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Abstract

Lagrangian-based collective coordinate models for magdeimain wall (DW) motion rely on an-ansatz for the DW profilelan
a Lagrangian approach to describe the DW motion in terms et afstime-dependent collective coordinates: the DW positi
the DW magnetization angle, the DW width and the DW tiltingyl@n Another approach was recently used to derive similar
equations of motion by averaging the Landau-Lifshitz-&ittequation without any ansatz, and identifying the reiéeallective
coordinates afterwards. In this paper, we use an updatstwesf the semi-analytical equations to compare the Lagasnbased
collective coordinate models with micromagnetic simwlasi for field- and STT-driven (spin-transfer torque-drivB&V motion in
PyCoF¢MgO and PtCog/AlO, nanostrips. Through this comparison, we assess the agoofrtite diferent models, and provide
insight into the deviations of the models from simulationis found that the lack of terms related to DW asymmetry ia th
Lagrangian-based collective coordinate models signifigacontributes to the discrepancy between the predictafithe most
accurate Lagrangian-based model and the micromagnetidagions in the field-driven case. This is in contrast to th@-8riven
case where the DW remains symmetric.

Keywords: Magnetic DW motion, PMA material, Dzyaloshinskii-Moriyateraction, Landau-Lifshitz-Gilbert equation,
Nanowires
PACS:71.70.Gm, 75.60.Ch, 75.78.Fg, 75.78.Cd

1. Introduction of DW dynamics, more quantitative insight in DW dynamics
. ) ) ) 9 is provided by theoretical models which describe the DW in
Manipulating magnetic domain walls (DWs) within nanos- terms of a limited number of variables. Here, we distinguish
tructures is essential for many applications in the developpetween Lagrangian-based [8-12] and semi-analyfichllGB—
ment of spintronic logicl[1=3], memory|[4-6] and sensing de-.q|iective coordinate models‘(CCMs). )

vices [7]. Potential advantages of these and other devices i
which use magnetic moments to carry information include low -@drangian-based CCMs have the advantage that they are

power dissipation, non-volatile data retention, radmtimrd-  Predictive and computationally very costetive; to evaluate

ness, faster manipulation of data, high areal densitiesiaed  the DW variables and the equations of motion, no micromag-

duced need for mechanical parts. These advantages have [BgfiC Simulations are needed. Moreover, they are very lsefu
to increased interest within the scientific community inlgaa for early design analysis, conceptual studies or backef-t

tively or quantitatively describing magnetic DW motion end €Nvelope calculations. The equations of motion typicadly r
applied fields and currents. on an ansatz which characterizes the spin texture of iritekes

Both qualitative and quantitative descriptions rely on thef®2dy in 1972, when micromagnetic simulation tools were not
Landau-Lifshitz-Gilbert (LLG) equation which expressemh Y&t available, Slonczewski used a Lagrangian approachto pr
the magnetization varies in space and time. In micromagnetipose the first collective coordinate model to analyze DW amoti

simulations, the ferromagnetic system is divided into manyn Perpendicularly magnetized materials (the ¢ model) [8].

cells and the LLG equation is subsequently solved in eadh cell NiS model relates the DW positianand supposedly uniform

at every timestep, giving rise to a huge number of degrees C;’pagnetization of the DW to theftierent magnetic interactions.

freedom. While this results in the most accurate descriptior] 1€d~ ¢ modelis also called the 1D model, as the whole mo-
tion can be characterized by the in-plane magnetizatioheang

@.
“Corresponding authors Thiaville and Nakatani later extended this model to in-plan
Email addressesjasper.vandermeulen@ugent . be . i . .
(J. Vandermeulenpli .nasseri@isi. it (S. A. Nasseri) systems and introduced the DW width)@s an additional time
1J. Vandermeulen and S. A. Nasseri contributed equally tonthik. varying coordinate, leading to tlig- ¢ — A model [11]. Due to
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the interest in current-driven DW motion at the time, thenspi magnetization vector witiMg the saturation magnetization,

transfer torque (STT) mechanism was also added to these mobkyg = —ﬁ% with E the total energy is thefiective mag-
els [9,10]. netic field acting on the magnetization amé the phenomeno-

Recent studies on heterostructures of ultrathin ferroreegn logical Gilbert dampingl[28]. The second and third line[ij (1
sandwiched between a heavy metal layer and an oxide haweclude the adiabatic and non-adiabatic spin transferutesq
highlighted the importance of the Dzyaloshinskii-Moriyadr-  (STTs) induced by the injection of spin polarized currents
action (DMI) [17,118], which stabilizes chiral DWs_[19-22]. [10,|26, 27| 29-35]. We assume that the thickness of the mag-
These chiral domains are oféldl or semi-Neel character de- netic layer is much larger than the heavy metal layer anddyenc
pending on the strength of the DMI, while similar systemdwit neglect the ffect of spin orbit torques arising from the interface
out this interaction will have Bloch DWs. The change in DW between the heavy metal layer and the ferromagnet. In the STT
structure leads to extension of the Walker Breakdown togvardterms, is the nonadiabaticity cdicient andu = —b;J with
higher exci_tation strength:s [_23], and al_so 'Fo tiItin_g of D&/ b; = ﬁ(ﬁ is the velocity directed along the direction of
during motion|[12]. While micromagnetic simulations of thes
heterostructures are in agreement with experiments [24}; ¢
ventional Lagrangian-based CCMs ¢ andq — ¢ — A) fail to

reproduce the results [12,/25]. To overcome this issue,|Boul
developed a tilted Lagrangian-based CCM (@heg — y model energy of the dferent interactions througHes = _LM% In

with y the tilt angle of the DW in respect to the wire) to describe o presence of an applied field, the total energﬁodénsitpeoft
DW motion in PMA nanowires with DMIL[12]. system can be written as
Since Lagrangian-based CCMs rely on an ansatz for the do-

electron motion, witte = —1.602x 10-1°C the electron charge,

g the Lane factor,ug the Bohr magneton] denoting current

density andP denoting the polarization rate of the current.
Finally, the dfective field in equation[{1) is related to the

main wall profile, they are inevitably limited by this corestrt Exchange _ Magnetostatics

and do not describe the full details of DW dynamics. On the 3 M ,?

other hand, micromagnetic simulations which take the fothe E=A) [VmP+Ko+ Kumizp - MOTSHmS~ m

plexity of DW dynamics into account, are hard to interprei. T i=1

bridge the gap between both, we recently introduced a semi- DMI Zeeman

analytical approach to derive similar equations of motion f + D(M,V.m — (M.V)M,) — oMsHex: - M 2)

the DW which could be interpreted in the context of collec-
tive coordinated [13]. The earliest versions were able tosst - With mj, the in-plane magnetization vector. Herejs the ex-
fully describe DW dynamics in in-plane magnetized and PMAChange constank, is an anisotropy constanky is the uni-
nanostrips, taking into accounffects due to the finite temper- @xial anisotropy constantims is the demagnetizing field and
ature and disorder [1B3-115]. More recently, this approack waHex: is the externally applied field. The demagnetizing field can
extended to account for DMI []_6] be calculated abl ms = —N.Mgm whereN is the demagnetiz-

In this paper, we present a four collective coordinate modelnd tensor.D is an uniform constant signifying the strength of
(q—- ¢ —x — A) derived based on the Lagrangian approach. Thighe Dzyaloshinskii-Moriya interaction (DMI) with symméis
model is compared to previous Lagrangian-based models. U#aken into account [23, 36, 37]. From equatibh (2), we derive
ing an improved semi-analytical approach, itis compared tdhat
micromagnetic simulations to assess its accuracy and to gai 1 SE
further understanding of the limitations of the models ki Her = — /JOMsﬁ 3)
based on the Lagrangian approach.

=Hext + Hani + Hms + Hpmi + Hexcn

external field o .
2. The LLG and energy equation e Uniaxialal nISOtrOpymagnetostaticinteraction
Magnetization dynamics in ferromagnetic materials are gov = Z Hexti€ + M2 Msmze,  —N-Msm
erned by the Landau-Lifshitz-Gilbert (LLG) equation witt-a i=1 Holls _ _
ditional terms-added to account for other interactions sagh DMI exchange interaction
the Spin Transfer Torque (STT). We follow the description de D on S
veloped. by Berger [26] and refined by Zhang and|Li [27] to + M [Vm, — (V-m)e]+ v ZVZme,.
account for this interaction. The full equation reads HoMs HoMs =
om . . .
gn__% Her X m + D0 _mx (Heg x m) 3. The Lagrangian-based collective coordinate models
ot 1+a? 1+a?
+ B-a M (U-V)m As illustrated in Fig.[L (a), the normalized magnetization
1+a? vector in spherical coordinates is expressed as
1+ ap)
g2 M mx((u-v)m) 1) m = (cos¢ sind, sing sing, cost). (4)
in which yo = ugy, with y the gyromagnetic ratio andg Using a Lagrangian approach, we switch from a description

the permeability of vacuumm = M/M;s is the normalized of the magnetization at every point in space and time (the LLG
2



Figure 1: (a) The spherical coordinagandé of the normalized magnetization vectorand its projection on thgy-plane, i.e. the in-plane magnetization vector
mjp. (b) The collective coordinates used in the Lagrangiareté&CMs: the DW position, the in-plane magnetization angheat the center of the DWht = m;p),
the geometrical tilting angle and the DW widthA.

equation given by[{1)), to a description of more collectiga-f For simplicity, this paper will only use the form of the
tures of the DW. Based on micromagnetic simulations and exansatz presented above. When the left domain is pointing
perimental observations, the following time-dependetiecoe  along the negative-direction, the ansatz needs to be adjusted
tive coordinates were identified for describing DW motion into 6(x,y,t) = 2arctar{exp(—(X’q(t))c"zg)*yg”*(‘)) . which will
such systems: affect some of the terms in the equations. Alternatively, the
. - . coordinate system may be rotated to find equivalent equation
(1) The position of the center of the DX for the motion of the DW. Moreover, we also assume that
(i) The in-plane magnetization angle at the center of the DWthe magnetization inside the DW points along the posikve
(®); direction without excitation, which is valid for a large emgh
. DMI strength O < 0) (cases studied in this paper). For cases
(iii) The DW width (A); and whereD > 0 and larger than a threshold value, the coordinate
(iv) The tilt angle of the DW with respect to the width of the ¢ Should be-replaced by + ¢ to take the initial configuration
wire (y). of the DW into account. In this case, the ansatzéfoloes not
change.
The coordinates above are depicted in Hiy. 1 (b). Hence, the The demagnetizing factors used in the model may be cal-
three-dimensional DW dynamics is described as the dynameulated based on the geometry of the system using ellipsoida
ics of a point particle to which the collective coordinates a - approximations of the DW volume [38]. As a consequence of
allocated. In other words, we remove the spatial dependendéis ellipsoidal approximation, the demagnetizing fastact on
of DW dynamics. Dfferent combinations of these coordinatesthe DW through thed — y)-angle instead of the magnetization
have been previously used to derive Lagrangian-based CCNMangle ¢).
for DW motion [8,/11, 12]. Here, all four coordinates are in- To remove the spatial dependence of the energy terms, the
cluded in a single model. Lagrangian and dissipation function of the system are inte-
In order to introduce a DW into the Lagrangian systemgrated in thex andy direction using the ansatz. [[n AppendixA,
of equations and switch from a description in the spatial cothe equations of motion of the four collective coordinatedeio
ordinate system to one based on.collective coordinates, thare listed along with more details about the derivation esth
two coordinate systems need to be linked. Traditionallg, th equations and the fierences with the equations of motion of
Bloch profile (derived based on consideration of exchange another Lagrangian-based CCMs.
anisotropy energies) has been used to relate the local ieoord
nates with the collective coordinates [8| 11]. Studies omMAPM
systems with DMI have shown that this profile can be used i
these systems as well [22]. Here, we use a tilted versioni®f th
ansatz|[12]

s The semi-analytical approach

Alternatively, a semi-analytical model can be developéd,[1
based on averaging the LLG-equation. To this end]dbally
{ oy, 1) =2 arctar{exp((x‘q“)) cosy()+ysinx(t) )] varying dfective field [B) is first properly averagester the DW

A0 (5) i i ion. Then, the LL
SOV = (b). volumeand substituted in the LLG equation en, the LLG

equation is again averaged over the domain wall volume to ob-
along with the assumption that the direction of the in-planetain equations of motion with DW variables which are quanti-
component of magnetization;, is uniform inside the DW. Us-  fied by extracting them from simulations. Compared to our ini
ing this ansatzd ranges from 0 tar (which is equivalent tan,  tial model [16], the semi-analytical approach is now im@av
going from 1 to-1). Introducing this ansatz constrains the mag-to properly treat the féects of the DW asymmetry on the DW
netization dynamics in order to maintain the DW as a rigid ob-dynamics. I AppendixB, the semi-analytical approach &ed t
ject. This is not necessarily the case, especially neardges derivation of the equations of motion are discussed in Hetai
of the nanowire. However, this assumption is justified sinee  Moreover, the DW variables extracted from the equations of
show in[AppendixID that the edgefects have a rather small motion are also discussed. Apart from the DW posit@rthe
effect on the equations of motion. averaged in-plane DW magnetization an@lg and its in-plane



weighted variantd,,, are identified as well as the DW width while both equations can be combined to
Agyand the geometrical tilting anghkg,. Furthermore, we iden-

tify DW variablesk,, and its in-plane weighted variarfyw v+ EPA(D = @PAHexLZ + éux + Pasymu.2- (8)
describing the DW shapg (AppendixC). We also identify three « @ @
exchange related DW variablggay, Oy.av andgzav. The @fec-  |n the semi-analytical model,
tive demagnetizing factofSes x, Nery andNeq - are determined
from micromagnetic simulations as detailed in AppendlixB. i (n’%g—‘f)
To ensure that the semi-analytical equations of motionrare i ® = <”\2 ) ©)
P

accordance with the micromagnetic simulations, we made an

assessment of the semi-analytical model with micromagnetiit mip, the in-plane magnetization vector andhe local in-

simulations in Appendixp. Micromagnetic simulations were pjane magnetization angle. On the other habds ¢ in the

executed for both field-driven DW dynamics if®0FgMgO | agrangian-based CCMs withthe uniform in-plane magneti-

and STT-driven DW dynamics in RIAIOx as detailed in  ,a41i0n angle. Tablg 1 shows that, while the terms relatebeo t

Subsectiod 512. Zeeman term are identical in both approaches, there &ar-di
ences in the two descriptions in terms of magnetostaticgerm

5. Comparison between the Lagrangian-based collective Furthermore, we can also assume thgly ~ ®ayas outlinedin

coordinate models and the semi-analytical model [AppendixD. Hence, demagnetizing terms in the semi-araly
model can be simplified to

5.1. The equations of motion K ) ]
) ) v [Neﬁ"y Sln(Da\/,W COS(DaV - Neff’x COS(DaV’W S|n®a\/:|
To enable a comparison between the Lagrangian-based Kav _
CCMs and micromagnetic simulations, we use the semi- Kavw Sin 2bg,
analytical approach and link the equations of motion in the Kav ! ’ 2

semi-analytical approach with those in the four coordinat . .
model. The velocity equation from both the semi-analytiqal eNow, the diference between the magnetostatic terms in both

proach and the four coordinate Lagrangian-based modelean EOdEIS ISQgpar: _Wh'le the seml-a_nalytlcal model takes fhe e
ect of changes in the DW plane into account by both a scal-

written as ing factor’ij‘#vw related to the DW shape andfective demag-
1+a2 1 1+aB 1 netizing factors extracted from micromagnetic simulagighe
Yo p_AV =aHextz + Yo p_A“X Lagrangian-based model takes this change into account as a
1 . change in the féective angle the spin makes with the line
5 " [HexLx SiNPy — Hexty COSP¢] m, = 0. Another observation is that the valuesgf from the
N semi-analytical approach is predicted to He~ 0.7854 and
+ MsPrs f ~ 0.6366 when comparing the prefactats, from the DMI
_ 2D Lpom [sinP¢ <tanP, cosP¢] terms ancksieig from the in-plgne field terms, respectively. In
HoMs Pa [AppendixC, we show that,, is a value between 0 and 1 and
. 2A P thatx,, depends on the domain wall shape, i.e. the change of
foMsg & m, over the DW profile. We calculate thag, = 2 = kfelg
1+a2 1 after substituting then,-value of [4) in the expression fag,
% P_Apasymv,l (6)  and using the ansatzl(5) of the Lagrangian-based CCMs. It is

also notable that the semi-analytical model has addititamais
with the specific definition of the ffierent parameters listed in related to exchange and asymmetry which do not exist in the

Table[1. Lagrangian-based CCMs. DW asymmetry is rigorously defined
Similarly, the change in magnetization angle can be writterin [AppendixB.
as
5.2. Numerical comparison
1+a’2('p =Hextz+ﬂ;aiux 5.2.1. Introduction
Y0 Yo Fa Now, we compare the collective coordinate models with mi-
__ [Hextxsm Py — Hexty cosP¢] cromagnetic simulations, using the semi-analytical maddel
P field better understand the underlying reason for the shortagsnin
— aMsPms of these models. We distinguish between foudfatent collec-
2D 1 ) tive coordinate models: thgg— ¢, theq— ¢ — A, theq—¢ — x
RV P—APK,DMI |sinP, — tanP, cosPy| and theq— ¢ — y — A model. Using the micromagnetic software
2A package MuMa¥{(3¢<], we study field-driven DW dynamics in
-a M Pexch PYCoF¢MgO and STT-driven DW dynamics in &o/AlO.
HoMs Typical material parameters are listed in Table 2. The cross
+ PasymHez» (7)  sectional dimensions of the simulated magnetic CoFe and Co
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g-¢-—x-A

|

semi-analytical

P¢ ¢ Dy
P..omi kpmi = /4 p
Py field Kfield = 2/ av
PX X Xav
Prms (Ny = N,) S22 [ oo N Sin @y COSPay — Nefr x COSPayy SiNDay|
Pexch 0 Ox.av SINQay — Gy ay COSP,y
Pasymv,l ()V,l(asymmetrigp
Pasymv.2 0 O, 2(asymmetrig
PasymHem OHem(asym metrig

Table 1: Definition of the parameters in equatidds (8), (7) @)éxpressing the DW velocity and the change in magnetizatigle in the four collective coordinate
model and the semi-analytical model.

] || Pt/CoFgMgO | Pt/Co/AlO | models) for field-driven DW motion in a f2oFg¢MgO nano-

Ms (A/m) 700x 10° 1090x 10° strip are compared to micromagnetic simulations processed
A (Jm) 1x 10 16x 10 L ing the semi-analytical approach. Due to the similaritysen
Ky (Jm3) 0.48x 10° 125x% 10° theq — ¢ — xy and theg — ¢ — x — A model predictions on one

a 03 05 hand and the| — ¢.and theg — ¢ — A predictions on the other
D (mJm?) 12 22 hand, we simplify the discussion by distinguishing betwsemn
B ; 17 types of models: those that inclugeand those that do not. The

x-models clearly overestimate the DW velocity while the othe
models ‘underestimate the DW velocity. Furthermore, we ob-
serve that the-models slightly overestimaig andy, while ¢

is strongly underestimated by the models that do not include
Xx. Surprisingly, all models prediet — y with great accuracy.

nanostrips were 16@ 0.6 nn¥ while the simulation window ‘5 the other hand, the-models overestimate the scaled DW
was restricted to an area of length 640 nm following the DW iNidth, while the other Lagrangian-based CCMs strongly un-

its propaggtion through an infinite nanostrip. The diszeston . jerestimate the DW width. This is the main reason for the
cglls h_ad dimensions45x 1.25x 0.6 nn?. This is nottoolarge .\ arestimation of the DW velocity by themodels and its un-

since in PICoFgMgO VA/K ~ 4.56 nm and in FCYAIOx  qerestimation by the other Lagrangian-based CCMs. We also
VA/K ~ 358 nm. Note that, when calculating the averages.,|cyjated the normalized root mean-square error NRMSE and

in the semi-analytical approach, interpolation was usemto- . cqaficient of determination Rfor this comparison in Table
pensate for discretizatiorffects as discussed([in AppendixE.

In general, one can discriminate between two propagation
regimes of a DW, separated by the Walker Breakdown (WB)
[43]. Below the WB, the DW adapts itself to the perpendicu-
larly applied field or the applied current along the lengthhef
nanostrip, resulting in a steady state translational mationg
the nanostrip. In the equations of motion, this correspaads

Table 2: Typical material parameters foy@oF¢MgO nanostrips [25, 40] and
for PYCo/AlOy nanostripsi[41, 42].

To enable a more in-depth comparison, Fidgure 3 compares
the diferences in how the interactions are estimated between
the semi-analytical model and their Lagrangian-basedtepun
parts as listed in Tabld 1. We observe that the influence of DMI
is overestimated by the Lagrangian-based CCMs, which&s cle
in combination with equation§](6) arld (7). Thefdiences be-
tween the terms that express the magnetostatic contribtdio

implying a fixed magnetlza'uon_of the DW. In fact, all DW vari the DW dynamics are clear from Subsecfiod 5.1, thereby gakin
ables except for the DW position, are constant. This way, we s

. : : . into account that® varies between 1.08 and 1.1. We also ob-
can also rewrite equatiofl(7) as a function of the excitafidre «

. . . . serve that the absolute value of the sum of the asymmetric con
resulting equation then expresses how theedent interaction y

e L tributions to the DW velocity and the out-of-plane figlgHex:-
o . i et Pl ncease s nclon o e cukoL e s
In this paper, we limit the discussion t(; DW dynamics belowfélsymrnemc contributions slqw the DW d_own, ther_eby increas
the WB ' ing the Walker Breakdown field. Following equatidd (8), this

: is an additional reason for the overestimation of the DW ve-
locity by the Lagrangian-baseg-models, which do not con-
5.2.2. Field-driven DW dynamics sider asymmetry. On the other hand, the exchange contributi
In Figure[2, the collective coordinates of the Lagrangian-tends to decrease the Walker Breakdown field at large eixgitat

based CCMs (thg—¢,q—¢— A, q—¢—y andthegq—p—xy—A  strengths.

D=0, (11)
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Figure 2: Comparison of the velocity and the collective camates (see Tablgl 1) of the Lagrangian-based CCMsdthep, g — ¢ — A, q — ¢ — x and the
q- ¢ — x — A models) with micromagnetic simulations using the semi-analfpproach for field-drive®W motion in a PICoFgMgO nanostrip. The DW
velocity as determined by the built-in simulation window @ty of MuMax3 is plotted as a black line in the top-left part.

Model Velocity Py P, P, — P, Pa
NRMSE [R] | NRMSE [R] | NRMSE [R] | NRMSE [R] | NRMSE [RY]

Pay 24.31% 56.61% _ 2.14% 18.82%

[85.56%] [ [99.9%)] [
>4.69% 56.91% 3.01% 19.04%

a-¢-4 [85.11%] [ ] [99.8%] [
D 12.44% 3.96% 8.71% 2.14% 7.62%
a-¢-x [96.22%] | [99.39%] [95.3%] [99.9%] [42.69%]
| 1202% 3.79% 8.74% 3.01% 7.36%
a-¢-x [96.47%] | [99.44%] | [95.26%] [99.8%] [46.6%)]

Table 3: The normalized root mean square error (NRMSE) anflicieat of determination Rof the collective coordinate models (the- ¢, q—¢ — A, q— ¢ — x
andq - ¢ — y — A models) as compared to micromagnetic simulations using the sahjtizal approach for field-driveBW motion in a PICoFgMgO nanostrip.
More specifically, the predicted DW velocity is compared te Huilt-in simulation window velocity of MuMak while the parameterBys, P, Py — P, and Py
from the Lagrangian-based CCMs and the semi-analytical mavéetompared. These parameters are defined in [Thble 1.
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5.2.3. STT-driven DW dynamics demonstrates a tool that is in general applicable. This way,
In Figure[3, the collective coordinates of the Lagrangian-comparison between analytical CCMs and micromagnetic sim-

based CCMs (thg—¢, q—¢—A,q—p—y and theg—¢p—y—A  ulations can also be done for nanostrips with other dimessio

models) for STT-driven DW motion in a Rtg/AlO, nanostrip  andor from other materials. Moreover, this work could in-

are compared to micromagnetic simulations using the semispire researchers to further improve existing Lagrangased

analytical approach. We observe that the DW velocity is muci°CMs, e.g. by including asymmetry in the ansatz of the DW

better predicted by all models compared to the field-drivasec ~ profile.

While there are still significant discrepancies between thd-m

els that do not includg and micromagnetic simulations, the

x-models are generally in much better correspondence wéth thAcknowledgments

micromagnetic simulations than in the field-driven casee Th

DW width is still slightly overestimated by the-models, but The authors thank dr. J. Leliaert for a fruitful discussion

the discrepancy is significantly smaller. Moreover, thedjire  regarding the extraction of theffective demagnetizing fac-

tion of the DW tilting angle is also significantly improvee.  tors from micromagnetic simulations. Research funded by a

andg¢ — y are now clearly underestimated by thenodels. In  Ph.D. grant of the Agency for Innovation by Science and Tech-

contrast to the field-driven case, the predictiomof y by the  nology (IWT). B. Van de Wiele acknowledges financial sup-

other Lagrangian-based CCMs is significantly worse. We alsgort from the Flanders Research Foundation (FWO). Financia

calculated the normalized root mean-square error NRMSE ansupport was also provided by Ghent University (BOF-project

codficient of determination Rfor this comparison in Tabl@4. 01J16113). This study was conducted as part of the Marie
Fig. [§ shows why the collective coordinates are generallyCurie ITN WALL project, which has received funding from

better predicted by the-models compared to the field-driven the European Union’s Seventh Framework Programme for re-

case: the asymmetric and exchange contributions to the D\Wearch, technological development and demonstrationrunde

dynamics are almost negligible and these contributionmare grant agreement no. 608031.

properly taken into account by the equations of motion of the

Lagrangian-based CCMs.
AppendixA. The four collective coordinate model

6. Conclusion In Sectior B, the collective coordinates and the ansatfor t
DW profile are introduced. Here, we list the equations of mo-

In this paper, we compared the Lagrangian-based CCMs Witfjon of the four collective coordinate model along with dista

micromagnetic simulations using a semi-analytical apghioa gphout the derivation of these equations and tifiexinces with

for field-driven and STT-driven DW motion in R10F€MgO the equations of motion of other Lagrangian-based CCMs.

and PICgAIO nanostrlps. Lagranglan-based CCMs have. the Using a Lagrangian approach, we change from a description

advantage of computationaffigiency and ease of use, while f the magnetization at every point in space and time (the LLG

their s_lmpI|C|ty means losing part of the full plcture._Thﬁm- equation given by{1)), to a description of more collectiga-f

analytical model helps understand these shortcomingsc@amd yres of the DW. It can be shown that the following Lagrangian

be used to identify cases where the Lagrangian-based mOde%nsity () and dissipation density) functions can be used

might not be appropriate for use. in the Euler-Lagrange equation to derive the LLG equati@ [1
We introduced a four collective coordinate Lagrangianebas

model, while models in literature describe DW motion wittotw Precessional Term STT

or three collective coordinates [8,11] 12]. The equatidms@ Me. . “uM. d(cost)

tion of the four collective coordinate model and an improved L =E+ —¢costd ——¢ o (A1)

semi-analytical approach were linked to enable the corapari 4 4

with micromagnetic simulations. From this comparisonsit i gnd

clear that the models that include the tilting anglare gen-

erally in much better correspondence with micromagnetic si aMs|om B 2

ulations than the models that do not inclydeMoreover, the - 2y | ot + E(u ' V)m] (A-2)

Lagrangian-based CCMs predict the DW dynamics much better

in the STT-driven case than in the field-driven case. The maimwith E given by equatior({2).

reason for this is that, while asymmetric and exchange eontr  To evaluate DW dynamics using the collective coordinates,

butions to the DW dynamics are not properly taken into actounthe energy terms and dissipation function are rewritteetims

by the equations of motion of the analytical CCMs, these conef the collective coordinates, and integrated over the D@/ pr

tributions are almost negligible in the STT-driven casé,dig-  file along the length and width of the nanowire. The propsrtie

nificant in the field-driven case. of the ansatz help simplify the integration process. The La-
While in this paper, the comparison between the Lagrangiangrangian and dissipation functions derived after intégneare

based CCMs and micromagnetic simulations using the semplugged into the Euler-Lagrange equations to derive the-equ

analytical approach was limited to two specific cases, tloigkw tions of motion for the rigid DW.

8



1000

SF

e e

(ST

R P g

v [m/s]
PO

R =

ISE
T
1

200 g

I I I I I I I
O0 5 10 15 20 25 30 35 40 0

T
4 j j j j j j j T

3

e
T
I

X
ool 3

Py—

=B
T
1
ISE)
T
1

30 35 40

L
1015 20 25
Jo [Afum? ]

N .

1
10 15 20 25 30 35 40 0 5

0

ml
0 5

7.2
7.0
6.8
6.6
6.4
6.2
6.0
5.8F
5.6—*-

I
5.40 5

v (simulation window)
q—¢

q—p—A

q—d—x

q—¢—x—A
semi-analytical

P, [nm]

[TI11

N R N
10 15 20 2530 35 40
o [AJum?1]

Figure 4: Comparison of the velocity and the collective comates (see Tabld 1) of the Lagrangian-based CCMsy(thg, q— ¢ — A, q—¢ —y and thegq—¢ -y — A
models) with micromagnetic simulations using the semi-analépproach for STT-driveBW motion in a PICo/AlIOy nanostrip. The DW velocity as determined
by the built-in simulation window velocity of MuMaXis plotted as a black line in the top-left part.

Model Velocity Py P, P, — P, Pa
NRMSE [R] | NRMSE [R] | NRMSE [R] | NRMSE [R¥] | NRMSE [R]
- 0.89% 44.75% ] 24.17% 11.67%

9-¢ [99.98%] | [21.14%] [82.91%] [
PN 0.89% 44.74% ] 24.18% 11.89%

9-¢ [99.98%] | [21.14%] [82.89%] [
- 0.89% 4.08% 0.81% 8.9% 3.27%
a-¢-x [99.98%] | [09.34%] | [99.96%] | [97.68%] | [80.17%]
| 08% 4.08% 0.81% 8.9% 3.11%
4-¢-x [99.98%] | [09.34%] | [99.97%] | [97.68%] | [81.99%]

Table 4: The normalized root mean square error (NRMSE) anfliciesit of determination Rof the collective coordinate modelg € ¢, q— ¢ — A, q— ¢ — x

andqg - ¢ — y — A) as compared to micromagnetic simulations using the semi-aellgipproach for STT-driveBW motion in a PICo/AlOy nanostrip. More
specifically, the predicted DW velocity is compared to thdtknisimulation window velocity of MuMax, while the parameterB,, P, P, — P, andP, from the
Lagrangian-based CCMs and the semi-analytical model are cechphese parameters are defined in Table 1.
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B-a =by
density jx, the exchange contributidPexchj, (Pexchjy = /‘% f’TAJ mfas Pexch) and asymmetric contributiof, (asymmetrig to jx and the asymmetric contributions

Oy.1(asymmetrig andOy 2(asymmetrig to the DW velocity.
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The first two equations derived using this approach by takingh\ppendixB. The semi-analytical approach

derivatives with respect to the conjugate coordingtesde are ) o ) .
AppendixB.1. Deriving the equations of motion

(1+az) CcoSy . cosy (1 + ap) Based on averaging the LLG-equation, a semi-analytical

v A q=aHexz + — % u model can be developed [16]. To this end, the locally varying
P . effective field [B) is first averaged over the DW volume
+5 [Hextx SiNg — Hexty COSY] . .
1 . Hpw =Hext + —— (Hanit,,) + —(H ) (B.1)
+ 5Ms(Ny = N) sin(2(¢ - x)) ") Ty (m2) I
x D 1 1
-= sin(¢ — A3 +—<H + H
2 uoMsA (¢ -x) (A-3) {omi How) Cexch< exch)
2Ky (M)
and EHeXLXeX + Hextyey + Hextzez + llo_'\: <n/]2;) eZ
S
(1+02)¢_H +COSXﬁ_au M p
o Ay - <nf_> [ Netr @ Y + Ney(myn ey |
T .
—-—a= [Hextxsmqﬁ — Hexty COS¢] Mp
o _ — —~Net (MY Ve
-5 Ms(Ny = N, ) sin(2(6 - x)) (me)
2D
=D + ———— {0xmy)ey + (O
+ QEMOMSA sin(¢ — x). (A.4) LoMslom [< M) 8y + ¢ ymz>ey]
2D
The equations for the evolution of the two other conjugate - 'qu—gDMl@xmx +0ymy)e,
collective coordinateg; andA, are 2;
. + ——— | (OxxMy) € + (O + (0 €.
nza/A Y [ A Ky + ,Uo|\/|§ N } ,UOMsgexch [< oM+ ¢ yym)/>ey (0Te) Z]
5% = |~ Ku z
1274 Ms[A? 2 In this expressionf) is a spatial average of the functidérover
uoM?2 . the domain wall volume/,
- 252 [Necog (¢ — ) + Nysir? (¢ - x)] ow
s 1
Ve . = —
+ E?’O(Hextx COS¢ + Hexty S'n¢) (A.5) (H) Vow ffI/DW fr-nav (8.2
LY [ Zsin [ZA siny + =2 sif ] as detailed i Appendi¥E anmi, is the in-plane magnetization.
Ms \ Ly X[“a2 "X T3 A ¢ In equation[(B.11), the anisotropy fiel,, and the magneto-
7A\? sin M2 ] static fieldH s are multiplied with the weight functiop2~ to
_ Y (mA) singc oM (Ny—Ny) sin(2(¢ - x)) o _— )
Ms \ Ly 2 2 confine their averaged contributionsHigyy to the domain wall.
q On the other hand, the averaged DMI and exchange field are
an scaled with respective factotsy andZexch. We assume these
2o y (L 2 2AC scaling factors are given by
_1_2% COSy (E) _,lloMSAZ siny { |>2
{oMI = Lexch = _mp (B.3)
= i A.
AT sing (A.6) (me)
1 as earlier determined for DW dynamics in a nanostrip [16].

B EMS(NV ~ Ny)sin(2(¢ —x)) cosy Note that the DW averagedfective fieldHpw (B) is then

whereL, is the width of the nanowire. independent of the denominators[in (B.2). Moreover, whea i

Equations [[AB) and{Al4) for respectivetyand ¢ can be iting the averages to a single discretization del,y simplifies
used to derive equations proposed in other collective doarel 1 the @fective fieldHer in this cell. We also assumed that
models. These are the same equations found imgthe — y <Hm5"ﬁ:> - _((—N.Msm)nfp) with N the local demagnetizing
model [12], while assuming = 0 yields the relevant equations €NSor [44], is approximated by
of theq - ¢ [8] andq - ¢ — A [11] models. While equation H ~ —M-<Nos: (t Y Vi i€ (xV.Z B.4
(AD) for A is identical to the one found in thee— ¢ — A model (Himety) = ~MNari (YMM)(O Visj € (xy.2) - (B4)
(with y = 0), equation[(A.) fo does not match the respective \ith N an efective demagnetizing diagonal tensor. To deter-
equation in theg — ¢ — y model. Unlike theg — ¢ — y model,  mine the demagnetizing factors from the micromagnetic simu

the evolution ofy in this model is not directly dependent on |5tions. we have considered a volume equal to the DW
the magnetocrystalline anisotropy. Instead, it is onlyriectly

related to this parameter through Msiocal(r) = IMplgea(f)Ms. (B.5)
11



In this volume, we have determined the demagnetizing factorhave an expression for the DW velocity
from the uniform magnetized states as

(Hmsi) (Hmsi) (rrf
Nefi = = Yi A B.6 _ ayo
= Magocam) — —Mlimphoegmy | < oY (B0) V=G 11 o7 Howa
M) ay [H mm) <mymz>}
The DW position is given by —(0xmy) 1+ a? (mizp T (me)
LM % [HDW my <mx>}
X Yy
Q) = ———(my(r. 1), (B.7) ~@xm 1+ a? [P ) ()
—(0xmy(r', 1)) 1+aB
t Tz (B.11)
irrespective of the domain magnetization directions [1i6the <min> B—a (Mdmmy— manmX>

case that there is no DMI (DMI induces eddeeets in the do-
mains) and no in-plane fields are applied (in-plane fieldaded
canting in the domains), equatidn (B.7) can be simplified to

O L+ a2 " ()

Ly A local in-plane magnetization angle is defined as
Qt) = 7v<mz(r,t)> (B.8)

with the averagéf) taken over any volume of the nanostrip in- my(r,t)
cluding the DW/[13-15] and with = 1 [y = —1] if the domain o(r,0 = aretan s (B.12)
magnetization left of the domain wall has a component along

the positive [negatived-direction.

The DW velocity is then expressed as the derivative of theTaking into account that
DW positionQ

dQ(t) N 1 my(r, t)) ap om, amy
v(t) = =] L em— —-m ==
V0= —(0xmy(r,1)  dt M= = Mg — My (B.13)
1 omy(r,t)

“Zomi) ot (B.9)

we also derive a concise expression for the change of magneti
using Leibniz’ integral rule. To rewrite expressidn (B.8) @ Zzation angle inside the DW
function of the dfferent interactions with the DW magnetiza-
tion, equation[(B.11) is substituted in the LLG equatibh (4)la
explicitly ertten and averaged in thedirection, giving us an

2
expression fot 5 ) 1+ a2 (ML) H
DW,z
Yo (m%) |
am, N X<mxmz> IR
() = 1+ > [How.(my) = How,y(my)] oy o
@Yo
=2 Howz
. 1; a? " () Dij:}gi HDw,y—<<:}21x>>]
— 2% [Howx(mamy) + Howy (mym)| P
T p-a [ <axmz>]
B-a + (B.14)
+ 1+—Ux<mxaxn’5/ — mydyimy) Y0 (mi2>
1+(Zﬁ 1+C¥ﬁ <mxaxrny r‘nyaxrnx>
x [—(Ox B.10 Uy
t g2 O] (B.10) " )

in its most concise form. Similarly, equations f&%) and
( o ™y are derived. By combining equatidn (B.9) ahd (B.10), welf we replaceHpw x, Howy andHpw ; by the individual inter-
12



action contributions from equatiop (B.1), we get

a
1+a? <mi2pa_f> _

Yo (mi2p>

— Uy
0

extz T fa [_<8xmz>}

()

_ 1+ a’ﬂu (Mdxmy, — M, dxmy)

Yo (mzp)
(my) (my)
- Hex x__Hex NN
ey Ly<rn2p>]
+ aMSNﬁ,XM (B.15)
(ME.)2
" (myg y(my)
— aMcNgpy— P
(e )2
2D [<6xmz><my> _ <6ymz><mx>}
HoMs | (Imp|)? (Imip|)?
LA [<6xxmx><my> ~ <ayymy><mx>}
uoMs | (Imp))? (Imip|)?
(mymy) (mymy)
- Hex X~ o5 . Hex T 5.
{ "y tymﬁ)}
2Ky )(mzﬁfp)
= — MgNeg 2| ——
+(quS “2) )
<n}2p>2
. MSNeﬁ’y<mmzp><rrwz>
<mi2p>2
2D (DM + dymy)(m)
HoMs <|mp|>2
2D [(9xmp{mymy).  (Gyme){mymy,)
HoMs (Imip))? (Imipl)?
| _2A @umm)
HoMs  (|myp|)?
_2A (Bam){mm,)
HoMs <|mp|>2
. 2A_(dyymy)(mymy)
HoMs  (Impp2
This can be rewritten as
2 (2. % _ _
1va2 (% B “ux[ <axmz>} ©.16)
Y0 (ﬂfp> Yo (fTﬁ)
1+ aﬂ <mx6xrny - rnyaxmx>
— Uy
Yo <”]2p>

= @[ Ty, + THony + frns + Tom + fescn]
~ [GHers + Ortony + Gan]
— [Oms + Oomi + exchl »
Here, the functionsy,_,, fHe,,» fms, fomr @ndfexch€xpress how
13

the diferent interactions act on the in-plane DW magnetization
and are defined as

(my)

fi =Heyy—2 B.17
HexLx t <n‘2p> ( )

(My)
fro = — Hexty—’
Hexty Ly<r.qu>

(mymg Xmy) (Mg y(my)
fms:Ms Neﬂ,y > — WNeff,x >

<mizp> <rT}2p>
_2D [(axmzxnw ~ <¢9ymz><mx>]

PMET ioMs | (Imy)2 (Impl)2
P 2A [<6xxmx><my>_<0yyny><mx>}
N oMs | (Impy? ameh2 |’

Moreover, the functiongy,,,,» GHeq,+ Ganis Oms: Iomi aNd Jexch
are defined as

(M)

—Hef—r B.18
gHexLx t <rnizp> ( )
(mymy)
=Hexty——5—
gHexLy Ly <rqu>
Gm 2Ky (Mme)
lani /JOMS <rni2p>
- =MSNQE’Z<mzn}2p> ) MsNemX(mxn]szmxmﬁ
(ﬁﬁ,> <n}2p>2
(mymg y(m,m,)
— MgNefy———————
()2
2D <axmx+aymy><mzp>
domi = 5
HoMs (Imypl
2D [<c9xmz><mxmz> <3ymz><mymz>]
HoMs (Imip|)? (Imip|)?
3 2A <8zzmz><mzp>
Gerch = = oMz (Impl)?
2A [<axxmx><mxmz> <6yymy><mymz>]
HoMs (Imip|)? (Imipl)?

and are a measure for the DW asymmetry. This is understood as
follows: when the DW is symmetric_[16jn,, dxmy anddm,

are odd functions whilen,, m,, 9xm,, dxxmy andoy,m, are even
functions in thex-direction. Moreover, when the DW is geo-
metrically tilted in a symmetric wayjym, is an odd function
while dym, is an even function in the-direction. Since integra-

tion over an odd function equals 0, we directly deduce that th
g-functions can only be non-zero when the DW is not perfectly
symmetric.

The definition of these functions enables us to rewrite equa-



tion (B:11) concisely as
v <m2p> ayo +1+a,8u
T(0m)1+a? T 142"
(M) B—a  (Mdmy —mdmy
~(dxmp) 1+ a2 ™ (m2)

mﬁ’> Yo
—(0ymy) 1 + @2 [fHexLx + fHMy]

Moo

—(0xmy) 1+ a?

_ M) ey
~(Gxmy) 1+ a2

_ M) oy
—(Gm) 1+ a2

+

[fms+ fomi + fexch]

[QHW + OHey + gani]

[gms + dpmi + gexch] . (B-lg)

AppendixB.2. Identification of the DW variables

From equations (B.15) an@ (Bl19), we can identify several
DW variables. As discussed in Sectigh 3, the DW motion in

Moreover, the DW width\,, can be defined as

()

Agy= -2 . B.24
av G (B.24)
The DW geometrical tilting anglX,, is defined as
(Oymy)
tanXyy = . B.25
Xav =5 ) (B.25)

This variable is analogous to the collective coordinaiatro-
duced by Boulleet al [12]. Similar to our earlier model [16],
we also defing,, as

(M)

~ mpl

(B.26)

Kav

which is related to the DW shape, see further, while adcditign
Kavw IS defined as

_(Impl®)

avw = <rqu> .

(B.27)

Lagrangian-based CCMs is described by maximal 4 DW vari-

ables €, ¢, A andy). In the semi-analytical model, we identify

We can also define three exchange related DW variailgs

the analogs for these DW variables as well as additional DW,, ,, andg, s, With

variables.
While the DW positionQ is defined by equatiori (B.7), the
DW magnetization angl®,, is defined as

(m)
(my)

_ (Imyp|sin(¢))
~ (Implcos(e))”

tand,, = (B.20)

This way, also the cosine and sinedaf, are determined by

|

A weighted DW magnetization angie,,,, can be defined as

(M)

COSQay = gy
(mp)

(B.21)

Sin®g,y

(Imipl) *

( )
tan®,,w = mymizp (B.22)
(M)
£ (Implsin(g))
(Imip® cos(4))
and its cosine and sine are then determined by
CoOS@qyy = m:%:
' (o) (B.23)
SiN®,yy

= Umely

To define®d,, unambiguously, we impose thdt,, = O corre-
sponds to a Bel wall characterized bym,) = 0 and(m,) > 0
while ®,, = 7 corresponds to a &l wall characterized by
(my) = 0 and(my) < 0.

14

(0imy)
(Imipl)

i,av —

Yie{xy,z. (B.28)

AppendixB.3. Updated equations of motion

After introducing the DMI-fieldHpm = —2— and the ex-

HoMsAay
change fieltHexch = m, we can use the expressions of the
sEav

DW variables to rewrite equatioh (BJ15) as

1+ a? <rni2p%> _
Y0 (fﬂzp)

a .
- [HeXLX SIN®ay — Hexty coscbav]
Kav

2 B-a
Aav Yo

extz T X

Kav,w

— aMg

Nefr.y SiN @y COSD,y
Kav

Kavw
+

QMS Neﬂ"’x COS‘DaV’W Sln @a\/

Kav
+ adkayHpwm [SIND4y — tanXy, cOsD,]

— @Hexch [2A§v (gxav sin Dy — Oy.av COS(Dav)]

+ Oy, ,(@Symmetrig, (B.29)

with the asymmetric contributions

Ow,,.,(@asymmetrig

represented by

. 1
OHexnz(aSymmetl’lg: = _ +af Uy

Yo

(Mydxmy — M,y
()
- [gHexlx + gHexty + gani]

— [Ims + Iomi + exchl -

(B.30)



Similarly, we can rewrite equatiof (B.119) as

1+a® 2 2 1+
@ —V :a’HexLZ + — aﬂ
Yo av Aav Y0

Uy

1
+ —_—
Kav

+ Mg

[Hext,x SiN®gy — Hexty COS(DaV]

Kavw

Nefr,y SIN Dy COSP4y
Kav

Kavw

- Ms

Neffyx COS(DaV’W Sln (I)av
Kav

— 4KavHDM| [Sin(Dav - tal’lXav COS(DaV]

+ Hexch [ZAfN (gx,av Sin®,, — Oy.av COS(DaV)]
1 22 .
@ — Oy 1(asymmetri¢
Yo A

av
with the asymmetric contributions to the DW velocity expres
sion represented b®, 1(asymmetri¢
Ay B—a

2 1+a2 "

(B.31)

(Mydxmy — M,y
()

[gHexLx + gHexLy + gani]

O,1(asymmetrig =

Aay_ay
2 1+a?
By
2 1+a?

[Oms + Iomi + Gexch] -

(B.32)
Expressiond (B.29) (B.30], (B.B1) ad (B.32) can be coebin

to

+ Oy 2(asymmetrig (B.33)

with O, 2(asymmetri¢ representing the asymmetric contribu-
tions to the DW velocity
Aay 1

2 «

(MyOxIMy — MydxM)

(nR)

[gHextx + gHexty + gani]

Oy 2(asymmetrig = — X

Aav o

2«
Aavyo

> [Oms + 9omi + Jexch] -
a

(B.34)

Since the semi-analytical model contains more unknowrt vari

ables than equations of motion, we rely on micromagnetie sim

ulations to determine their value.

AppendixC. The DW profile and DW variable k5,

In this Appendix, we demonstrate how to give a physi-
cal interpretation to the prefactowgy and «ielq from the
Lagrangian-based approach ang from the semi-analytical
model. Whilekpy andkielq are constants in the Lagrangian-
based CCMs,, defined by

()

Mgl

(C.1)

Kav
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is a DW variable. Since expressionSOrqzp <1 andmizp < [mipl
are always validk,, is a value between 0 and 1. Note tkaiy,
andkgielq are also values between 0 and 1. The averafjesan
be taken over any volume of the nanostrip including the DW

(f)(t):%fffvf(r,t)dv

when edge #ects due to DMI and magnetization canting of the
domains due to in-plane fields are not present: Indeed, when
m2 = 1in the domains(m%) and(/my|) from equation[{CI1L)

will have no contributions from outside the DW. On the other
hand, whem? < 1 in the domains, this should be taken into
account when integrating over the DW profile. Next, we will
use a simplified version of the DW width definitidn (Bl 24)

(C.2)

Aqy = Lx<m2p>

:Bfffl_mg(r,t)dv

\% v
1 3%

=_f f 1 — mé(x, y, t) dxdy.
Ly oy J g

to determinec,, and to ensure that the boundary conditions of
the DW profile are well defined.,, Ly andL, are respectively
the length, the width and the thickness of the integrateadhan
strip volume.

To understand what,, represents, we consider thetdrent
cases illustrated in Figufe C.6.

In the first case, we consider the hypothetical DW profile de-
picted in the left part of Fid._Cl6. This DW has only an in-mgan
magnetized contribution, i.e.

(C.3)

mAx):Owhenq—%’sxs q+ %’ (C.4)

Consequentlynfp and|my,| are both equal to 1 in every point
of the DW. This corresponds ta, = 1 in accordance with
equation[(CI1). The edges of this DW profile arexat q — ATE‘V
andx =q+ % to assure the consistency of equation [C.3).

In the second case, we start directly from the angatz (5)of th
DW profile, taking into account that the normalized magreetiz
tion vectorm is expressed by 14). In this case, the DW shape is
characterized by

(X—q) +ytany
AE:lV

|

in which A/ cosy was replaced by,,/2 in accordance with
Table[1. This DW profile ay = 0 is depicted in the right part
of Fig.[C.8.

Using equationg (Cl1), (4.2}, (C.5) abhd (IC.3) we evaluate

my(x) = cos(2 arctar{exp(z

(x—q) +ytany

=—tanh|2
( Aatv

(C.5)
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Figure C.6: Comparison of fierent DW profiles to illustrate hows, can be interpreted. The left part corresponds to DW prdfild)@ith g = 0, while the right
part corresponds to DW profilE{C.5) at the middle of the naipég = 0) and withg = 0. Wheny = 0, these DW profiles are also valid at every cross section of
the nanostrip, i.evy € [-Ly/2, Ly/2].

as in correspond to their analogs in the Lagrangian-
1 based CCMs by extracting them from simulations. These
<cosﬁ(z%)> analogs were extracted using following methods:
Kav =
(| —sramm) ¢ The in-plane magnetization anglavas extracted from the
cosff(2%5) local values of the--andy-component of magnetization at
% the center of the DW (positiog corresponding tan, =
= T - 0 andy = 0) in accordance with the definition used for
Lley I3 qu””) dxdy deriving the Lagrangian-based CCMs as depicted in Fig.
2 Aav
_ Aay =
- A (2o 1 e Thettilting angley was extracted by finding the position of
2L, f_%y f—oo Sosm dudy the DW at the edges of the nanostrip, and computing the
2 angle of the line connecting the two points with respect to
== 0.63662 (C.6) the width of the nanostrip through the center of the DW
(9), i.e. the tilting angle of the linen, = 0 with respect to
This is in agreement with the constadty in the Lagrangian- they-direction as depicted in Fig] 1.

based CCMs. However, the constapi is equal to. From _ _ o
this discussion, it is clear that, is determined by the DW e The DW width was extracted based on the Thiele defini-

shape. tion of DW width [11,[46]
A= 2LyL, D1
AppendixD. Assessment of the semi-analytical model = am\2 (D.1)
TR (R)av

AppendixD.1. Introduction . . .
bp ] ) This DW widthA corresponds ta/ cosy in Table[1.
To make an assessment of the semi-analytical model, we

applied 'the model for both field-driven DW dynamics in Additionally, to investigate how much edg&excts dfect the
PYCoF¢MgO nanostrips and STT-driven DW dynamics in DW dynamics, we also quantified the semi-analytical DW vari-
PYCo/AlOy nanostrips as detailed in Subsection] 5.2. Micro-ables by averaging the DW profile over the line along the lengt
magnetic simulations enable us to quantify the DW variable®f the nanostrip and through the middle of the nanostripscros
and to use the semi-analytical equations to predict the DW vesection, i.e. the line characterized yy 0 in Fig.[A(b). These
locity and the excitation strength. The accuracy of thege pr DW variables are also substituted in the semi-analyticabeq
dictions can then be determined since the DW velocity cartions of motion to investigate how strongly the eddkeets af-
also be extracted from the built-in simulation window vétgc  fect their evaluation.

of MuMax® which gives the speed of the simulation window. Furthermore, thefective demagnetizing factors determined
Moreover, we can verify how well the DW variables definedfrom micromagnetic simulations as explainedin_AppenglixB
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are compared to the demagnetizing factors calculated using To verify the accuracy of the derived equations of motion of
Aharoni’s equations [38]. Whil&ls is not depicted for clar- the semi-analytical model, the DW velocity predicted byaqu
ity, Neg 2 is determined by the other two demagnetizing factorstion (B.33) is compared to the DW velocity determined by the
(Nerz = 1 = Nefr x — Nery). built-in simulation window velocity of MuMakfor several out-

In general, one can discriminate between two propagationf-plane fields below the Walker Breakdown. This compari-
regimes, separated by the Walker Breakdown (WB) [43]. Beson is illustrated in Figure“D.8. Moreover, we also verified
low the WB, the DW adapts itself to the perpendicularly apgplie whether the sum of the terms on the left hand side of equa-
field or the applied current along the length of the nanostription (0.3) equalde:,. We also calculated the normalized root
resulting in a steady state translational motion along ti@n  mean square error (NRMSE) and éieent of determination
strip. In the equations of motion, this corresponds to R? for this comparison in Table_D.5. We can conclude that

the semi-analytical approach is very accurate in its pteuis.
<mzp‘z_‘f> -0, Only at fields close to the Walker Breakdown field, we observe
i.e. a fixed magnetization profile. Under these conditiohs, t

(b-2) a small deviation: the DW velocity is slightly underestiedt
while the out-of-plane field is a little bit overestimatede\also
left hand side of equatiof.(B.L6) is zero and thus observe that the evaluation of the equations of motion ig onl
slightly affected when edgeffects are not taken into account
(y = 0) and when the demagnetizing factors are calculated us-
ing Aharoni’s equations [38] instead of determining theomdr
micromagnetic simulations. Thefective demagnetizing fac-
tors are of the same order of magnitude as those determined by
Aharoni’s equations, but vary due to the changing DW shape as
function of excitation strength.
From Figurd D.B, it is clear that thgfunctions which are
an indication for the DW asymmetry are relatively small com-
pared to thef-functions. Moreover, the DW becomes increas-
ingly.-asymmetric for larger out-of-plane fields. We alsoeve
thatgomi and fpw clearly dominate over the other and f-
functions, respectively. Note that, while asymmetry in B\
slightly slows the DW down, it hereby increases the Walker
Breakdown.

@ [fms+ fom + fHeXLx + fHeXLy + fexch]

+ [gHem + gHmy + Gani + Oms + Oomi + gexch]

= Hox, (D.3)

for the field-driven case and

ag

_bJ [fms+ fDMI + fHexLx + fHexLy + feXCh]
‘( .
* —_bJ [gHeXLX + OHexy  Gani + Gms + Gomi + gexch]

(D.4)

Yo

(Mkdxm,—mydxMy)
2 (6 a) - (L+ o) BADRED)

(D.5)  AppendixD.3. STT-driven DW motion

For STT-driven DW motion below the WB in Bg/AlO
) ) _nanostrips, the discussion is similar. In Fig._D.9, we obser
and-byjx = Uy for the STT-driven case. These expressionsa; the DW variables in the semi-analytical model are well d
show how the dierent symmetric interactiongfunctions on ¢4

the left hand side) and the asymmetric interactiapuictions In Fig. [D-10, the DW velocity predicted by equatidn(B.33)
on the left hand side) add up to balance the driving forcé(rig s compared to the DW velocity determined by the built-in-sim
hand side). As long as these interactions can bal&ie  jation window velocity of MuMa$ for several current densi-

andor j, the DW motion stays below the WB. The assessmenfieg pejow the Walker Breakdown. Moreover, we also verified
of the semi-analytical model is limited to the DW motion belo |\ hather the sum of the terms on the left hand side of equa-

the WB. tion (D.4) equalsjx. We also calculated the normalized root
mean square error (NRMSE) and @ogent of determination
R? for this comparison in Table D.5. We may again conclude
that the semi-analytical approach is very accurate in eglipr
tions, both with and withouty( = 0) taking edge fects into
account and when the demagnetizing factors are calculated u

AppendixD.2. Field-driven DW motion

First, we limit our discussion to field-driven DW motion be-
low the WB in PtCoFg¢MgO nanostrips. From Fig[_D.7, it
is clear that the magnetization angtes, and®,,,, as defined
by respective equations (B]20) and (B.22) indeed reprakent ing Aharoni’s equations [38] instead of determining theomir
DW magnetization angle. Similarly, the geometrical tidffian-  micromagnetic simulations. However, at currents closééo t
gle X4 defined by [(B.Zb) represents the DW tilting angle andWalker Breakdown, the current density is a little bit undire
ATE‘V defined by[(B.2ZW) corresponds to the Lagrangian-based DWkhated.
width. Note that, while the DW width curves do not perfectly From Fig.[D.10, it is clear that the asymmetric contribusion
match, they have the same shape. Theedince between the to the DW velocity and to the current density are negligible.
semi-analytical DW variables quantified by averaging oeer r This is in contrast to the field-driven case, where asymmetri
spectively the entire DW profile and the DW profile along theeffects have a significantfect on the DW dynamics. Similar

liney = 0, demonstrates that the influence of ed@edas on
the DW variables is rather small.
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to the field-driven case, we observe tlig{; clearly dominates
over the othelf-functions.
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Figure D.7: For field-driveidW motion in a PtCoF¢MgO nanostrip, it is shown how well the main DW variables dedimgAppendixB correspond to their analogs
in the Lagrangian-based CCMs (listed in TdBble 1), which atemined by extraction from simulations. These semi-arwayBW variables are both determined
by averaging over the entire DW and over the line through tredtaiof the DW ¢ = 0). From left to right: the in-plane magnetization anglégy (B-20), ®avw

(B:Z2) and their analog, the geometrical tilting angli&,, (B:28) and its analog, the scaled DW widtlﬂﬂ (see eq.[[B:24)) and its analag(Thiele definition).
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Figure D.8: For field-driverDW motion in a PtCoFgMgO nanostrip, the accuracy of the semi-analytical equation the DW velocity and the change in
magnetization angle is investigatedop: the DW velocity predicted by equation {B]33) (both with anidhaut (y = 0) taking edge fects into account, and
when using demagnetizing factors calculated with Aharaegsations [38] instead of determining them from micromagrsétiailations) is compared to the DW
velocity determined by the built-in simulation window velycof MuMax® (left). The diferent contributions to this DW velocity according to theeiriction
(current, anisotropy, magnetostatics, DMI and exchangegko shownrfiddle. Only the out-of-plane field is a symmetric term while the otimeractions
are due to asymmetridfects. The micromagnetically determineftieetive demagnetizing factoldy x andNegy are also compared to the demagnetizing factors
Ny and Ny calculated using Aharoni's equations [3&jt). Bottom:ugHext, as predicted by the left hand side of equation1D.3) (boti witd without § = 0)
taking edge ffects into account, and when using demagnetizing factorsiledécl with Aharoni’'s equations [38] instead of determiningm from micromagnetic
simulations) as well as the combined contributions of the symenétfunctions and the asymmetrigfunctions are compared to the exact valuggifiext, (left).

The diferent symmetric contributions {functions) (niddle and the diferent asymmetric contributiong-functions) ¢ight) are also shown.
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Model Velocity @,y and®y,y,y, With ¢ Xay With y Aav/2 With A | poHextz OF jx
NRMSE [R] NRMSE [R] NRMSE [R] | NRMSE [R] | NRMSE [R]
3.99%
PyCoFgMgO 3.07% Pav | 199.31%] 1.36% 3.69% 0.84%
_ [99.77%] 3.28% [99.89%] [86.76%] [99.98%]
(field-driven) Dayw [99.53%]
2.08%
PYCOAIOK 0.64% Pav | 199.82%] 1.35% 3.38% 2.96%
- [99.99%] 2.34% [99.9%] [78.12%] [99.75%]
(STT-driven) Dayw [99.77%]

Table D.5: The normalized root mean square error (NRMSE) aaflicient of determination Rof the DW variables from the semi-analytical model as compared
to their analogs from the Lagrangian-based CCMs, which aterthined by extraction from simulations, as well as the NRM&& R of the predictions from
this model as compared to the exact values. Both the resulfiefdrdrivenDW motion in PtCoFgMgO nanostrips-and STT-driveBW motion in PICg/AlOy
nanostrips are listed. More specifically, this Table compane DW velocity predicted by {B.83) with the built-in simtitm window velocity of MuMax, the
in-plane magnetization angl€s, (B.:20) and®ay,, (B:22) with their analog, the tilting angleXa, (B:28) with its'analog, the scaled DW width\ay/2 (see eq.
(B:Z4)) with the Thiele DW width and the out-of-plane field or current density as determine@B3).or [D:4) with the exact out-of-plane fielgHex, Or exact
current densityj .
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Figure D.9: For STT-drivedW motion in a PACQ/AIO nanostrip, it is shown how well the main DW variables defind@@pendixB correspond to their analogs
in the Lagrangian-based CCMs (listed in Table 1), which &temnined by extraction from simulations. These semi-are@lyBW variables are both determined
by averaging over the entire DW and over the line through thddheiof the DW ¢ = 0). From left to right: the in-plane magnetization anglégy (B:20), ®avw

(B:22) and their analog, the geometrical tilting angl¥,, (B-25) and its analog, the scaled DW widthAzﬂ (see eq.[{B.24)) and its analag(Thiele definition).
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Figure D.10: For STT-drive®W motion in a PtCg/AlO nanostrip, the accuracy of the semi-analytical equationthifo DW velocity and the change in magne-
tization angle is investigatedop: the DW velocity predicted by equation (BI33) (both with anitheut (y = 0) taking edge #ects into account, and when using
demagnetizing factors calculated with Aharoni's equatif& instead of determining them from micromagnetic simulat)ois compared to the DW velocity
determined by the built-in simulation window velocity of Mubdfa(left). The diferent contributions to this DW velocity according to theeiatction (current,
anisotropy, magnetostatics, DMI and exchange) are alsorsfioiddlg. Only one term due to the current is a symmetric term while therinteractions and
another current term are due to asymmetffeas. The micromagnetically determinefleetive demagnetizing factofdes x and Negy are also compared to the
demagnetizing factorisly andNy calculated using Aharoni's equations|[3&jht). Bottom: jx as predicted by the left hand side of equationD.4) (boti aitd
without (y = 0) taking edge fects into account, and when using demagnetizing factorsleséd with Aharoni’'s equations [38] instead of determiningm from
micromagnetic simulations) as well as the combined contribstaf the symmetrid -functions and the asymmetrigfunctions are compared to the exact value of
jx (left). The diferent symmetric contributions {functions) (iddle and the diferent asymmetric contributiong-functions) ¢ight) are also shown.
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AppendixE. Defining the averaging window [1]

In order to accurately describe the DW behaviour using thel?]
semi-analytical model, the averagds have to be calculated in 3l
a proper way. In perpendicularly magnetized nanostriph-wit 4
out DMI and in-plane fields, the domain magnetization has no(s]
in-plane contributions [16]. The DW positio@ is then ex-  [6]
pressed as [45] 7]

[8]

[9]
(10]
with the averagéf) taken over any volume of the nanostrip in-
cluding the DW|[18-15]. Taking into account that DMI induces [11]
edge &ects and in-plane fields lead to magnetization canting of
the domains, eq[_(H.1) is replaced by

Q(t) = %<mz(r,t)> (E.1)

(12]

(mg(r, 1)). (E.2)

1
QM) = ———<
(Oxmy(r, 1)) 113]

While the DW positionQ is well defined by[{ER) for every av-
eraging window that includes the DW, botfiexts undesirably [14]

affect the evaluation of the equations of motion when a signif-

icant part of the domains is taken into account. For example15]
when(f) takes a significant part of the domains into account,

the DW widthAq, defined as r1e]
[17]

N (M) €3) [18]
Ay Yy . [19]

is overestimated and the DW magnetization arigle [20]
_(my) [21]

tan®,, = W (E.4) [22]

[23]
is poorly defined. To avoid thig,f) is by definition restricted
to the DW voluméVpw

<f>(t)=ﬁfff%wf(r,t)dv.

(24]

(25]

E5)

[27]
In order to define the DW volumépy, in (EB), we fix the  [28]
boundaries based an, changing only significantly inside the Eg}

DW as a function ofx. Therefore, the DW is defined in the

region where [31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]

|0xmy| > e [nm™] (E.6)
is fulfilled. In equation[(EJ6)¢ should be a well-chosen con-
stant. Ife is too large, only a small part of the DW is taken
into account, thereby neglecting the full complexity of D
On the other hand, ¥ is too small, a significant part of the do-
mains is taken into account causing unwanted contributions
the averages. We found that 0.01 results in an accurate de-
scription of the DW dynamics by the semi-analytical equatio
of motion. This value is used consistently in this paper. [41]
Every timestep, the averaging window is redefined and the
averages are computed with high precision using interjoolat [42]
to minimize discretizationféects.

[40]
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A Lagrangian—based four collective coordinate DW model is presented.

Improved semi—analytical approach properly treats the effects of DW asymmetry.
Semi—analytical approach enables accuracy assessment Lagrangian—based models.
Semi—analytical approach is used to gain understanding of limitations of models.

DW asymmetry contributes to discrepancy between models and field—driven simulations.



