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Abstract

Advanced plate models with variable kinematics for steady state hygrothermal analysis of composite

laminates are proposed. The refined models discussed include both Layer-Wise (LW) and Equivalent

Single Layer (ESL) models, and the Carrera Unified Formulation (CUF) is used. The Mixed Interpo-

lation of Tensorial Component (MITC) method is applied to a nine-node element to contrast the shear

locking phenomena. The governing equations are derived from the Principle of Virtual Displacement

(PVD) taking into account elastic mechanical, thermal and hygroscopic effects. Through-the-thickness

variations of temperature and moisture concentration are calculated by solving the Fourier equation

and the Fick law, respectively. Cross-ply plates with symmetrical lamination and simply supported

edges subjected to bisinusoidal thermal/hygroscopic loads are analyzed considering various thickness ra-

tios. Results obtained with assumed linear and calculated temperature/hygroscopic profiles are compared.

Variable kinematics with a variety of thickness functions are compared regarding both accuracy and com-

putational costs. The results show that all the kinematics proposed can approximate the transverse shear

stress distribution through the thickness with satisfactory accuracy when sufficient expansion terms are

adopted. In some cases, miscellaneous expansions can lead to significant reductions in computational

costs. The results here presented can be used as benchmark solutions for future works.

Introduction

Laminated structures like composite plates have been widely used in aerospace engineering. Such

structures often undergo environmental conditions, e.g. high temperature, and humidity. Hygrother-

mal effects can lead to the reduction in both constitutive properties and strength of fiber reinforced

polymer composites [1, 2]. The possible high hygrothermal residual stress state is also a serious issue in

the design of laminated composite structures. Efficient mechanical models with the ability to capture

the hygrothermal elastic behaviors of multilayered structures are of great significance. Closed form

analytical solutions are only available in several cases, making numerical methods such as FEM the

first choice for engineering applications.

Studies on thermal elastic behaviors of composite laminates have been reported by many authors. With

the linear temperature profile assumption, Kant [3] and Khdeir [4] considered this problem with first-

order theories. The significance of mixed models for accurate estimations of transverse shear/normal

stresses under thermal load has been remarked in [5] and [6].
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The thermal conduction in solid media can be described by the Fourier equation, which can be solved by

adopting the methodology proposed by Tungikar [7]. Concerning thermal elastic analysis of composite

laminates, Carrera [8] exploited the partially coupled thermal elastic governing equations and discussed

the influence of through-the-thickness variation of temperature by comparing the thermal mechanical

response of laminated anisotropic plates; in particular, assumed profiles and calculated profiles obtained

by solving the Fourier conduction equation were used. For thin laminated structures, calculated steady

state through-the-thickness temperature profiles can be very close to an assumed linear one, while this

is not the case for thick laminates [8]. Fully coupled thermo mechanical analyses on laminated plates

can be found in [9].

Following Fourier’s work [10], Fick pointed out that the diffusion of moisture in solid media follows

the same rule as heat does [11]. Moreover, researchers pointed out that thermal conduction coefficients

and humidity diffusivity depend on the temperature [2]. Generally speaking, there is an interaction

between thermal environment and moisture diffusion[2], but the temperature approaches equilibrium

much faster than moisture concentration [12, 13]. By considering the analogy between thermal conduc-

tion and moisture diffusion, Szekeres et al. [14, 15] suggested that the methodology used to solve the

Fourier equation [7] can be extended to hygroscopic problems, which has been the basis of many later

works.

Benkeddad [16, 17] studied the moisture diffusion process in composite plates by taking only the thick-

ness dimension into consideration, leading to a 1D diffusion problem, and the moisture concentration

at a given moment was determined by finite difference method. A similar methodology was adopted for

the analysis of transient hygroscopic stresses in unidirectional laminated composite plates with cyclic

and asymmetrical environmental conditions by Tounsi et al. [18–21]. Abbas [22] and Boukhoulda [23]

introduced the Laplace transform to obtain analytical solutions for transient moisture concentration

problems. Patel [24] and Lo et al. [25] considered the variation of material properties due to tempera-

ture and moisture variation for the static response analysis of multilayered plates.

Carrera Unified Formulation (CUF) provides a methodology to develop refined models for the analysis

of laminated composite structures, enabling FEM models to have variable kinematics of arbitrary order.

Many advanced FEM models have been proposed and applied but not restricted to multifield problems.

Carrera [26, 27] proposed advanced finite elements for composite laminates based on CUF using both

Equivalent Single Layer (ESL) and Layer-Wise (LW) approaches. Trigonometric trial functions were

used in combination with Ritz method in [28].
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In authors’ previous works [29], CUF was applied to thermoelastic problems of laminated structures,

and their static bending responses under both assumed linear and calculated temperature profiles,

obtained by solving the Fourier equation, were reported. The Mixed Interpolation of Tensorial Com-

ponents (MITC) [30–33] method was implemented to alleviate lockings. Such an MITC9 element with

a variety of thickness functions have been used to investigate the static response of cross-ply laminated

plates and shells [34].

In this paper, considering the analogy between moisture diffusion and thermal conduction, the approach

that has been successfully used in solving heat conduction problems [29] is extended to steady state

hygroelastic problems. This study mainly focuses on the performance of variable and miscellaneous

kinematics of plate elements in the analysis of hygrothermal problems. For simplicity, it is assumed

that the thermal conductivity and mass diffusivity do not change with temperature. Both the thermal

and hygroscopic problems are restricted to steady state conditions.

Geometrical and constitutive relations

The reference system and the geometry of the multilayered plate are given in Fig. 1.

Considering a multilayered structure, where the index k indicates the layer, the geometrical relations

can be written as:

εkp =

{
εkxx, ε

k
yy, ε

k
xy

}T
= Dpu

k

εkn =

{
εkxz, ε

k
yz, ε

k
zz

}T
= (DnΩ +Dnz)u

k

(1)

The explicit form of the introduced arrays, that contain differential operators, is:

Dp =


∂x 0 0

0 ∂y 0

∂y ∂x 0

 , DnΩ =


0 0 ∂x

0 0 ∂y

0 0 0

 , Dnz =


∂z 0 0

0 ∂z 0

0 0 ∂z

 . (2)
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Considering the expansion caused by the increase of temperature and moisture absorption, the strain

vector can be expressed as follows:

εkp = εkpu − εkpθ − εkpη = εkpu −αkpθk − βkpηk

εkn = εknu − εknθ − εknη = εknu −αknθk − βknηk
(3)

where αij are the thermal expansion coefficients, and βkij the moisture expansion coefficients, which in

an explicit form are:

αkp =

{
αk1 αk2 0

}T
, αkn =

{
0 0 αk3

}T
βkp =

{
βk1 βk2 0

}T
, βkn =

{
0 0 βk3

}T (4)

θ indicates the increment of temperature, and η the moisture absorption. The stress-strain relations

are:

σkp =

{
σkxx, σ

k
yy, σ

k
xy

}T
= σkpu − σkpθ − σkpη = Ck

ppε
k
pu +Ck

pnε
k
nu − λkpθk − µkpηk

σkn =

{
σkxz, σ

k
yz, σ

k
zz

}T
= σknu − σknθ − σknη = Ck

npε
k
pu +Ck

nnε
k
nu − λknθk − µknηk

(5)

where

Ck
pp =


Ck11 Ck12 Ck16

Ck12 Ck22 Ck26

Ck16 Ck26 Ck66

 Ck
pn =


0 0 Ck13

0 0 Ck23

0 0 Ck36



Ck
np =


0 0 0

0 0 0

Ck13 Ck23 Ck36

 Ck
nn =


Ck55 Ck45 0

Ck45 Ck44 0

0 0 Ck33


(6)


λkp = Ck

ppα
k
p +Ck

pnα
k
n

λkn = Ck
npα

k
p +Ck

nnα
k
n

(7)


µkp = Ck

ppβ
k
p +Ck

pnβ
k
n

µkn = Ck
npβ

k
p +Ck

nnβ
k
n

(8)

where λkp and λkn are the vectors of thermomechanical coupling coefficients, µkp and µkn the vectors
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of hygromechanical coupling coefficients, which in an explicit for are:

λkp =

{
λk1 λk2 λk6

}T
, λkn =

{
0 0 λk3

}T
(9)

µkp =

{
µk1 µk2 µk6

}T
, µkn =

{
0 0 µk3

}T
(10)

The material coefficients Cij depend on the Young, shear, and Poisson moduli, see Reddy’s book [35].

The matrix of materials coefficients, as written in Eq. 6, has been already rotated from the material

reference system to the global reference system (x, y, z).

Variable kinematics based on Carrera Unified Formulation

In the framework of CUF, the displacement vector u = {u, v, w} can be expressed utilizing expansion

functions as follows:
u(x, y, z) = F0(z)u0(x, y) +F1(z)u1(x, y) + · · ·+ FN (z)uN (x, y)

v(x, y, z) = F0(z)v0(x, y) +F1(z)v1(x, y) + · · ·+ FN (z)vN (x, y)

w(x, y, z) = F0(z)w0(x, y) +F1(z)w1(x, y) + · · ·+ FN (z)wN (x, y)

(11)

In a more compact form, CUF can be expressed in the following form for ESL models:

δu(x, y, z) = Fτ (z)δuτ (x, y); u(x, y, z) = Fs(z)us(x, y) τ, s = 0, 1, ..., N (12)

CUF-based LW models can be written as:

δuk(x, y, ζk) = Fτ (ζk)δu
k
τ (x, y); uk(x, y, ζk) = Fs(ζk)u

k
s(x, y) τ, s = 0, 1, ..., N (13)

where Ω is the in-plane domain, and δu indicates the virtual displacement associated with the virtual

work and k is the index of a layer in the laminated plate. F
(k)
τ and F

(k)
s are the so called thickness

functions whose independent variable is either z defined in the whole thickness domain z ∈ [−h
2 ,

h
2 ] for

ESL models, or ζk defined in each layer domain ζk ∈ [−1, 1] for LW models. Depending on the type of
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expansion functions, N may represent the order of the expansion or the number of expansion terms. us

represents the unknown primary variables which are the coefficients of corresponding expansion terms,

whose independent variables are x and y. τ and s are the indexes of the expansion terms, and the

Einstein summation rule is used.

Higher-Order Theories

In the case of Equivalent Single Layer (ESL) models, Taylor series expansions can be employed as

thickness functions:

u = F0 u0 + F1 u1 + . . . + FN uN = Fs us, s = 0, 1, . . . , N (14)

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN (15)

Classical models, such as those based on the First-Order Shear Deformation Theory (FSDT) [36, 37],

can be obtained with an ESL approach with N = 1, by imposing a constant transverse displacement

through the thickness via penalty techniques. Also, a model based on the hypotheses of Classical

Lamination Theory (CLT) [38] can be expressed employing CUF by applying a penalty technique to

the constitutive equations to impose null transverse shear strains.

Refined ESL models based on trigonometric and exponential series

In the framework of ESL models, if trigonometric sine series with a constant term are adopted, the

displacement vector can be written as follows:

u(x, y, z) = u0(x, y) + sin
(πz
h

)
u1(x, y) + ...+ sin

(nπz
h

)
uN (x, y) (16)

where h is the thickness of the whole laminated structure and n is the half waves number. If the linear

Taylor term is considered, the displacement vector is

u(x, y, z) = u0(x, y) + z u1(x, y) + sin
(πz
h

)
u2(x, y) + ...+ sin

(nπz
h

)
uN+1(x, y) (17)
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For trigonometric cosine series,

u(x, y, z) = u0(x, y) + cos
(πz
h

)
u1(x, y) + ...+ cos

(nπz
h

)
uN (x, y) (18)

and with the linear term,

u(x, y, z) = u0(x, y) + z u1(x, y) + cos
(πz
h

)
u2(x, y) + ...+ cos

(nπz
h

)
uN+1(x, y) (19)

Considering the complete trigonometric series,

u(x, y, z) = u0(x, y) + sin
(πz
h

)
u1(x, y) + cos

(πz
h

)
u2(x, y) + ...+ sin

(nπz
h

)
u2N−1(x, y)+

+ cos
(nπz
h

)
u2N (x, y)

(20)

If the linear contribution is considered,

u(x, y, z) = u0(x, y) + z u1(x, y) + sin
(πz
h

)
u2(x, y) + cos

(πz
h

)
u3(x, y) + .....+

+ sin
(nπz
h

)
u2N (x, y) + cos

(nπz
h

)
u2N+1(x, y)

(21)

If exponential series are employed, the displacement field can be expressed as:

u(x, y, z) = u0(x, y) + e(z/h) u1(x, y) + ...+ e(nz/h) uN (x, y) (22)

and adding the linear term one obtains

u(x, y, z) = u0(x, y) + z u1(x, y) + e(z/h) u2(x, y) + ...+ e(nz/h) uN+1(x, y) (23)

Refined ESL models with Murakami zig-zag function

According to Murakami [39], a zig-zag term can be introduced into Eq. (14) leading to refined ESL

zig-zag models,

u = F0 u0 + . . . + FN uN + (−1)kζkuZ . (24)
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Subscript Z refers to the Murakami zig-zag function. Refined zig-zag models can be obtained by adding

the zig-zag term to the Taylor polynomials, trigonometric or exponential series expansions.

Refined LW models based on Legendre polynomials

If Legendre polynomials are adopted, the displacement field defined for a layer k can be expressed as

uk = Ft u
k
t + Fb u

k
b + Fr u

k
r = Fs u

k
s , s = t, b, r , r = 2, ..., N. (25)

The expansion terms are

Ft =
P0 + P1

2
, Fb =

P0 − P1

2
, Fr = Pr − Pr−2. (26)

Pj is the jth-order Legendre polynomial defined in the ζk-domain: −1 ≤ ζk ≤ 1. The displacements on

the top (t) and bottom (b) surfaces are used as unknown variables and one can impose the following

compatibility conditions at the interfaces:

ukt = uk+1
b , k = 1, Nl − 1. (27)

The employment of hierarchical Legendre polynomials as basis functions for the development of variable

kinematic models was presented by Szab, Dster, and Rank [40]. Other implementations of Legendre

polynomials in the framework of CUF can be found in [41–43].

Refined LW models adopting Sampling Surfaces method (SaS)

Kulikov [44–46] proposed the Sampling Surfaces method (SaS) as an LW model based on Lagrange

interpolation polynomials. Within each layer, an arbitrary number of sampling surfaces parallel to

the middle surface are introduced. Each SaS is located at a Lagrange interpolation point, and the

displacements at these points are taken as primary unknowns. The present work implements the SaS

technique for the plate element based on CUF. In SaS, the displacement field can be defined as

uk = F0 u
k
0 + F1 u

k
1 + . . . + FN u

k
N = Fs u

k
s , s = 0, 1, . . . , N. (28)
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Fs(ζk) (thickness function) is a Lagrange polynomial of order N ,

Fs(ζk) =
N∏

i=0,i 6=s

ζk − ζki
ζks − ζki

(29)

ζks are located at the prescribed interpolation points. ζk0 = −1 and ζkN = 1 correspond to the top and

bottom positions of the kth layer, respectively.

Through-the-thickness variation of temperature and moisture concen-

tration

The temperature variation through the thickness can be obtained by solving Fourier heat conduction

equation as described in [7] for multilayered plates. If the temperature on the top and bottom surfaces

are given, a priori assumed linear temperature variation profile through-the -thickness can be obtained

as follows:

θ(z) = θb +
θt − θb
h

· (z +
h

2
) z ∈ [−h

2
,
h

2
] (30)

where the subscripts b and t refer to the bottom and top surfaces, respectively. It is evident that the

temperature continuity between two layers can be naturally guaranteed in this manner. Similarly, an

assumed linear moisture concentration profile could be described as:

η(z) = ηb +
ηt − ηb
h

· (z +
h

2
) z ∈ [−h

2
,
h

2
] (31)

Alternatively, a more physically meaningful profile can be obtained by solving Fourier heat conduction

equation for temperature variation, or the Fick law for moisture concentration distribution. In mul-

tilayered plate structures, for the kth homogeneous orthotropic layer, the Fourier differential equation

for heat conduction problems reads:

Kk
1

∂2θ

∂x2
+Kk

2

∂2θ

∂y2
+Kk

3

∂2θ

∂z2
= 0 (32)

where Kk
1 , Kk

2 and Kk
3 are the thermal conduction coefficients in material coordinates (1,2,3) for the

kth layer and will be rotated to the general reference system (x, y, z). In the kth layer, Kk
1 , Kk

2 and Kk
3

are assumed to be constants. The relationship between the temperature θ and the transverse normal
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heat flux qz is described by

qkz = Kk
3

∂θ

∂z
(33)

For multilayered structures, continuity conditions of θ and qz holds in the thickness direction at each

layer interface, reading:

θkt = θk+1
b , qkzt = qk+1

zb k = 1, · · · , Nl − 1 (34)

where Nl is the number of layers in the composite laminate. In this work, the governing equation and

boundary conditions are satisfied in each layer by assuming the following temperature field:

θ(x, y, z) = θA(z) · θΩ(x, y) (35)

where, for the cases studied in this paper, θΩ has a bisinusoidal form as follows:

θΩ(x, y) = sin(
mπx

a
) · sin(

nπy

b
) (36)

For the solution of the Fourier heat conduction equation, the reader can refer to the authors’ previous

works [29, 47, 48]. Calculated moisture concentration profiles can be acquired by solving the Fick law,

which postulates that the flux J goes from regions of high concentration to areas of low concentration,

with a diffusion rate that is proportional to the concentration gradients (spatial derivatives). For a

steady state plate structure, the Fick second law can be expressed as

Dk
1

∂2η

∂x2
+Dk

2

∂2η

∂y2
+Dk

3

∂2η

∂z2
= 0 (37)

where Dk
1 , Dk

2 and D3
3 are the diffusion coefficients (diffusivity) and η is the moisture concentration.

Accordingly, moisture concentration η and diffusion flux through the thickness Jz can be related by

Jkz = Dk
3

∂η

∂z
(38)

and the continuity of η and Jz at layer interfaces can be imposed as

ηkt = ηk+1
b , Jkzt = Jk+1

zb k = 1, · · · , Nl − 1 (39)
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Similarly to the thermal case, the 3D hygroscopic field can be described as

η(x, y, z) = ηA(z) · ηΩ(x, y) (40)

If a bisinusoidal load is imposed,

ηΩ(x, y) = sin(
mπx

a
) · sin(

nπy

b
) (41)

As discussed above, the Fick law can be solved in analogy with the Fourier heat conduction equa-

tion under given hygroscopic boundary conditions on the top and bottom surfaces of the laminated

structures.

MITC9 finite element and governing equations

This section presents the derivation of the finite element stiffness matrix based on the Principle of

Virtual Displacement (PVD) in the case of multilayered plates under hygrothermal environmental

load. A nine-node element adopting the Mixed Interpolation of Tensorial Component (MITC) method

is formulated in the framework of CUF. The displacement vector interpolated on the element nodes

utilizing Lagrangian shape functions Ni reads

δuτ = NiδUτi , us = NjUsj i, j = 1, · · · , 9 (42)

Usj and δUτi are the nodal displacement vector and its virtual variation, respectively. Therefore, the

strain expression (Eq. (3)) becomes


εp = FsDpNjUsj

εn = FsDnΩNjUsj + Fs,zNjUsj

(43)

To contrast the shear locking of thin plates, a specific interpolation strategy according to MITC method

is used to derive the strain components on the nine-node element, and the corresponding interpolation

points (tying points) are illustrated in previous authors’ works related to the use of the MITC9 element

based on the CUF [49–52].

Considering the constitutive equations (Eq. (5)) and the strain vectors (Eq. (43)), scalar temperature
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field θ as well as moisture concentration field η, by applying PVD, one obtains the expression of the

internal work for partially coupled hygrothermal problems:

δLint =

∫
Ω

∫
Ak

δεk
T
σkdΩdz =

∫
Ω

∫
Ak

[δεkp
T

(σkpu − σkpθ − σkpη) + δεkn
T

(σknu − σknθ − σknη)]dΩdz = δLext

(44)

where Ak is the thickness domain of layer k of the plate. δLint represents the variation of the internal

work, while δLext is the external work. Noting that in this work no mechanical loads are considered,

which means that δLext = 0, and the internal work δLint is caused purely by the mechanical expansion

related to temperature rise and moisture absorption, thus the following expression can be obtained:

∫
Ω

∫
Ak

(δεkp
T
σkpu + δεkn

T
σknu)dΩdz =

∫
Ω

∫
Ak

(δεkp
T
σkpθ + δεkn

T
σknθ)dΩdz +

∫
Ω

∫
Ak

(δεkp
T
σkpη + δεkn

T
σknη)dΩdz

(45)

By substituting the constitutive equations (Eq. (5)), the geometrical relations (Eq. (43)) after the appli-

cation of MITC method, the displacement expression (Eqs. (12) and (13)) and the FEM discretization

(Eq. (42)), the following governing equations can be obtained:

δUk
τi : Kkτsij

uu Uk
sj = Θkτi +Hkτi (46)

The 3× 3 matrix Kkτsij
uu is the fundamental mechanical nucleus, which is the core unit of the stiffness

matrix according to CUF, and its explicit expression is given in [53] for shells (plate is a particular case

of shell for radii of curvature tending to infinite). The stiffness matrix of the structure can be obtained

by applying the Einstein summation rule, then assembling the fundamental nucleus at laminate level

in the framework of either ESL or LW models and at element level considering the nodes. Finally, the

global stiffness matrix is assembled using the connectivity matrix. Θkτi and Hkτi are the equivalent

thermal and hygroscopic load vectors, and their explicit expressions are given in Eq. (47) and Eq. (48),

respectively:

Θkτi =


Θkτi
x

Θkτi
y

Θkτi
z


=


λk6J

θkτW θ
i,y + λk1J

θkτW θ
i,x

λk2J
θkτW θ

i,y + λk6J
θkτW θ

i,x

λk3J
θkτ,zW θ

i


(47)

13



Hkτi =


Hkτi
x

Hkτi
y

Hkτi
z


=


µk6J

ηkτW η
i,y + µk1J

ηkτW η
i,x

µk2J
ηkτW η

i,y + µk6J
ηkτW η

i,x

µk3J
ηkτ,zW η

i


(48)

Wi,Wi,x,Wi,y are the integrals in the in-plane domain Ω and Jkτ and Jkτ,z are the integrals defined

within the through-the-thickness domain Ak of the layer,

W θ
i =

∫
Ω
NiθΩ dxdy, W θ

i,x =

∫
Ω

∂Ni

∂x
θΩ dxdy, W θ

i,y =

∫
Ω

∂Ni

∂y
θΩ dxdy (49)

Jθkτ =

∫
Ak

Fτθkdz, Jθkτ,z =

∫
Ak

∂Fτ
∂z

θkdz (50)

W η
i =

∫
Ω
NiηΩ dxdy, W η

i,x =

∫
Ω

∂Ni

∂x
ηΩ dxdy, W η

i,y =

∫
Ω

∂Ni

∂y
ηΩ dxdy (51)

Jηkτ =

∫
Ak

Fτηkdz, Jηkτ,z =

∫
Ak

∂Fτ
∂z

ηkdz (52)

θ and η denote thermal and hygroscopic cases, respectively. Fτ refers to a general expansion term in

the displacement field according to CUF, and Ni represents the shape function corresponding to node

i in the finite element. For more details, the reader can refer to [26, 29, 53].

Results

The numerical analysis of this work focuses on investigating the capability of a variety of models with

variable kinematics in the analysis of cross-ply symmetrically laminated multilayered structures under

hygrothermal environmental loads. This section consists of two numerical cases:

• A three-layer (0°/90°/0°) square plate under thermal load;

• A three-layer (0°/90°/0°) square plate under hygroscopic load.

Acronyms are used to indicate the various models used. For ESL, Table 1 shows all the cases used in

this paper.
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For example, “ES2C2” and “ET1Exp2Z” refer to the following expansions,

uk(x, y, z) = uk0(x, y)+sin(
πz

h
)uk1(x, y)+cos(

πz

h
)uk2(x, y)+sin(

2πz

h
)uk3(x, y)+cos(

2πz

h
)uk4(x, y) (53)

uk(x, y, z) = uk0(x, y) + zuk1(x, y) + e
z
huk2(x, y) + e

2z
h uk3(x, y) + (−1)kζku

k
4Z

(54)

The subscript a denotes the adoption of assumed linear temperature or moisture concentration profiles,

whereas c indicates that through-the-thickness distributions are calculated by via Fourier or Fick laws.

LW models are indicated as follows:

• “SaSn” indicates a Sampling Surfaces model with n interpolation points.

• “LGDn” indicates a model adopting Legendre polynomials up to the nth order.

Analytical solutions are used in some cases and obtained via the Navier method. In the following tables,

Nexp is indicated and represents the expansion terms of the model.

Square orthotropic symmetrically laminated plates under thermal load

Bending of a simply supported cross-ply square composite plate under thermal load is analyzed. The

reference solutions were proposed by Bhaskar et al. [54], in which thermal analysis was carried out

with assumed linear temperature profiles. The composite square plates analyzed have three layers with

lamination sequence of (0°/90°/0°). The 3D temperature field is given by

θ(x, y, z) = θA(z) · sin(
mπx

a
) sin(

nπy

b
) (55)

with bisinusoidal in-plane distribution (m = n = 1). The temperature variation through the thickness

is depicted with θA(z), and the thermal boundary conditions are assumed to be θ̂A(h2 ) = 1K, θ̂A(−h
2 ) =

-1K. The physical properties of the composite lamina are given in Table 2, in which L and T refer to

the direction parallel and perpendicular to the fiber direction, respectively. The geometrical dimensions

are a = b = 1, laminates with a/h = 2, 10 and 100 were studied, and the three layers have the same

thickness. Deflections and stresses are adimensionalized as,

ūz =
w

hαLθAS2
, σ̄ii =

σii
ETαLθA

, σ̄ij =
σij

ETαLθA
, S = a/h (56)
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where i, j = x, y, z.

First, a mesh convergence study was considered with LGD4, a/h = 100, and an assumed linear tem-

perature profile. According to the results shown in Table 3, a mesh of 10×10 is sufficient to ensure

the convergence of FEM solution with satisfactory accuracy. The results also show that the adopted

MITC9 element is locking free for thin plates.

LW models were considered first. Table 4 presents the obtained displacement and stress values. More-

over, Nexp indicates the number of expansion terms of each model. The calculated temperature variation

through the thickness is in Fig. 2. Stress distributions through the thickness are given in Fig. 3. The

influence of the expansion terms is shown in Table 4. The results suggest that:

• A perfect match with [54] is found.

• As known, an assumed linear variation of temperature through the thickness leads to satisfactory

results in the case of a thin plate. On the other hand, such an assumed profile should not be used

for thick plates.

Various ESL models were then investigated with calculated temperature variation profiles. ETn models

were first assessed as in Table 5. Since FSDT is not a complete linear case, its number of expansion

terms was denoted as “2∗”. It can be stated that:

• For thick plates, nine expansion terms are necessary, while for moderate thick and thin plates,

six terms are enough.

• Compared with the computational costs of LGD4 and SaS5, the present ESL kinematics are more

efficient for moderate thick and thin plates.

• More often than not, FSDT failed to provide proper displacement and stress evaluations.

ESL models with exponential expansions are considered in Table 6. It can be observed that:

• Stress results are less accurate than the previous cases.

• The addition of the linear Taylor term gives some improvements, but still unsatisfactory accuracies

were obtained.
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Table 7 show the results from ESL trigonometric expansions. The results show that:

• For thick plates, σxz requires ES5C5Z or ET1S3C3Z. However, the latter is preferable due to

fewer expansion terms required.

• For moderately thick and thin plates, ESnCnZ can provide desired approximations but are more

cumbersome than ETnZ. The addition of a first-order Taylor term, i.e. using ET1SnCnZ, the

results improve to a great extend. In particular, ET1S1C1Z gives good accuracy.

Models shown above, are compared in Fig. 4. The transverse shear stress σ̄xz is considered for different

thickness ratios. It can be found that:

• The use of SaS5 (as well as LGD4) is recommended to capture the transverse shear stress distri-

bution through the thickness.

• As known, the Murakami zig-zag function can improve the transverse shear stress distribution in

ESL models.

• Stress distributions obtained with exponential theories are less accurate than the previous cases.

• For thick plates, σxz requires the addition of the linear Taylor term, when trigonometric expansions

are used.

In general, the results obtained have demonstrated that ETnZ and ET1SnCnZ models perform ex-

tremely well. Based on the study above, ETnZ and ET1SnCnZ are chosen for the hygrothermal

analysis in the following study cases.

Square orthotropic symmetrically laminated plates under hygroscopic load

Square cross-ply laminated plates with stacking sequence (0°/90°/0°) subjected to hygroscopic loads are

analyzed. The dimensions are a = b = 0.1m, a/h = 2, a/h = 10, and a/h = 100. The mechanical and

hygroscopic properties of the lamina are listed in Table 8 and Table 9, respectively. Moisture expansion

coefficients β11, β22, and β33 were retrieved from [55]. Moisture diffusion coefficients D11, D22, and D33

were chosen and set under temperature 300 K as in [13]. Hygroscopic loads are defined as:

η(x, y, z) = ηA(z) · sin(
mπx

a
) sin(

nπy

b
) (57)
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where ηA(z) describes the moisture concentration profile, m = n = 1, and the moisture concentration

conditions are ηA(−h
2 ) = 0 and ηA(h2 ) = 1%.

LW models were considered first. Moisture concentration profiles are shown in Fig. 5. Displacement

and stress distributions are presented in Fig. 6, in which for the convenience of illustration, the stresses

are amplified by 50 times in the plots when necessary, denoted by “∗50”. Table 10 summarizes the

displacement and stress evaluation on a specific set of monitoring points. The results show that:

• LW models provide highly accurate results.

• As seen in the thermal case, for moderately thick and thin plates, linear profiles are enough. On

the other hand, thick plates require calculated profiles.

ETnZ and ET1SnCnZ were then considered, as shown in Fig. 7. The results suggest that, in the case

of hygroscopic loads, these models are less accurate than in the case of thermal loads, and LW should

be preferred.

Conclusions

In the framework of the Carrera Unified Formulation, it is possible to integrate various and miscellaneous

approximation theories to obtain refined and advanced models with various kinematics and an arbitrary

number of expansion terms for the analysis of multilayered structures. In this paper, steady state

mechanical responses of composite plates under thermal/hygroscopic loads are studied with CUF-based

variable kinematics adopting LW and ESL approaches, respectively. A MITC9 element is employed to

guarantee locking free FEM analysis. Both assumed linear temperature/moisture concentration profiles

through the thickness, and calculated variations (by solving the diffusion law) are considered. The

analogy between heat conduction and moisture diffusion plays a key role when extending the analysis

methodology of thermoelastic problems to hygrothermal ones. Hygrothermal analysis has been carried

out on multilayered composite plates. Transverse displacement and stresses are reported for various

aspect ratios. The convergence rates of various kinematics are compared. Based on the above work,

some conclusions can be drawn as:

1. With a sufficient number of expansion terms, most of the kinematics studied can achieve a good

approximation of displacements and stresses with satisfactory accuracy, even for thick plates, and
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the expansion number needed depends on the cases studied.

2. For laminates with various aspect ratios, the numbers of expansion terms necessary to obtain

converged numerical results are usually different, and thick laminates need more expansion terms.

3. When applied to hygrothermal analysis, classical theory FSDT gives incorrect results even for

thin laminates.

4. For thin laminates, linear variation of temperature/moisture concentration through the thickness

is a sufficient assumption, whereas for thick layered plates this assumption can lead to over

estimated stress evaluation compared with results using profiles obtained by solving Fourier heat

conduction equation or Fick Law.

5. For the hygrothermal cases studied, LW models employing Legendre polynomials of the fourth-

order (LGD4) and the Sampling Surfaces method with five interpolation nodes (SaS5) can guaran-

tee continuous transverse shear stress distribution through the thickness for composite laminates

with a broad range of length to thickness ratios (from 2 to 500).

6. Variable ESL kinematics ETnZ and ET1SnCnZ have been tested. It has been demonstrated that

when a sufficient number of expansion terms are used, with the help of the Murakami zig-zag

function, ETnZ, and ET1SnCnZ are capable of capturing transverse shear stress distribution

through the thickness of the three-layer plates under symmetrical load. In some cases, these two

classes of ESL kinematics can be more computationally efficient than LW models with comparable

accuracy. However, for the three-layer plates under unsymmetrical load, ESL models are less

efficient in capturing the zig-zag effects.

7. Compared with ESL models, LW models can provide results with better accuracy in approximat-

ing the through the thickness distribution of transverse shear stresses in composite laminates.

A companion work to this one is devoted to the modelling of doubly-curved composite shells with

antisymmetric lamination subjected to hygrothermal loads. In that paper, very similar conclusions

about the accuracy of the models used are drawn.

Future works should be devoted to the axiomatic/asymptotic analysis of the influence of each term and

the definition of Best Theory Diagrams, as in [56].
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Table 1: Expansion terms of the ESL models.

z0 z1 → zN (−1)kζk sin
(zπ
h

)
→ sin

(nzπ
h

)
cos

(zπ
h

)
→ cos

(nzπ
h

)
e(z/h) → e(nz/h)

ETn
√ √

× × × ×
ETnZ

√ √ √
× × ×

ESn
√

× ×
√

× ×
ESnZ

√
×

√ √
× ×

ECn
√

× × ×
√

×
ECnZ

√
×

√
×

√
×

ESnCn
√

× ×
√ √

×
ESnCnZ

√
×

√ √ √
×

ETnSnCn
√ √

×
√ √

×
ETnSnCnZ

√ √ √ √ √
×

EEXPn
√

× × × ×
√

EEXPnZ
√

×
√

× ×
√

ETnEXPn
√ √

× × ×
√

ETnEXPnZ
√ √ √

× ×
√

Table 2: Assumed mechanical/thermal properties of the lamina [54].

EL/ET GLT /ET GLT /ET νLT /νTT αT /αL KL/KT

25 0.5 0.2 0.25 1125 36.42/0.96

Table 3: Mesh convergence study, displacement and stress evaluation, LGD4, composite plates with
a/h = 100 subjected to thermal load. Assumed linear temperature profiles are used.

a/h Mesh
w̄ σ̄xx σ̄xz

(a2 ,
b
2 ,

h
2 ) (a2 ,

b
2 ,

h
2 ) (0, b2 ,

h
6 )

100

4×4 10.26 981.7 7.166
6×6 10.26 972.6 7.115
8×8 10.26 969.5 7.097

10×10 10.26 968.0 7.088

Bhaskar[54] 10.26 965.4 7.073
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Table 4: Displacement and stress evaluation of three-layer composite square plates with various a/h
subjected to thermal load, obtained with LW models. Assumed linear and calculated profiles are used.

a/h Model
Assumed profiles Calculated profiles

Nexp
§w̄ †σ̄xx

‡σ̄xz
§w̄ †σ̄xx

‡σ̄xz

2

SaS4 96.73 1385 64.21 48.88 456.5 30.24 10
SaS5 96.78 1393 63.95 48.85 487.9 30.01 13

LGD1 89.25 641.8 42.56 44.17 34.58 31.70 16
LGD4 96.78 1393 63.95 48.85 487.9 30.01 13
?LGD4 96.784 1389.6 63.823 48.908 488.56 30.009 13

Bhaskar[54] 96.79 1390 63.92 – – – –

10

SaS4 17.39 1029 60.66 16.40 949.4 57.18 10
SaS5 17.39 1029 60.66 16.40 950.5 57.19 13

LGD1 17.63 906.7 58.78 16.67 811.9 56.35 4
LGD4 17.39 1029 60.66 16.40 950.5 57.19 13
?LGD4 17.392 1026.3 60.540 16.395 947.96 57.070 13

Bhaskar[54] 17.39 1026 60.54 – – – –

100

SaS4 10.26 968.0 7.088 10.25 967.2 7.084 10
SaS5 10.26 968.0 7.088 10.25 967.2 7.084 13

LGD1 10.91 895.7 6.883 10.91 894.6 6.880 4
LGD4 10.26 968.0 7.088 10.25 967.2 7.084 13
?LGD4 10.260 965.37 7.0732 10.253 964.55 7.0688 13

Bhaskar[54] 10.26 965.4 7.073 – – – –

Variables are evaluated at: §(a
2
, b
2
, h
2

); †(a
2
, b
2
, h
2

); ‡(0, b
2
, h
6

).
? Navier-type analytical solution.
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Table 5: Displacement and stress evaluation of three-layer composite square plates with various a/h
subjected to thermal load, obtained with ESL models ETn(Z). Calculated temperature profiles are
used.

a/h Model §w̄ †σ̄xx
‡σ̄xz Nexp

2

FSDTc 20.36 -281.6 22.10 2*
ET4c 49.30 411.4 23.97 5
ET7c 48.87 493.1 22.11 8

ET3Zc 50.09 405.1 23.43 5
ET5Zc 48.75 444.0 31.34 7
ET7Zc 48.79 489.6 31.01 9

?LGD4c 48.908 488.56 30.009 13

10

FSDTc 17.26 962.7 26.41 2*
ET3c 15.95 919.4 34.62 4
ET4c 15.93 944.0 34.55 5

ET3Zc 16.41 924.8 50.44 5
ET4Zc 16.38 948.5 50.02 6

?LGD4c 16.395 947.96 57.070 13

100

FSDTc 15.05 1193 3.071 2*
ET3c 10.25 966.8 4.149 4
ET4c 10.25 967.1 4.149 5

ET2Zc 10.25 966.3 6.656 4
ET3Zc 10.25 966.9 6.260 5
ET4Zc 10.25 967.2 6.260 6

?LGD4c 10.253 964.55 7.0688 13

Variables are evaluated at: §(a
2
, b
2
, h
2

); †(a
2
, b
2
, h
2

); ‡(0, b
2
, h
6

).
? Navier-type analytical solution.
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Table 6: Displacement and stress evaluation of three-layer composite square plates with various a/h
subjected to thermal load, obtained with ESL models EExpnZ and ET1ExpnZ. Calculated temperature
profiles are used.

a/h Model §w̄ †σ̄xx
‡σ̄xz Nexp

2

EExp3Zc 48.66 429.7 30.22 5
EExp5Zc 48.50 459.0 22.06 7
EExp7Zc 48.77 472.6 37.32 9

ET1Exp3Zc 47.95 454.4 24.52 6
ET1Exp5Zc 48.74 521.3 31.09 8
ET1Exp6Zc 48.74 482.1 33.37 9

?LGD4c 48.908 488.56 30.009 13

10

EExp3Zc 16.38 905.7 58.85 5
EExp5Zc 16.38 941.2 48.90 7
EExp7Zc 16.39 948.6 52.27 9

ET1Exp3Zc 16.38 960.8 50.21 6
ET1Exp5Zc 16.39 951.5 51.76 8

?LGD4c 16.395 947.96 57.070 13

100

EExp3Zc 9.705 855.8 17.54 5
EExp5Zc 10.25 962.4 5.074 7
EExp7Zc 10.25 966.6 6.515 9

ET1Exp3Zc 10.25 970.3 6.254 6
ET1Exp5Zc 10.25 967.3 6.380 8

?LGD4c 10.253 964.55 7.0688 13

Variables are evaluated at: §(a
2
, b
2
, h
2

); †(a
2
, b
2
, h
2

); ‡(0, b
2
, h
6

).
? Navier-type analytical solution.
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Table 7: Displacement and stress evaluation of three-layer composite square plates with various a/h
under thermal load, obtained with ESL models ESnCnZ and ET1SnCnZ. Calculated temperature
profiles are used.

a/h Model §w̄ †σ̄xx
‡σ̄xz Nexp

2

ES1C1Zc 44.69 -11.88 31.46 4
ES3C3Zc 48.62 445.5 40.80 8
ES5C5Zc 48.83 494.2 30.70 12

ET1S1C1Zc 48.66 375.1 24.44 5
ET1S3C3Zc 48.84 467.8 30.67 9
ET1S4C4Zc 48.83 488.6 30.90 11

?LGD4c 48.908 488.56 30.009 13

10

ES1C1Zc 12.94 430.5 58.02 4
ES3C3Zc 16.36 943.0 57.05 8
ES5C5Zc 16.39 950.3 55.54 12

ET1S1C1Zc 16.57 860.5 51.26 5
ET1S3C3Zc 16.39 946.6 53.62 9
ET1S5C5Zc 16.39 950.3 55.57 13

?LGD4c 16.395 947.96 57.070 13

100

ES1C1Zc 0.4448 -349.0 8.452 4
ES3C3Zc 9.241 838.0 35.87 8
ES5C5Zc 10.25 966.9 6.981 12

ET1S1C1Zc 10.34 890.0 6.354 5
ET1S3C3Zc 10.25 964.5 6.611 9
ET1S5C5Zc 10.25 967.1 6.872 13

?LGD4c 10.253 964.55 7.0688 13

Variables are evaluated at: §(a
2
, b
2
, h
2

); †(a
2
, b
2
, h
2

); ‡(0, b
2
, h
6

).
? Navier-type analytical solution.

Table 8: Mechanical properties of T300/5208 composite lamina

E1(GPa) E2, E3(GPa) G12, G13(GPa) G23(GPa) ν12, ν13 ν23

181 10.3 7.17 2.39 0.28 0.43

Table 9: Hygroscopic properties of T300/5208 composite lamina [13]

β11 β22, β33 D11 D22, D33

(wt.%H2O)−1 (wt.%H2O)−1 (mm2/s) (mm2/s)

0 0.006 2.87×10−8 1.63×10−8
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Table 10: Displacements and stresses of the composite plates with various a/h under hygroscopic load,
obtained with LW models. Linear and calculated moisture concentration profiles are used.

a/h Model
Assumed profiles Calculated profiles

Nexp§w †σxx
‡σxz

§w †σxx
‡σxz

10−3mm MPa MPa 10−3mm MPa MPa

2

SaS4 148.2 106.6 9.387 112.1 71.42 5.609 10
SaS5 148.2 106.5 9.461 112.1 71.42 5.609 13
SaS6 148.2 106.5 9.462 112.1 71.41 5.612 16

LGD1 144.0 66.79 3.996 108.3 38.04 2.821 4
LGD4 148.2 106.5 9.461 112.1 71.42 5.609 13
?LGD4 148.68 105.56 9.4418 112.11 71.238 5.5973 13

10

SaS4 73.08 38.75 3.021 72.39 37.97 2.966 10
SaS5 73.08 38.75 3.021 72.39 37.97 2.967 13

LGD1 76.59 34.22 2.167 75.91 33.02 2.146 4
LGD4 73.08 38.75 3.021 72.39 37.97 2.967 13
?LGD4 73.078 38.636 3.0147 72.388 37.859 2.9619 13

100

SaS4 359.1 34.09 0.3208 359.1 34.08 0.3208 10
SaS5 359.1 34.09 0.3208 359.1 34.08 0.3208 13

LGD1 403.1 31.00 0.2370 403.1 30.99 0.2370 4
LGD4 359.1 34.09 0.3208 359.1 34.08 0.3208 13
?LGD4 359.12 33.983 0.32018 359.10 33.976 0.32013 13

Variables are evaluated at: §(a
2
, b
2
, h
2

); †(a
2
, b
2
, h
2

); ‡(0, b
2
, h
6

).
? Navier-type analytical solution.
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Table 11: Displacement and stress evaluation for the composite plates with various a/h subjected to
hygroscopic load, obtained with ESL models ETnZ and ET1SnCnZ. Calculated linear moisture profiles
are used.

a/h Model
§w †σxx

‡σxz Nexp10−3mm MPa MPa

2

FSDTc 23.36 1.623 1.381 2*
ET3Zc 112.9 62.44 1.611 5
ET7Zc 112.4 72.04 3.135 9
ET11Zc 112.3 71.67 3.767 13
ET13Zc 112.2 71.67 3.708 15

ET1S3C3Zc 112.4 71.64 3.257 9
ET1S5C5Zc 112.2 71.61 3.737 13

?LGD4c 112.10734 71.238 5.5973 13

10

FSDTc 70.44 44.93 0.7585 2*
ET5Zc 72.38 37.93 1.790 7
ET9Zc 72.39 38.01 2.198 11
ET11Zc 72.39 38.00 2.272 13

ET1S3C3Zc 72.39 37.89 2.085 9
ET1S5C5Zc 72.39 37.99 2.263 13

?LGD4c 72.388142 37.859 2.9619 13

500

FSDTc 643.4 49.08 0.08121 2*
ET5Zc 359.1 34.08 0.1976 7
ET9Zc 359.1 34.08 0.2409 11
ET11Zc 359.1 34.08 0.2487 13

ET1S3C3Zc 359.1 33.96 0.2290 9
ET1S5C5Zc 359.1 34.08 0.2478 13

?LGD4c 359.099 33.976 0.32013 13

Variables are evaluated at: §(a
2
, b
2
, h
2

); †(a
2
, b
2
, h
2

); ‡(0, b
2
, h
6

).
? Navier-type analytical solution.
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Figure 1: Multilayered plate: geometry and reference system.
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Figure 2: Temperature profiles θ̄A for composite plates of various thickness ratios (a/h), subjected to
thermal load.
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Figure 3: Transverse displacement w and stress evaluation through the thickness of the composite
plates with various a/h ratios subjected to thermal load, SaS5 solutions with both linear and calculated
profiles.
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Figure 4: Transverse shear stress σ̄xz through the thickness of the composite plates with various a/h ra-
tios subjected to thermal load, obtained by ESL models adopting various thickness functions, calculated
temperature profiles are used.
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Figure 5: Moisture concentration profiles of composite plates with various (a/h) ratios.
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Figure 7: Transverse shear stress σxz through the thickness of the composite plates with various a/h
under hygroscopic load, obtained by adopting various thickness functions, both linear and calculated
temperature profiles are used.
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Figure 6: Transverse displacement w and stresses through the thickness of the composite plates with
various a/h ratios under hygroscopic load, SaS5 solutions with both linear and calculated profiles.
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