of
the boundary layer. fig5

sec6.3
6.2. Particular screens. We now discuss two examples which show that our as-
sumption 3◦ means an essential simplification of calculations, since removing it
would make the asymptotic analysis in Section 2.3 not valid. As was mentioned in
Section 1.3 and follows from the sufficient condition (6.1), any submerged screen
Θε ⊂ Π traps a surface wave, with the exception of the case of a vertical planar
screen. Let us discuss the boundary layer phenomenon for the flattened ellipsoid

Θε = {x : R−2(x2
2 + (x3 − z0)2) + ε−2x2

1 ≤ 1}R2 (6.2)

(cf. [30] for the much more simple two dimensional case) and for the penny-shaped
obstacle

Θε = {x : x2
2 + (x3 − z0)2 ≤ R2, |x1| < ε};R3 (6.3)

Both screens (6.2) and (6.3) are submerged and do not touch the wetted surface Σ
of the channel Π, see Fig. 6.1.a,c.

The ellipsoid (6.2) is given by the formula (1.3), where θ is a disc of radius R and

h±(x′) =
√

1−R−2(x2
2 + (x3 − z0)2) =

√
r(R−1 +O(r)).R4 (6.4)

Since h± vanish on the circle ψ = ∂θ, all calculations of Section 2 can be repeated
word-to-word to derive the asymptotic formula (2.1) for the single eigenvalue λε ∈
(0,Λ†) of (1.8)–(1.10). However, the decay rate O(r1/2) in (6.4) is not enough to
compensate the growth O(r−3/2) of the second order derivatives of v, cf. the right
hand side of (3.10). As a result, higher order terms cannot be found using the
above presented asymptotic method. Indeed, it was shown in [9], see also [15], that
the boundary layer phenomenon occurs in the vicinity of the edge Ψ = {x : x1 =
0, ρ := (x2

2 + (x2 − z0)2)1/2 = R}. Namely, dilating coordinates as

(x1, ρ) 7→ ξ = (ξ1, ξ2) = (ε−2x1, ε
−2(ρ−R)),
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using the arc length s ∈ [0, 2πR) on Ψ and setting ε = 0 lead to a Neumann problem
for the two-dimensional Laplacian ∆ξ in the plane R2 with parabolic notch

P = {ξ : ξ2 < 0, |ξ1| ≤ (2|ξ2|/R)1/2},

see Fig. 6.1.b. Detailed analysis of the boundary can be found in [9] and [15, Ch. 5].
For the penny-shaped screen (6.2) we have h±(x′) = 1, and we come across a

notable inconsistency in the previous calculations: the right hand side of (2.19) van-
ishes and the problem (2.13)–(2.16), (2.19) thus turns homogeneous, but according to
(2.28), the coefficient b1

1 in (2.23) takes the form (2.25) with I(h) = 2‖∇′U†;L2(θr)‖2.
This contradiction is of course caused by the boundary layer effect. Using the coor-
dinate dilation

(x1, ρ) 7→ ξ = (ε−1x1, ε
−1(ρ−R)),

the effect is described by the solutions of the Neumann problem for ∆ξ in the plane
without the semi-strip

S = {ξ : ξ2 ≤ 0, |ξ1| < 1},

see Fig. 6.1.d. Indeed, the function v0(x) = U†(x
′) has the discrepancy G(s) =

∂rU†(x
′)
∣∣
r=R

in the Neumann condition on the lateral side of the circular cylinder
(6.3). Therefore the main asymptotic term εW (ξ, s) of the boundary layer is to be
chosen as a solution of the following problem with parameter s:

−∆ξW (ξ, s) = 0, ξ ∈ S,
∓∂1W (±1, ξ2, s) = 0, ξ2 < 0,R5 (6.5)

−∂2W (ξ1, 0, s) = G(s), ξ1 ∈ (−1, 1).

Unfortunately, this problem has no solutions which decay at infinity. This is why
we employ the traditional method of matched asymptotic expansions, see [29, 9]
and change the essence of εW (ξ, s): it is regarded as a term in the inner expansion
near the edge of the screen, and it is fixed as a solution of the problem (6.5) with
logarithmic growth at infinity,

W (ξ, s) = −π−1G(s) ln |ξ|+ o(1), |ξ| → +∞.R6 (6.6)

Now, (2.11) is regarded as the outer expansion in a neighbourhood of Θε, and its
term εv1(x) must be subject to the asymptotic condition

v1(x) = −π−1G(s) ln r +O(1), r → +0.(6.7)

This term thus becomes a nontrivial singular solution of the homogeneous problem
(1.25)–(1.28). This explains why our calculations in Section 2.3 do not work for the
penny-shaped screen. In other words, the assumption 3◦ simplifies calculations and
removing it requires a different asymptotic analysis.

sec6.4
6.3. Surface-piercing screens. If the screen thickness function h does not vanish
at the endpoints of the line segment φ = ∂θ ∩ γ, then, yet another boundary layer
must be taken into account, in addition to those discussed in Section 6.2. This
amounts to solving a Neumann problem in the lower half-space with the infinite slit
of width h0 = h0

+ + h0
− > 0,

{η = (η1, η2, η3) : η3 < 0, η2 < 0, η1 ∈ [−h0
−, h

0
+]}.
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The authors do not know published results in this direction. Another open question
is related to the situation, when h is null on ψ \ τ but positive on the arc τ = {s :
s ∈ (−t, t)} of length 2t > 0.

In addition to the assumption 3◦ we have required in Section 1.1 that the angle
α between ψ and γ is right. We used this restriction in Section 3.3, since we needed
the extension trick to study the singularities of v2. However, this assumption may
be weakened: it was shown in [17] that the exponent β in the ”worst” power-law
solution (3.13) is a function, which decreases monotonely from 1 to 0, when the
variable is the angle α measured from the side of θ. Thus, our calculations remain
valid at least for acute angles.
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