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Abstract: This paper outlines a method based on the theory of artificial potential fields combined
with sliding mode techniques for spacecraft maneuvers in the presence of obstacles. Guidance and
control algorithms are validated with a six degree-of-freed (dof) omorbital simulator. The idea of
this paper is to provide computationally efficient algorithms for real time applications, in which
the combination of Artificial potential field (APF) and sliding mode control shows the ability of
plan trajectories, even in the presence of external disturbances and model uncertainties. A reduced
frequency of the proposed controllers and a pulse width modulation (PWM) of the thrusters are
considered to verify the performance of the system. The computational performance of APF as
a guidance algorithm is discussed and the algorithms are verified by simulations of a complete
rendezvous maneuver. The proposed algorithm appears suitable for the autonomous, real-time
control of complex maneuvers with a minimum on-board computational effort.

Keywords: spaceraft rendezvous; artificial potential fields; GNC algorithms

1. Introduction

Rendezvous maneuvers are a fundamental step for space exploration, and autonomous
rendezvous and proximity operations have been expanded over the last decades. Since the beginning of
the space era, orbital manned rendezvous and docking maneuvers have been studied and tested, in the
Gemini program [1], with the purpose to dock two spacecraft to be able to reach the Moon, land on it,
and safely return the crew on Earth in the Apollo program [2]. Cooperation between the United States
and Russia made possible the rendezvous and docking of two space vehicles of completely different
concepts, such as in the Apollo–Soyuz Test Project [3]. More recently, automated missions to bring
supplies to the International Space Station (ISS) have been continuously flying, involving different
type of spacecraft (ATV (Ariane Transfer Vehicle) [4], HTV (H-II Transfer Vehicle) [5], Progress [6],
Cygnus [7], and more). Since these are unmanned spacecraft, an automated rendezvous mission
has to be successfully completed. This brief introduction empathizes the importance of manned and
unmanned rendezvous missions.

Recent studies concern the use of unmanned spacecraft in orbital servicing missions, such as
the on-orbit refueling of telecommunication satellites, to extend their operational life (the operational
life of many satellites is usually limited due to expired propellant, required for station-keeping) or
space tugs [8–10]. In both cases, since such spacecraft are unmanned, a robust flight software must be
developed. Even though the ground segment has the role of mission director in automated missions
too, a number of unexpected events may appear, and have to be managed; namely, (i) unforeseen orbit
crossing of small objects, such as moving of robotic arms in an ISS (International Space Station) scenario;
(ii) delays or lack of communication with the control center; and (iii) environment disturbances
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and sensor noise. All the events described before have to be taken into account and the Guidance,
Navigation and Control (GNC) software must be able to react properly. For this purpose, a robust and
accurate simulation tool is very useful to develop and test GNC software.

The objective of the present work is the development of a six degree-of-freedom (dof) orbital
simulator and the design and implementation of guidance and control algorithms, able to avoid
obstacles. The approach proposed for the guidance algorithm is based on the theory of artificial
potential fields with a paraboloid-based shape. For the control algorithms, for both position and
attitude dynamics, sliding mode controllers (SMC) are proposed. The orbital simulator is written in
C, as well as the GNC software. Communications between the simulation block and the on-board
software block is allowed by a proper Transmission Control Protocol (TCP). Two separates algorithms
are implemented: (i) one related to the simulator and (ii) one related to the GNC system, to design
a flight software as close as possible to the “flyable” format and to formally separate the physical
simulation and the software component, as required by EASA (European Aviation Safety Agency)
standards [11]. A local connection is considered in which the six dof simulator is the server and the
GNC system is the client. The simulator sent sensor data to the GNC system and the GNC sent the
input data, related to the thruster switch on and the reaction wheels’ torque to the simulator. In this
way, a two channel segment is considered, as for real space software, in which the space segment
includes attitude and control systems and the ground segment has simulators and flight dynamics
systems. Hardware constraints are also included.

The examined case is a rendezvous maneuver, in which an active vehicle (Chaser) orbits kilometers
away from a passive vehicle (Target) and it has to reach and, eventually, dock it. Rendezvous and
docking could be seen as a planned collision of two spacecraft, controlled considering the geometric
location of the contact points on the two vehicles, and the linear velocities and angular rates at contact.
Most of the literature assumes that the Chaser may access any region of the maneuver in the space.
However, many scenarios involve operations near large space structures or, due to the increase of
space debris, in proximity to obstacles [12]. Consequently, one of the essential requirements for
automated rendezvous operations is the ability to maneuver in proximity to them, without collision.
The motivation of this research is to safely reach the Target without collisions, designing an analytical
and computationally efficient (real time) method.

For close range maneuvers, the guidance and control (GC) algorithms must be able to handle
actuator constraints as well as dynamic and obstacle constraints. For this reason, the guidance
algorithms for the complete rendezvous maneuver are based on the theory of artificial potential fields.

Artificial potential fields (APFs) have evolved in the past years for guiding the motion of mobile
robots. The main idea of the artificial potential field theory is to construct a potential field with
a gradient acting attractively toward the goal and repellently from obstacles. Different approaches
using artificial potential fields are proposed in literature. An obstacle avoidance algorithm for
a rendezvous maneuver is proposed in [13]. Two limitations of this approach are: (i) an “ad hoc”
method for guidance is proposed and (ii) the control algorithm works at high frequency. Starting
from this work in [14], a method for spacecraft maneuver with obstacles is proposed, but no control
algorithms are considered and a simple dynamics is analyzed. In a similar way, real-time on-board
execution of APF as guidance scheme is analyzed in [15]. More recently, interesting applications
of APF as guidance algorithms are proposed in [16,17]. In [16], an adaptive artificial field for
proximity operations is considered and the computational efficiency is proven in an experimental
testbed. In [17], a near optimal hybrid guidance method using APF is proposed, combined with
a sample based path planning method. In both cases, the APF algorithm is used as a GNC system
and an “ad hoc” field is generated. Moreover, only a forced motion is considered. In our work,
feedback control based on SMC theory is designed for tracking the gradient, generated by the APF
algorithm. Our idea is to propose a method for an orbital spacecraft maneuver in which obstacles
and external disturbances are considered. Moreover, the proposed algorithm is able to guarantee
real time applications, considering the requirements of current space hardware (limitations of the
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sample frequency). In Feng et al. [18] an optimal sliding mode combined with an APF algorithm is
considered. In this research, only proximity maneuver and orbital dynamics are analyzed, even if
external disturbances are included.

In detail, the desired velocity and the desired attitude are defined by the APF algorithm to track
the desired trajectory and avoid obstacles. This interpretation of the gradient was proposed in [19],
in which a sliding mode control strategy for tracking the gradient due to a artificial potential field is
described. In [20], the problem of controlling an autonomous wheeled vehicle with a SMC is proposed,
including collision avoidance. The use of SMC in this context proves to be appropriate because
of its robustness features. Usually, pseudo-sliding mode control, as in [21], based on continuous
approximations, are proposed for mechanical systems. For spacecraft maneuver and, in particular,
for position dynamics, a conventional first order SMC is the most suitable, due to the thrusters,
for which the designed control signals are discontinuous. The advantage of the use of the artificial
potential fields for this maneuver is twofold: (i) an autonomous way for the desired path is designed
with low computational effort and (ii) an online update of the path is guaranteed, in particular in
the presence of obstacles. The idea of this paper is to provide computationally efficient algorithms
for real time applications in space. The novelties are related to the combination of APF and sliding
mode controller (SMC) for a complete space maneuver, in which the SMC design is focused on a real
application: (1) reduced frequency of the controller for fuel saving, (2) pulse width modulation of
thrusters, and (3) actuator models are considered. For APF algorithms, even if the approach is well
known, we propose a simple shape of the artificial field to have a reliable method (the same field
for all the maneuver) and to avoid obstacles. In our case, external disturbances are also considered,
to demonstrate the robustness of the proposed controller.

The paper is organized as follows. In Section 2, a detailed spacecraft model is analyzed, including
actuator models, position and attitude dynamics, and external disturbances. The proposed guidance
algorithms are described in Section 3; instead, the sliding mode control strategies are presented in
Section 4. The simulation results are in Section 5. Conclusions are drawn in Section 6.

2. Orbital Simulator

The orbital simulator includes the six dof spacecraft dynamics, model of the actuation system
(Reaction Control Thrusters (RCS) and reaction wheels (RWs)), models of sensors, and model of
external disturbances. Actuators and sensors errors and nonlinearities are also taken into account.

The spacecraft dynamics includes both position dynamics and attitude dynamics. The orbital
dynamics is based on propagation of equations of relative dynamics, usually known as Hill’s or
Clohessy-Wiltshire equations. Attitude dynamics is formulated in the quaternion notation and it is
propagated relative to the inertial Earth Centered Inertial reference frame (ECI).

As briefly said in the introduction, the proposed case study is a complete rendezvous maneuver
depicted in Figure 1. The Hill frame will be described later in the paper, and it will be better depicted
in Figure 2. The maneuver starts at the waypoint S0, which is the initial condition for the simulation.
This waypoint corresponds to a lower orbit with respect to the Target one and it is located at a sufficient
distance from the Target in order to successfully complete the maneuver. The second part of the
complete maneuver is for reaching the Target orbit and it starts at waypoint S1, the position of which
depends on the difference in altitude between the two spacecraft. If the maneuver is an impulsive (or
quasi-impulsive) one, the resultant trajectory corresponds to the ideal Hohmann transfer. The next
maneuver (from waypoint S2 to waypoint S3) is necessary for getting closer to the Target. The distance
of S3 from the Target is usually of the order of hundreds of meters, and it is strongly dependent on
safety approach issues. Finally, waypoint S4 corresponds to the docking mechanism of the Target.
The S3–S4 maneuver is a forced motion of the Chaser to get the Target, generally similar to a straight
line approach. The simulation stops when the Chaser is few meters away from the Target. The docking
of the spacecraft is not considered in the simulator, because a multibody dynamics is usually considered
to clearly understand the loads of contact.
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Figure 1. Complete rendezvous and docking maneuver in Hill frame.

Figure 2. LVLH (Local-Vertical-Local-Horizontal) frame definition.

2.1. Spacecraft Position Dynamics

The complete description of the derivation of Hill’s equations from inertial equations is extensively
described in [22], while in the following it is reported as the final formulation. Hill’s equations describe
the relative motion between two objects orbiting in slightly different orbits. Hill’s equations are
computed with respect to the origin of a Local-Vertical-Local-Horizontal (LVLH) reference frame
(Figure 2), usually coincident with the center of mass of the Target. The reference object may also be
taken as a virtual point as the origin of the LVLH frame orbiting the Earth, where the position dynamics
of more spacecraft can be propagated with respect to it. Some assumptions have to be formulated.

1. The orbit of the reference object must be circular. However, a modified formulation of Hill’s
equations for non-circular orbits can be found in literature [23].

2. The validity of the approximation of Hill’s equations is limited to few kilometers of distance
along each axes. Introduction of curvilinear x and y coordinates may partially extend the validity
of Hill’s equations, mitigating position error due to the curvature of the Earth. In this paper,
curvilinear coordinates are not implemented.
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XLVLH, YLVLH and ZLVLH are also named respectively Vvar, Hvar and Rvar. Hill’s equations for
circular orbit

ẍ =
Fx

mc
+ 2ω0ż

ÿ =
Fy

mc
−ω0y

z̈ =
Fz

mc
− 2ω0 ẋ + 3ω2

0z,

(1)

where ẍ, ÿ and z̈ are accelerations in the LVLH frame; ẋ, ẏ and ż are velocities with respect to the LVLH
frame; x, y, and z are Hill positions; mc is the mass of the spacecraft; and ω0 is the orbital angular
velocity of the reference LVLH frame. F = [Fx, Fy, Fz]T ∈ R3 is the total force acting on the spacecraft
and it includes both forces due to the thrusters system and external disturbances

F = Fthr + Fext, (2)

where Fthr ∈ R3 is the thruster force and Fext ∈ R3 is the external disturbances perturbation,
both expressed in the LVLH frame. The main disturbance affecting Low Earth Orbits (LEO), in terms
of magnitude, is the drag force due to the residual atmosphere. For this maneuver, since oblateness
of the Earth affects orbital parameters of the reference object and the relative position dynamics is
computed with respect to the Target, the J2 effect can be usually considered one order of magnitude
smaller than the drag force. Hence, the force due to external disturbance can be reduced to a constant
atmospheric drag and to a random force due to J2 effect. The drag force is designed as

Fext =


− 1

2 ρV2SCD
0
0

 , (3)

where ρ is the density of the atmosphere, V is the orbital velocity of the spacecraft, S is the frontal
section, and CD is the drag coefficient of the spacecraft. The negative sign of Fext is due to the drag
force is opposing the motion along +V-bar.

Basically, the RCS model is defined in Body frame, hence, to obtain the thrust force in the LVLH
frame, a rotation has to be applied

Fthr = RLVLHb(φ, θ, ψ)Fb
thr,

where Fb
thr ∈ R3 is the thrust force expressed in body frame (related to the actuation system) and

RLVLHb(φ, θ, ψ) is the rotation matrix from body frame to LVLH frame.
The actuation system for position control exploits thrusters and the adopted thrusters can exert

mono-directional actions, that is they can apply to the Chaser thrusts of given magnitude and along
fixed directions, which depend on how and where the thrusters have been assembled in the system
(their orientations and application points).

As will be detailed in the following, in each required control direction a pair of actuators are
placed and exert their mono-directional thrusts. Moreover these thrusters coupled by direction are
always switched on together by the controller. This precise choice of design for the actuation system
guarantees a nominal zero moment due to the thrusters in the ideal case, when no thruster errors occur.
Then the total number of thrusters Nthr of the Chaser is always even.

Each thruster is characterized by a fixed output and can be only be turned on/off without
modulation of the provided thrust. This means that, the individual thruster can provide either the
maximum amount of thrust when switched on or no force when switched off.
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Further characteristics of each thruster are given by the time duration of the pulse width τoni and
the thruster zero time before turning on again τo f f i. In fact, if the controller switches on the ith thruster
at time t0, this actuator provides the maximum thrust Tmaxi for a time τoni and then the same thruster
cannot be turned on again for a time τo f f i, as shown in Figure 3 and according to the following

T+
i =

{
Tmaxi, if t ∈ (t0, t0 + τoni) ,

0, if t ∈ (t0 + τoni, t0 + τoni + τo f f i) ,
(4)

where τoni and τo f f i are known and constant for each thruster. The constant τi = τoni + τo f f i can be
computed and its inverse constitutes the maximum allowed frequency at which the ith thruster can be
switched on.

Figure 3. Thrust provided by the ith thruster switched on at time t0.

In our case, RCS is composed by 12 thrusters , as depicted in Figure 4.

Figure 4. RCS (Reaction Control Thrusters) configuration and body frame definition. CoG: Center
of Gravity.

The magnitude of the thrust produced by each thruster is affected by bias and random errors,
as well as the thrust direction, which is also affected by both type of errors. The magnitude of each
thruster i can be expressed by

Fi
mag = Fi

nom + ∆Fi
bias + ∆Fi

noise.

Fi
nom is the nominal thrust , ∆Fi

bias is the bias thrust error and ∆Fi
noise is the thrust noise; both of

these contributions are different for each thruster. A similar formulation has been used to model the
thrust direction

f i = [Ri
rand(δrand, εrand, ζrand)][Ri

bias(δbias, εbias, ζbias)] f i
nom,
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in which f i ∈ R3 is the unit vector representing the thrust direction of the ith thruster affected
by errors, f i

nom ∈ R3 is the unit vector representing the nominal thrust direction of the ith thruster,
Ri

bias(δbias, εbias, ζbias) is the rotation matrix relative to the nominal direction of the ith thruster computed
with bias angles and Ri

rand(δrand, εrand, ζrand) is the rotation matrix relative to the nominal direction
of the ith thruster computed with random angles. At the end, the thrust provided by the ith thruster
expressed in the body frame can be computed as

Fi = [ f i]Fi
mag, (5)

and Fi ∈ R3 is the force provided by the ith thruster. The total force provided by the RCS is

Fb
thr =

12

∑
i=1

Fi

2.2. Spacecraft Attitude Dynamics

The attitude dynamics is propagated using the quaternion formulation. Angular velocity in the
body frame can be obtained by:

ω̇B = I−1(MB −ωB × (IωB + IRWωRW))

where ω̇B ∈ R3 is the angular acceleration vector, I ∈ R3,3 is the inertia tensor, MB ∈ R3 is the total
torque acting on the spacecraft, ωB ∈ R3 is the angular velocity of the spacecraft, IRW ∈ R3,3 is the
inertia of the reaction wheels system, and ωRW ∈ R3 is the angular velocity of the reaction wheels
system. The total torque acting on the spacecraft is the sum of different elements

MB = Mthr + ∆Mex + MRW,

where Mthr ∈ R3 is the torque due to the RCS, ∆Mex ∈ R3 is the torque due to external disturbances,
and MRW ∈ R3 is the torque generated by the reaction wheels system. The torque generated by the
thrusters system is obtained by

Mthr =
12

∑
i=1

ri
thr × Fi,

where ri
thr is the position of the ith thruster relative to the center of mass and Fi is defined by Equation (5).

The external torque affecting the attitude dynamics of the spacecraft is mainly due to the gravity
gradient torque. Other torque disturbances such as aerodynamic torque and torque due to the solar
radiation have been neglected in the framework of this paper. The gravity gradient torque can
beevaluated as

∆Mex = 3
µ

r3 o3 × I · o3,

where µ is the Earth’s gravitational constant, r is the magnitude of position vector of the spacecraft
relative to the center of Earth and o3 is related to the third column of the rotation matrix RLVLHb(φ, θ, ψ).
Kinematic equations in quaternion form can be expressed as

q̇ = 1
2 Σ(ωB)q, (6)

with q = [q0, q2, q3, q4]
T ∈ R4 is the vector of quaternions and Σ(ωB) ∈ R(4,4) is defined as

Σ(ωB) =

[
0 −ωT

B
ωB −Ω

]
(7)
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where Ω is the skew-symmetric matrix

Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


For the quaternions, the following notation can also be used (useful for the SMC

controller definition)
q̇ = 1

2 Σ(q)ωB, (8)

where q = [q1 q2 q3 q4]
T ∈ R4 is the vector of quaternions and Σ(q)R4,3 is the quaternion matrix,

defined as

Σ(q) =

[
q4 I3 + Q13

−qT
13

]
, (9)

where q4 ∈ R is the quaternion scalar component, q13 ∈ R3 is the vector of the first three components
of the vector q and Q13 ∈ R3,3 is the skew-symmetric matrix

Q13 =

 0 −q3 q2

q3 0 −q1

−q2 q1 0

 .

The attitude is propagated with respect to the Earth Centered Inertial (ECI) frame.
As previously introduced, three reaction wheels, driven by electric motors powered by the

spacecraft electrical power supply, are considered for the attitude control and they are managed and
controlled by the onboard attitude control computer. A reaction wheel actuator produces a moment
MRW, causing its angular momentum to increase. For the representation of a realistic model, a first
order filter and a saturation on the maximum–minimum torque assigned by the RWs are also included
in the actuator model.

3. Guidance Algorithms

The rendezvous maneuver requires, in the presence of obstacles, to be performed completely
autonomously with only sensors and on-board GC algorithms. Moreover, the GC algorithms must
be able to simultaneously achieve a series of translational maneuvers in the presence of external
disturbances and uncertainties. The potential field method can produce low impulsive fuel and can be
implemented online with a low computational effort. At each time step, the artificial potential field
algorithm generates the desired velocity and orientation required for reaching the Target. The desired
vectors are generated considering the end of each maneuver as a minimum and the obstacle as
a maximum and are not known a priori (no predetermined trajectory is considered).

A paraboloid artificial potential field is considered because it is a stabilizing function, and we
impose that, as the Chaser approaches the goal, its speed decreases. Two different artificial potential
fields are considered: (i) one is related to the position dynamics and (ii) the second is related to the
attitude dynamics.

For the position dynamics, the artificial potential field is attractive to the goal and repulsive with
respect to the obstacles. As in Figure 5. The attractive potential field is

Ua(x) = 1
2 ka||e(x)||2 (10)

fa(x) = −5Ua(x), (11)
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where ka defines how fast the attractive gradient goes to the goal and e(x) is the error in position in
which x = (x, y, z)T ∈ R3. The attractive force is due to the gradient of the artificial potential field.
To assign the direction of the desired speed, a unit vector of the potential field is evaluated

EU =
fa(x)

|| 5Ua(x)||
,

thus the desired speed ẋd ∈ R3 is evaluated as

ẋd = ẋd,maxEU ,

where ẋd,max is the maximum speed to perform the maneuver, which is scalar and equal along the
three axes.

To avoid the obstacles, a repulsive potential field is defined, one for each obstacle (i = 1, . . . Nobs
with Nobs number of obstacles)

Ur, i(x) =


kr,i
γ ( 1

ηi(x)
− 1

η0,i(x)
)γ if ηi(x) ≤ η0,i(x)

0 if ηi(x) > η0,i(x)
, (12)

where kr,i is the gain related to the repulsive field, γ = 2 is defined for hyperbolic field,
ηi(x) = minxobs∈COi ||x− xobs||, xobs ∈ R3 is the obstacle position, and η0,i(x) is the safety radius.
COi is the convex set of obstacles. The repulsive field is defined for each obstacles, which are assumed
convex. As before, the repulsive force is

fr,i(x) = −5Ur, i(x) =


kr,i

η2
i (x)

( 1
ηi(x)
− 1

η0,i(x)
)γ−15 ηi(x) if ηi(x) ≤ η0,i(x)

0 if ηi(x) > η0,i(x)
. (13)

The radius η0,i for i = 1, . . . Nobs is the safety radius and it means that the Chaser “senses” the
obstacle when it is η0,i m away from the obstacle. The applied artificial potential field is the sum of the
attractive and repulsive part

Ut(x) = Ua(x) +
Nobs

∑
i=1

Ur,i,

and the total vector indicating the motion direction, opposite of the artificial potential field, is

E(x) = −5Ut(x),

with E(x) ∈ R3.

Figure 5. Attractive and repulsive potential field.
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As explained before, the desired behavior is reached when the speed vector ẋ ∈ R3 is collinear
with E(x). For this reason, the desired orientation with respect to the LVLH frame is obtained with the
following definition of the orientation (Euler) angles

φdx (t) = arctan Ey(x)
Ez(x) (14)

φdy(t) = arctan Ez(x)
Ex(x) (15)

φdz(t) = arctan Ey(x)
Ex(x) , (16)

where the function arctan produces angles in the four quadrants of the Cartesian plane with
φd ∈ [−π, π]. For example, the rotation matrix for the x rotation is

Φdx =

1 0 0
0 cos φdx − sin φdx

0 sin φdx cos φdx

 .

The total transformation matrix for the desired orientation is

[Φd] = [Φdz ][Φdy ][Φdx ]. (17)

From this matrix, we can easily evaluate the desired quaternion and the desired Σ(qd) ∈ R3,3 as
in Equation (9).

In the last part of the maneuver (forced motion), we assume that the Chaser has to be aligned
with the Target, so the desired attitude in terms of quaternions is qd = [0, 0, 0, 1]T , which means the
body frame aligned with the ECI one.

4. Control Algorithms

As discussed in the introduction, we propose two different sliding mode controllers: (i) a first
order SMC for spacecraft position tracking, guaranteeing tracking in terms of positions and speeds
and (ii) a super-twisting SMC for the attitude control, including the quaternion dynamics.

4.1. Control System for the Position Dynamics

As deeply discussed in [24] and described for spacecraft maneuvers in [25], internal and external
disturbances affecting the system due to the real implementation and to the external environment
must be taken into account. Sliding mode methods provide controllers that are robust under large
uncertainties. SMC can counteract uncertainties and disturbances, if the perturbations affecting the
system are matched and bounded (first order SMC) or smooth matched disturbances with bounded
gradient (second order SMC) [26,27].

For the position tracking, as already described in the introduction, a first order sliding mode
is designed, motivated by the intrinsic nature of the thrusters, which cannot provide continuously
modulated thrusts but can only be switched on and off.

The input vector ux = Fthr ∈ R3 (as in Equation (5)) is designed according to the following first
order sliding mode control law

ux = −B−1
x Ksgn(σx), (18)

where B−1
x = mc I3, K = nTmax, being n = 2 to reflect that two thrusters are switched on simultaneously,

and σx represents the designed sliding output. In general, the control gain K in (18) must guarantee
that the sliding motion on the desired sliding manifold is reached and maintained. The sliding output
σx, which is the switching function in the controller (18), is

σx = (ẋ− ẋd) + cx(x− xd), (19)
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where ẋd and xd are the vectors of the desired speed and the desired positions, respectively. The vector
of positions x = [x, y, z]T and speeds ẋ = [ẋ, ẏ, ż]T are measured at each time step from the
Hill’s equations. The constant cx is chosen positive. The desired sliding surface is σx = 0. The desired
conditions are defined with the artificial potential fields, as described in the previous section.

4.2. Control System for the Attitude Dynamics

Concerning the attitude stabilization, it should be remarked that it represents a problem of
particular importance for spacecraft, since it is fundamental for enforcing precision and also for
guidance, as short propulsive maneuvers must be executed with extremely accurate alignment [28].
A second order sliding mode (two-sliding mode) algorithm, known as super-twisting (STW) [27],
is considered for the attitude tracking. The STW algorithm designs a continuous control law,
which steers to zero in finite time both the sliding output and its first time derivative. This continuous
controller is suitable for the actuation system related to the attitude dynamics (reaction wheels).
Moreover, since the STW algorithm contains a term that is obtained as the integral of a discontinuous
component, the chattering is strongly attenuated.

The input uω = MRW ∈ R3 is defined in accordance to the STW algorithm, [27], as follows

uω = −λ|σω |
1
2 sgn(σω) + vω ,

v̇ω =

{
−uω if |uω | > UM ,

−αsgn(σω) if |uω | ≤ UM ,

(20)

where the control parameters λ, α, and UM have to be chosen as specified in [27] and, for this specific
case study, in [25].

The sliding output for the super-twisting controller is defined as

σω = ωB + Cωδq13 (21)

with Cω ∈ R3,3 a positive definite matrix. The vector δq13 is evaluated starting from the desired
attitude vector, evaluated as in Equation (17)

δq13 = ΣT(qd)q (22)

where Σ(qd) ∈ R3,4 is defined from the matrix Σ(q) (Equation (9)) including qd definition.

5. Numerical Simulations

As already mentioned in the introduction, the idea of this paper is to combine APF and SMC
controllers and to replan online the trajectories in presence of obstacles, verifying the computational
effort required for these algorithms. The simulation model is tested for a generic Chaser–Target
combination involved in sequential flight phases, as in Figure 1. The Chaser is considered in stable
initial conditions along an orbit of height h = 500 km, and the Target center of mass is located at
the origin of the LVLH reference frame, and it is 16 km far from the Chaser. A cubic-shape Chaser
(1.2 m) is considered with an initial mass of 600 kg, as in Table 1. The location of the four waypoints is
summarized in Table 2.



Appl. Sci. 2017, 7, 1042 12 of 16

Table 1. Chaser and Thruster characteristics. RW: reaction wheel.

Parameter Symbol Unit

Initial mass mc0 600 kg
Initial inertia tensor I0 144I3 kgm2

Zero shoot time of thrusters tsp0 0.02 s
Maximum thrust Tmax 1 N

Specific impulse of thrusters Isp 220 s
RW Maximum torque gmax 1 Nm

RW Inertial tensor IRW 0.1I3 kgm2

Table 2. Waypoint LVLH position.

Waypoint Description
Position (m)
[X, Y , Z]LV LH

S0 Initial simulation waypoint [−16,100, 0, 3000]
S1 Initial waypoint for Hohmann [−16,000, 0, 3000]
S2 Terminal waypoint for Hohmann/Initial waypoint for Radial Boost [−3000, 0, 0]
S3 Terminal waypoint for Radial Boost/Initial waypoint for Straight Line [−500, 0, 0]
S4 Terminal position [xtarget, ytarget, ztarget]

The proposed approach is compared with the combination of the APF and Linear Quadratic
Regulator (LQR) controller for the first phase of the maneuver. An LQR controller is designed for the
position dynamics, instead a constant attitude (i.e., the Body and LVLH frame aligned) is considered for
this combination. External disturbances and sensor noise are included for both cases. The maximum
value of the thruster errors (bias and random values) is equal to the 10% of the maximum thrust.
The gain matrix of the LQR controller is set considering an ideal impulsive Hohmann maneuver.
For this reason, the end point of the maneuver is about −8 km, as in Figure 6. A PWM behavior is not
evaluated for the LQR controller, so a continuous thrust is assigned. If an obstacle is included in the
evaluation of the first maneuver, we can observe that, even if the safety radius is 1000 m, the position
dynamics is deviated only when the Chaser is inside the safety zone, with a speed on the X axis that is
about 6 m/s. A zero altitude is reached as desired.
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Figure 6. First maneuver highlights for the LQR (Linear Quadratic Regulator) controller. (a) First
Maneuver: VBAR − RBAR plane. The red circle represents the obstacle (dotted line = safety radius,
red circle = obstacle center). (b) Relative velocity.

The ideal maneuver profile described in both Figure 1 and Table 2 is affected by three obstacles
that the Chaser shall safely avoid, thanks to the artificial potential field algorithm definition. Obstacles
are defined considering a center of application and a safety radius, as described in Section 3. As first
approximation, all the obstacles are considered in a fixed known position. Their location is summarized
in Table 3 and different safety radii are considered.
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Table 3. Obstacles LVLH position.

Obstacle Id. Radius (m) Position (m)
[x, y, z]LV LH

OBS #1 650 [−10,000, 0, 1500]
OBS #2 150 [−2800, 0, 0]
OBS #3 50 [−2100, 0, 200]

The simulated maneuver is depicted in Figure 1. The resulting maneuver is substantially different
from the nominal one (Figure 1) because the Chaser deviates its path from the ideal one to avoid
obstacles along the nominal path. The ellipsoidal shape of the radius of influence of the obstacles is
due to the axis scaling.

The three phases of the maneuver are separately discussed. In the first part of the maneuver,
a single obstacle is considered. A PWM behavior can be observed in the thrust variations and the
sample time of the thrusters switching on is set equal to 1 s, to reduce the fuel consumption due to the
combination of APF and SMC. Usually, the SMC frequency is very high (close to infinity) to obtain
good performance, but, in our case, we reduce the frequency of SMC to take into account the hardware
limitations and to reduce the fuel consumption. Concerning Figure 7c, the relative quaternion has
peaks and discontinuities because the APF algorithm changes the desired attitude, in accordance to
Equation (17), when the Chaser is close to the obstacle. In the second phase, Figure 8, two obstacles
with different safety radii are included, to evaluate the performance of the APF algorithm. In that
case, we can observe that the Chaser is moving few meters inside the area of the first obstacle of
the maneuver delimited by the safety radius. This is due to the value of the repulsive gain kr,i of
Equation (12) related to the obstacle. Even if the maneuver is executed in safely manner, a more
suitable tuning of this gain is required to completely satisfy the requirements. If an adaptive gain
is chosen, better performance could be observed in proximity of obstacles. In the final approach
maneuver, Figure 9, the desired positions are defined in accordance to the cone geometry where the
maximum amplitude of the cone is r0 = 1 m at the beginning of the maneuver and the final Rbar is
r f = 0.05 m. No obstacles are considered because the Chaser is too close to the Target. Different
switching frequencies are chosen to reduce the fuel consumption. All the constraints are satisfied, even
if a reduced frequency is considered in the first part of the forced motion.
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Figure 7. Cont.
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Figure 7. First maneuver highlights for the SMC controller (sliding mode controllers). (a) First
Maneuver: VBAR − RBAR plane. (b) Relative velocity. (c) Relative quaternion. (d) Thrust profile.
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Figure 8. Second maneuver highlights for the SMC controller. (a) Second Maneuver: VBAR − RBAR

plane. (b) Relative velocity. (c) Relative quaternion. (d) Thrust profile.
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Figure 9. Third maneuver highlights for the SMC controller. (a) Third Maneuver: VBAR − RBAR plane.
(b) Relative velocity. (c) Relative quaternion. (d) Thrust profile.

6. Conclusions

In this paper a guidance algorithm based on the theory of artificial potential fields is proposed.
This method is combined with sliding mode techniques for both the control of position and attitude for
real time space applications. A complete rendezvous maneuver is analyzed, in presence of obstacles.
A “quasi-flyable” six dof simulator is considered for the validation of the proposed algorithms,
in which both the ground and space segment are implemented in C language. Good results are
obtained and the efficiency of the algorithms, also in terms of the computational effort, is proven.
In future works, adaptive attractive and repulsive gains of the potential fields will be considered to
satisfy the strict requirements of the maneuver and of the required safety. Moreover, dynamic obstacles
will be considered. Experimental tests will be performed to prove the efficiency of the combination
APF and SMC algorithms.
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