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Machine learning (ML) techniques have become important to support de-
cision making in management and conservation of freshwater aquatic
ecosystems. Given the large number of ML techniques and to improve the
understanding of ML utility in ecology, it is necessary to perform compara-
tive studies of these techniques as a preparatory analysis for future model
applications. The objectives of this study were (i) to compare the reliability
and ecological relevance of two predictive models for fish richness, based
on the techniques of artificial neural networks (ANN) and random forests
(RF) and (ii) to evaluate the conformity in terms of selected important vari-
ables between the two modelling approaches. The effectiveness of the
models were evaluated using three performance metrics: the determina-
tion coefficient (R2), the mean squared error (MSE) and the adjusted deter-
mination coefficient (R2

adj) and both models were developed using a k-fold
crossvalidation procedure. According to the results, both techniques had
similar validation performance (R2 = 68% for RF and R2 = 66% for ANN).
Although the two methods selected different subsets of input variables,
both models demonstrated high ecological relevance for the conservation
of native fish in the Mediterranean region. Moreover, this work shows how
the use of different modelling methods can assist the critical analysis of
predictions at a catchment scale.

RÉSUMÉ

Une comparaison des réseaux de neurones et des forêts aléatoires pour prédire la ri-
chesse en espèces de poissons indigènes dans les rivières méditerranéennes
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Les techniques d’apprentissage automatique (ML) sont devenues importantes
pour aider à la décision dans la gestion et la conservation des écosystèmes aqua-
tiques d’eau douce. Étant donné le grand nombre de techniques ML pour amélio-
rer la compréhension de l’utilité des ML en écologie, il est nécessaire de réaliser
des études comparatives de ces techniques comme analyse préparatoire pour
des applications de modèles futurs. Les objectifs de cette étude étaient : (i) de
comparer la fiabilité et la pertinence écologique de deux modèles prédictifs pour
la richesse de poisson, basé sur les techniques de réseaux de neurones artifi-
ciels (ANN) et les forêts aléatoires (RF) et (ii) d’évaluer la conformité en termes
de sélection des variables importantes entre les deux approches de modélisa-
tion. L’efficacité des modèles a été évaluée au moyen de trois indicateurs de
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performance : le coefficient de détermination (R2), l’erreur quadratique moyenne
(MSE) et le coefficient de détermination ajusté (R2

adj) et les deux modèles ont été
développés en utilisant une procédure de validation croisée k-fold. Selon les résul-
tats, les deux techniques ont des performances de validation similaires (R2 = 68 %
pour RF et R2 = 66 % pour ANN). Bien que les deux méthodes aient choisi dif-
férents sous-ensembles de variables d’entrée, les deux modèles ont démontré la
pertinence écologique pour la conservation des poissons indigènes dans la région
méditerranéenne. En outre, ce travail montre comment l’utilisation de différentes
méthodes de modélisation peut aider à l’analyse critique des prévisions à l’échelle
du bassin versant.

INTRODUCTION

In the last decades, due to the worldwide accelerated degradation of freshwater ecosys-
tems (Beechie et al., 2010; Strayer and Dudgeon, 2010) ecological modelling has become an
important tool for wildlife and habitat conservation (Drew et al., 2011). Particularly in Mediter-
ranean rivers, pollution, introduction of exotic species and alteration of hydrological regimes
have influenced fish population decline and, in some cases, the extinction of native species
(García-Berthou et al., 2005; Smith and Darwall, 2006). According to IUCN, 56% of freshwater
Mediterranean species are threatened (Smith and Darwall, 2006) and, given the high degree
of endemicity of biota and its high vulnerability to habitat alteration, more research is currently
needed on local and native fish populations (Corbacho and Sánchez, 2001; Doadrio, 2002).
The conservation of fish diversity is one of the most critical issues facing the preservation
of Mediterranean biodiversity (Smith and Darwall, 2006); and, due to its sensitivity to human
disturbances, fish species richness is widely used as a primary indicator of ecological change
and as a criterion for the selection of conservation areas (van Jaarsveld et al., 1998; Lek
et al., 2005; He et al., 2010). Increasing knowledge about the relationships between environ-
mental features and fish populations is therefore essential for the design of effective habitat
conservation and river restoration actions.
Ecological and biological data rarely satisfy the principles of parametric approaches, in which
data must be independent, normal and homoscedastic (Guisan and Zimmermann, 2000;
Breiman, 2001b) These criteria increase the challenges in modelling ecological phenomena.
To cope with these issues, machine learning (ML) techniques have been widely used due to
their ability to identify non-linear relationships and generate less uncertain predictive results
(Olden et al., 2008).
Several researchers have applied ML in ecological studies (Aertsen et al., 2010; Armitage and
Ober, 2010; Leclere et al., 2011; Mouton et al., 2011). In particular, artificial neural networks
(ANN) and random forests (RF) are two machine learning techniques which are currently valu-
able tools for ecological modelling, and are especially useful in analysing large datasets and
identifying non-linear relationships (Drew et al., 2011). ANN are recognized as powerful and
effective tools (Mastrorillo et al., 1998; Olden et al., 2008) to solve complex dependencies
which are difficult with other traditional statistical methods (Lek et al., 2005; Olden et al.,
2008). In the context of freshwater fish studies, ANN have been used with satisfactory results
(Tirelli et al., 2009; Olaya-Marín et al., 2012). Ibarra et al. (2003) used ANN and multiple regres-
sion models (MLR) to identify the factors that influence fish guilds in the Garonne river basin
(south-western France). They found better predictions of fish guilds with ANN than MLR.
A similar result about ANN prediction accuracy is reported in Tirelli and Pessani (2009, 2011),
who used ANN and decision trees to predict the presence of Telestes muticellus and Albur-
nus alburnus alborella in Piedmont rivers (north-western Italy). Moreover, Tirelli et al. (2009)
applied ANN, discriminant function analysis, logistic regression and decision tree to model
Salmo marmoratus distribution in Piedmont (Italy) and the performance of ANN was supe-
rior to the other modelling techniques. Also for imbalanced data, Hauser-Davis et al. (2010)
concluded that ANN are an excellent alternative in classification problems.
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Regarding RF, it is currently considered a promising technique in ecology (Cutler et al., 2007;
Franklin, 2010; Drew et al., 2011; Cheng et al., 2012) but it has rarely been applied in fresh-
water fish studies. RF can be used to identify important associations among variables (Evans
et al., 2011) and perform both regression and classification analyses (Cheng et al., 2012). He
et al. (2010) compared the use of classification and regression trees (CART) and RF to pre-
dict endemic fish assemblages and species richness in the upper Yangtze River. The study
showed that RF is better than CART in terms of accuracy and efficiency. Knudby et al. (2010)
used linear (GLM) and generalized additive models (GAM), Bagging, RF, Boosted Regres-
sion Trees (BRT) and support vector machines (SVM) to build predictive mapping of reef
fish species richness, diversity and biomass. They found that the tree-based models were
generally superior to predict species richness of reef fish. Furthermore, Mouton et al. (2011)
found similar predictive performance of RF and Fuzzy logic models to represent mesohabitat
suitability for Salmo trutta in Spain, whereas Kampichler et al. (2010) compared different ML
techniques (including ANN and RF) for classification problems and recommend the use of RF
in conservation biology.
Given the large number of ML techniques, there are not established guidelines for defining the
most appropriate method to address a particular ecological question or management action
for freshwater ecosystems. In particular, ML regression models are very scarce in ecology
(Franklin, 2010) resulting in the necessity of conducting comparative studies of ML tech-
niques. Moreover, the ecological knowledge of Mediterranean rivers needs to be expanded.
Additional efforts to improve the understanding of the main factors influencing species rich-
ness are valuable (Filipe et al., 2010; Aparicio et al., 2011). In this context, the objectives of
this study were (i) to compare the reliability and ecological relevance of two ML predictive
models for fish richness, based on the techniques of ANN and RF and (ii) to evaluate their
conformity in terms of selected important variables between the two modelling approaches.
It is important to highlight here that a comparison between ANN and RF for prediction of fish
species richness has not yet been presented in the literature. These comparisons are cur-
rently considered a new open line of research (Aertsen et al., 2011) and this paper represents
a further contribution in such a field.

MATERIALS AND METHODS

> STUDY AREA AND DATA COLLECTION

This study was carried out with data collected in the mainstems of the Júcar, Cabriel and
Turia Rivers, in the Eastern Iberian Peninsula (Figure 1). These rivers are characterized by a
Mediterranean climate, a flow regime controlled by rainfall variability, a strong seasonal and
inter-annual discharge variation with two high flow periods per year (spring and fall) and se-
vere droughts in summer (Ollero et al., 2011). The mean temperature ranges between 11.6 to
17 ◦C and the maximum temperatures are registered in July and August, coinciding with the
dry period (Estrela et al., 2004). The mean annual precipitation in the study area is 500 mm,
ranging between 320 mm in dry years to 800 mm in the wet years (Estrela et al., 2004). The
soils are highly permeable and are characterized by high infiltration and percolation rates
(Estrela et al., 2004). During the last decades, the natural flow regime has been altered by
the construction of reservoirs and water diversion structures; flow regulation is severe par-
ticularly for streams located in the middle and lower part of the watersheds. The effect of
flow regulation is expressed by an inversion of the intra-annual variability pattern; in summer,
the regulated flow is greater than natural flow, and in contrast, the regulated flow is smaller
than the natural flow during winter (Aparicio et al., 2011). Due to industrial and urban waste
water, pollution also affects rivers (Estrela et al., 2004; Aparicio et al., 2011) and agricultural
practices, particularly in spring and summer, constitute a source of diffusive pollutants at the
catchment-scale (Estrela et al., 2004).
In the analyses, we used data from 90 sampling sites along the mainstems of the three
rivers (Figure 1). The sites were selected as representative in terms of river morphology
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Figure 1
Study area showing the distribution of the 90 sampling sites in the three rivers studied (Júcar, Cabriel
and Turia rivers).

Table I
Freshwater fish species present in the study area related to its threat status (Freyhof and Brooks, 2011;
IUCN, 2012).CR, critically endangered; EN, endangered; VU, vulnerable; NT, near threatened; LC, least
concern.

Species name Common name Family Threat status
Anguilla anguilla European eel Anguillidae CR
Parachondrostoma arrigonis Júcar nase Cyprinidae CR
Parachondrostoma turiense Turia nase Cyprinidae EN
Achondrostoma arcasii Bermejuela Cyprinidae VU
Barbus haasi Iberian redfin barbel Cyprinidae VU
Cobitis paludica Southern Iberian spined-loach Cobitidae VU
Luciobarbus guiraonis Eastern Iberian barbel Cyprinidae VU
Squalius pyrenaicus Southern Iberian chub Cyprinidae NT
Squalius valentinus Eastern Iberian chub Cyprinidae VU
Iberocypris alburnoides Calandino Cyprinidae VU
Salmo trutta Brown trout Salmonidae LC
Salaria fluviatilis Freshwater blenny Blenniidae LC

and proportion of mesohabitats which characterize the analysed water courses. Native fish
species richness (i.e. the number of fish species at each sampling site) was defined by means
of a single-pass electrofishing during the spring/summer period from 2005 to 2009. The limits
of the sampling sites were opened and the minimum length of each sampled reach was 50 m.

The total fish diversity comprises 12 native species (Table I) with a maximum local richness of
five species. These values are common in Mediterranean rivers, which are generally charac-
terized by a low species richness per site (Ferreira et al., 2007). Cyprinidae is the predominant
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Table II
Potential environmental variables used to build the predictive models for native fish species richness.
Physico-chemical and hydrological parameters were obtained from the monitoring network (MN) of the
Júcar river basin authority, mean width and hydro-morphological unit proportions were measured in situ
during fish samplings, while geographical variables were derived from GIS analyses.

Variable Code Source Mean Standard
deviation

Dissolved oxygen (mg· L−1) DIS MN 9.58 0.44
Biological oxygen demand (mg· L−1) BOD MN 2.51 0.77
Total phosphorus (mg· L−1) TOP MN 0.06 0.03
Nitrite (mg· L−1) NIT MN 0.02 0.02
pH PH MN 8.18 0.11
Suspended solids (mg· L−1) SUS MN 11.39 5.77
Water conductivity (µS· cm−1) CON MN 797.87 172.62
Water temperature (◦C) WAT MN 13.38 2.48
Percentage of pools (%) POO in situ 48.66 21.42
Percentage of glides (%) GLI in situ 11.21 16.89
Percentage of riffles (%) RIF in situ 28.27 21.41
Percentage of rapids (%) RAP in situ 5.79 6.85
Percentage of runs (%) RUN in situ 6.07 12.10
Mean width of the water surface (m) WID in situ 12.46 4.68
Channel length without artificial barriers (km) CWB GIS 26.35 29.46
Altitude (m a.s.l) ALT GIS 746.48 298.43
Drainage area (km2) DRA GIS 3318.84 2607.51
Distance from the source (km) DHS GIS 150.19 76.41
Mean annual flow rate (m3· s−1) FMA MN 4.33 2.44
Inter-annual mean flow FIA MN 5.50 2.57
(calculated for 5 years) (m3· s−1)
Coefficient of variation of mean monthly flows FIM MN 0.58 0.18
(referred to fish sampling)
Coefficient of variation of mean annual flows FCV MN 0.40 0.17
(calculated for 5 years)
Index of riparian habitat quality QBR MN 73.61 20.74
Iberian biomonitoring working party IBMWP MN 131.68 36.32

family in the three rivers; the most important genera are Achondrostoma, Parachondrostoma,
Luciobarbus, Barbus, Squalius and Iberocypris. Other species present in the rivers are Cobitis
paludica and Salaria fluviatilis which are very sensitive to pollution and have distinct environ-
mental requirements (CHJ, 2007). All these species perform small-scale migrations for repro-
duction within the river system and the only one migrating at a large scale is Anguilla Anguilla,
a catadromous fish species with a complex life-history that includes migrations across the
Atlantic Ocean. The number of individuals of these native fish species have decreased con-
sistently in the last decades as a consequence of habitat modifications (including barriers)
and pollution in the lower river reaches (Doadrio, 2001; Costa et al., 2012).
24 environmental variables (Table II) were used to construct the ANN and RF models, which
were selected considering their ecological importance for fish life cycle (Granado-Lorencio,
1996; Jackson et al., 2001; Bernardo et al., 2003; Costa et al., 2012). These variables be-
long to three categories: physicochemical water quality, hydro-morphology, and biologically-
based indicators of water and riparian habitat quality. Following Olden et al. (2006), we took
into account predictive variables from multiple spatial scales (i.e. mesohabitat, river segment
and catchment scale). This multiscale modelling approach allowed an integrative analysis
of multiple sources of variability and a better understanding of the biodiversity patterns in
Mediterranean rivers (Filipe et al., 2010).
Data were collected from three main sources: in situ, GIS analyses and from the Júcar River
Basin monitoring network (MN) (Table II). Physico-chemical variables (i.e. dissolved oxygen,
biological oxygen demand, total phosphorous, nitrite, pH, suspended solids, water temper-
ature) are consistent with the mean annual reported for the survey year. The proportions
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of hydro-morphological units (HMUs) and the mean width of water surface were measured
in situ. The classification of HMUs was based on the methods proposed by Dolloff et al.
(1993) using five types of mesohabitats (pool, glide, riffle, rapid and run) (Alcaraz-Hernández
et al., 2011):

– Pools: water depth >0.6 m, water velocity below the average for the reach, and a very low
longitudinal gradient.

– Glides: water depth <0.6 m, water velocity similar to the average for the reach, little tur-
bulence and nearly symmetrical cross sections.

– Riffles: shallow water with ripples on the surface, an average water velocity < 0.4 m·s−1,
nearly symmetrical crosssections, and a mean depth similar to the mean substrate size.

– Rapids: shallow water with water velocity greater than the average for the reach, very high
energy dissipation, elements of coarse substrate projecting from the water surface, steep
channel gradients.

– Runs: moderate channel slopes with depths higher than riffle moderate to fast current,
surface not turbulent, and button materials ranging from small gravel to rubble.

Geographical variables (i.e. channel length without artificial barriers, altitude, drainage area
and distance from the source) were delineated using ArcGIS 9.3.1 software (ESRIc©2009). The
mean monthly flow was calculated at ungauged sites through a linear interpolation between
gauged sites. To define the hydrological indexes (inter-annual mean flow and the coefficients
of variation of mean monthly flow and of mean annual flow), we used the linear relationship
between the natural flow and the accumulated drainage area, and then transformed monthly
flow values to regulated conditions (Leopold et al., 1964; Caissie, 2006). The riparian habitat
quality index (QBR, Munné et al., 2003) was taken into account to assess the morphological
conditions of the sampling sites; this index was adopted by the Spanish Ministry of Envi-
ronment (MMARM, 2008). QBR consists of four components, which synthesize qualitative
features related to the conservation state of the riparian area: total vegetation cover, vege-
tation cover structure and quality, and river channel alterations. The values of this index are
distributed in five quality intervals (�95: excellent quality; 90-75: good quality; 70-55: moder-
ate quality; 503: poor quality; � 25: bad quality). Finally, we used the Iberian Biomonitoring
Working Party index (IBMWP) (Alba-Tercedor, 1996) based on invertebrate analysis to evalu-
ate the biological quality of rivers. IBMWP values are distributed in five ranges of water quality:
�101: very clean water; 100-61: unpolluted water or not appreciably altered; 60-36: partially
polluted water with some evident effects; 35-16: very polluted water; �15: heavily polluted
water.

> MODELLING TECHNIQUES

Artificial neural networks (ANN)

Artificial neural networks are mathematical models inspired by the structure and behaviour
of the human brain (Olden et al., 2008). They are considered a powerful computational tool
to address ecological issues that are difficult to analyse by traditional statistical methods
(Lek et al., 2005); among different types of ANN, multilayer perceptron (MLP) is the most
used in ecology (Özesmi et al., 2006). It is constituted by multiple layers and the information
is transferred from input layer to the output (feed-forward). This kind of ANN is based on
supervised learning, which implies the use of input and output datasets to iteratively change
the weights until the simulated outputs are similar to the observed ones. To minimize the
error, the algorithm employs the values of the error calculated in the previous iteration and
then updates the weights. A detailed description of ANN is reported in Olden et al. (2008) and
Goethals et al. (2007).
This study applied a MLP to predict native fish species richness. We built and tested several
MLP models to establish, by trial and error estimates, the optimal number of neurons in the
hidden layer. A single hidden layer was used to significantly reduce the computational time.
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Moreover, as reported in Kurková (1992) the use of a single hidden layer produces similar
results compared to the incorporation of additional hidden layers. Before training, data were
scaled proportionally between –1 and 1 in the range of the minimum and maximum values
(Demuth et al., 2010).
The transfer function in the hidden layer was a hyperbolic tangent and an identity function in
the case of the output layer. The hyperbolic tangent gave optimal results in previous studies
(Isa et al., 2010) in which a performance comparison was carried out to select the best MLP
activation function (Olaya-Marín et al., 2012). The Levenberg-Marquardt (LM) optimization al-
gorithm was used to train the candidate models because this algorithm is the fastest method
to train neural networks of moderate size (Karul et al., 2000). LM has been applied success-
fully in ecology (Gutiérrez-Estrada and Bilton, 2010) and a description of the algorithm can
be found in Singh et al. (2009). To test and validate the models, we used the k-fold cross-
validation procedure and tested different k values (ranging from 3 to 10, Goethals et al., 2007;
Dormann, 2011). The best k value was then identified by the comparison of the performance
of the different ANN obtained in the cross-validation procedure. This approach is frequently
used when the number of data available is not sufficient to divide the data into training and
validation datasets (Goethals et al., 2007; Olden et al., 2008) The dataset is randomly split in
k subsets: k-1 folds are used for training and the remaining used for validation (Hastie et al.,
2009) This procedure is repeated k times and results in k models. The performance of the
different k models was averaged as final criterion for model evaluation. All numerical ANN
calculations were performed using MATLAB software (version R2010a).

Random forests

The fish richness was also predicted using the random forests (RF) methodology (Breiman,
2001a; Cutler et al., 2007) in the statistical software R (R Development Core Team, 2009) by
means of the randomForest package (Liaw and Wiener, 2002). RF is an ensemble learning
technique based on a combination of a large set of decision trees. Each tree is trained by
selecting random bootstrap samples Xi (i = bootstrap iteration which ranges from 1 to t) of
the original dataset X and a random set of predictive variables. This process represents the
main difference compared to standard decision trees (Breiman et al., 1984), where each node
is split using the best split among all predictive variables (e.g. Vezza et al., 2012). Moreover,
RF corrects many of the known issues in CART, such as over-fitting (Breiman, 2001a; Cutler
et al., 2007), and provides very well-supported predictions with large numbers of independent
variables (Cutler et al., 2007).
As the response variable (fish richness) was numerical, we confined our attention to regression
RF models. The algorithm for growing a RF of t regression trees was performed as follows
(for full details see Breiman, 2001a):

(1) t bootstrap samples Xi of the training dataset were randomly drawn with replacement,
each one containing approximately two-thirds of the elements of the original dataset X.
The elements not included in each training dataset are referred to as out-of-bag data
(OOB, i.e. the validation dataset) for that bootstrap sample. On average, each element
of X was an OOB element in one-third of the t iterations.

(2) For each bootstrap sample Xi, an unpruned regression tree was grown. At each node m
variables were randomly selected and the best split was automatically chosen.

(3) New data (OOB elements) were predicted by averaging the predictions of the generated
t trees. In particular, for each element (yi) of the original dataset an aggregated predic-
tion (gOOB) was developed and the out-of-bag estimate of the error rate (EOOB) was com-
puted as: [

EOOB = (1/t)
t∑
1

[yi − gOOB (Xi)]
2

]
·

The EOOB was also used to choose an optimal value of t and m (Breiman, 2001a). The m pa-
rameter (number of variables permutated at each node) was defined as [1/3 × (number of
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Figure 2
Correlation matrix and hierarchical clustering using squared Spearman correlation (ρ2) of potential
predictors.

variables)] with a minimum of m = 2 (see Breiman, 2001a). As EOOB is an unbiased estimate
of the generalization error, it is not necessary to test the predictive ability of the model using
a cross-validation procedure (Breiman, 2001a). However, in accordance with ANN and for a
more reliable comparison, we performed k-fold cross-validation (with k ranging from 3 to 10)
following the approach reported in Hastie et al. (2009).

Variable selection

As a first step, a correlation matrix was calculated to verify collinearity (Figure 2). For high
correlations (Spearman’s rho2 > 0.5) we removed the variable (Table II) with the least ecologi-
cal relevance (Dormann, 2011) This choice was based on the authors’ expert knowledge and
on the findings of previous research studies (Aparicio et al., 2000; Vila-Gispert et al., 2005;
Alcaraz-Hernández et al., 2011; Hermoso and Clavero, 2011). To identify the most important
predictive variables we followed two different approaches. On one hand, the forward step-
wise procedure was applied in the ANN models; this method consists of adding step by step
a single input variable and then evaluating the improvement in ANN performance (Gevrey
et al., 2003). The irrelevant input variables are therefore eliminated measuring the complexity
reduction of the ANN model (see Gevrey et al., 2003; Tirelli and Pessani, 2009) and at the end
of the process the variables that imply a significant improvement in the ANN performances
are selected.
On the other hand, we applied the model improvement ratio technique (MIR, Murphy et al.,
2010) to identify the most parsimonious RF model. RF produces a measure of variable impor-
tance by analysing the deterioration of the predictive ability of the model when each predictor
is replaced in turn by random noise. The increase in the mean squared error of each tree
(IncMSE) is used as a score of importance of a given variable (Vincenzi et al., 2011), as it
indicates the contribution to RF prediction accuracy for that variable. The MIR technique
uses the variable importance standardized from zero to one and the improvement ratio was
therefore calculated as [In/Imax], where In is the importance of a given variable and Imax is the
maximum model improvement score. We then iterated through MIR thresholds (i.e. 0.05 incre-
ments), with all variables above the threshold retained for each model (Evans and Cushman,
2009). The models corresponding to different subsets were then compared and the model
exhibiting the minimum MSE error and the lowest number of variables was selected.

Model evaluation

Model comparison was conducted under two different conditions: (i) before variable selection
to show models’ efficiencies and variable importance using all sources of variability and their
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interactions; and (ii) after variable selection as described in Section “Variable selection”, to
evaluate the effect of variables selection in RF and ANN.
The overall accuracy of the two statistical models was evaluated using three performance
metrics, commonly used in ecological modelling (e.g. Singh et al., 2009; Aertsen et al., 2011):
the determination coefficient (R2), the mean squared error (MSE) and the adjusted determina-
tion coefficient (R2

adj).

The determination coefficient (R2) assesses the proportion of variability explained by the
model, and it is calculated by:

R2 =

⎛
⎜⎜⎝

∑(
Ysim · Yobs

) − ((∑
Ysim ·∑ Yobs

)
/n

)
√(∑

Ysim2 −
((∑

Ysim
)2 /n

))
·
(∑

Yobs2 −
((∑

Yobs
)2 /n

))
⎞
⎟⎟⎠

2

(1)

where, Yobs are the observed values, Ysim represent the simulated values, and n is the total
number of observations.
MSE is the error between model predictions and observed values, it is expressed as:

MSE =
1
n

∑ (
Ysim − Yobs)2

(2)

The adjusted determination coefficient is a modification of the determination coefficient and
was used during the model selection procedures to compare models with different numbers
of predictive variables (Vezza et al., 2010) In contrast to R2, this coefficient penalizes the
excessive use of inputs, and it is expressed as follows:

R2
adj = 1 − (

1 − R2
) n − 1

n − p − 1
(3)

where p represents the number of input variables.
Finally, the ecological interpretation of each optimal ANN and RF model was carried out by
sensitivity analysis and the assessment of the relative importance of the inputs. The partial
derivatives (PaD) method was applied in ANN (Dimopoulos et al., 1995), which represents the
mostly used approach to evaluate the relative importance in MLP (Gevrey et al., 2003) The
PaD method can be used to estimate the sensitivity of the output as a function of small vari-
ations in each input variable; positive PaD values indicate a positive relationship between the
corresponding input variable and the output variable, and vice versa. Also PaD is useful esti-
mating input relative importance. On the other hand, partial plots were calculated to visualize
the marginal effect of predictive variables in RF simulations and its relative importance was
indicated by the IncMSE values (Breiman, 2001a).

RESULTS

> ENVIRONMENTAL VARIABLE

The variables DHS, WAT, ALT, and DRA had a high Spearman’s rank correlation coefficient
(Figure 2; see Table II for variable codes). According to Filipe et al. (2010) and Oberdorff
et al. (1995) DRA is an important variable to estimate the distribution of species richness.
For this reason, we removed DHS, WAT and ALT as potential predictors. CON and FCV were
also highly correlated; we kept FCV as a potential predictive variable because it represents
flow variability and it was found important for Mediterranean fish species in several studies
(Magalhães et al., 2007; Hermoso and Clavero, 2011) Lastly, FIA and FMA were also corre-
lated; however both of them were used as predictive variables given their similar relevance
for Mediterranean fish life cycle (Hermoso and Clavero, 2011).
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Table III
Relative importance of input variables in ANN and RF before variable selection. See Table II for variable
codes.

Ranking
ANN model (20-15-1) RF model

Variable
Relative

Variable
Relative

importance (%) importance (%)
1 IBMWP 14.80 QBR 10.41
2 RIF 14.79 RUN 10.05
3 FIM 8.63 DRA 9.56
4 CWB 6.95 IBMWP 8.89
5 RAP 6.58 RAP 7.78
6 DRA 6.45 SUS 6.66
7 QBR 5.46 RIF 5.87
8 FMA 5.26 PH 5.76
9 GLI 4.51 CWB 5.46
10 DIS 3.92 DIS 4.89
11 FCV 3.20 FMA 4.07
12 PH 3.02 FIM 3.85
13 SUS 3.00 GLI 3.40
14 BOD 2.67 POO 3.32
15 RUN 2.63 FCV 2.94
16 POO 2.09 WID 2.43
17 NIT 1.72 FIA 2.21
18 FIA 1.70 BOD 1.83
19 WID 1.48 NIT 0.42
20 TOP 1.15 TOP 0.21

> MODEL RESULTS BEFORE VARIABLE SELECTION

ANN model showed an efficiency of 0.19 MSE in training and 0.65 in validation using 20 en-
vironmental variables as predictors. On the other hand, RF had a training MSE of 0.1 and a
validation MSE of 0.68 The first six most important variables to simulate fish species richness
in ANN model were IBMWP, RIF, FIM, CWB, RAP and DRA. In contrast, the most significant
variables in the RF model were QBR, RUN, DRA, IBMWP, RAP and SUS (Table III).
The best neural network architecture to predict native fish richness had three layers (i.e.
7-6-1), with seven neurons in the input layer (which corresponds to the predictive variables),
a hidden layer with six neurons, and the output layer with a single neuron; the last one calcu-
lates the estimated values of native fish species richness. During the k-fold crossvalidation,
the ANN performance did not increase with k values higher than 6, therefore we used k = 6 to
validate the model. The stepwise selection of variables and the MSE is illustrated in Figure 3.
In RF, the OOB error stabilization occurred between t = 1500 and t = 2500 replicates. How-
ever, a heuristic estimation of t taking into account the OOB error stabilization was defined as
[2·(t for EOOB stabilization) = 5000] (Evans and Cushman, 2009). The relation between the MSE
and number of variables in RF is shown in Figure 3. For both models, the MSE quickly de-
creased as the number of input variables was increasing (Figure 3). A breakpoint was located
at 7 variables in ANN; and at 5 variables in RF. Based on this criterion, we used 7 predictive
input variables to build the ANN model and 5 for RF.

> MODEL RESULTS AFTER VARIABLE SELECTION

According to the correlation analysis and the forward stepwise procedure the relevant vari-
ables to predict the native fish richness with the ANN model are reported, in order of impor-
tance: IBMWP, RIF, FMA, FIM, CWB, DRA and QBR. In contrast for RF, the selected variables
were QBR, RUN, DRA, IBMWP and RAP.
The best training performance was obtained by the RF model (R2 = 0.94; MSE = 0.10),
whereas for validation both techniques gave similar results (MSE = 0.62, R2 = 66% for ANN;
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Figure 3
Artificial neural networks (ANN) and random forests (RF) performance in terms of mean squared error
(MSE) as a function of the number of input variables (N. variables). The final ANN model (including
7 variables) and RF model (including 5 variables) were those in which the incorporation of any additional
variable meant no relevant error decrease (vertical lines).

Table IV
Predictive performances for the training and validation set of the 6-fold cross-validation for native fish
species richness. Models were evaluated with determination coefficient (R2), mean squared error (MSE)
and adjusted determination coefficient (R2

adj).

Models
Training Validation

R2 MSE R2
adj R2 MSE R2

adj

ANN

Min 0.76 0.30 0.74 0.52 0.44 0.48
Max 0.84 0.43 0.82 0.77 0.87 0.75

Mean 0.81 0.35 0.78 0.66 0.62 0.63
SD 0.03 0.05 0.03 0.08 0.19 0.09

RF

Min 0.93 0.09 0.93 0.58 0.38 0.57
Max 0.95 0.12 0.95 0.84 0.74 0.78

Mean 0.94 0.10 0.94 0.68 0.56 0.66
SD 0.01 0.01 0.01 0.11 0.25 0.15

MSE = 0.56, R2 = 68% for RF). Table IV displays the performance of training and validation in
RF and ANN models, while Figure 4 shows the scatter plots between observed and simulated
values.
The implementation of the partial derivatives algorithm for ANN revealed that the most im-
portant variables to predict native fish richness were IBMWP, with a relative importance of
20.72% and percentage of riffle (RIF) with an importance of 20.18%. In the case of the RF
model, the most important variables were QBR and percentage of runs (RUN), with a relative
importance of 23.51% and 22.02%, respectively (Figure 5). Both models have in common
three variables (IBMWP, QBR and DRA), following the sensitivity analysis we found a posi-
tive relationship between IBMWP and QBR with native fish richness in both models (i.e. an
increase in these variables leads to increments of richness in the study area). In contrast, the
richness is negatively related to DRA in both RF and ANN models (Figure 5).

DISCUSSION

In this study two machine learning techniques (i.e. ANN and RF) were applied to estimate
the fish species richness in the Júcar river basin, as preparatory reference for future wildlife
and habitat conservation actions. The methodology compared the reliability and ecological
relevance of the two statistical techniques in order to evaluate their applicability and assess
the conformity in terms of variables importance between the two predictive models.

07p11



E.J. Olaya-Marín et al.: Knowl. Managt. Aquatic Ecosyst. (2013) 409, 07

Figure 4
Scatter plots between the observed and the simulated values of native fish species richness for the ANN
and RF models.

Figure 5
Relative importance (expressed in % of contribution) of each input variable to predict native fish richness.
Left side: the ANN model, right side: the RF model. See Table II for variable codes.

The ANN model built before variable selection had a high difference between training and
validation performances due to the presence of large sources of variability which make the
learning process difficult and could generate problems of over-fitting (Maier and Dandy, 2000).
However, the most important variables in this ANN model (e.g. IBMWP, RIF, FIM and CWB,
see Table III) can be considered ecologically relevant to fish. Similarly, the RF model built with
20 variables also shows a notable difference in training and validation performances. Also for
the RF case, the most important predictors in this model have been identified by previous
studies as relevant to freshwater fish species (Bernardo et al., 2003; Costa et al., 2012). The
high differences between training and validation performances confirm the hypothesis that a
very complex model with many degrees of freedom is not robust (Maier and Dandy, 2000)

Looking at the models built after variable selection, ANN and RF showed no significant differ-
ences of performance in the cross-validation procedure (R2 = 68% for RF and R2 = 66% for
ANN, Table IV). However, it is important to note that RF outperformed ANN in terms of MSE,
particularly considering small numbers of input variables (Figure 3, N. Variables < 7).

The RF model had the smallest number of inputs and only five variables were required for
prediction, while ANN required seven. The difference in the number of inputs highlighted the
advantage of using RF, because the models with fewer variables are much easier to interpret
and can reduce the level of prediction uncertainty (Jorgensen and Fath, 2011). However, the
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RF model showed much higher accuracy in the training compared to that obtained in the val-
idation phase (Table IV), presenting a considerable difference in performance. In contrast, for
ANN the difference between training and validation prediction error was smaller and demon-
strated more stable results.
Since the 90’s, diverse mathematical algorithms have emerged in order to quantify and in-
terpret the importance and contribution of input variables to the model output and, at same
time, to identify and eliminate redundant variables to increase model parsimony (e.g. Olden
and Jackson, 2002; Gevrey et al., 2003; Murphy et al., 2010). In this research we used PaD
(Dimopoulos et al., 1995) for ANN and the model improvement ratio (Murphy et al., 2010) for
RF. PaD allowed the classification of the input variables according to their contribution to the
output variable and, in accordance with Gevrey et al. (2003), the technique produced stable
variables ranking over the different ANN models. On the other hand, MIR demonstrated to
be a simple and powerful methodology to select the threshold that minimized both retained
inputs and model error.
For variable selection, a forward stepwise methodology was embedded in the ANN algorithm,
whereas the variable importance values were used in RF to screen the overall range of inputs
and select the most parsimonious model. The two procedures were based on different ap-
proaches and led to two different sets of variables. However, this result is not surprising and
is confirmed in several studies (Xu and Zhang, 2001; Abrahamsson et al., 2003; Reunanen,
2003; Wells et al., 2011), in which different variable selection procedures produced similar
subsets of variables. It is important to note that the RF ranking of variables is based on all
possible combinations of model inputs with m random variables permuted at each node of
the tree. In contrast, the one-step-ahead search procedure of ANN may not lead to the best
combination of inputs; it required the modeller to study the sequence of variables and analyse
whether the addition or removal of a few more variables might not produce any improvement.
Another important aspect in ecological modelling involves the evaluation and interpretation
of the results. The presented models were in accordance with the literature due to the fact
that the selected input variables, such as water quality, flow regime and the status of riparian
forest, are of great importance for the Mediterranean fish populations (Granado-Lorencio,
1996, 2000; Bernardo et al., 2003; Ferreira et al., 2007).
Both models had three variables in common to predict fish richness: drainage area (DRA),
quality index of the riparian forest (QBR) and the biological index for water quality (IBMWP).
Although the variables’ ranking was not the same (in terms of % of contribution, Figure 5), this
accordance can indicate the robustness of the results (e.g. Xu and Zhang, 2001) In several
studies (Oberdorff et al., 1995; Reyjol et al., 2007; Leprieur et al., 2009) DRA is considered
an important environmental variable for fish species richness, integrating information related
to habitat diversity, the variety of microclimates and flow regimes in the river basin (Allan and
Castillo, 2007; Townsend et al., 2008) The negative relationship between DRA and richness
may be due to the fact that the lower reaches of Júcar, Cabriel and Turia rivers are highly
regulated and have higher levels of contamination than the upper reaches (Aparicio et al.,
2011).
Water quality and riparian forest play a key role in determining the richness of native fish Thus,
QBR and IBMWP have been identified as relevant factors positively influencing fish species
richness in Spain (Carballo et al., 2009; Sánchez-Montoya et al., 2010) and are widely used
for the ecological monitoring of rivers. Indeed, the riparian forest provide shelter and food
for aquatic organisms (Naiman et al., 1993) and can strongly influence the quality of aquatic
habitats, particularly along a gradient of river regulation (Garófano-Gómez et al., 2011). Fur-
thermore, river pollution is currently one of the most important threats for the Mediterranean
freshwater fish (Smith and Darwall, 2006); it can severely disrupt the functioning of the aquatic
ecosystem and compromise the survival of biota (Granado-Lorencio, 2000).
Both ANN and RF selected the proportion of HMUs as important predictors of fish richness
and, in particular, percentage of riffles (RIF) were selected in ANN and percentage of runs
(RUN) and rapids (RAP) in RF, all showing a positive relationship with the target variable.
Although the two statistical techniques considered different HMU types, one can observe
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how the spatial distribution and dynamics of mesohabitats can be of great importance for
fish conservation (Fausch et al., 2002). According to Bernardo et al. (2003) riffles and runs
can influence the composition of Mediterranean fish communities; particularly for those dom-
inated by the family Cyprinidae (Granado-Lorencio, 2000; Ferreira et al., 2007), because these
mesohabitats can offer good conditions in terms of food availability and shelters.

Mean annual flow rate (FMA), the coefficient of variation of mean monthly flow (FIM) along
with the channel length without artificial barriers (CWB) were only selected by ANN. Differ-
ent studies highlighted the role of flow variability and magnitude in supporting the aquatic
communities (Poff et al., 1997; Belmar et al., 2011; Olaya-Marín et al., 2012) and, the lon-
gitudinal connectivity has important consequences on the distribution of native fish (Kroes
et al., 2006.), either small or large-scale migratory species (e.g. Parachondrostoma arrigonis
or Anguilla Anguilla, both critically endangered in the region of interest). Including these as-
pects in fish richness prediction underline the ecological relevance of the ANN model, which
seemed to capture the interplay between natural and anthropogenic factors influencing fish
species distribution.

As reported in Siroky (2009) RF models are fast to train and tune. In our research the time
needed for RF model construction was much less than for ANN (few minutes compared to
hours) due to the structure of RF algorithm characterized by few parameters to set and a
limited number of variables (m) to be permutated at each tree node. ANN needed more time
for computer architecture design and learning as it performs a large amount of trials changing
the number of neurons and the type of activation function in the hidden layer. However, the
amount of time needed can be reduced by using different computer processors working in
parallel (Armitage and Ober, 2010) and once calibrated, ANN are able to process a large
volume of data and quickly generate predictions (Olden et al., 2008).

The applied ML techniques involve elegant mathematical theories and are known to be robust
to noise and able to manage the non-linearity among variables (Lek et al., 2005; Olden et al.,
2008; Siroky, 2009), but for some authors they can be seen as black boxes (Hooten, 2011).
In particular, the relationships between the input variables and the predicted values produced
by ANN and RF do not have simple representations such as a formula (e.g. linear regressions)
or pictorial graph (e.g. regression trees) that characterizes the entire function, and this lack of
simple representation can make the ecological application difficult (Cutler et al., 2007). Olden
and Jackson (2002) provided an interesting point of view to give light into the so called “black
box”; but, compared to traditional statistical methods, ML remain more complex to under-
stand and apply (Olden and Jackson, 2002; Olden et al., 2008). In addition, these techniques
require the modeller to have knowledge and experience in designing and programming the
algorithms in order to make effective use of the tools and to reach satisfactory and valid
results (Franklin, 2010) In spite of the emergence of high level programming languages and
user-friendly toolboxes the modeller must have knowledge and expertise in building these
kind of statistical models (Aertsen et al., 2010; Franklin, 2010).

Although a comprehensive evaluation of several different techniques was beyond the scope of
this paper, we believe that the best predictive ML method cannot be chosen a priori and both
ANN and RF constitute valuable tools to predict fish richness in the Mediterranean region.
Looking at the results, we can state that the use of more than one ML technique on the same
study area was helpful, not only to identify the most important variables, but also to interpret
the goodness and coherence of the results. As an operational procedure for future studies on
fish species richness, we can state that the comparison of different ML methods should be
carried out. Moreover, as a further step already planned for the near future, these analyses
can be performed in other Mediterranean basins.

The presented approaches, which relate environmental variables to the fish communities,
can be used for predicting fish richness at the basin scale and can be incorporated into the
decision-making process for water resources management (Paredes-Arquiola et al., in press).
For instance they could contribute to perform large-scale assessments of environmental flow
standards, based on methodological frameworks with a regional perspective (Poff et al., 2010;
Paredes-Arquiola et al., 2013).
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