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Abstract

Lagrangian-based collective coordinate models for magnetic domain wall (DW) motion rely on an ansatz for the DW profile and
a Lagrangian approach to describe the DW motion in terms of a set of time-dependent collective coordinates: the DW position,
the DW magnetization angle, the DW width and the DW tilting angle. Another approach was recently used to derive similar
equations of motion by averaging the Landau-Lifshitz-Gilbert equation without any ansatz, and identifying the relevant collective
coordinates afterwards. In this paper, we use an updated version of the semi-analytical equations to compare the Lagrangian-based
collective coordinate models with micromagnetic simulations for field- and STT-driven (spin-transfer torque-driven) DW motion in
Pt/CoFe/MgO and Pt/Co/AlOx nanostrips. Through this comparison, we assess the accuracy of the different models, and provide
insight into the deviations of the models from simulations.It is found that the lack of terms related to DW asymmetry in the
Lagrangian-based collective coordinate models significantly contributes to the discrepancy between the predictionsof the most
accurate Lagrangian-based model and the micromagnetic simulations in the field-driven case. This is in contrast to the STT-driven
case where the DW remains symmetric.

Keywords: Magnetic DW motion, PMA material, Dzyaloshinskii-Moriya interaction, Landau-Lifshitz-Gilbert equation,
Nanowires
PACS:71.70.Gm, 75.60.Ch, 75.78.Fg, 75.78.Cd

1. Introduction

Manipulating magnetic domain walls (DWs) within nanos-
tructures is essential for many applications in the develop-
ment of spintronic logic [1–3], memory [4–6] and sensing de-
vices [7]. Potential advantages of these and other devices
which use magnetic moments to carry information include low
power dissipation, non-volatile data retention, radiation hard-
ness, faster manipulation of data, high areal densities anda re-
duced need for mechanical parts. These advantages have led
to increased interest within the scientific community in qualita-
tively or quantitatively describing magnetic DW motion under
applied fields and currents.

Both qualitative and quantitative descriptions rely on the
Landau-Lifshitz-Gilbert (LLG) equation which expresses how
the magnetization varies in space and time. In micromagnetic
simulations, the ferromagnetic system is divided into many
cells and the LLG equation is subsequently solved in each cell
at every timestep, giving rise to a huge number of degrees of
freedom. While this results in the most accurate description
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of DW dynamics, more quantitative insight in DW dynamics
is provided by theoretical models which describe the DW in
terms of a limited number of variables. Here, we distinguish
between Lagrangian-based [8–12] and semi-analytical [13–16]
collective coordinate models (CCMs).

Lagrangian-based CCMs have the advantage that they are
predictive and computationally very cost-effective; to evaluate
the DW variables and the equations of motion, no micromag-
netic simulations are needed. Moreover, they are very useful
for early design analysis, conceptual studies or back-of-the-
envelope calculations. The equations of motion typically rely
on an ansatz which characterizes the spin texture of interest. Al-
ready in 1972, when micromagnetic simulation tools were not
yet available, Slonczewski used a Lagrangian approach to pro-
pose the first collective coordinate model to analyze DW motion
in perpendicularly magnetized materials (theq− φ model) [8].
This model relates the DW positionq and supposedly uniform
magnetization of the DW to the different magnetic interactions.
Theq− φ model is also called the 1D model, as the whole mo-
tion can be characterized by the in-plane magnetization angle
φ.

Thiaville and Nakatani later extended this model to in-plane
systems and introduced the DW width (∆) as an additional time
varying coordinate, leading to theq− φ−∆model [11]. Due to

Preprint submitted to Elsevier October 13, 2017



  

the interest in current-driven DW motion at the time, the spin-
transfer torque (STT) mechanism was also added to these mod-
els [9, 10].

Recent studies on heterostructures of ultrathin ferromagnets
sandwiched between a heavy metal layer and an oxide have
highlighted the importance of the Dzyaloshinskii-Moriya inter-
action (DMI) [17, 18], which stabilizes chiral DWs [19–22].
These chiral domains are of Néel or semi-Ńeel character de-
pending on the strength of the DMI, while similar systems with-
out this interaction will have Bloch DWs. The change in DW
structure leads to extension of the Walker Breakdown towards
higher excitation strengths [23], and also to tilting of theDW
during motion [12]. While micromagnetic simulations of these
heterostructures are in agreement with experiments [24], con-
ventional Lagrangian-based CCMs (q− φ andq− φ − ∆) fail to
reproduce the results [12, 25]. To overcome this issue, Boulle
developed a tilted Lagrangian-based CCM (theq− φ−χmodel
with χ the tilt angle of the DW in respect to the wire) to describe
DW motion in PMA nanowires with DMI [12].

Since Lagrangian-based CCMs rely on an ansatz for the do-
main wall profile, they are inevitably limited by this constraint
and do not describe the full details of DW dynamics. On the
other hand, micromagnetic simulations which take the full com-
plexity of DW dynamics into account, are hard to interpret. To
bridge the gap between both, we recently introduced a semi-
analytical approach to derive similar equations of motion for
the DW which could be interpreted in the context of collec-
tive coordinates [13]. The earliest versions were able to succes-
fully describe DW dynamics in in-plane magnetized and PMA
nanostrips, taking into account effects due to the finite temper-
ature and disorder [13–15]. More recently, this approach was
extended to account for DMI [16].

In this paper, we present a four collective coordinate model
(q−φ−χ−∆) derived based on the Lagrangian approach. This
model is compared to previous Lagrangian-based models. Us-
ing an improved semi-analytical approach, it is compared to
micromagnetic simulations to assess its accuracy and to gain
further understanding of the limitations of the models derived
based on the Lagrangian approach.

2. The LLG and energy equation

Magnetization dynamics in ferromagnetic materials are gov-
erned by the Landau-Lifshitz-Gilbert (LLG) equation with ad-
ditional terms added to account for other interactions suchas
the Spin Transfer Torque (STT). We follow the description de-
veloped by Berger [26] and refined by Zhang and Li [27] to
account for this interaction. The full equation reads

∂m
∂t
=
γ0

1+ α2
Heff ×m +

αγ0

1+ α2
m × (Heff ×m)

+
β − α
1+ α2

m × (u · ∇) m

+
(1+ αβ)
1+ α2

m × (m × ((u · ∇) m)) (1)

in which γ0 = µ0γ, with γ the gyromagnetic ratio andµ0

the permeability of vacuum,m = M/Ms is the normalized

magnetization vector withMs the saturation magnetization,
Heff = − 1

µ0Ms

δE
δm with E the total energy is the effective mag-

netic field acting on the magnetization andα is the phenomeno-
logical Gilbert damping [28]. The second and third line in (1)
include the adiabatic and non-adiabatic spin transfer torques
(STTs) induced by the injection of spin polarized currents
[10, 26, 27, 29–35]. We assume that the thickness of the mag-
netic layer is much larger than the heavy metal layer and hence,
neglect the effect of spin orbit torques arising from the interface
between the heavy metal layer and the ferromagnet. In the STT
terms,β is the nonadiabaticity coefficient andu = −bJJ with
bJ =

PgµB

2(−e)Ms(1+β2) is the velocity directed along the direction of

electron motion, withe= −1.602×10−19C the electron charge,
g the Land́e factor,µB the Bohr magneton,J denoting current
density andP denoting the polarization rate of the current.

Finally, the effective field in equation (1) is related to the
energy of the different interactions throughHeff = − 1

µ0Ms

δE
δm . In

the presence of an applied field, the total energy density of the
system can be written as

E =

Exchange
︷        ︸︸        ︷

A
3∑

i=1

|∇mi |2+

Anisotropy
︷        ︸︸        ︷

K0 + KUm2
ip −

Magnetostatics
︷           ︸︸           ︷

µ0Ms

2
Hms ·m

+

DMI
︷                      ︸︸                      ︷

D(mz∇.m − (m.∇)mz)−
Zeeman

︷          ︸︸          ︷

µ0MsHext ·m (2)

with mip the in-plane magnetization vector. Here,A is the ex-
change constant,K0 is an anisotropy constant,KU is the uni-
axial anisotropy constant,Hms is the demagnetizing field and
Hext is the externally applied field. The demagnetizing field can
be calculated asHms = −N̂.Msm whereN̂ is the demagnetiz-
ing tensor.D is an uniform constant signifying the strength of
the Dzyaloshinskii-Moriya interaction (DMI) with symmetries
taken into account [23, 36, 37]. From equation (2), we derive
that

Heff = −
1
µ0Ms

δE
δm

(3)

=Hext + Hani + Hms+ HDMI + Hexch

=

external field
︷      ︸︸      ︷

3∑

i=1

Hext,iei +

uniaxial anisotropy
︷           ︸︸           ︷

2KU

µ0M2
s

Msmzez

magnetostatic interaction
︷      ︸︸      ︷

−N̂ · Msm

+

DMI
︷                          ︸︸                          ︷

2D
µ0Ms

[∇mz − (∇ ·m) ez
]

+

exchange interaction
︷               ︸︸               ︷

2A
µ0Ms

3∑

i=1

∇2miei .

3. The Lagrangian-based collective coordinate models

As illustrated in Fig. 1 (a), the normalized magnetization
vector in spherical coordinates is expressed as

m = (cosφ sinθ, sinφ sinθ, cosθ). (4)

Using a Lagrangian approach, we switch from a description
of the magnetization at every point in space and time (the LLG

2



  

Figure 1: (a) The spherical coordinatesφ andθ of the normalized magnetization vectorm and its projection on thexy-plane, i.e. the in-plane magnetization vector
mip. (b) The collective coordinates used in the Lagrangian-based CCMs: the DW positionq, the in-plane magnetization angleφ at the center of the DW (m = mip),
the geometrical tilting angleχ and the DW width∆.

equation given by (1)), to a description of more collective fea-
tures of the DW. Based on micromagnetic simulations and ex-
perimental observations, the following time-dependent collec-
tive coordinates were identified for describing DW motion in
such systems:

(i) The position of the center of the DW (q);

(ii) The in-plane magnetization angle at the center of the DW
(φ);

(iii) The DW width (∆); and

(iv) The tilt angle of the DW with respect to the width of the
wire (χ).

The coordinates above are depicted in Fig. 1 (b). Hence, the
three-dimensional DW dynamics is described as the dynam-
ics of a point particle to which the collective coordinates are
allocated. In other words, we remove the spatial dependence
of DW dynamics. Different combinations of these coordinates
have been previously used to derive Lagrangian-based CCMs
for DW motion [8, 11, 12]. Here, all four coordinates are in-
cluded in a single model.

In order to introduce a DW into the Lagrangian system
of equations and switch from a description in the spatial co-
ordinate system to one based on collective coordinates, the
two coordinate systems need to be linked. Traditionally, the
Bloch profile (derived based on consideration of exchange and
anisotropy energies) has been used to relate the local coordi-
nates with the collective coordinates [8, 11]. Studies on PMA
systems with DMI have shown that this profile can be used in
these systems as well [22]. Here, we use a tilted version of this
ansatz [12]

{

θ(x, y, t) = 2 arctan
[

exp
(

(x−q(t)) cosχ(t)+ysinχ(t)
∆(t)

)]

φ(x, y, t) = φ(t).
(5)

along with the assumption that the direction of the in-plane
component of magnetizationmip is uniform inside the DW. Us-
ing this ansatz,θ ranges from 0 toπ (which is equivalent tomz

going from 1 to−1). Introducing this ansatz constrains the mag-
netization dynamics in order to maintain the DW as a rigid ob-
ject. This is not necessarily the case, especially near the edges
of the nanowire. However, this assumption is justified sincewe
show in AppendixD that the edge effects have a rather small
effect on the equations of motion.

For simplicity, this paper will only use the form of the
ansatz presented above. When the left domain is pointing
along the negativez-direction, the ansatz needs to be adjusted
to θ(x, y, t) = 2 arctan

[

exp
(

− (x−q(t)) cosχ(t)+ysinχ(t)
∆(t)

)]

, which will
affect some of the terms in the equations. Alternatively, the
coordinate system may be rotated to find equivalent equations
for the motion of the DW. Moreover, we also assume that
the magnetization inside the DW points along the positivex-
direction without excitation, which is valid for a large enough
DMI strength (D < 0) (cases studied in this paper). For cases
whereD > 0 and larger than a threshold value, the coordinate
φ should be replaced byπ + φ to take the initial configuration
of the DW into account. In this case, the ansatz forθ does not
change.

The demagnetizing factors used in the model may be cal-
culated based on the geometry of the system using ellipsoidal
approximations of the DW volume [38]. As a consequence of
this ellipsoidal approximation, the demagnetizing factors act on
the DW through the (φ − χ)-angle instead of the magnetization
angle (φ).

To remove the spatial dependence of the energy terms, the
Lagrangian and dissipation function of the system are inte-
grated in thex andy direction using the ansatz. In AppendixA,
the equations of motion of the four collective coordinate model
are listed along with more details about the derivation of these
equations and the differences with the equations of motion of
other Lagrangian-based CCMs.

4. The semi-analytical approach

Alternatively, a semi-analytical model can be developed [16],
based on averaging the LLG-equation. To this end, thelocally
varying effective field (3) is first properly averagedover the DW
volumeand substituted in the LLG equation. Then, the LLG
equation is again averaged over the domain wall volume to ob-
tain equations of motion with DW variables which are quanti-
fied by extracting them from simulations. Compared to our ini-
tial model [16], the semi-analytical approach is now improved
to properly treat the effects of the DW asymmetry on the DW
dynamics. In AppendixB, the semi-analytical approach and the
derivation of the equations of motion are discussed in detail.
Moreover, the DW variables extracted from the equations of
motion are also discussed. Apart from the DW positionQ, the
averaged in-plane DW magnetization angleΦav and its in-plane

3



  

weighted variantΦav,w are identified as well as the DW width
∆av and the geometrical tilting angleXav. Furthermore, we iden-
tify DW variablesκav and its in-plane weighted variantκav,w

describing the DW shape (AppendixC). We also identify three
exchange related DW variablesgx,av, gy,av andgz,av. The effec-
tive demagnetizing factorsNeff,x, Neff,y andNeff,z are determined
from micromagnetic simulations as detailed in AppendixB.

To ensure that the semi-analytical equations of motion are in
accordance with the micromagnetic simulations, we made an
assessment of the semi-analytical model with micromagnetic
simulations in AppendixD. Micromagnetic simulations were
executed for both field-driven DW dynamics in Pt/CoFe/MgO
and STT-driven DW dynamics in Pt/Co/AlOx as detailed in
Subsection 5.2.

5. Comparison between the Lagrangian-based collective
coordinate models and the semi-analytical model

5.1. The equations of motion

To enable a comparison between the Lagrangian-based
CCMs and micromagnetic simulations, we use the semi-
analytical approach and link the equations of motion in the
semi-analytical approach with those in the four coordinate
model. The velocity equation from both the semi-analyticalap-
proach and the four coordinate Lagrangian-based model can be
written as

1+ α2

γ0

1
P∆

v =αHext,z +
1+ αβ
γ0

1
P∆

ux

+
1

Pκ,field

[

Hext,x sinPφ − Hext,y cosPφ
]

+ MsPms

− 2D
µ0Ms

1
P∆

Pκ,DMI

[

sinPφ − tanPχ cosPφ
]

+
2A
µ0Ms

Pexch

+
1+ α2

γ0

1
P∆

Pasym,v,1 (6)

with the specific definition of the different parameters listed in
Table 1.

Similarly, the change in magnetization angle can be written
as

1+ α2

γ0
Φ̇ =Hext,z +

β − α
γ0

1
P∆

ux

− α

Pκ,field

[

Hext,x sinPφ − Hext,y cosPφ
]

− αMsPms

+ α
2D
µ0Ms

1
P∆

Pκ,DMI

[

sinPφ − tanPχ cosPφ
]

− α 2A
µ0Ms

Pexch

+ Pasym,Hext,z, (7)

while both equations can be combined to

v+
1
α

P∆Φ̇ =
γ0

α
P∆Hext,z +

β

α
ux + Pasym,v,2. (8)

In the semi-analytical model,

Φ̇ =
〈m2

ip
∂φ

∂t 〉
〈m2

ip〉
(9)

with mip the in-plane magnetization vector andφ the local in-
plane magnetization angle. On the other hand,Φ̇ = φ̇ in the
Lagrangian-based CCMs withφ the uniform in-plane magneti-
zation angle. Table 1 shows that, while the terms related to the
Zeeman term are identical in both approaches, there are differ-
ences in the two descriptions in terms of magnetostatic terms.
Furthermore, we can also assume thatΦav,w ≈ Φav as outlined in
AppendixD. Hence, demagnetizing terms in the semi-analytical
model can be simplified to

κav,w

κav

[

Neff,y sinΦav,w cosΦav − Neff,x cosΦav,w sinΦav

]

≈κav,w

κav

(

Neff,y − Neff,x

) sin 2Φav

2
. (10)

Now, the difference between the magnetostatic terms in both
models is clear: while the semi-analytical model takes the ef-
fect of changes in the DW plane into account by both a scal-
ing factor κav,w

κav
related to the DW shape and effective demag-

netizing factors extracted from micromagnetic simulations, the
Lagrangian-based model takes this change into account as a
change in the effective angle the spin makes with the line
mz = 0. Another observation is that the value ofκav from the
semi-analytical approach is predicted to beπ4 ≈ 0.7854 and
2
π
≈ 0.6366 when comparing the prefactorsκDMI from the DMI

terms andκfield from the in-plane field terms, respectively. In
AppendixC, we show thatκav is a value between 0 and 1 and
that κav depends on the domain wall shape, i.e. the change of
mz over the DW profile. We calculate thatκav =

2
π
= κfield

after substituting themz-value of (4) in the expression forκav

and using the ansatz (5) of the Lagrangian-based CCMs. It is
also notable that the semi-analytical model has additionalterms
related to exchange and asymmetry which do not exist in the
Lagrangian-based CCMs. DW asymmetry is rigorously defined
in AppendixB.

5.2. Numerical comparison

5.2.1. Introduction
Now, we compare the collective coordinate models with mi-

cromagnetic simulations, using the semi-analytical modelto
better understand the underlying reason for the shortcomings
of these models. We distinguish between four different collec-
tive coordinate models: theq− φ, theq− φ − ∆, theq− φ − χ
and theq−φ−χ−∆model. Using the micromagnetic software
package MuMax3[39], we study field-driven DW dynamics in
Pt/CoFe/MgO and STT-driven DW dynamics in Pt/Co/AlOx.
Typical material parameters are listed in Table 2. The cross
sectional dimensions of the simulated magnetic CoFe and Co
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q− φ − χ − ∆ semi-analytical

P∆ ∆

cosχ
∆av
2

Pφ φ Φav

Pκ,DMI κDMI = π/4
κavPκ,field κfield = 2/π

Pχ χ Xav

Pms

(

Ny − Nx

)
sin 2(φ−χ)

2
κav,w

κav

[

Neff,y sinΦav,w cosΦav − Neff,x cosΦav,w sinΦav

]

Pexch 0 gx,av sinΦav − gy,av cosΦav

Pasym,v,1

0
Ov,1

(

asymmetric
)

Pasym,v,2 Ov,2
(

asymmetric
)

Pasym,Hext,z OHext,z

(

asymmetric
)

Table 1: Definition of the parameters in equations (6), (7) and(8) expressing the DW velocity and the change in magnetization angle in the four collective coordinate
model and the semi-analytical model.

Pt/CoFe/MgO Pt/Co/AlO x

Ms (A/m) 700× 103 1090× 103

A (J/m) 1× 10−11 1.6× 10−11

KU (J/m3) 0.48× 106 1.25× 106

α 0.3 0.5
D (mJ/m2) −1.2 −2.2
β - 1.7

Table 2: Typical material parameters for Pt/CoFe/MgO nanostrips [25, 40] and
for Pt/Co/AlOx nanostrips [41, 42].

nanostrips were 160× 0.6 nm2 while the simulation window
was restricted to an area of length 640 nm following the DW in
its propagation through an infinite nanostrip. The discretization
cells had dimensions 1.25×1.25×0.6 nm3. This is not too large
since in Pt/CoFe/MgO

√
A/K ≈ 4.56 nm and in Pt/Co/AlOx√

A/K ≈ 3.58 nm. Note that, when calculating the averages
in the semi-analytical approach, interpolation was used tocom-
pensate for discretization effects as discussed in AppendixE.

In general, one can discriminate between two propagation
regimes of a DW, separated by the Walker Breakdown (WB)
[43]. Below the WB, the DW adapts itself to the perpendicu-
larly applied field or the applied current along the length ofthe
nanostrip, resulting in a steady state translational motion along
the nanostrip. In the equations of motion, this correspondsto

Φ̇ = 0, (11)

implying a fixed magnetization of the DW. In fact, all DW vari-
ables except for the DW position, are constant. This way, we
can also rewrite equation (7) as a function of the excitation. The
resulting equation then expresses how the different interaction
contributions add up to balance the excitation. As long as these
interactions can balance the excitation, we are below the WB.
In this paper, we limit the discussion to DW dynamics below
the WB.

5.2.2. Field-driven DW dynamics
In Figure 2, the collective coordinates of the Lagrangian-

based CCMs (theq−φ, q−φ−∆, q−φ−χ and theq−φ−χ−∆

models) for field-driven DW motion in a Pt/CoFe/MgO nano-
strip are compared to micromagnetic simulations processedus-
ing the semi-analytical approach. Due to the similarity between
theq − φ − χ and theq − φ − χ − ∆ model predictions on one
hand and theq − φ and theq − φ − ∆ predictions on the other
hand, we simplify the discussion by distinguishing betweentwo
types of models: those that includeχ and those that do not. The
χ-models clearly overestimate the DW velocity while the other
models underestimate the DW velocity. Furthermore, we ob-
serve that theχ-models slightly overestimateφ andχ, while φ
is strongly underestimated by the models that do not include
χ. Surprisingly, all models predictφ − χ with great accuracy.
On the other hand, theχ-models overestimate the scaled DW
width, while the other Lagrangian-based CCMs strongly un-
derestimate the DW width. This is the main reason for the
overestimation of the DW velocity by theχ-models and its un-
derestimation by the other Lagrangian-based CCMs. We also
calculated the normalized root mean-square error NRMSE and
the coefficient of determination R2 for this comparison in Table
3.

To enable a more in-depth comparison, Figure 3 compares
the differences in how the interactions are estimated between
the semi-analytical model and their Lagrangian-based counter-
parts as listed in Table 1. We observe that the influence of DMI
is overestimated by the Lagrangian-based CCMs, which is clear
in combination with equations (6) and (7). The differences be-
tween the terms that express the magnetostatic contribution to
the DW dynamics are clear from Subsection 5.1, thereby taking
into account thatκav,w

κav
varies between 1.08 and 1.1. We also ob-

serve that the absolute value of the sum of the asymmetric con-
tributions to the DW velocity and the out-of-plane fieldµ0Hext,z

typically increase as a function of the out-of-plane field. These
asymmetric contributions slow the DW down, thereby increas-
ing the Walker Breakdown field. Following equation (8), this
is an additional reason for the overestimation of the DW ve-
locity by the Lagrangian-basedχ-models, which do not con-
sider asymmetry. On the other hand, the exchange contribution
tends to decrease the Walker Breakdown field at large excitation
strengths.
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Figure 2: Comparison of the velocity and the collective coordinates (see Table 1) of the Lagrangian-based CCMs (theq − φ, q − φ − ∆, q − φ − χ and the
q − φ − χ − ∆ models) with micromagnetic simulations using the semi-analytical approach for field-drivenDW motion in a Pt/CoFe/MgO nanostrip. The DW
velocity as determined by the built-in simulation window velocity of MuMax3 is plotted as a black line in the top-left part.

Model
Velocity Pφ Pχ Pφ − Pχ P∆

NRMSE [R2] NRMSE [R2] NRMSE [R2] NRMSE [R2] NRMSE [R2]

q− φ 24.31% 56.61%
-

2.14% 18.82%
[85.56%] [-] [99.9%] [-]

q− φ − ∆ 24.69% 56.91%
-

3.01% 19.04%
[85.11%] [-] [99.8%] [-]

q− φ − χ 12.44% 3.96% 8.71% 2.14% 7.62%
[96.22%] [99.39%] [95.3%] [99.9%] [42.69%]

q− φ − χ − ∆ 12.02% 3.79% 8.74% 3.01% 7.36%
[96.47%] [99.44%] [95.26%] [99.8%] [46.6%]

Table 3: The normalized root mean square error (NRMSE) and coefficient of determination R2 of the collective coordinate models (theq− φ, q− φ − ∆, q− φ − χ
andq− φ − χ − ∆models) as compared to micromagnetic simulations using the semi-analytical approach for field-drivenDW motion in a Pt/CoFe/MgO nanostrip.
More specifically, the predicted DW velocity is compared to the built-in simulation window velocity of MuMax3, while the parametersPφ, Pχ, Pφ − Pχ andP∆
from the Lagrangian-based CCMs and the semi-analytical modelare compared. These parameters are defined in Table 1.
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Figure 3: Comparison of differences between Lagrangian-based CCMs and micromagnetic simulations in addition to the differences depicted in Fig. 2 for
field-driven DW motion in a Pt/CoFe/MgO nanostrip, thereby taking Table 1 into account. From top-left to bottom-right: the DW shape factorsκ (κav and
κav,w from the semi-analytical model withκfield andκDMI from the Lagrangian-based CCMs), the magnetostatic contribution µ0Pms,Hext,z (Pms,Hext,z = αMsPms) to
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(
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)

to µ0Hext,z

and the asymmetric contributionsOv,1
(
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)

andOv,2
(
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)

to the DW velocity.
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5.2.3. STT-driven DW dynamics
In Figure 4, the collective coordinates of the Lagrangian-

based CCMs (theq−φ, q−φ−∆, q−φ−χ and theq−φ−χ−∆
models) for STT-driven DW motion in a Pt/Co/AlOx nanostrip
are compared to micromagnetic simulations using the semi-
analytical approach. We observe that the DW velocity is much
better predicted by all models compared to the field-driven case.
While there are still significant discrepancies between the mod-
els that do not includeχ and micromagnetic simulations, the
χ-models are generally in much better correspondence with the
micromagnetic simulations than in the field-driven case. The
DW width is still slightly overestimated by theχ-models, but
the discrepancy is significantly smaller. Moreover, the predic-
tion of the DW tilting angle is also significantly improved.φ
andφ − χ are now clearly underestimated by theχ-models. In
contrast to the field-driven case, the prediction ofφ − χ by the
other Lagrangian-based CCMs is significantly worse. We also
calculated the normalized root mean-square error NRMSE and
coefficient of determination R2 for this comparison in Table 4.

Fig. 5 shows why the collective coordinates are generally
better predicted by theχ-models compared to the field-driven
case: the asymmetric and exchange contributions to the DW
dynamics are almost negligible and these contributions arenot
properly taken into account by the equations of motion of the
Lagrangian-based CCMs.

6. Conclusion

In this paper, we compared the Lagrangian-based CCMs with
micromagnetic simulations using a semi-analytical approach
for field-driven and STT-driven DW motion in Pt/CoFe/MgO
and Pt/Co/AlOx nanostrips. Lagrangian-based CCMs have the
advantage of computational efficiency and ease of use, while
their simplicity means losing part of the full picture. The semi-
analytical model helps understand these shortcomings, andcan
be used to identify cases where the Lagrangian-based models
might not be appropriate for use.

We introduced a four collective coordinate Lagrangian-based
model, while models in literature describe DW motion with two
or three collective coordinates [8, 11, 12]. The equations of mo-
tion of the four collective coordinate model and an improved
semi-analytical approach were linked to enable the comparison
with micromagnetic simulations. From this comparison, it is
clear that the models that include the tilting angleχ are gen-
erally in much better correspondence with micromagnetic sim-
ulations than the models that do not includeχ. Moreover, the
Lagrangian-based CCMs predict the DW dynamics much better
in the STT-driven case than in the field-driven case. The main
reason for this is that, while asymmetric and exchange contri-
butions to the DW dynamics are not properly taken into account
by the equations of motion of the analytical CCMs, these con-
tributions are almost negligible in the STT-driven case, but sig-
nificant in the field-driven case.

While in this paper, the comparison between the Lagrangian-
based CCMs and micromagnetic simulations using the semi-
analytical approach was limited to two specific cases, this work

demonstrates a tool that is in general applicable. This way,a
comparison between analytical CCMs and micromagnetic sim-
ulations can also be done for nanostrips with other dimensions
and/or from other materials. Moreover, this work could in-
spire researchers to further improve existing Lagrangian-based
CCMs, e.g. by including asymmetry in the ansatz of the DW
profile.
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AppendixA. The four collective coordinate model

In Section 3, the collective coordinates and the ansatz for the
DW profile are introduced. Here, we list the equations of mo-
tion of the four collective coordinate model along with details
about the derivation of these equations and the differences with
the equations of motion of other Lagrangian-based CCMs.

Using a Lagrangian approach, we change from a description
of the magnetization at every point in space and time (the LLG
equation given by (1)), to a description of more collective fea-
tures of the DW. It can be shown that the following Lagrangian
density (L) and dissipation density (F ) functions can be used
in the Euler-Lagrange equation to derive the LLG equation [12]

L = E +

Precessional Term
︷      ︸︸      ︷

Ms

γ
φ̇ cosθ

STT
︷               ︸︸               ︷

−uMs

γ
φ
∂ (cosθ)
∂x

(A.1)

and

F = αMs

2γ

[

∂m
∂t
+
β

α
(u · ∇)m

]2

(A.2)

with E given by equation (2).
To evaluate DW dynamics using the collective coordinates,

the energy terms and dissipation function are rewritten in terms
of the collective coordinates, and integrated over the DW pro-
file along the length and width of the nanowire. The properties
of the ansatz help simplify the integration process. The La-
grangian and dissipation functions derived after integration are
plugged into the Euler-Lagrange equations to derive the equa-
tions of motion for the rigid DW.
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Figure 4: Comparison of the velocity and the collective coordinates (see Table 1) of the Lagrangian-based CCMs (theq−φ, q−φ−∆, q−φ−χ and theq−φ−χ−∆
models) with micromagnetic simulations using the semi-analytical approach for STT-drivenDW motion in a Pt/Co/AlOx nanostrip. The DW velocity as determined
by the built-in simulation window velocity of MuMax3 is plotted as a black line in the top-left part.

Model
Velocity Pφ Pχ Pφ − Pχ P∆

NRMSE [R2] NRMSE [R2] NRMSE [R2] NRMSE [R2] NRMSE [R2]

q− φ 0.89% 44.75%
-

24.17% 11.67%
[99.98%] [21.14%] [82.91%] [-]

q− φ − ∆ 0.89% 44.74%
-

24.18% 11.89%
[99.98%] [21.14%] [82.89%] [-]

q− φ − χ 0.89% 4.08% 0.81% 8.9% 3.27%
[99.98%] [99.34%] [99.96%] [97.68%] [80.17%]

q− φ − χ − ∆ 0.89% 4.08% 0.81% 8.9% 3.11%
[99.98%] [99.34%] [99.97%] [97.68%] [81.99%]

Table 4: The normalized root mean square error (NRMSE) and coefficient of determination R2 of the collective coordinate models (q − φ, q − φ − ∆, q − φ − χ
andq − φ − χ − ∆) as compared to micromagnetic simulations using the semi-analytical approach for STT-drivenDW motion in a Pt/Co/AlOx nanostrip. More
specifically, the predicted DW velocity is compared to the built-in simulation window velocity of MuMax3, while the parametersPφ, Pχ, Pφ − Pχ andP∆ from the
Lagrangian-based CCMs and the semi-analytical model are compared. These parameters are defined in Table 1.
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2A
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Pexch) and asymmetric contributionO jx
(

asymmetric
)

to jx and the asymmetric contributions
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(

asymmetric
)

andOv,2
(

asymmetric
)

to the DW velocity.
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The first two equations derived using this approach by taking
derivatives with respect to the conjugate coordinatesq andφ are

(

1+ α2
)

γ0

cosχ
∆

q̇ =αHext,z +
cosχ
∆

(1+ αβ)
γ0

u

+
π

2

[

Hext,x sinφ − Hext,y cosφ
]

+
1
2

Ms

(

Ny − Nx

)

sin(2(φ − χ))

− π
2

D
µ0Ms∆

sin(φ − χ) (A.3)

and
(

1+ α2
)

γ0
φ̇ =Hext,z +

cosχ
∆

β − α
γ0

u

− απ
2

[

Hext,x sinφ − Hext,y cosφ
]

− α
2

Ms

(

Ny − Nx

)

sin(2(φ − χ))

+ α
π

2
D

µ0Ms∆
sin(φ − χ) . (A.4)

The equations for the evolution of the two other conjugate
collective coordinates,χ and∆, are

π2

12
α
∆̇

∆
=
γ

Ms

[

A
∆2
− KU +

µ0M2
s

2
Nz

]

− γ
Ms

µ0M2
s

2

[

Nx cos2 (φ − χ) + Ny sin2 (φ − χ)
]

+
π

2
γ0

(

Hext,x cosφ + Hext,y sinφ
)

(A.5)

+
γ

Ms

(

π∆

Ly

)2

sinχ
[

2
A
∆2

sinχ +
π

2
D
∆

sinφ
]

− γ
Ms

(

π∆

Ly

)2 sin 2χ
2
µ0M2

s

2

(

Ny − Nx

)

sin(2(φ − χ))

and

− π
2

12
α

γ0

χ̇

cosχ

(
Ly

π∆

)2

=
2A

µ0Ms∆
2

sinχ

+
π

2
D

µ0Ms∆
sinφ (A.6)

− 1
2

Ms

(

Ny − Nx

)

sin(2(φ − χ)) cosχ

whereLy is the width of the nanowire.
Equations (A.3) and (A.4) for respectively ˙q and φ̇ can be

used to derive equations proposed in other collective coordinate
models. These are the same equations found in theq − φ − χ
model [12], while assumingχ = 0 yields the relevant equations
of the q − φ [8] and q − φ − ∆ [11] models. While equation
(A.5) for ∆̇ is identical to the one found in theq− φ − ∆ model
(with χ = 0), equation (A.6) for ˙χ does not match the respective
equation in theq − φ − χ model. Unlike theq − φ − χ model,
the evolution ofχ in this model is not directly dependent on
the magnetocrystalline anisotropy. Instead, it is only indirectly
related to this parameter through∆.

AppendixB. The semi-analytical approach

AppendixB.1. Deriving the equations of motion

Based on averaging the LLG-equation, a semi-analytical
model can be developed [16]. To this end, the locally varying
effective field (3) is first averaged over the DW volume

HDW ≡Hext +
1

〈m2
ip〉
〈Hanim

2
ip〉 +

1

〈m2
ip〉
〈Hmsm

2
ip〉 (B.1)

+
1
ζDMI
〈HDMI 〉 +

1
ζexch
〈Hexch〉

�Hext,xex + Hext,yey + Hext,zez +
2KU

µ0Ms

〈mzm2
ip〉

〈m2
ip〉

ez

− Ms

〈m2
ip〉

[

Neff,x〈mxm
2
ip〉ex + Neff,y〈mym

2
ip〉ey

]

− Ms

〈m2
ip〉

Neff,z〈mzm
2
ip〉ez

+
2D

µ0MsζDMI

[

〈∂xmz〉ex + 〈∂ymz〉ey

]

− 2D
µ0MsζDMI

〈∂xmx + ∂ymy〉ez

+
2A

µ0Msζexch

[

〈∂xxmx〉ex + 〈∂yymy〉ey + 〈∂zzmz〉ez

]

.

In this expression,〈 f 〉 is a spatial average of the functionf over
the domain wall volumeVDW

〈 f 〉(t) = 1
VDW

∫ ∫ ∫

VDW

f (r , t) dV (B.2)

as detailed in AppendixE andmip is the in-plane magnetization.
In equation (B.1), the anisotropy fieldHani and the magneto-

static fieldHms are multiplied with the weight function
m2

ip

〈m2
ip〉

to

confine their averaged contributions toHDW to the domain wall.
On the other hand, the averaged DMI and exchange field are

scaled with respective factorsζDMI andζexch. We assume these
scaling factors are given by

ζDMI = ζexch=
〈|mip|〉2

〈m2
ip〉

(B.3)

as earlier determined for DW dynamics in a nanostrip [16].
Note that the DW averaged effective fieldHDW (B.1) is then
independent of the denominators in (B.2). Moreover, when lim-
iting the averages to a single discretization cell,HDW simplifies
to the effective fieldHeff in this cell. We also assumed that
〈Hmsm2

ip〉 = 〈(−N̂.Msm)m2
ip〉 with N̂ the local demagnetizing

tensor [44], is approximated by

〈Hmsm
2
ip〉 � −MsNeff,i(t)〈mim

2
ip〉(t) ∀i, j ∈ {x, y, z} (B.4)

with N̂eff an effective demagnetizing diagonal tensor. To deter-
mine the demagnetizing factors from the micromagnetic simu-
lations, we have considered a volume equal to the DW

Ms,local(r ) = |mip|local(r )Ms. (B.5)
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In this volume, we have determined the demagnetizing factors
from the uniform magnetized states as

Neff,i =
〈Hms,i〉

−〈Ms,localmi〉
=

〈Hms,i〉
−Ms〈|mip|localmi〉

∀i ∈ {x, y, z}. (B.6)

The DW position is given by

Q(t) =
1

−〈∂xmz(r , t)〉
〈mz(r , t)〉, (B.7)

irrespective of the domain magnetization directions [16].In the
case that there is no DMI (DMI induces edge effects in the do-
mains) and no in-plane fields are applied (in-plane fields induce
canting in the domains), equation (B.7) can be simplified to

Q(t) =
Lx

2
ν〈mz(r , t)〉 (B.8)

with the average〈 f 〉 taken over any volume of the nanostrip in-
cluding the DW [13–15] and withν = 1 [ν = −1] if the domain
magnetization left of the domain wall has a component along
the positive [negative]z-direction.

The DW velocity is then expressed as the derivative of the
DW positionQ

v(t) ≡ dQ(t)
dt
�

1
−〈∂xmz(r , t)〉

d〈mz(r , t)〉
dt

=
1

−〈∂xmz(r , t)〉
〈∂mz(r , t)
∂t

〉, (B.9)

using Leibniz’ integral rule. To rewrite expression (B.9) as a
function of the different interactions with the DW magnetiza-
tion, equation (B.1) is substituted in the LLG equation (1) and
explicitly written and averaged in thez-direction, giving us an
expression for〈 ∂mz

∂t 〉

〈∂mz

∂t
〉 = γ0

1+ α2

[

HDW,x〈my〉 − HDW,y〈mx〉
]

+
αγ0

1+ α2
HDW,z〈m2

ip〉

− αγ0

1+ α2

[

HDW,x〈mxmz〉 + HDW,y〈mymz〉
]

+
β − α
1+ α2

ux〈mx∂xmy −my∂xmx〉

+
1+ αβ
1+ α2

ux
[−〈∂xmz〉

]

(B.10)

in its most concise form. Similarly, equations for〈 ∂mx

∂t 〉 and

〈 ∂my

∂t 〉 are derived. By combining equation (B.9) and (B.10), we

have an expression for the DW velocity

v =
〈m2

ip〉
−〈∂xmz〉

αγ0

1+ α2
HDW,z

−
〈m2

ip〉
−〈∂xmz〉

αγ0

1+ α2



HDW,x
〈mxmz〉
〈m2

ip〉
+ HDW,y

〈mymz〉
〈m2

ip〉





+
〈m2

ip〉
−〈∂xmz〉

γ0

1+ α2



HDW,x
〈my〉
〈m2

ip〉
− HDW,y

〈mx〉
〈m2

ip〉





+
1+ αβ
1+ α2

ux (B.11)

+
〈m2

ip〉
−〈∂xmz〉

β − α
1+ α2

ux
〈mx∂xmy −my∂xmx〉

〈m2
ip〉

.

A local in-plane magnetization angle is defined as

φ(r , t) = arctan
my(r , t)
mx(r , t)

. (B.12)

Taking into account that

m2
ip
∂φ

∂t
= mx

∂my

∂t
−my

∂mx

∂t
, (B.13)

we also derive a concise expression for the change of magneti-
zation angle inside the DW

1+ α2

γ0

〈m2
ip
∂φ

∂t 〉
〈m2

ip〉
= HDW,z

− HDW,x
〈mxmz〉
〈m2

ip〉
− HDW,y

〈mymz〉
〈m2

ip〉

− α


HDW,x
〈my〉
〈m2

ip〉
− HDW,y

〈mx〉
〈m2

ip〉





+
β − α
γ0

ux





−〈∂xmz〉
〈m2

ip〉



 (B.14)

− 1+ αβ
γ0

ux
〈mx∂xmy −my∂xmx〉

〈m2
ip〉

.

If we replaceHDW,x, HDW,y andHDW,z by the individual inter-
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action contributions from equation (B.1), we get

1+ α2

γ0

〈m2
ip
∂φ

∂t 〉
〈m2

ip〉
= Hext,z +

β − α
γ0

ux





−〈∂xmz〉
〈m2

ip〉





− 1+ αβ
γ0

ux
〈mx∂xmy −my∂xmx〉

〈m2
ip〉

− α


Hext,x
〈my〉
〈m2

ip〉
− Hext,y

〈mx〉
〈m2

ip〉





+ αMsNeff,x

〈mxm2
ip〉〈my〉
〈m2

ip〉2
(B.15)

− αMsNeff,y

〈mym2
ip〉〈mx〉
〈m2

ip〉2

− α 2D
µ0Ms

[ 〈∂xmz〉〈my〉
〈|mip|〉2

−
〈∂ymz〉〈mx〉
〈|mip|〉2

]

− α 2A
µ0Ms

[ 〈∂xxmx〉〈my〉
〈|mip|〉2

−
〈∂yymy〉〈mx〉
〈|mip|〉2

]

−


Hext,x
〈mxmz〉
〈m2

ip〉
+ Hext,y

〈mymz〉
〈m2

ip〉





+

(

2KU

µ0Ms
− MsNeff,z

) 〈mzm2
ip〉

〈m2
ip〉

+ MsNeff,x

〈mxm2
ip〉〈mxmz〉
〈m2

ip〉2

+ MsNeff,y

〈mym2
ip〉〈mymz〉
〈m2

ip〉2

− 2D
µ0Ms

〈∂xmx + ∂ymy〉〈m2
ip〉

〈|mip|〉2

− 2D
µ0Ms

[

〈∂xmz〉〈mxmz〉
〈|mip|〉2

+
〈∂ymz〉〈mymz〉
〈|mip|〉2

]

+
2A
µ0Ms

〈∂zzmz〉〈m2
ip〉

〈|mip|〉2

− 2A
µ0Ms

〈∂xxmx〉〈mxmz〉
〈|mip|〉2

− 2A
µ0Ms

〈∂yymy〉〈mymz〉
〈|mip|〉2

.

This can be rewritten as

1+ α2

γ0

〈m2
ip
∂φ

∂t 〉
〈m2

ip〉
= Hext,z +

β − α
γ0

ux





−〈∂xmz〉
〈m2

ip〉



 (B.16)

− 1+ αβ
γ0

ux
〈mx∂xmy −my∂xmx〉

〈m2
ip〉

− α
[

fHext,x + fHext,y + fms+ fDMI + fexch

]

−
[

gHext,x + gHext,y + gani

]

− [

gms+ gDMI + gexch
]

,

Here, the functionsfHext,x, fHext,y, fms, fDMI and fexchexpress how

the different interactions act on the in-plane DW magnetization
and are defined as

fHext,x =Hext,x
〈my〉
〈m2

ip〉
(B.17)

fHext,y = − Hext,y
〈mx〉
〈m2

ip〉

fms =Ms



Neff,y

〈mym2
ip〉〈mx〉
〈m2

ip〉2
− Neff,x

〈mxm2
ip〉〈my〉
〈m2

ip〉2





fDMI =
2D
µ0Ms

[ 〈∂xmz〉〈my〉
〈|mip|〉2

−
〈∂ymz〉〈mx〉
〈|mip|〉2

]

fexch=
2A
µ0Ms

[ 〈∂xxmx〉〈my〉
〈|mip|〉2

−
〈∂yymy〉〈mx〉
〈|mip|〉2

]

.

Moreover, the functionsgHext,x, gHext,y, gani, gms, gDMI andgexch

are defined as

gHext,x =Hext,x
〈mxmz〉
〈m2

ip〉
(B.18)

gHext,y =Hext,y
〈mymz〉
〈m2

ip〉

gani = −
2KU

µ0Ms

〈mzm2
ip〉

〈m2
ip〉

gms =MsNeff,z

〈mzm2
ip〉

〈m2
ip〉
− MsNeff,x

〈mxm2
ip〉〈mxmz〉
〈m2

ip〉2

− MsNeff,y

〈mym2
ip〉〈mymz〉
〈m2

ip〉2

gDMI =
2D
µ0Ms

〈∂xmx + ∂ymy〉〈m2
ip〉

〈|mip|〉2

+
2D
µ0Ms

[

〈∂xmz〉〈mxmz〉
〈|mip|〉2

+
〈∂ymz〉〈mymz〉
〈|mip|〉2

]

gexch= −
2A
µ0Ms

〈∂zzmz〉〈m2
ip〉

〈|mip|〉2

+
2A
µ0Ms

[

〈∂xxmx〉〈mxmz〉
〈|mip|〉2

+
〈∂yymy〉〈mymz〉
〈|mip|〉2

]

and are a measure for the DW asymmetry. This is understood as
follows: when the DW is symmetric [16],mz, ∂xmx and∂zzmz

are odd functions whilemx, my, ∂xmz, ∂xxmx and∂yymy are even
functions in thex-direction. Moreover, when the DW is geo-
metrically tilted in a symmetric way,∂ymy is an odd function
while ∂ymz is an even function in thex-direction. Since integra-
tion over an odd function equals 0, we directly deduce that the
g-functions can only be non-zero when the DW is not perfectly
symmetric.

The definition of these functions enables us to rewrite equa-
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tion (B.11) concisely as

v =
〈m2

ip〉
−〈∂xmz〉

αγ0

1+ α2
Hext,z +

1+ αβ
1+ α2

ux

+
〈m2

ip〉
−〈∂xmz〉

β − α
1+ α2

ux
〈mx∂xmy −my∂xmx〉

〈m2
ip〉

+
〈m2

ip〉
−〈∂xmz〉

γ0

1+ α2

[

fHext,x + fHext,y

]

+
〈m2

ip〉
−〈∂xmz〉

γ0

1+ α2

[

fms+ fDMI + fexch
]

−
〈m2

ip〉
−〈∂xmz〉

αγ0

1+ α2

[

gHext,x + gHext,y + gani

]

−
〈m2

ip〉
−〈∂xmz〉

αγ0

1+ α2

[

gms+ gDMI + gexch
]

. (B.19)

AppendixB.2. Identification of the DW variables

From equations (B.15) and (B.19), we can identify several
DW variables. As discussed in Section 3, the DW motion in
Lagrangian-based CCMs is described by maximal 4 DW vari-
ables (q, φ, ∆ andχ). In the semi-analytical model, we identify
the analogs for these DW variables as well as additional DW
variables.

While the DW positionQ is defined by equation (B.7), the
DW magnetization angleΦav is defined as

tanΦav =
〈my〉
〈mx〉

(B.20)

=
〈|mip| sin(φ)〉
〈|mip| cos(φ)〉 .

This way, also the cosine and sine ofΦav are determined by






cosΦav =
〈mx〉
〈|mip |〉

sinΦav =
〈my〉
〈|mip |〉 .

(B.21)

A weighted DW magnetization angleΦav,w can be defined as

tanΦav,w =
〈mym2

ip〉
〈mxm2

ip〉
(B.22)

=
〈|mip|3 sin(φ)〉
〈|mip|3 cos(φ)〉

and its cosine and sine are then determined by






cosΦav,w =
〈mxm2

ip〉
〈|mip |3〉

sinΦav,w =
〈mym2

ip〉
〈|mip |3〉

.
(B.23)

To defineΦav unambiguously, we impose thatΦav = 0 corre-
sponds to a Ńeel wall characterized by〈my〉 = 0 and〈mx〉 > 0
while Φav = π corresponds to a Ńeel wall characterized by
〈my〉 = 0 and〈mx〉 < 0.

Moreover, the DW width∆av can be defined as

∆av = −2
〈m2

ip〉
〈∂xmz〉

. (B.24)

The DW geometrical tilting angleXav is defined as

tanXav =
〈∂ymz〉
〈∂xmz〉

. (B.25)

This variable is analogous to the collective coordinateχ intro-
duced by Boulleet al [12]. Similar to our earlier model [16],
we also defineκav as

κav =
〈m2

ip〉
〈|mip|〉

(B.26)

which is related to the DW shape, see further, while additionally
κav,w is defined as

κav,w =
〈|mip|3〉
〈m2

ip〉
. (B.27)

We can also define three exchange related DW variablesgx,av,
gy,av andgz,av with

gi,av =
〈∂ii mi〉
〈|mip|〉

∀i ∈ {x, y, z}. (B.28)

AppendixB.3. Updated equations of motion

After introducing the DMI-fieldHDMI =
D

µ0Ms∆av
and the ex-

change fieldHexch =
A

µ0Ms∆
2
av

, we can use the expressions of the
DW variables to rewrite equation (B.15) as

1+ α2

γ0

〈m2
ip
∂φ

∂t 〉
〈m2

ip〉
= Hext,z +

2
∆av

β − α
γ0

ux

− α
κav

[

Hext,x sinΦav − Hext,y cosΦav

]

− αMs
κav,w

κav
Neff,y sinΦav,w cosΦav

+ αMs
κav,w

κav
Neff,x cosΦav,w sinΦav

+ α4κavHDMI [sinΦav − tanXav cosΦav]

− αHexch

[

2∆2
av

(

gx,av sinΦav − gy,av cosΦav

)]

+ OHext,z

(

asymmetric
)

, (B.29)

with the asymmetric contributions represented by
OHext,z

(

asymmetric
)

OHext,z

(

asymmetric
)

= − 1+ αβ
γ0

ux
〈mx∂xmy −my∂xmx〉

〈m2
ip〉

−
[

gHext,x + gHext,y + gani

]

− [

gms+ gDMI + gexch
]

. (B.30)
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Similarly, we can rewrite equation (B.19) as

1+ α2

γ0

2
∆av

v =αHext,z +
2
∆av

1+ αβ
γ0

ux

+
1
κav

[

Hext,x sinΦav − Hext,y cosΦav

]

+ Ms
κav,w

κav
Neff,y sinΦav,w cosΦav

− Ms
κav,w

κav
Neff,x cosΦav,w sinΦav

− 4κavHDMI [sinΦav − tanXav cosΦav]

+ Hexch

[

2∆2
av

(

gx,av sinΦav − gy,av cosΦav

)]

+
1+ α2

γ0

2
∆av
Ov,1

(

asymmetric
)

(B.31)

with the asymmetric contributions to the DW velocity expres-
sion represented byOv,1

(

asymmetric
)

Ov,1
(

asymmetric
)

=
∆av

2
β − α
1+ α2

ux
〈mx∂xmy −my∂xmx〉

〈m2
ip〉

− ∆av

2
αγ0

1+ α2

[

gHext,x + gHext,y + gani

]

− ∆av

2
αγ0

1+ α2

[

gms+ gDMI + gexch
]

.

(B.32)

Expressions (B.29), (B.30), (B.31) and (B.32) can be combined
to

v+
∆av

2
1
α

〈m2
ip
∂φ

∂t 〉
〈m2

ip〉
=
∆av

2
γ0

α
Hext,z +

β

α
ux

+ Ov,2
(

asymmetric
)

(B.33)

with Ov,2
(

asymmetric
)

representing the asymmetric contribu-
tions to the DW velocity

Ov,2
(

asymmetric
)

= − ∆av

2
1
α

ux
〈mx∂xmy −my∂xmx〉

〈m2
ip〉

− ∆av

2
γ0

α

[

gHext,x + gHext,y + gani

]

− ∆av

2
γ0

α

[

gms+ gDMI + gexch
]

.

(B.34)

Since the semi-analytical model contains more unknown vari-
ables than equations of motion, we rely on micromagnetic sim-
ulations to determine their value.

AppendixC. The DW profile and DW variable κav

In this Appendix, we demonstrate how to give a physi-
cal interpretation to the prefactorsκDMI and κfield from the
Lagrangian-based approach andκav from the semi-analytical
model. WhileκDMI andκfield are constants in the Lagrangian-
based CCMs,κav defined by

κav =
〈m2

ip〉
〈|mip|〉

(C.1)

is a DW variable. Since expressions 0≤ m2
ip ≤ 1 andm2

ip ≤ |mip|
are always valid,κav is a value between 0 and 1. Note thatκDMI

andκfield are also values between 0 and 1. The averages〈 f 〉 can
be taken over any volume of the nanostrip including the DW

〈 f 〉(t) = 1
V

∫ ∫ ∫

V
f (r , t) dV (C.2)

when edge effects due to DMI and magnetization canting of the
domains due to in-plane fields are not present. Indeed, when
m2

z = 1 in the domains,〈m2
ip〉 and 〈|mip|〉 from equation (C.1)

will have no contributions from outside the DW. On the other
hand, whenm2

z < 1 in the domains, this should be taken into
account when integrating over the DW profile. Next, we will
use a simplified version of the DW width definition (B.24)

∆av = Lx〈m2
ip〉 (C.3)

=
Lx

V

∫ ∫ ∫

V
1−m2

z(r , t) dV

=
1
Ly

∫ Ly
2

− Ly
2

∫ Lx
2

− Lx
2

1−m2
z(x, y, t) dxdy.

to determineκav and to ensure that the boundary conditions of
the DW profile are well defined.Lx, Ly andLz are respectively
the length, the width and the thickness of the integrated nano-
strip volume.

To understand whatκav represents, we consider the different
cases illustrated in Figure C.6.

In the first case, we consider the hypothetical DW profile de-
picted in the left part of Fig. C.6. This DW has only an in-plane
magnetized contribution, i.e.

mz(x) = 0 whenq− ∆av

2
≤ x ≤ q+

∆av

2
. (C.4)

Consequently,m2
ip and |mip| are both equal to 1 in every point

of the DW. This corresponds toκav = 1 in accordance with
equation (C.1). The edges of this DW profile are atx = q− ∆av

2

andx = q+ ∆av
2 to assure the consistency of equation (C.3).

In the second case, we start directly from the ansatz (5) of the
DW profile, taking into account that the normalized magnetiza-
tion vectorm is expressed by (4). In this case, the DW shape is
characterized by

mz(x) = cos

(

2 arctan

[

exp

(

2
(x− q) + y tanχ

∆av

)])

= − tanh

(

2
(x− q) + y tanχ

∆av

)

(C.5)

in which ∆/ cosχ was replaced by∆av/2 in accordance with
Table 1. This DW profile aty = 0 is depicted in the right part
of Fig. C.6.

Using equations (C.1), (C.2), (C.5) and (C.3) we evaluateκav
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Figure C.6: Comparison of different DW profiles to illustrate howκav can be interpreted. The left part corresponds to DW profile (C.4) with q = 0, while the right
part corresponds to DW profile (C.5) at the middle of the nanostrip (y = 0) and withq = 0. Whenχ = 0, these DW profiles are also valid at every cross section of
the nanostrip, i.e.∀y ∈ [−Ly/2, Ly/2].

as

κav =

〈 1
cosh2

(

2 (x−q)+y tanχ
∆av

) 〉

〈
√

1
cosh2

(

2 (x−q)+y tanχ
∆av

) 〉

=

∆av
Lx

1
LxLy

∫ Ly
2

− Ly
2

∫ ∞
−∞

1
cosh

(

2 (x−q)+y tanχ
∆av

) dxdy

=
∆av

∆av
2Ly

∫ Ly
2

− Ly
2

∫ ∞
−∞

1
coshu dudy

=
2
π
≈ 0.63662. (C.6)

This is in agreement with the constantκfield in the Lagrangian-
based CCMs. However, the constantκDMI is equal toπ4 . From
this discussion, it is clear thatκav is determined by the DW
shape.

AppendixD. Assessment of the semi-analytical model

AppendixD.1. Introduction

To make an assessment of the semi-analytical model, we
applied the model for both field-driven DW dynamics in
Pt/CoFe/MgO nanostrips and STT-driven DW dynamics in
Pt/Co/AlOx nanostrips as detailed in Subsection 5.2. Micro-
magnetic simulations enable us to quantify the DW variables
and to use the semi-analytical equations to predict the DW ve-
locity and the excitation strength. The accuracy of these pre-
dictions can then be determined since the DW velocity can
also be extracted from the built-in simulation window velocity
of MuMax3 which gives the speed of the simulation window.
Moreover, we can verify how well the DW variables defined

in AppendixB correspond to their analogs in the Lagrangian-
based CCMs by extracting them from simulations. These
analogs were extracted using following methods:

• The in-plane magnetization angleφwas extracted from the
local values of thex-andy-component of magnetization at
the center of the DW (positionq corresponding tomz =

0 andy = 0) in accordance with the definition used for
deriving the Lagrangian-based CCMs as depicted in Fig.
1.

• The tilting angleχ was extracted by finding the position of
the DW at the edges of the nanostrip, and computing the
angle of the line connecting the two points with respect to
the width of the nanostrip through the center of the DW
(q), i.e. the tilting angle of the linemz = 0 with respect to
they-direction as depicted in Fig. 1.

• The DW width was extracted based on the Thiele defini-
tion of DW width [11, 46]

∆ ≡
2LyLz

∫ ∫ ∫

V

(
∂m
∂x

)2
dV

(D.1)

This DW width∆ corresponds to∆/ cosχ in Table 1.

Additionally, to investigate how much edge effects affect the
DW dynamics, we also quantified the semi-analytical DW vari-
ables by averaging the DW profile over the line along the length
of the nanostrip and through the middle of the nanostrip cross
section, i.e. the line characterized byy = 0 in Fig. 1(b). These
DW variables are also substituted in the semi-analytical equa-
tions of motion to investigate how strongly the edge effects af-
fect their evaluation.

Furthermore, the effective demagnetizing factors determined
from micromagnetic simulations as explained in AppendixB
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are compared to the demagnetizing factors calculated using
Aharoni’s equations [38]. WhileNeff,z is not depicted for clar-
ity, Neff,z is determined by the other two demagnetizing factors
(Neff,z = 1− Neff,x − Neff,y).

In general, one can discriminate between two propagation
regimes, separated by the Walker Breakdown (WB) [43]. Be-
low the WB, the DW adapts itself to the perpendicularly applied
field or the applied current along the length of the nanostrip,
resulting in a steady state translational motion along the nano-
strip. In the equations of motion, this corresponds to

〈m2
ip
∂φ

∂t
〉 = 0, (D.2)

i.e. a fixed magnetization profile. Under these conditions, the
left hand side of equation (B.16) is zero and thus

α
[

fms+ fDMI + fHext,x + fHext,y + fexch

]

+
[

gHext,x + gHext,y + gani + gms+ gDMI + gexch

]

= Hext,z (D.3)

for the field-driven case and

αζ

−bJ

[

fms+ fDMI + fHext,x + fHext,y + fexch

]

+
ζ

−bJ

[

gHext,x + gHext,y + gani + gms+ gDMI + gexch

]

= jx (D.4)

with

ζ =
γ0

2
∆av

(β − α) − (1+ αβ) 〈mx∂xmy−my∂xmx〉
〈m2

ip〉

(D.5)

and−bJ jx = ux for the STT-driven case. These expressions
show how the different symmetric interactions (f -functions on
the left hand side) and the asymmetric interactions (g-functions
on the left hand side) add up to balance the driving force (right
hand side). As long as these interactions can balanceHext,z

and/or jx, the DW motion stays below the WB. The assessment
of the semi-analytical model is limited to the DW motion below
the WB.

AppendixD.2. Field-driven DW motion

First, we limit our discussion to field-driven DW motion be-
low the WB in Pt/CoFe/MgO nanostrips. From Fig. D.7, it
is clear that the magnetization anglesΦav andΦav,w as defined
by respective equations (B.20) and (B.22) indeed representthe
DW magnetization angle. Similarly, the geometrical tilting an-
gle Xav defined by (B.25) represents the DW tilting angle and
∆av
2 defined by (B.24) corresponds to the Lagrangian-based DW

width. Note that, while the DW width curves do not perfectly
match, they have the same shape. The difference between the
semi-analytical DW variables quantified by averaging over re-
spectively the entire DW profile and the DW profile along the
line y = 0, demonstrates that the influence of edge effects on
the DW variables is rather small.

To verify the accuracy of the derived equations of motion of
the semi-analytical model, the DW velocity predicted by equa-
tion (B.33) is compared to the DW velocity determined by the
built-in simulation window velocity of MuMax3 for several out-
of-plane fields below the Walker Breakdown. This compari-
son is illustrated in Figure D.8. Moreover, we also verified
whether the sum of the terms on the left hand side of equa-
tion (D.3) equalsHext,z. We also calculated the normalized root
mean square error (NRMSE) and coefficient of determination
R2 for this comparison in Table D.5. We can conclude that
the semi-analytical approach is very accurate in its predictions.
Only at fields close to the Walker Breakdown field, we observe
a small deviation: the DW velocity is slightly underestimated,
while the out-of-plane field is a little bit overestimated. We also
observe that the evaluation of the equations of motion is only
slightly affected when edge effects are not taken into account
(y = 0) and when the demagnetizing factors are calculated us-
ing Aharoni’s equations [38] instead of determining them from
micromagnetic simulations. The effective demagnetizing fac-
tors are of the same order of magnitude as those determined by
Aharoni’s equations, but vary due to the changing DW shape as
function of excitation strength.

From Figure D.8, it is clear that theg-functions which are
an indication for the DW asymmetry are relatively small com-
pared to thef -functions. Moreover, the DW becomes increas-
ingly asymmetric for larger out-of-plane fields. We also observe
that gDMI and fDMI clearly dominate over the otherg- and f -
functions, respectively. Note that, while asymmetry in theDW
slightly slows the DW down, it hereby increases the Walker
Breakdown.

AppendixD.3. STT-driven DW motion
For STT-driven DW motion below the WB in Pt/Co/AlOx

nanostrips, the discussion is similar. In Fig. D.9, we observe
that the DW variables in the semi-analytical model are well de-
fined.

In Fig. D.10, the DW velocity predicted by equation (B.33)
is compared to the DW velocity determined by the built-in sim-
ulation window velocity of MuMax3 for several current densi-
ties below the Walker Breakdown. Moreover, we also verified
whether the sum of the terms on the left hand side of equa-
tion (D.4) equalsjx. We also calculated the normalized root
mean square error (NRMSE) and coefficient of determination
R2 for this comparison in Table D.5. We may again conclude
that the semi-analytical approach is very accurate in its predic-
tions, both with and without (y = 0) taking edge effects into
account and when the demagnetizing factors are calculated us-
ing Aharoni’s equations [38] instead of determining them from
micromagnetic simulations. However, at currents close to the
Walker Breakdown, the current density is a little bit underesti-
mated.

From Fig. D.10, it is clear that the asymmetric contributions
to the DW velocity and to the current density are negligible.
This is in contrast to the field-driven case, where asymmetric
effects have a significant effect on the DW dynamics. Similar
to the field-driven case, we observe thatfDMI clearly dominates
over the otherf -functions.
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Figure D.7: For field-drivenDW motion in a Pt/CoFe/MgO nanostrip, it is shown how well the main DW variables defined in AppendixB correspond to their analogs
in the Lagrangian-based CCMs (listed in Table 1), which are determined by extraction from simulations. These semi-analytical DW variables are both determined
by averaging over the entire DW and over the line through the middle of the DW (y = 0). From left to right: the in-plane magnetization anglesΦav (B.20),Φav,w

(B.22) and their analogφ, the geometrical tilting angleXav (B.25) and its analogχ, the scaled DW width∆av
2 (see eq. (B.24)) and its analog∆ (Thiele definition).
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Figure D.8: For field-drivenDW motion in a Pt/CoFe/MgO nanostrip, the accuracy of the semi-analytical equations for the DW velocity and the change in
magnetization angle is investigated.Top: the DW velocity predicted by equation (B.33) (both with and without (y = 0) taking edge effects into account, and
when using demagnetizing factors calculated with Aharoni’sequations [38] instead of determining them from micromagneticsimulations) is compared to the DW
velocity determined by the built-in simulation window velocity of MuMax3 (left). The different contributions to this DW velocity according to the interaction
(current, anisotropy, magnetostatics, DMI and exchange) are also shown (middle). Only the out-of-plane field is a symmetric term while the other interactions
are due to asymmetric effects. The micromagnetically determined effective demagnetizing factorsNeff,x andNeff,y are also compared to the demagnetizing factors
Nx andNy calculated using Aharoni’s equations [38](right). Bottom:µ0Hext,z as predicted by the left hand side of equation (D.3) (both with and without (y = 0)
taking edge effects into account, and when using demagnetizing factors calculated with Aharoni’s equations [38] instead of determiningthem from micromagnetic
simulations) as well as the combined contributions of the symmetric f -functions and the asymmetricg-functions are compared to the exact value ofµ0Hext,z (left).
The different symmetric contributions (f -functions) (middle) and the different asymmetric contributions (g-functions) (right) are also shown.
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Model
Velocity Φav andΦav,w with φ Xav with χ ∆av/2 with ∆ µ0Hext,z or jx

NRMSE [R2] NRMSE [R2] NRMSE [R2] NRMSE [R2] NRMSE [R2]

Pt/CoFe/MgO Φav
3.99%

3.07% [99.31%] 1.36% 3.69% 0.84%

(field-driven)
[99.77%]

Φav,w
3.28% [99.89%] [86.76%] [99.98%]

[99.53%]

Pt/Co/AlOx Φav
2.08%

0.64% [99.82%] 1.35% 3.38% 2.96%

(STT-driven)
[99.99%]

Φav,w
2.34% [99.9%] [78.12%] [99.75%]

[99.77%]

Table D.5: The normalized root mean square error (NRMSE) and coefficient of determination R2 of the DW variables from the semi-analytical model as compared
to their analogs from the Lagrangian-based CCMs, which are determined by extraction from simulations, as well as the NRMSEand R2 of the predictions from
this model as compared to the exact values. Both the results forfield-drivenDW motion in Pt/CoFe/MgO nanostrips and STT-drivenDW motion in Pt/Co/AlOx

nanostrips are listed. More specifically, this Table compares the DW velocity predicted by (B.33) with the built-in simulation window velocity of MuMax3, the
in-plane magnetization anglesΦav (B.20) andΦav,w (B.22) with their analogφ, the tilting angleXav (B.25) with its analogχ, the scaled DW width∆av/2 (see eq.
(B.24)) with the Thiele DW width∆ and the out-of-plane field or current density as determined by(D.3) or (D.4) with the exact out-of-plane fieldµ0Hext,z or exact
current densityjx.
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Figure D.9: For STT-drivenDW motion in a Pt/Co/AlOx nanostrip, it is shown how well the main DW variables defined inAppendixB correspond to their analogs
in the Lagrangian-based CCMs (listed in Table 1), which are determined by extraction from simulations. These semi-analytical DW variables are both determined
by averaging over the entire DW and over the line through the middle of the DW (y = 0). From left to right: the in-plane magnetization anglesΦav (B.20),Φav,w

(B.22) and their analogφ, the geometrical tilting angleXav (B.25) and its analogχ, the scaled DW width∆av
2 (see eq. (B.24)) and its analog∆ (Thiele definition).
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Figure D.10: For STT-drivenDW motion in a Pt/Co/AlOx nanostrip, the accuracy of the semi-analytical equations for the DW velocity and the change in magne-
tization angle is investigated.Top: the DW velocity predicted by equation (B.33) (both with and without (y = 0) taking edge effects into account, and when using
demagnetizing factors calculated with Aharoni’s equations[38] instead of determining them from micromagnetic simulations) is compared to the DW velocity
determined by the built-in simulation window velocity of MuMax3 (left). The different contributions to this DW velocity according to the interaction (current,
anisotropy, magnetostatics, DMI and exchange) are also shown (middle). Only one term due to the current is a symmetric term while the other interactions and
another current term are due to asymmetric effects. The micromagnetically determined effective demagnetizing factorsNeff,x andNeff,y are also compared to the
demagnetizing factorsNx andNy calculated using Aharoni’s equations [38](right). Bottom: jx as predicted by the left hand side of equation (D.4) (both with and
without (y = 0) taking edge effects into account, and when using demagnetizing factors calculated with Aharoni’s equations [38] instead of determiningthem from
micromagnetic simulations) as well as the combined contributions of the symmetricf -functions and the asymmetricg-functions are compared to the exact value of
jx (left). The different symmetric contributions (f -functions) (middle) and the different asymmetric contributions (g-functions) (right) are also shown.
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AppendixE. Defining the averaging window

In order to accurately describe the DW behaviour using the
semi-analytical model, the averages〈 f 〉 have to be calculated in
a proper way. In perpendicularly magnetized nanostrips with-
out DMI and in-plane fields, the domain magnetization has no
in-plane contributions [16]. The DW positionQ is then ex-
pressed as [45]

Q(t) =
Lx

2
〈mz(r , t)〉 (E.1)

with the average〈 f 〉 taken over any volume of the nanostrip in-
cluding the DW [13–15]. Taking into account that DMI induces
edge effects and in-plane fields lead to magnetization canting of
the domains, eq. (E.1) is replaced by

Q(t) =
1

−〈∂xmz(r , t)〉
〈mz(r , t)〉. (E.2)

While the DW positionQ is well defined by (E.2) for every av-
eraging window that includes the DW, both effects undesirably
affect the evaluation of the equations of motion when a signif-
icant part of the domains is taken into account. For example,
when〈 f 〉 takes a significant part of the domains into account,
the DW width∆av defined as

∆av = 2
〈m2

ip〉
−〈∂xmz〉

(E.3)

is overestimated and the DW magnetization angleΦav

tanΦav =
〈my〉
〈mx〉
, (E.4)

is poorly defined. To avoid this,〈 f 〉 is by definition restricted
to the DW volumeVDW

〈 f 〉(t) = 1
VDW

∫ ∫ ∫

VDW

f (r , t) dV. (E.5)

In order to define the DW volumeVDW in (E.5), we fix the
boundaries based onmz changing only significantly inside the
DW as a function ofx. Therefore, the DW is defined in the
region where

|∂xmz| ≥ ǫ [nm−1] (E.6)

is fulfilled. In equation (E.6),ǫ should be a well-chosen con-
stant. If ǫ is too large, only a small part of the DW is taken
into account, thereby neglecting the full complexity of theDW.
On the other hand, ifǫ is too small, a significant part of the do-
mains is taken into account causing unwanted contributionsto
the averages. We found thatǫ = 0.01 results in an accurate de-
scription of the DW dynamics by the semi-analytical equations
of motion. This value is used consistently in this paper.

Every timestep, the averaging window is redefined and the
averages are computed with high precision using interpolation
to minimize discretization effects.
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• A Lagrangian-based four collective coordinate DW model is presented. 

• Improved semi-analytical approach properly treats the effects of DW asymmetry. 

• Semi-analytical approach enables accuracy assessment Lagrangian-based models. 

• Semi-analytical approach is used to gain understanding of limitations of models. 

• DW asymmetry contributes to discrepancy between models and field-driven simulations. 


