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Abstract

Advanced plate models with variable kinematics for steady state hygrothermal analysis of composite
laminates are proposed. The refined models discussed include both Layer-Wise (LW) and Equivalent
Single Layer (ESL) models, and the Carrera Unified Formulation (CUF) is used. The Mized Interpo-
lation of Tensorial Component (MITC) method is applied to a nine-node element to contrast the shear
locking phenomena. The governing equations are derived from the Principle of Virtual Displacement
(PVD) taking into account elastic mechanical, thermal and hygroscopic effects. Through-the-thickness
variations of temperature and moisture concentration are calculated by solving the Fourier equation
and the Fick law, respectively. Cross-ply plates with symmetrical lamination and simply supported
edges subjected to bisinusoidal thermal/hygroscopic loads are analyzed considering various thickness ra-
tios. Results obtained with assumed linear and calculated temperature/hygroscopic profiles are compared.
Variable kinematics with a variety of thickness functions are compared regarding both accuracy and com-
putational costs. The results show that all the kinematics proposed can approximate the transverse shear
stress distribution through the thickness with satisfactory accuracy when sufficient expansion terms are
adopted. In some cases, miscellaneous expansions can lead to significant reductions in computational

costs. The results here presented can be used as benchmark solutions for future works.

Introduction

Laminated structures like composite plates have been widely used in aerospace engineering. Such
structures often undergo environmental conditions, e.g. high temperature, and humidity. Hygrother-
mal effects can lead to the reduction in both constitutive properties and strength of fiber reinforced
polymer composites [I], 2]. The possible high hygrothermal residual stress state is also a serious issue in
the design of laminated composite structures. Efficient mechanical models with the ability to capture
the hygrothermal elastic behaviors of multilayered structures are of great significance. Closed form
analytical solutions are only available in several cases, making numerical methods such as FEM the
first choice for engineering applications.

Studies on thermal elastic behaviors of composite laminates have been reported by many authors. With
the linear temperature profile assumption, Kant [3] and Khdeir [4] considered this problem with first-
order theories. The significance of mixed models for accurate estimations of transverse shear/normal

stresses under thermal load has been remarked in [5] and [6].



The thermal conduction in solid media can be described by the Fourier equation, which can be solved by
adopting the methodology proposed by Tungikar [7]. Concerning thermal elastic analysis of composite
laminates, Carrera [§] exploited the partially coupled thermal elastic governing equations and discussed
the influence of through-the-thickness variation of temperature by comparing the thermal mechanical
response of laminated anisotropic plates; in particular, assumed profiles and calculated profiles obtained
by solving the Fourier conduction equation were used. For thin laminated structures, calculated steady
state through-the-thickness temperature profiles can be very close to an assumed linear one, while this
is not the case for thick laminates [8]. Fully coupled thermo mechanical analyses on laminated plates
can be found in [9].

Following Fourier’s work [10], Fick pointed out that the diffusion of moisture in solid media follows
the same rule as heat does [11]. Moreover, researchers pointed out that thermal conduction coefficients
and humidity diffusivity depend on the temperature [2]. Generally speaking, there is an interaction
between thermal environment and moisture diffusion|2], but the temperature approaches equilibrium
much faster than moisture concentration [12 13]. By considering the analogy between thermal conduc-
tion and moisture diffusion, Szekeres et al. [I4] [I5] suggested that the methodology used to solve the
Fourier equation [7] can be extended to hygroscopic problems, which has been the basis of many later
works.

Benkeddad [16, [I7] studied the moisture diffusion process in composite plates by taking only the thick-
ness dimension into consideration, leading to a 1D diffusion problem, and the moisture concentration
at a given moment was determined by finite difference method. A similar methodology was adopted for
the analysis of transient hygroscopic stresses in unidirectional laminated composite plates with cyclic
and asymmetrical environmental conditions by Tounsi et al. [I8-21]. Abbas [22] and Boukhoulda [23]
introduced the Laplace transform to obtain analytical solutions for transient moisture concentration
problems. Patel [24] and Lo et al. [25] considered the variation of material properties due to tempera-
ture and moisture variation for the static response analysis of multilayered plates.

Carrera Unified Formulation (CUF) provides a methodology to develop refined models for the analysis
of laminated composite structures, enabling FEM models to have variable kinematics of arbitrary order.
Many advanced FEM models have been proposed and applied but not restricted to multifield problems.
Carrera [20], 27] proposed advanced finite elements for composite laminates based on CUF using both
Equivalent Single Layer (ESL) and Layer-Wise (LW) approaches. Trigonometric trial functions were

used in combination with Ritz method in [2§].



In authors’ previous works [29], CUF was applied to thermoelastic problems of laminated structures,
and their static bending responses under both assumed linear and calculated temperature profiles,
obtained by solving the Fourier equation, were reported. The Mixed Interpolation of Tensorial Com-
ponents (MITC) [30-33] method was implemented to alleviate lockings. Such an MITC9 element with
a variety of thickness functions have been used to investigate the static response of cross-ply laminated
plates and shells [34].

In this paper, considering the analogy between moisture diffusion and thermal conduction, the approach
that has been successfully used in solving heat conduction problems [29] is extended to steady state
hygroelastic problems. This study mainly focuses on the performance of variable and miscellaneous
kinematics of plate elements in the analysis of hygrothermal problems. For simplicity, it is assumed
that the thermal conductivity and mass diffusivity do not change with temperature. Both the thermal

and hygroscopic problems are restricted to steady state conditions.

Geometrical and constitutive relations

The reference system and the geometry of the multilayered plate are given in Fig.
Considering a multilayered structure, where the index k£ indicates the layer, the geometrical relations

can be written as:
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The explicit form of the introduced arrays, that contain differential operators, is:
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Considering the expansion caused by the increase of temperature and moisture absorption, the strain

vector can be expressed as follows:
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where «;; are the thermal expansion coefficients, and /ij the moisture expansion coefficients, which in
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0 indicates the increment of temperature, and 7 the moisture absorption. The stress-strain relations

an explicit form are:
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where )\]Ij and AF are the vectors of thermomechanical coupling coefficients, u’; and pk the vectors



of hygromechanical coupling coefficients, which in an explicit for are:

T T
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The material coefficients Cj; depend on the Young, shear, and Poisson moduli, see Reddy’s book [35].
The matrix of materials coefficients, as written in Eq. [0 has been already rotated from the material

reference system to the global reference system (z,y, z).

Variable kinematics based on Carrera Unified Formulation

In the framework of CUF, the displacement vector u = {u,v,w} can be expressed utilizing expansion

functions as follows:

u(r,y,2) = Fo(2)uo(z,y) +F1(z)u(z,y) +---+ Fy(2)un(z,y)
v(z,y,z) = Fo(z)vo(z,y)  +Fi(2)v(z,y) +- + Fy(z)on(z,y) (11)

w(z,y,2) = Fo(2)wo(z,y) +Fi(z)wi(z,y) +-+ Fn(z)wn(z,y)

In a more compact form, CUF can be expressed in the following form for ESL models:
5u($7 y7 z) = FT(Z)(SUT(J;7 y)? u('r? y7 Z) = FS(Z)US(:U? y) 7—?8 = O? 17"'7N (12)
CUF-based LW models can be written as:

6uk(xay7 Ck) = FT(Ck)éui(:E?y)a Uk(wvyaCk) = FS(Ck)u’;(xvy) T,8 = 07 17 7N (13)

where 2 is the in-plane domain, and du indicates the virtual displacement associated with the virtual
work and k is the index of a layer in the laminated plate. FT(k) and F. s(k) are the so called thickness
functions whose independent variable is either z defined in the whole thickness domain z € [—%, %] for

ESL models, or (i defined in each layer domain (; € [—1, 1] for LW models. Depending on the type of



expansion functions, N may represent the order of the expansion or the number of expansion terms. g
represents the unknown primary variables which are the coefficients of corresponding expansion terms,
whose independent variables are x and y. 7 and s are the indexes of the expansion terms, and the

Einstein summation rule is used.

Higher-Order Theories

In the case of Equivalent Single Layer (ESL) models, Taylor series expansions can be employed as

thickness functions:

u= Fyuy + Fiuy + ... + Fynuy = F; ug, s=0,1,...,N (14)

Fo=2"=1, Fi=2'=2 ..., Fy=2" (15)

Classical models, such as those based on the First-Order Shear Deformation Theory (FSDT) [36] [37],
can be obtained with an ESL approach with N = 1, by imposing a constant transverse displacement
through the thickness via penalty techniques. Also, a model based on the hypotheses of Classical
Lamination Theory (CLT) [38] can be expressed employing CUF by applying a penalty technique to

the constitutive equations to impose null transverse shear strains.

Refined ESL models based on trigonometric and exponential series

In the framework of ESL models, if trigonometric sine series with a constant term are adopted, the

displacement vector can be written as follows:
nZ nwz
u(@,y,2) = uo(w,y) +sin (5°) wi(wy) + .+ sin (70) un(e,y) (16)

where h is the thickness of the whole laminated structure and n is the half waves number. If the linear

Taylor term is considered, the displacement vector is

u(@,y,2) = wol@,y) + zua(@,y) +sin () ualwy) + o tsin (00 ) wnia(ey) (A7)



For trigonometric cosine series,
T2 nmwz
w(@,y,2) = (@) +cos (5°) wi(w,y) + .+ cos (1) wn(a,y) (18)
and with the linear term,

Tz nmnz
u(@, . 2) = wo(@,y) + 2wa(@,y) + cos (5°) wa(e,y) + o tcos (0 ) una(wy) (19)

Considering the complete trigonometric series,

. /Tz Tz . /nTz
u(z,y,z) = up(z,y) + sin (?) ui(z,y) + cos (7> wa(z,y) + ... +sin <T> uan—1(z, )+

(20)
nwz
+ cos (T) usN (2, Y)
If the linear contribution is considered,
z
u(@,y,2) = uo(w,y) + 2 wi(,y) +sin () us(e,y) + cos (5°) ua(@,y) + ot
. /nTz nwz (21)
+ sin (T) uan (z,y) + cos (T> uon+1(2,y)
If exponential series are employed, the displacement field can be expressed as:
U(I‘, Y, Z) = ’U,O(ﬂf, y) + e(Z/h) u1 (1), y) + ...+ e(nz/h) ’U'N(‘T7 y) (22)
and adding the linear term one obtains
’U,(.T, Y, Z) = UO(’ra y) +z Ul(l‘, y) + e(Z/h) UQ(.T, y) + ...+ e(nz/h) uNJrl(xa y) (23)

Refined ESL models with Murakami zig-zag function

According to Murakami [39], a zig-zag term can be introduced into Eq. leading to refined ESL
zig-zag models,

u= Fyuy + ... + Fy uny + (—1)ka’le. (24)



Subscript Z refers to the Murakami zig-zag function. Refined zig-zag models can be obtained by adding

the zig-zag term to the Taylor polynomials, trigonometric or exponential series expansions.

Refined LW models based on Legendre polynomials

If Legendre polynomials are adopted, the displacement field defined for a layer k can be expressed as
b= Fulf + Fyuf + Foul = Fo b s=tbr, r=2,.,N. (25)

The expansion terms are

:P0+P1 szpo—Pl

F; - -
t 92 ) 9 )

F,=P, — P, (26)

Pj is the jt-order Legendre polynomial defined in the (j-domain: —1 < ¢, < 1. The displacements on
the top (¢) and bottom (b) surfaces are used as unknown variables and one can impose the following

compatibility conditions at the interfaces:
uf =up ™, k=1,N,— 1. (27)

The employment of hierarchical Legendre polynomials as basis functions for the development of variable
kinematic models was presented by Szab, Dster, and Rank [40]. Other implementations of Legendre

polynomials in the framework of CUF can be found in [41H43].

Refined LW models adopting Sampling Surfaces method (SaS)

Kulikov [44H46] proposed the Sampling Surfaces method (SaS) as an LW model based on Lagrange
interpolation polynomials. Within each layer, an arbitrary number of sampling surfaces parallel to
the middle surface are introduced. Each SaS is located at a Lagrange interpolation point, and the
displacements at these points are taken as primary unknowns. The present work implements the SaS

technique for the plate element based on CUF. In SaS, the displacement field can be defined as

ub = Fyul + Fiul + ... + Fyul, = Foub, s=0,1,...,N. (28)



Fs(Cx) (thickness function) is a Lagrange polynomial of order N,

TG ¢
k — Gk;
i=0,i#s ks ki
Ck, are located at the prescribed interpolation points. (i, = —1 and (3, = 1 correspond to the top and

bottom positions of the k" layer, respectively.

Through-the-thickness variation of temperature and moisture concen-

tration

The temperature variation through the thickness can be obtained by solving Fourier heat conduction
equation as described in [7] for multilayered plates. If the temperature on the top and bottom surfaces
are given, a priori assumed linear temperature variation profile through-the -thickness can be obtained
as follows:

0 — O h h h

0(z) =0y + ——(2+3) z€[-5 5] (30)

where the subscripts b and t refer to the bottom and top surfaces, respectively. It is evident that the
temperature continuity between two layers can be naturally guaranteed in this manner. Similarly, an

assumed linear moisture concentration profile could be described as:

m-m . h hoh
(24 5) -]

5 (31)

n(z) =+

Alternatively, a more physically meaningful profile can be obtained by solving Fourier heat conduction
equation for temperature variation, or the Fick law for moisture concentration distribution. In mul-
tilayered plate structures, for the k** homogeneous orthotropic layer, the Fourier differential equation

for heat conduction problems reads:
Ki—+Ky-—+Kj-— =0 (32)
x Y

where K¥, K% and K% are the thermal conduction coefficients in material coordinates (1,2,3) for the
k" layer and will be rotated to the general reference system (z,v, z). In the k** layer, K¥, K% and K%

are assumed to be constants. The relationship between the temperature 8 and the transverse normal

10



heat flux ¢, is described by

k 1 00

For multilayered structures, continuity conditions of # and ¢, holds in the thickness direction at each

layer interface, reading:
9k:0§+17 q];t:ql;lj_l kzl,“‘,Nl—l (34)

where N; is the number of layers in the composite laminate. In this work, the governing equation and

boundary conditions are satisfied in each layer by assuming the following temperature field:

where, for the cases studied in this paper, o has a bisinusoidal form as follows:

O (z,y) = sin($) : sin(”%y) (36)
For the solution of the Fourier heat conduction equation, the reader can refer to the authors’ previous
works [29], [47], 48]. Calculated moisture concentration profiles can be acquired by solving the Fick law,
which postulates that the flux J goes from regions of high concentration to areas of low concentration,
with a diffusion rate that is proportional to the concentration gradients (spatial derivatives). For a
steady state plate structure, the Fick second law can be expressed as

(0%
28y2

kaQﬁ .

82
] §5 =0 (37)

Di-— +D

D
L 92 +

where D¥, D5 and D3 are the diffusion coefficients (diffusivity) and 7 is the moisture concentration.

Accordingly, moisture concentration 1 and diffusion flux through the thickness J, can be related by

on
k _ pk
Jb = D! (38)

and the continuity of n and J, at layer interfaces can be imposed as

e =agptt, Jhk =gk k=1, N -1 (39)

11



Similarly to the thermal case, the 3D hygroscopic field can be described as

n(@,y,2) =na(z) - na(z,y) (40)
If a bisinusoidal load is imposed,
. mTwx, . N
o (e,y) = sin(*o) - sin(* ) (41)

As discussed above, the Fick law can be solved in analogy with the Fourier heat conduction equa-
tion under given hygroscopic boundary conditions on the top and bottom surfaces of the laminated

structures.

MITC9 finite element and governing equations

This section presents the derivation of the finite element stiffness matrix based on the Principle of
Virtual Displacement (PVD) in the case of multilayered plates under hygrothermal environmental
load. A nine-node element adopting the Mixed Interpolation of Tensorial Component (MITC) method
is formulated in the framework of CUF. The displacement vector interpolated on the element nodes

utilizing Lagrangian shape functions N; reads

(51,147—:.7\/VZ'(5U71.7 uS:NjUSj Z',jzl,n- ,9 (42)

Us, and 0U;, are the nodal displacement vector and its virtual variation, respectively. Therefore, the
strain expression (Eq. (3)) becomes

€y = FsDpN;Us;

(43)

€n = FsDypoN;Us, + Fs  N;Us,
To contrast the shear locking of thin plates, a specific interpolation strategy according to MITC method
is used to derive the strain components on the nine-node element, and the corresponding interpolation
points (tying points) are illustrated in previous authors’ works related to the use of the MITC9 element
based on the CUF [49-52].

Considering the constitutive equations (Eq. ) and the strain vectors (Eq. ), scalar temperature

12



field 6 as well as moisture concentration field 7, by applying PVD, one obtains the expression of the

internal work for partially coupled hygrothermal problems:

OLint = //(5ekT0'dedz = //[56’;T(0'£u - 0';;9 - O';fn) + 6eﬁT(aﬁu — ok, - Uﬁn)]dﬁdz = 0Legt
Q Ay Q Ay
(44)

where Ay is the thickness domain of layer k of the plate. §L;,: represents the variation of the internal
work, while §L..; is the external work. Noting that in this work no mechanical loads are considered,
which means that § L¢;; = 0, and the internal work 0 L;,; is caused purely by the mechanical expansion

related to temperature rise and moisture absorption, thus the following expression can be obtained:

/ / (et ok, + ek ok )ddz = / / (ek" aky + 5eb ahy)d0dz + / / (et ok + seb ok VdQdz
Q Ag Q Ay Q Ag
(45)

By substituting the constitutive equations (Eq. ), the geometrical relations (Eq. ) after the appli-
cation of MITC method, the displacement expression (Egs. and ) and the FEM discretization

(Eq. (42)), the following governing equations can be obtained:
SUY . KUY = O+ HYT (46)

The 3 x 3 matrix Kq]fZSij is the fundamental mechanical nucleus, which is the core unit of the stiffness
matrix according to CUF, and its explicit expression is given in [53] for shells (plate is a particular case
of shell for radii of curvature tending to infinite). The stiffness matrix of the structure can be obtained
by applying the Einstein summation rule, then assembling the fundamental nucleus at laminate level
in the framework of either ESL or LW models and at element level considering the nodes. Finally, the
global stiffness matrix is assembled using the connectivity matrix. @*% and H*™ are the equivalent

thermal and hygroscopic load vectors, and their explicit expressions are given in Eq. and Eq. ,

respectively:
ek AW+ MW
o — @Sﬂ' =3 Ak JekTWi?y Y. Jekrm?x (47)
o e Ok 0

13



Hy™ ug T TW 4 T
HF — HET S = 8 bW 4l g, (48)
Hhi M§ J'rykr,zvvi??
Wi, Wi o, Wi are the integrals in the in-plane domain € and J k7 and J*™% are the integrals defined

within the through-the-thickness domain Ay of the layer,

Wy = / Nifo dzdy, W, = ONig, dady, W, = i drdy (49)
Q ’ Q ax ’ Q ay
Fr
JObT = / FOpdz, JOT% = / LT (50)
A Ay, 0z
Wi = / Ning dxdy, W, = / g dady, W, = / By W o1
Q ) QO ox ’ Q 8y
JF;
JkT — / Frpdz,  J™T7 = / 5, dz (52)
Ak Ak z

# and 7 denote thermal and hygroscopic cases, respectively. F refers to a general expansion term in
the displacement field according to CUF, and N; represents the shape function corresponding to node

i in the finite element. For more details, the reader can refer to [26], 29, [53].

Results

The numerical analysis of this work focuses on investigating the capability of a variety of models with
variable kinematics in the analysis of cross-ply symmetrically laminated multilayered structures under

hygrothermal environmental loads. This section consists of two numerical cases:
e A three-layer (0°/90°/0°) square plate under thermal load;
e A three-layer (0°/90°/0°) square plate under hygroscopic load.

Acronyms are used to indicate the various models used. For ESL, Table [1| shows all the cases used in

this paper.

14



For example, “ES2C2” and “ET1Exp2Z” refer to the following expansions,

. Tz Tz . 2mz 2wz
uF(z,y,2) = ulg(%3/)+Sln(?)ulf(l‘7y)+COS(W)U§(%Q)+Sln(7)u§($ay)+COS(T)U£§(~’U,y) (53)

z 2z
uF(z,y,2) = uf(z,y) + 2uf(2,y) + erul(z,y) + en uf(z,y) + (—1)"Geuf, (54)

The subscript a denotes the adoption of assumed linear temperature or moisture concentration profiles,
whereas ¢ indicates that through-the-thickness distributions are calculated by via Fourier or Fick laws.

LW models are indicated as follows:
e “SaSn” indicates a Sampling Surfaces model with n interpolation points.
e “LGDn” indicates a model adopting Legendre polynomials up to the nt* order.

Analytical solutions are used in some cases and obtained via the Navier method. In the following tables,

Negp is indicated and represents the expansion terms of the model.

Square orthotropic symmetrically laminated plates under thermal load

Bending of a simply supported cross-ply square composite plate under thermal load is analyzed. The
reference solutions were proposed by Bhaskar et al. [54], in which thermal analysis was carried out
with assumed linear temperature profiles. The composite square plates analyzed have three layers with

lamination sequence of (0°/90°/0°). The 3D temperature field is given by

6(,y,2) = 0(2) - sin(*——) sin(“57) (55)
with bisinusoidal in-plane distribution (m = n = 1). The temperature variation through the thickness
is depicted with 0 4(z), and the thermal boundary conditions are assumed to be éA(%) = 1K, éA(—%) =
-1K. The physical properties of the composite lamina are given in Table 2 in which L and T refer to
the direction parallel and perpendicular to the fiber direction, respectively. The geometrical dimensions
are a = b = 1, laminates with a/h = 2, 10 and 100 were studied, and the three layers have the same
thickness. Deflections and stresses are adimensionalized as,

- w 5 = (eF7) 5 0ij
z — 1w — iJ
har4S?’ !

u

S=ua/h (56)

Erarf’ - Erarfa’

15



where i,j = z,v, 2.

First, a mesh convergence study was considered with LGD4, a/h = 100, and an assumed linear tem-
perature profile. According to the results shown in Table [3] a mesh of 10x10 is sufficient to ensure
the convergence of FEM solution with satisfactory accuracy. The results also show that the adopted

MITC9 element is locking free for thin plates.

LW models were considered first. Table [4] presents the obtained displacement and stress values. More-
over, Negp indicates the number of expansion terms of each model. The calculated temperature variation
through the thickness is in Fig. 2] Stress distributions through the thickness are given in Fig. 3] The

influence of the expansion terms is shown in Table [d] The results suggest that:
e A perfect match with [54] is found.

e As known, an assumed linear variation of temperature through the thickness leads to satisfactory
results in the case of a thin plate. On the other hand, such an assumed profile should not be used

for thick plates.

Various ESL models were then investigated with calculated temperature variation profiles. ETn models
were first assessed as in Table Since FSDT is not a complete linear case, its number of expansion

terms was denoted as “2*”. It can be stated that:

e For thick plates, nine expansion terms are necessary, while for moderate thick and thin plates,

six terms are enough.

e Compared with the computational costs of LGD4 and SaS5, the present ESL kinematics are more

efficient for moderate thick and thin plates.
e More often than not, FSDT failed to provide proper displacement and stress evaluations.
ESL models with exponential expansions are considered in Table[6] It can be observed that:
e Stress results are less accurate than the previous cases.

e The addition of the linear Taylor term gives some improvements, but still unsatisfactory accuracies

were obtained.

16



Table [7] show the results from ESL trigonometric expansions. The results show that:

e For thick plates, o,, requires ES5C5Z or ET1S3C3Z. However, the latter is preferable due to

fewer expansion terms required.

e For moderately thick and thin plates, ESnCnZ can provide desired approximations but are more
cumbersome than ETnZ. The addition of a first-order Taylor term, i.e. using ET1SnCnZ, the

results improve to a great extend. In particular, ET1S1C1Z gives good accuracy.

Models shown above, are compared in Fig.[d] The transverse shear stress 7, is considered for different

thickness ratios. It can be found that:

e The use of SaS5 (as well as LGD4) is recommended to capture the transverse shear stress distri-

bution through the thickness.

e As known, the Murakami zig-zag function can improve the transverse shear stress distribution in

ESL models.
e Stress distributions obtained with exponential theories are less accurate than the previous cases.

e For thick plates, 0., requires the addition of the linear Taylor term, when trigonometric expansions

are used.

In general, the results obtained have demonstrated that ETnZ and ET1SnCnZ models perform ex-
tremely well. Based on the study above, ETnZ and ET1SnCnZ are chosen for the hygrothermal

analysis in the following study cases.

Square orthotropic symmetrically laminated plates under hygroscopic load

Square cross-ply laminated plates with stacking sequence (0°/90°/0°) subjected to hygroscopic loads are
analyzed. The dimensions are a = b = 0.1m, a/h = 2,a/h = 10, and a/h = 100. The mechanical and
hygroscopic properties of the lamina are listed in Table 8 and Table [J] respectively. Moisture expansion
coefficients 311, f22, and 33 were retrieved from [55]. Moisture diffusion coefficients Dy, Dag, and D33

were chosen and set under temperature 300 K as in [13]. Hygroscopic loads are defined as:

1y, 2) = na(2) - sin(*) sin(Y) (57)
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where 14(z) describes the moisture concentration profile, m = n = 1, and the moisture concentration

conditions are 74(—%) = 0 and na(%) = 1%.

LW models were considered first. Moisture concentration profiles are shown in Fig. Displacement
and stress distributions are presented in Fig. [6] in which for the convenience of illustration, the stresses
are amplified by 50 times in the plots when necessary, denoted by “x50”. Table summarizes the

displacement and stress evaluation on a specific set of monitoring points. The results show that:
e LW models provide highly accurate results.

e As seen in the thermal case, for moderately thick and thin plates, linear profiles are enough. On

the other hand, thick plates require calculated profiles.

ETnZ and ET1SnCnZ were then considered, as shown in Fig. [7] The results suggest that, in the case
of hygroscopic loads, these models are less accurate than in the case of thermal loads, and LW should

be preferred.

Conclusions

In the framework of the Carrera Unified Formulation, it is possible to integrate various and miscellaneous
approximation theories to obtain refined and advanced models with various kinematics and an arbitrary
number of expansion terms for the analysis of multilayered structures. In this paper, steady state
mechanical responses of composite plates under thermal/hygroscopic loads are studied with CUF-based
variable kinematics adopting LW and ESL approaches, respectively. A MITC9 element is employed to
guarantee locking free FEM analysis. Both assumed linear temperature/moisture concentration profiles
through the thickness, and calculated variations (by solving the diffusion law) are considered. The
analogy between heat conduction and moisture diffusion plays a key role when extending the analysis
methodology of thermoelastic problems to hygrothermal ones. Hygrothermal analysis has been carried
out on multilayered composite plates. Transverse displacement and stresses are reported for various
aspect ratios. The convergence rates of various kinematics are compared. Based on the above work,

some conclusions can be drawn as:

1. With a sufficient number of expansion terms, most of the kinematics studied can achieve a good

approximation of displacements and stresses with satisfactory accuracy, even for thick plates, and
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the expansion number needed depends on the cases studied.

2. For laminates with various aspect ratios, the numbers of expansion terms necessary to obtain

converged numerical results are usually different, and thick laminates need more expansion terms.

3. When applied to hygrothermal analysis, classical theory FSDT gives incorrect results even for

thin laminates.

4. For thin laminates, linear variation of temperature/moisture concentration through the thickness
is a sufficient assumption, whereas for thick layered plates this assumption can lead to over
estimated stress evaluation compared with results using profiles obtained by solving Fourier heat

conduction equation or Fick Law.

5. For the hygrothermal cases studied, LW models employing Legendre polynomials of the fourth-
order (LGD4) and the Sampling Surfaces method with five interpolation nodes (SaS5) can guaran-
tee continuous transverse shear stress distribution through the thickness for composite laminates

with a broad range of length to thickness ratios (from 2 to 500).

6. Variable ESL kinematics ETnZ and ET1SnCnZ have been tested. It has been demonstrated that
when a sufficient number of expansion terms are used, with the help of the Murakami zig-zag
function, ETnZ, and ET1SnCnZ are capable of capturing transverse shear stress distribution
through the thickness of the three-layer plates under symmetrical load. In some cases, these two
classes of ESL kinematics can be more computationally efficient than LW models with comparable
accuracy. However, for the three-layer plates under unsymmetrical load, ESL models are less

efficient in capturing the zig-zag effects.

7. Compared with ESL models, LW models can provide results with better accuracy in approximat-

ing the through the thickness distribution of transverse shear stresses in composite laminates.

A companion work to this one is devoted to the modelling of doubly-curved composite shells with
antisymmetric lamination subjected to hygrothermal loads. In that paper, very similar conclusions
about the accuracy of the models used are drawn.

Future works should be devoted to the axiomatic/asymptotic analysis of the influence of each term and

the definition of Best Theory Diagrams, as in [56].
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Table 1: Expansion terms of the ESL models.

20 22V (=1 sin (Z%) — sin (%) cos (%r) — CoS (MTW) ez 5 enz/h)

ETn N4 v X X X X
ETnZ 4 Vv 4 X X X
ESn 4 X X 4 X X
ESnZ N4 X N4 4 X X
ECn V4 X X X V4 X
ECnZ 4 X 4 X v X
ESnCn N4 X X 4 Vv X
ESnCnZ V4 X v Vv Vv X
ETnSnCn v v X Vv v X
ETnSnCnZ +/ V4 v V4 Vv X
EEXPn 4 X X X X Vv
EEXPnZ 4 X 4 X X v
ETnEXPn N4 v X X X Vv
ETnEXPnZ / v v x x v

Table 2: Assumed mechanical /thermal properties of the lamina [54].

Er/Er Grr/Er Grr/Er vir/ver ar/or  Kp/Kr
25 0.5 0.2 0.25 1125 36.42/0.96

Table 3: Mesh convergence study, displacement and stress evaluation, LGD4, composite plates with
a/h = 100 subjected to thermal load. Assumed linear temperature profiles are used.

a/h Mesh w Ozx Oz
G5B G5 04
4x4 10.26 981.7 7.166
6x6 10.26 972.6 7.115
100 8x8 10.26 969.5 7.097
10x10 10.26 968.0 7.088

Bhaskar[54] 1026 9654  7.073
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Table 4: Displacement and stress evaluation of three-layer composite square plates with various a/h
subjected to thermal load, obtained with LW models. Assumed linear and calculated profiles are used.

s Model Assumed profiles Calculated profiles Neay
Swo Yoy ton. Yo 1o Yo
SaS4 96.73 1385  64.21 48.88 456.5 30.24 10
SaSh 96.78 1393  63.95 48.85 4879  30.01 13
5 LGD1 89.25 641.8 42.56 44.17 34.58 31.70 16
LGD4 96.78 1393  63.95 48.85 4879  30.01 13
*LGD4 96.784 1389.6 63.823 48.908 488.56 30.009 13
Bhaskar[54]  96.79 1390  63.92 - - - —
SaS4 17.39 1029 60.66 16.40 9494  57.18 10
SaSh 17.39 1029 60.66 16.40 950.5 57.19 13
10 LGD1 17.63 906.7 5878 16.67 811.9 56.35 4
LGD4 17.39 1029 60.66 16.40 950.5 57.19 13
*LGD4 17.392 1026.3 60.540 16.395 947.96 57.070 13
Bhaskar[54] 17.39 1026  60.54 - - - -
SaS4 10.26  968.0 7.088 10.25 967.2 7.084 10
SaSh 10.26  968.0 7.088 10.25 967.2 7.084 13
100 LGD1 10.91 895.7 6.883 1091 894.6 6.880 4

LGD4 10.26 968.0 7.088 10.25 967.2 7.084 13
*LGD4 10.260 965.37 7.0732 10.253 964.55 7.0688 13

Bhaskar[54] 10.26 9654 7.073 - - - -

Variables are evaluated at: §(%, %, %), T(%, %, %), 1o, %, %)

* Navier-type analytical solution.
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Table 5: Displacement and stress evaluation of three-layer composite square plates with various a/h
subjected to thermal load, obtained with ESL models ETn(Z). Calculated temperature profiles are

used.

4/, Model S40 G *6u. Newp

FSDT., 20.36 -281.6 22.10 2%
ET4, 49.30 4114  23.97
ET7. 48.87  493.1  22.11

)
8
2 ET3Z. 50.09 405.1 23.43 5
7
9

ETHZ. 48.75 4440 31.34
ET7Z. 48.79 489.6 31.01

*LGD4, 48.908 488.56 30.009 13

FSDT. 1726 962.7 26.41 2%
ET3. 15.95 9194  34.62 4
ET4. 1593 944.0 34.55 )

ET3Z., 1641 9248 50.44 5
ET4Z. 16.38 948.5  50.02 6

*LGD4,. 16.395 947.96 57.070 13

FSDT., 15.05 1193  3.071 2%
ET3. 10.25  966.8  4.149
ET4, 10.25  967.1  4.149

4
5
100 proz. 1025 9663 6.656 4
5
6

10

ET3Z., 10.25 966.9 6.260
ET4Z. 10.25 9672  6.260

*LGD4, 10.253 964.55 7.0688 13

Variables are evaluated at: §(%, %, %), T(%, g, %), i(O, 516

* Navier-type analytical solution.
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Table 6: Displacement and stress evaluation of three-layer composite square plates with various a/h
subjected to thermal load, obtained with ESL models EExpnZ and ET1ExpnZ. Calculated temperature
profiles are used.

“/,  Model Sw TG, *0u: Newp

EExp3Z. 48.66  429.7  30.22 5
EExp5Z. 48.50  459.0  22.06 7
EExp7Z. 4877 472.6  37.32 9

2 ET1Exp3Z, 4795 4544  24.52 6
ET1Exp5Z., 48774 521.3  31.09 8
ET1Exp6Z, 48.74 482.1  33.37 9
*LGDA4. 48.908 488.56 30.009 13
EExp3Z. 16.38  905.7  58.85 )
EExpbZ. 16.38  941.2  48.90 7

10 EExp7Z. 16.39  948.6  52.27 9
ET1Exp3Z., 16.38 960.8  50.21 6
ET1Exp5Z., 16.39  951.5  51.76 8
*LGD4, 16.395 94796 57.070 13
EExp3Z. 9.705 855.8 17.54 5
EExpbZ. 10.25 9624  5.074 7

100 EExp7Z. 10.25 966.6  6.515 9
ET1Exp3Z. 10.25 970.3 6.254 6
ET1Exp5Z, 10.25 967.3  6.380 8

*LGD4, 10.253 964.55 7.0688 13

Variables are evaluated at: §(%, g, %), T(%, %, %), 1o, g, %)

* Navier-type analytical solution.
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Table 7: Displacement and stress evaluation of three-layer composite square plates with various a/h
under thermal load, obtained with ESL models ESnCnZ and ET1SnCnZ. Calculated temperature
profiles are used.

a/h Model §7I1 Ta'xx ia-xz Nexp

ES1C17Z, 44.69 -11.88 31.46 4
ES3C3Z. 48.62  445.5  40.80 8
ES5C5Z, 48.83  494.2  30.70 12

2 ETISIC1Z. 4866 3751 2444 5
ET1S3C3%Z, 48.84 4678 3067 9
ET1S4CA7Z, 48.83 488.6 30.90 11
*LGD4,  48.908 48856 30.009 13
ESIC1Z.  12.94 4305 58.02 4
ES3C3Z, 1636 943.0 57.05 8
ES5C5Z. 1639 9503 5554 12

10 pris101Z, 1657 8605 5126 5
ET1S3C3Z, 16.39 946.6 53.62 9
ET1S5C5Z, 16.39  950.3 5557 13
*LGD4,  16.395 947.96 57.070 13
ESIC1Z, 04448 -349.0 8452 4
ES3C3Z. 9241 8380 3587 8
ES5C5Z. 1025 9669 6.981 12

100

ET1S1C1Z. 10.34 890.0 6.354 )
ET1S3C3Z. 10.25 964.5 6.611 9
ET1S5C5Z, 10.25  967.1 6.872 13

*LGD4. 10.253 964.55 7.0688 13
Variables are evaluated at: §(%, g, %), T(%, g, %), 4o, g, %).
* Navier-type analytical solution.

Table 8: Mechanical properties of T300/5208 composite lamina

El(GPa) EQ, Eg(GPa) G12, G13(GPa) GQg(GPa) V12,113 93
181 10.3 7.17 2.39 0.28 0.43

Table 9: Hygroscopic properties of T300/5208 composite lamina [13]

Bi1 Ba2, B33 Dyy Dy3, D33
(wt.%H20)~t  (wt.%H20)"!  (mm?/s) (mm?/s)
0 0.006 2.87x1078 1.63x107®
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Table 10: Displacements and stresses of the composite plates with various a/h under hygroscopic load,

obtained with LW models. Linear and calculated moisture concentration profiles are used.

Assumed profiles

Calculated profiles

“/n Model S tor. oo, S0 to.  to,, Ve
102mm MPa MPa, 10%mm MPa MPa,

SaS4 148.2 106.6 9.387 112.1 71.42 5.609 10
SaSh 148.2 106.5 9.461 112.1 71.42 5.609 13
9 SaS6 148.2 106.5 9.462 112.1 71.41 5.612 16
LGD1 144.0 66.79 3.996 108.3 38.04 2.821 4
LGD4 148.2 106.5 9.461 112.1 71.42 5.609 13
*LGD4  148.68  105.56  9.4418 112.11  71.238  5.5973 13
SaS4 73.08 38.75 3.021 72.39 37.97 2.966 10
SaS5h 73.08 38.75 3.021 72.39 37.97 2.967 13
10 LGD1 76.59 34.22 2.167 75.91 33.02 2.146 4
LGD4 73.08 38.75 3.021 72.39 37.97 2.967 13
*LGD4  73.078  38.636  3.0147 72.388  37.859  2.9619 13
SaS4 359.1 34.09  0.3208 359.1 34.08  0.3208 10
SaSh 359.1 34.09  0.3208 359.1 34.08  0.3208 13
100 LGD1 403.1 31.00 0.2370 403.1 30.99  0.2370 4
LGD4 359.1 34.09  0.3208 359.1 34.08  0.3208 13
*LGD4  359.12 33.983 0.32018 359.10 33.976 0.32013 13

Variables are evaluated at: §(%, g, %), J‘(%, %, %), 4o, %, %)

* Navier-type analytical solution.
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Table 11: Displacement and stress evaluation for the composite plates with various a/h subjected to
hygroscopic load, obtained with ESL models ETnZ and ET1SnCnZ. Calculated linear moisture profiles
are used.

Sw fo ig

a zT Tz

/n Model 1073 mm MPa MPa Neap
FSDT, 23.36 1.623 1.381 2%
ET3Z. 112.9 62.44 1.611 5
ET7Z, 112.4 72.04 3.135 9
ET117Z, 112.3 71.67 3.767 13
ET13Z, 112.2 71.67 3.708 15

ET1S3C3Z, 1124 71.64 3.257 9
ET1S5C5Z, 112.2 71.61 3.737 13

*LGDA4. 112.10734 71.238 5.5973 13

FSDT. 70.44 44.93  0.7585 2%
ETHZ, 72.38 37.93 1.790 7
ET9Z,. 72.39 38.01 2.198 11
10 ET117Z, 72.39 38.00 2.272 13

ET1S3C3Z, 72.39 37.89 2.085 9
ET1S5C5Z, 72.39 37.99 2.263 13

*LGD4, 72.388142 37.859 2.9619 13

FSDT. 643.4 49.08 0.08121  2*
ETHZ, 359.1 34.08  0.1976 7
ET9Z. 359.1 34.08  0.2409 11
500 ET117Z, 359.1 34.08  0.2487 13

ET1S3C3Z, 359.1 33.96  0.2290 9
ET1S5C5Z, 359.1 34.08  0.2478 13

*LGD4. 359.099  33.976 0.32013 13

Variables are evaluated at: §(%, g, %), T(%, g, %), o, %, %)

* Navier-type analytical solution.
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Figure 2: Temperature profiles 84 for composite plates of various thickness ratios (a/h), subjected to
thermal load.
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Figure 3: Transverse displacement w and stress evaluation through the thickness of the composite
plates with various a/h ratios subjected to thermal load, SaS5 solutions with both linear and calculated

profiles.
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Figure 4: Transverse shear stress 7., through the thickness of the composite plates with various a/h ra-
tios subjected to thermal load, obtained by ESL models adopting various thickness functions, calculated

temperature profiles are used.
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Figure 7: Transverse shear stress o, through the thickness of the composite plates with various a/h

under hygroscopic load, obtained by adopting various thickness functions, both linear and calculated
temperature profiles are used.

35



400 120
_ ! a/h=2,SaS5, ——+- 4
350 b9 —— - 99— -9 —6—6— ¢ 100 b a/h=2,SaSSZ o i
a/h=10,SaS5, --A- - I’
a/h=10,8aS5, ----&-- |
300 1 i 80 | a/h=100,Sa85, —<--- [E
a/h=2,8a85, ——- a/h=100,SaS5, --+ - I, y
250 a/h=2,8aS5, ---%-- - l
a/h=10,Sa85, --A- - 60 - I
= a/h=10,SaS5_ ----&-- ! ;
£ 200 a/h=100,SaS5, —<--- 1 & !
“ a/h=100,SaS5, --= - S 40 *\ I
2 & \ A
5 150 Ae I ,@1,/8“/,,‘ |
’ X & 5 /%
;l‘ ’* - N B //
100 | - AN
//‘F . * 8 0F ‘t}_?:{? /'I, -
/S_, T ~,_/@:}6/& % ’
50 ” @..‘Q—-E";@"x = | 3, e, 7*
o -o-o--a--8- P 20k . . 1
< W D
0F - ;"* B §Q\ +
4 40 F ® i
-50 1—_+|’+| 1 1 1 1 1 1 Il I Il 1 1 1 Il Il Il Il Il Il L
-0.5-0.4-03 -02 -01 0 0.1 02 03 04 0.5 0.5 -0.4 -03 02 0.1 0 0.1 02 03 04 05
z z
(a) w (b) Oua
20 1F i
a/h=2,SaS5, —— - —— g
a/h=2,SaS5, --- - P S o
a/h=10,SaS5, --A- - f( g/x@/ -4
| a/h=10,SaS5, - /X, i AR BBy
15 Fam=100.8a85,(50) — - / \_ 0 ll‘\\@ J&/g
a/h=100,8aS5,(*50) --= - / \%/ \ % x )
& VAR AN \ * S
10 + ;N T r \_k ., /T
/ ,# b\ \\ \ T . //
R . -
s /ﬁ’ ;X X g \ /
2 't iR T * oo
N 51 @/ / W N ,
D>< / 7'-, \\‘ o] \\* /
’ Y v /
@/@'@'“Q/ /,/:ié‘/g-‘ﬂ‘-g_ \‘l\\ 3 \\\ // 4
‘ 5% =N RN A+
e aa e ! i
e ) a/h=2,8aS5, ——+—
Ny 4T a/h=2.8285" -
\ / a/h=10,8aS5, --A- -
s / - a/h=10,8aS5, -
gt sl a/h=100,8a85,(*500) — <~ |
a/h=100,SaS5,(*500) --+ -
Il 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-0.5-04-03-02-01 0 01 02 03 04 05 -0.5-04-03-02-01 0 01 02 03 04 05
z z
(c) Oaz (d) 022

Figure 6: Transverse displacement w and stresses through the thickness of the composite plates with
various a/h ratios under hygroscopic load, SaS5 solutions with both linear and calculated profiles.
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