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Joint estimation of PLDA and non–linear
transformations of speaker vectors

Sandro Cumani and Pietro Laface

Abstract—The Gaussian Probabilistic Linear Discriminant
Analysis (PLDA) model assumes Gaussian distributed priors
for the latent variables that represent the speaker and channel
factors. Assuming that each training i–vector belongs to a differ-
ent speaker, as is usually done in i–vector extraction, i–vectors
generated by a PLDA model can be considered independent and
identically distributed with Gaussian distribution. Thus, we have
recently proposed to transform the development i–vectors so that
their distribution becomes more Gaussian–like. This is obtained
by means of a sequence of affine and non–linear transformations
whose parameters are trained by Maximum Likelihood (ML)
estimation on the development set. The evaluation i–vectors are
then subject to the same transformation.

Although the i–vector “gaussianization” has shown to be
effective, since the i–vectors extracted from segments of the
same speaker are not independent, the original assumption is not
satisfactory. In this work we show that the model can be improved
by properly exploiting the information about the speaker labels,
which was ignored in the previous model. In particular, a more
effective PLDA model can be obtained by jointly estimating
the PLDA parameters and the parameters of the non–linear
transformation of the i–vectors. In other words, while the goal of
the previous approach was to “gaussianize” the training i–vectors
distribution, the objective of this work is to embed the estimation
of the non–linear i–vector transformation in the PLDA model
estimation. We will thus refer to this model as the non–linear
PLDA model (NL–PLDA).

We show that this new approach provides significant gain
with respect to PLDA, and a small, yet consistent, improvement
with respect to our former i–vector “gaussianization” approach,
without further additional costs.

Index Terms—Speaker recognition, i–vector, PLDA, non–linear
density transformation.

I. I NTRODUCTION

Most speaker recognition systems are based on Gaussian
Mixture Models (GMMs) [1], where a speech segment is
represented by a compact “identity vector” (i–vector for short)
[2], extracted by means of Factor Analysis. The main advan-
tage of this representation is that the problem of intersession
variability is deferred to a second stage, dealing with low-
dimensional vectors rather than with the high-dimensional
space of the GMM means. In particular, systems based on
i–vectors, extracted by means of the hybrid Deep Neural
Network (DNN) and GMM approach, [3]–[6], and on Prob-
abilistic Linear Discriminant Analysis (PLDA) [7]–[9], or
discriminative classifiers [10]–[13], represent the current state–
of–the–art in text–independent speaker recognition.

The authors are with the Dipartimento di Automatica e Informatica,
Politecnico di Torino, 10143 Torino, Italy (e-mail: sandro.cumani@polito.it,
pietro.laface@polito.it).
Computational resources for this work were provided by HPC@POLITO
(http://www.hpc.polito.it)
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Fig. 1: Block diagram of the transformation functions.

A number of alternative approaches based on Restricted
Boltzmann Machines or DNN, alternative to the hybrid
DNN/GMM technique, have been proposed in the last years
for speaker–dependent and speaker–independent recognition.
Indeed, the success of DNNs for speech recognition [14]
has fostered the study of new DNN architectures for speaker
recognition with the aim of replacing totally or in part the
traditional GMM approach [15]–[20]. In particular, based on
the success of the DNN techniques in face recognition [21],
the so called end–to–end speaker verification is actively being
explored with interesting results [22], [23].

Although we believe that the end–to–end architectures pave
the way for the next generation of state–of-the–art systems, we
have recently shown that there is still place for improvement
of the current state–of–the–art systems based on generative
models [24]–[26]. This paper is a further contribution along
this line of research, aiming at estimating more effective PLDA
models.

PLDA models the underlying speaker and channel variabil-
ity in the i–vector space using a probabilistic framework. From
the PLDA distributions it is possible to evaluate the likelihood
ratio between the “same speaker” hypothesis and “different
speaker” hypothesis for a set of i–vectors. I–vector extraction
is usually performed ignoring the model that will be used for
classification, but it is reasonable to expect better performance
if the features provided to a classifier fulfill its assumptions. In
particular, the simplified Gaussian PLDA model assumes that
the i–vector generation process can be described by means
of a latent variable probabilistic model where an i–vector
φ is represented as the sum of three factors, namely the i–
vector global meanm, a speaker factory, and a factorǫ
that represents the inter–session and the residual noise, both
Gaussian distributed, as:

φ = m+Uy + ǫ , (1)

where matrixU can constrain the speaker factors to be of
lower dimension than the i–vectors space.
PLDA estimates the model parameters that maximize the
likelihood of the observed i–vectors, assuming that the i–
vectors of a given speaker share the same speaker factor, i.e.,
the same value for latent variabley [7].
Assuming that each training i–vector belongs to a different
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Fig. 2: (a) Plot of sinh-arcsinh transformation functions,with ε = 0, and variableδ. (b) Pdf of the corresponding
transformed random variables. (c) and (d) Same as (a) and (b)but with δ = 0.75, and variableε.

speaker, i–vectors generated by a PLDA model can be con-
sidered independent and identically distributed with Gaussian
distribution. Although this assumption is not too realistic, it
is consistent with the i–vector extraction processing, where
all utterances are considered independent. Thus, we have
recently proposed to transform the development i–vectors
so that their distribution becomes more Gaussian–like [24],
[25]. This transformation is obtained by means of a sequence
of affine and non–linear transformations whose parameters
are trained by Maximum Likelihood (ML) estimation on the
development set. We will refer to this transformation in the
following as the AS (Affine–SAS) transformation because it is
obtained by means of a cascade of affine and non–linear sinh-
arcsinh (SAS) functions, as illustrated in Fig. 1, and detailed
in Section II. We will also refer to the PLDA classifier using
the AS transformed i–vectors as the AS–PLDA system.

The assumption that i–vectors are independent is not, how-
ever, satisfactory because the training set normally includes
several segments for each speaker, which are of course not
independent. Aiming at obtaining a more effective PLDA
classifier, we present a new approach that tackles this problem
by properly exploiting the information about the speaker
labels, which was ignored in the previous model. We propose
to embed the estimation of the non-linear i–vector transfor-
mation in the PLDA model estimation, i.e., to jointly estimate
the PLDA parameters and the parameters of the non–linear
transformation of the i–vectors. In other words, while the goal
of the previous approach was to “gaussianize” the training i–

vectors distribution, the objective of this work is to embed
the estimation of the non–linear i–vector transformation in the
PLDA model estimation. We will thus refer to this model as
the non–linear PLDA model (NL–PLDA).
The results of this approach will be compared with the
standard PLDA, and with the AS–PLDA approach on the NIST
2012 evaluation trials, using different systems and classifiers,
and a recently proposed compact representation of a speech
segment, similar to i–vector, which we have called e–vector
[26]. We rely on e–vectors because we have shown in [26]
that simply replacing the i–vectors with e–vectors, we have
obtained approximately 10% average improvement of the
Cprimary cost function on the NIST 2012 evaluation trials, using
different systems and classifiers.

The paper is organized as follows: In Section II we briefly
recall the non–linear transformations proposed in [24], [25].
Section III introduces our new generative non–linear PLDA
model, which allows us to embed the estimation of the non-
linear i–vector transformation in the PLDA model estima-
tion. NL–PLDA model training and scoring are illustrated
in Sections IV, and V, respectively. In Section VI we detail
the scaling–factor normalization technique, which is our al-
ternative to i–vector length normalization for the non–linear
models, and we illustrate NL–PLDA scoring with scaling–
factor normalization. The e–vector representation, its relation
with i–vectors, and its estimation procedure are briefly recalled
in Section VII. Section VIII is devoted to the experimental
settings and results, and conclusions are drawn in Section IX.
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II. D ENSITY FUNCTION TRANSFORMATIONS

The non–linear i–vector transformation model proposed in
[24], [25] assumes that i–vectors are independently sampled
from a standard normal distribution, and independently trans-
formed by means of an invertible non–linear functionf−1:

Φ = f−1(Z) , (2)

where Φ is a random variable that generates i–vectors,Z

is a standard normal random variable, andφ ∼ Φ is a
sampled i–vector1. By applying functionf to i–vectorsφ,
they are transformed into samples that follow a standard
normal distribution. The transformed i–vectors,f(φ), are then
used as features for training a PLDA classifier.
This model is approximate, because it assumes that each
training i–vector belongs to a different speaker, as is usually
done in i–vector extraction, nevertheless since Gaussian PLDA
assumes that independently sampled i–vectors, belonging to
different speakers, follow a Gaussian distribution, transforming
i–vectors by means of a functionf estimated on a development
set, allows better fitting the PLDA assumptions.

In particular, to fit a Gaussian distribution, in [24], [25] we
make use of the affine transformation defined as:

l(φ,A,b) = Aφ+ b , (3)

whereA is a full–rank matrix, andb is an offset vector, for
the linear part of the i–vector transformation. The non–linear
transformation is based on the sinh–arcsinh function [27],[28]:

f(φ, δ, ε) = sinh(δ sinh−1(φ) + ε) , (4)

which can be generalized forN–dimensional variables as:

f(φ, δ, ε) =




f(φ1, δ1, ε1)
...

f(φN , δN , εN )


 , (5)

where δi > 0 controls the tailweight of the distribution,
and εi affects the skewness of each variable. This function
has been selected because it is invertible, and flexible in
mapping a distribution to another distribution. Fig. 2a plots
a family of SAS functions of a mono–dimensional variable,
with fixed ε = 0, and variable value ofδ, whereas Fig. 2b
shows how a standard normal distribution is transformed by
applying the corresponding SAS function. Fig. 2c and Fig. 2d
show the same plots of the previous figures, but with fixed
δ = 0.75, and variable value ofε. By changing the value
of the two parameters of the SAS function, a wide variety
of mappings can be performed, ranging from linear mapping
(with ε = 0 and δ = 1.0, which would keep the original
standard normal distribution), to semi–heavy–tailed symmetric
or skewed distributions (see Fig. 2b, and Fig. 2d, respectively).

The aim of the affine transformation is to de–correlate the i–
vector variables so that they can be independently transformed
by the SAS function, and to re–scale their values towards the
most suitable range for the SAS function. In [24] we have

1In [25] Φ andZ were denoted asX andY, respectively. Sincex andy
are traditionally used for the channel and speaker factors of PLDA, and we
propose here the joint estimation of PLDA and transformation parameters, we
decided to change the notation for the i-vectors and transformed i-vectors

shown that a number of AS modules can be concatenated,
leading to more accurate transformation functions.
Since both the affine and the proposed transformations are
invertible it is possible to fit, for example, the samples of a
multi–modal distribution by transforming the samples of the
standard normal distribution.
Looking at the transformation the other way around, applying
the inverse function, the samples of the original distribution
can be transformed to match a standard normal distribution.

In [25] PLDA classification based on this “gaussianized”
i–vectors (AS–PLDA) has been successfully tested on the
NIST SRE-2010 and SRE-2012 evaluation datasets showing a
relative improvement between 7% and 14% of their Detection
Cost Function with respect to the use of standard i-vectors.
Crucial to the success of this approach was the reduction of the
mismatch between the development and evaluation i–vector
length distributions by means of an i–vector dependent scaling
factor, which we detail in Section VI.

III. N ON–LINEAR PLDA MODEL

We here detail our approach that embeds the estimation
of the non-linear i–vector transformation in the PLDA model
estimation. Since we jointly estimate both the PLDA param-
eters, and the parameters of the non–linear transformation
of the i-vectors, also for the latter we intrinsically account
for the speaker information associated to each i–vector, an
information that was ignored in the approach proposed in [24],
[25].

A. Model description

The generative NL–PLDA model that we propose in this
work is given by:

z = Uy + ǫ

φ = f−1(z) , (6)

wherey, ǫ andU have been defined in (1). We assume that
the speaker factory has a standard normal prior, and that the
residual termǫ is sampled fromN (0,Λ−1), whereΛ is the
within–class precision matrix. Without loss of generality, we
also dropped the i–vector meanm to simplify the equations
appearing in the following.

It can be noticed that, iff is the identity transformation
f(a) = a, the NL–PLDA model of (6) corresponds to the
standard PLDA model with centered i–vectors.

Given model (6), we can define the following random
variables, and related probability distributions:

Y ∼ N (0, I) (7)

Z|(Y = y) ∼ N (Uy,Λ−1) (8)

Φ|(Y = y) = f−1(Z|Y = y) (9)

PY(y) = N (y;0, I) (10)

PZ|Y(z|y) = N (z;Uy,Λ−1) (11)

PΦ|Y(φ|y) = PZ|Y(f(φ)|y) |Dφf(φ)|

= N (f(φ);Uy,Λ−1) |Dφf(φ)| , (12)
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where|Dφf(φ)| is the absolute value of the determinant of the
Jacobian off(φ). The probability distribution of equation (12)
is obtained by exploiting the change-of-variable technique,
which allows computing the pdf of a random variable function
[29] (pp.149–150).

Given a set ofk i–vectors belonging to thesame speaker
{φ1, . . . , φk}, and applying (7) and (11), the joint log–
likelihood of the i–vectors and speaker factory is given by:

logP (φ1, . . .φk,y) =

k∑

i=1

[
logPΦ|Y(φi|y)

]
+ logPY(y)

=

k∑

i=1

[
logPZ|Y(f(φi)|y) + log

∣∣Dφi
f(φi)

∣∣]+ logPY(y)

=
k∑

i=1

[
1

2

(
log |Λ| − (f(φi)−Uy)

T
Λ (f(φi)−Uy)

)

+ log
∣∣Dφi

f(φi)
∣∣
]
−

1

2
yTy + c , (13)

where all constant terms have been collected inc.
Since (13) is quadratic iny, the posterior fory is Gaussian:

Y| (Φ1 = φ1, . . . ,Φk = φk) ∼ N (µy,Λ
−1
y ) , (14)

with posterior precision matrixΛy and meanµy. The values
of these parameters can be derived by expanding (13) and
identifying the contributions of the second and first order
terms, respectively, as:

Λy = I+ kUTΛU

µy = Λ−1
y UTΛ

k∑

i=1

f(φi) . (15)

It is worth noting that (15) is very similar to the expression
for the posterior of the speaker variable in standard PLDA
[7]. The only difference is that the posterior mean in the NL–
PLDA model is computed using the transformed i–vectors
f(φi) rather than the original i–vectorsφi.

Although different, possibly more accurate, flavors of non–
linear PLDA generative model can be devised, the proposed
model has the substantial advantage that the conditional like-
lihood of the i–vectors, given a value for the speaker hidden
variabley, is conjugate to the speaker prior distribution. This
allows computing posteriors, which are Gaussian distributed,
in closed form, without resorting to expensive Variational
Bayesian methods. Given the transformed i–vectors, scoring
with the NL–PLDA model has the same computational com-
plexity of standard PLDA.

IV. NL–PLDA TRAINING

Since we can easily compute closed form expressions for
the posterior ofy, model training can be performed by means
of Expectation Maximization (EM) iterations. However, since
closed form solutions for the update of the parameters are not
available, we have to rely on numerical optimization in the
maximization steps.

In the following we will denote the set of thek(s) i–vectors
belonging to speakers as Ms = φ1,s, . . . ,φk(s),s. We will

also simplify the notation by dropping the explicit distinction
between random variables and samples.

The joint log–likelihood of i–vectors and speaker variables
is:

S∑

s=1

logP (Ms,ys|θ) , (16)

whereS is the number of speakers in the development set,
and θ is the set of parameters that must be optimized. The
EM auxiliary function is given by the expectation of (16) with
respect toys:

Q
(
θ, θ̃

)
=

S∑

s=1

E
ys|Ms,θ̃

logP (Ms,ys|θ) , (17)

where θ is the new estimate of the model parameters,θ̃

denotes the model parameters that have been used to compute
the expectations in the E–step, and the posteriorsys are
computed using (15).

Substituting (13) in (17), and ignoring the terms that are ir-
relevant for the optimization, we obtain the objective function:

Q1(θ, θ̃) =
∑

s

E
ys|Ms,θ̃

[ k(s)∑

i=1

(1
2
log |Λ|

−
1

2

(
f(φi,s,ϑ)−Uys

)T
Λ
(
f(φi,s,ϑ)−Uys

)

+ log
∣∣∣Dφi,s

f(φi,s,ϑ)
∣∣∣
)]

(18)

where we have exposed the set of parametersϑ of function
f , which complete the set of model parametersθ = [ϑ,U,Λ].

Before proceeding with the steps that lead us to the es-
timation of the model parameters, we show thatΛ can be
eliminated from the parameter set. Indeed, as long asf is
represented as a composition ofn functionsfn(fn−1(·f1(φ))),
andfn is affine, the model is over–parametrized.
In particular, using the function composition:

f(φ) = g(h(φ)) , (19)

whereh is a (non–linear) transformation, andg is the affine
transformation:

g(φ̃) = Aφ̃+ b , (20)

with A an invertible matrix, we can rewrite the EM auxiliary
function (18) as:

Q1(θ, θ̃) =
∑

s

E
ys|Ms,θ̃

[
k(s)∑

i=1
(
−
1

2

(
Ah(φi,s,ϑ) + b−Uys

)T
·

Λ ·
(
Ah(φi,s,ϑ) + b−Uys

)

+
1

2
log |Λ|+ log

∣∣∣Dφi,s

(
Ah(φi,s,ϑ) + b

)∣∣∣
)]

.

(21)
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Considering that the termb is not a function of φi,s,

log
∣∣∣Dφi,s

(
Ah(φi,s,ϑ) + b

)∣∣∣ can be rewritten as:

log
∣∣∣Dφi,s

(
Ah(φi,s,ϑ) + b

)∣∣∣ =

log |A|+ log
∣∣∣Dφi,s

h(φi,s,ϑ)
∣∣∣ . (22)

Since we can also write, for convenience:

log |A| =
1

2
log(

∣∣∣AAT
∣∣∣) =

1

2

(
log |A|+ log

∣∣∣AT
∣∣∣
)

, (23)

we can collect the last two terms in (21) obtaining:

Q1(θ, θ̃) =
∑

s

E
ys|Ms,θ̃

[
k(s)∑

i=1
(
−
1

2

(
h(φi,s,ϑ) +A−1b−A−1Uys

)T
AT ·

Λ ·A
(
h(φi,s,ϑ) +A−1b−A−1Uys

)

+
1

2
log

∣∣∣ATΛA

∣∣∣+ log
∣∣∣Dφi,s

h(φi,s,ϑ)
∣∣∣
)]

.

(24)

Finally, defining:

Λ1 = ATΛA (25)

m1 = −A−1b (26)

U1 = A−1U , (27)

we get:

Q1(θ, θ̃) =
∑

s

E
ys|Ms,θ̃

[
k(s)∑

i=1
(
−
1

2

(
h(φi,s,ϑ)−m1 −U1ys

)T
Λ1

(
h(φi,s,ϑ)−m1 −U1ys

)

+
1

2
log |Λ1|+ log

∣∣∣Dφi,s
h(φi,s,ϑ)

∣∣∣
)]

.

(28)

which is equivalent, except for the mean termm1, to (18).
Therefore, the parameters of the final affine function are able
to embed the global model meanm, which was not considered
in the model for the sake of notation simplicity. Another
important effect of the final affine transformation is that we
can set the precision matrixΛ to a constant value becauseΛ1

can be obtained by estimating matrixA, and using equation
(25).

Matrix Λ could be set to the identity matrix, but it is more
reasonable to set it to the matrixΛ estimated by standard
PLDA. Since Λ is kept constant, the set of parameters to

be estimated reduces toθ = [ϑ,U], and the EM auxiliary
function (18) can be simplified as:

Q2

(
θ, θ̃

)
=

∑

s

E
ys|Ms,θ̃

[
k(s)∑

i=1
(
−
1

2

(
f(φi,s,ϑ)−Uys

)T
Λ
(
f(φi,s,ϑ)−Uys

)

+ log
∣∣∣Dφi,s

f(φi,s,ϑ)
∣∣∣
) ]

. (29)

Moving the expectation operator inside the summation op-
eration, and omitting its subscripts for the sake of simplicity,
we get:

Q2

(
θ, θ̃

)
=

∑

s

[
k(s)∑

i=1
(
−
1

2

(
f(φi,s,ϑ)−UE[ys]

)T
Λ
(
f(φi,s,ϑ)−UE[ys]

)

−
1

2
Tr

(
UTΛUCov (ys,ys)

)

+ log
∣∣∣Dφi,s

f(φi,s,ϑ)
∣∣∣
) ]

. (30)

Equation (30) has been obtained by using the property
of the trace of a product, which is invariant under cyclical
permutations of the product factors,

xTAx = Tr(xTAx) = Tr(AxxT ) , (31)

furthermore, we have also used the property that expectation
and trace are linear operators, which can be commuted,

E[xTAx] = Tr(AE[xxT ]) , (32)

and the properties of the covariance matrix of random vectors:

E[xxT ] = E[x]E[xT ] + Cov(x,x). (33)

Expanding (30) we get:

Q2

(
θ, θ̃

)
= −

1

2

∑

s

k(s)∑

i=1

[
Tr

(
Λf(φi,s,ϑ)f(φi,s,ϑ)

T
)

−2Tr
(
ΛUE [ys] f(φi,s,ϑ)

T
)

+Tr
(
ΛUE[ysy

T
s ]U

T
)

+ log
∣∣∣Dφi,s

f(φi,s,ϑ)
∣∣∣
]
, (34)

where the expectations are taken with respect toys|Ms, θ̃.
Recalling equations (101), and (118) of [30]:

∇U Tr
[
ΛUE [ys] f(φi,s,ϑ)

T
]
= ΛT f(φi,s,ϑ)E

[
yT
s

]

∇U Tr
[
ΛUE[ysy

T
s ]U

T
]
= ΛTUE[ysy

T
s ]

T +ΛUE[ysy
T
s ] ,
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and thatΛ = ΛT , the gradient ofQ2 with respect toU is:

∇UQ2(θ, θ̃) =

∑

s

Λ






k(s)∑

i=1

f(φi,s,ϑ)


E

[
yT
s

]
− k(s)UE

[
ysy

T
s

]

 .

(35)

The specific derivatives and gradients for the affine trans-
formation (3), and for the SAS function (4), can be effectively
obtained as detailed in Section IV-A of [25]. These gradients
are passed as arguments, together with the objective function,
to a Limited memory Broyden–Fletcher–Goldfarb–Shanno (L–
BFGS) optimizer [31]–[34] for obtaining the parameters that
maximize the log–likelihood of the development set. The L–
BFGS optimization is iterated until the log–likelihood of the
development data stops improving.
The steps required for estimating the objective function and
the gradients with respect to the non-linear function parameters
are summarized in Algorithm 1 of [25].

It is interesting noting that, since the gradients with re-
spect to the transformation parametersϑ are similar to the
ones derived for the speaker–independent non–linear i–vector
transformation, NL–PLDA model training can be performed
by means of the same forward–backward steps illustrated in
Algorithm 1 of [25].
The unique difference is that in [25] we targeted a speaker–
independent standard normal distribution for the latent variable
z, i.e.,PZ(z) = N (0, I), whereas from (30) we see that in the
NL–PLDA model we have to target a speaker–dependent dis-
tributionPZs(z) = N

(
z;UE[ys],Λ

−1
)
. The only difference,

thus, consists in replacing equation (16) of [25] by:

PZs(z) = N
(
z;UE[ys],Λ

−1
)
. (36)

The corresponding gradient in equation (17) of [25] becomes:

Dxn
[logPZ(xn)] = ∇xn

logN
(
xn;UE[ys],Λ

−1
)

= Λ(UE [ys]− xn) , (37)

where, in accordance with the notation in [25],xn is the i–
vector transformed applying the non–linear functionf(x,ϑ),
i.e., xn = f(φ,ϑ). Thus, the forward–backward procedure
illustrated in Algorithm 1 of [25] can be applied as it is
for computing the gradients∇ϑQ2(θ, θ̃), just replacing the
initializationbn = −xn in the backward recursion of equation
(20) of [25] by:

bn = Λ(UE [ys]− xn) . (38)

V. NL–PLDA SCORING

The likelihood ratio of a pair of i–vectors in a trial can
be computed for the NL–PLDA model, according to (12), as
shown in (39). Please notice that this equation correspondsto
the computation of the likelihood ratio of the standard PLDA
model, but using transformed i–vectorsφ1 and φ2, and the
matricesU and Λ estimated as illustrated in the previous
section.

VI. I– VECTOR SCALING

We have shown in Section IV of [25] that length–
normalization is crucial for PLDA mainly because it reduces
the mismatch between the development and evaluation sets,
rather than better meeting the PLDA Gaussian assumption. We
also proved that length–normalization is optimal for a linear
transformation, but a different utterance–dependent scaling
factor is necessary for a non–linear transformation.
I–vector normalization is also crucial for NL–PLDA, but as it
will be shown in the section devoted to the experiments, blind
length–normalization is not effective.

Assuming that i–vectors are sampled from different distri-
butions, characterized by independent scaling parameters, we
define theα–scaled non–linear transformation:

g(φi, αi) = αi φi (40)

f(φi, αi,ϑ) = h(g(φi, αi),ϑ) , (41)

whereh is a non–linear transformation, andαi is an i–vector
dependent positive scaling parameter. It is worth noting that
αi can be considered as the single parameter of a simplified
affine transformation located at the beginning of the i–vector
transformation chain, as shown in Fig. 3. Seen from the
other side of the chain, we consider that an i–vectorφi is
generated by a random variable whose pdf is described by the
transformation:

Φi = α−1
i h−1(z,ϑ)

= g−1
(
h−1(z,ϑ), αi

)
, (42)

whereh−1 andg−1 denote the inverse off andg with respect
to φ, given a value forϑ andαi.

The composition of functiong with the non–linear function
h acts as an i–vector dependent length normalization, tuned
for the i–vector distribution described by functionh.

A. Estimation of scaling factors for model training

The scaling factorαi can be obtained by ML estimation,
similarly to the other parametersϑ of the non–linear trans-
formation. The training algorithm does not change because
theα–scaled model can be interpreted as a NL–PLDA model
with an i–vector dependent transform, where all parameters
of the transformation, excluding eachαi, are tied across all
i–vectors.

The terms required for the forward and backward steps of
Algorithm 1 in [25] are:

g(x, αi) = αix

Dαi
g(x, αi) = x

Dxg(x, αi) = αiI

G(x, αi) = N logαi

DxG(x, αi) = 0T

Dαi
G(x, αi) =

N

αi

(43)

whereDaf(x,a) denotes the matrix of partial derivatives of
the components off with respect to the components ofa,
G(x, αi) = log |Dx(x, αi)|, and | · | denotes the absolute
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lr =
P (φ1,φ2|HS)

P (φ1,φ2|HD)

=

∫
N (f(φ1);Uy,Λ−1)

∣∣Dφ
1
f(φ1)

∣∣ N (f(φ2);Uy,Λ−1)
∣∣Dφ

2
f(φ2)

∣∣ N (y;0, I) dy∫
N (f(φ1);Uy,Λ−1)

∣∣Dφ
1
f(φ1)

∣∣ N (y;0, I) dy
∫
N (f(φ2);Uy,Λ−1)

∣∣Dφ
2
f(φ2)

∣∣ N (y;0, I) dy

=

∫
N (f(φ1);Uy,Λ−1) N (f(φ2);Uy,Λ−1) N (y;0, I) dy∫

N (f(φ1);Uy,Λ−1) N (y;0, I) dy
∫
N (f(φ2);Uy,Λ−1) N (y;0, I) dy

(39) 

 

 

 

 

 

 

 

 

 

 

AS 
Affine 

Transformation 
AS α 

Fig. 3: Chain of transformation functions including the scaling
factor module.

value of the determinant of its argument. A matrix of partial
derivatives becomes a vector or even a scalar value, if the
variablea or the function value is a scalar.

B. Scoring with NL–PLDA using scaling factors

Differently from PLDA using length normalization, which
does not need any additional processing at evaluation time,
NL–PLDA with α–scaling must estimate the scaling factors
of the trial i-vectors at testing time. In our previous i–vector
“gaussianization” approach,α–scaling was applied to each i–
vector independently with respect to the others, both in training
and in evaluation, because the non–linear transformation was
performed before classification.

Due to the introduction of the scaling factors in the NL–
PLDA model, the parameters of the non–linear transformation
f become i–vector dependent. This makes much more complex
the likelihood ratio computation for two main reasons:

1) The parametersα1 and α2 of the i–vectors of a trial
should be jointly estimated.

2) The terms
∣∣Dφi

f(φi, αi)
∣∣ cannot be simplified as it was

done in (39).

Proper scoring would involve defining an a priori distribution
over the scaling factors, and integrating the likelihood ofthe i–
vectors over this prior. Since this computation would be very
expensive, we approximate the likelihood ratio computation
by optimizing the values ofα1 andα2 rather than integrating
over their prior distribution.

The optimization ofα1 and α2, however, would require
estimating these two parameters under the hypotheses “same–
speaker” or “different–speaker”, respectively. This would re-
quire performing a step of numerical optimization for each
trial. Since such approach would be unfeasible for a large set
of trials, we further assume that the optimalα1 and α2 are
the same both for the “same–speaker” and for the “different–
speaker” hypotheses. This allows us to independently estimate
their values.

Using these approximations, the terms
∣∣Dφi

f(φi, αi)
∣∣ in

the likelihood ratio computation of (39) can again be simpli-
fied.

It is worth noting that the estimation ofα1 and α2 can
be performed without resorting to the EM procedure used for
training. In particular, the integration over the speaker variable
y can be performed in closed form, before estimating each
αi parameter, thus the computation of the parameterαi is
performed by maximizing:

α∗
i = max

αi

P (φi|αi)

= max
αi

∫
PΦ|Y(φi|y)P (y)dy

= max
αi

∣∣Dφi
f(φi, αi)

∣∣ .
∫

N (f(φi, αi);Uy,Λ−1) N (y;0, I)dy

= max
αi

∣∣Dφi
f(φi, αi)

∣∣ N (f(φi, αi);0,UUT +Λ−1) .

(44)

The proof that
∫

N (f(φi,αi);Uy,Λ−1) N (y;0, I) dy =

N (f(φi, αi);0,Λ
−1 +UUT ) .

is given in Appendix.
Thus,α∗

i can be obtained exploiting again Algorithm 1 of
[25], by initializing its backward step by:

bn = −
(
Λ−1 +UUT

)−1

f(φi, αi,ϑ) . (45)

In summary, at testing time it is only necessary to inde-
pendently estimate the parametersα∗

1 and α∗
2, and to apply

the transformationh(g(φi, α
∗
i ),ϑ) to each evaluation i–vector.

The likelihood ratio can then be computed as in standard
PLDA, just usingα–scaled and transformed i–vectors.

VII. E–VECTORS

Most of the experiments presented in the next section have
been performed using a recently introduced representation
of a speech segment, similar to the speaker factors of Joint
Factor Analysis (JFA) and to i–vectors, referred to as “e–
vector” [26]. This representation is based on the observation
that JFA estimates a more informative speaker subspace than
the “total variability” i–vector subspace, because the latter is
obtained by considering each training segment as belonging
to a different speaker. The novelty of our proposal consistsin
estimating a linear transformation that allows keeping thespan
of the speaker–specific eigenvoice subspace, but at the same
time provides a better prior for i–vector extraction. We have
shown in [26] that this subspace can be obtained by adapting
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TABLE I: Equal Error Rate and Cprimary for the core extended NIST SRE 2012 evaluations using different, 1024Gaussian gender–independent
models. Label D refers to a system based on a hybrid DNN/GMM architecture. The average % improvement of Cprimary with respect to the
standard PLDA and to the AS–PLDA systems is shown in the last two columns,respectively.

System name

Cond 1 Cond 2 Cond 3 Cond 4 Cond 5 Average Cprimary
interview phone call interview phone call phone call % improvement
without without with with noisy with respect to

added noise added noise added noise added noise environment
% EER Cprimary % EER Cprimary % EER Cprimary % EER Cprimary % EER Cprimary PLDA AS–PLDA

(1) PLDA 3.22 0.292 2.24 0.286 2.66 0.248 4.42 0.401 2.76 0.324 0.0 -
(2) AS–PLDA 2.88 0.238 2.37 0.266 2.81 0.204 4.64 0.408 2.91 0.307 8.3 0.0
(3) NL–PLDA 2.99 0.242 2.33 0.256 2.63 0.193 4.08 0.371 2.81 0.293 12.6 4.8
(4) PSVM 2.91 0.233 2.24 0.264 2.34 0.190 3.89 0.375 2.78 0.302 12.1 4.1

(3) + (4) 2.73 0.215 1.96 0.235 2.18 0.175 3.58 0.341 2.45 0.271 20.2 13.1
(D1) PLDA 3.43 0.258 1.68 0.233 2.77 0.215 4.14 0.346 1.93 0.268 0.0 -
(D2) AS–PLDA 3.09 0.212 1.69 0.208 3.13 0.188 4.15 0.349 2.01 0.241 9.2 0.0
(D3) NL–PLDA 3.40 0.222 1.65 0.203 3.69 0.185 3.55 0.308 1.96 0.229 13.1 4.3
(D4) PSVM 2.86 0.218 1.48 0.208 2.59 0.185 3.39 0.319 1.78 0.236 11.7 2.7
(D3) + (D4) 3.01 0.200 1.28 0.181 2.98 0.168 3.15 0.281 1.54 0.206 21.5 13.5

TABLE II: Comparison of PLDA and NL–PLDA system performanceof a hybrid DNN/GMM architecture, in terms of average
% EER, DCF08 and Cprimary, for the core extended NIST SRE 2012 evaluations used without and with length normalization,
or with e–vector dependent scaling factors.

System
e–vector

% EER DCF08 Cprimary
Improvement

normalization % EER DCF08 Cprimary
PLDA No 3,73 0,164 0,347 0.0 0.0 0.0

NL–PLDA No 3,34 0,152 0,326 10,5% 7,3% 6,1%
PLDA LN 2,79 0,118 0,264 0.0 0.0 0.0

NL–PLDA LN 3,38 0,138 0,279 -21,1% -16,9% -5,7%
NL–PLDA alpha–scaling 2,85 0,108 0,229 -2,2% 8,5% 13,3%

TABLE III: Same as Table II, but for the female core extended NIST SRE 2010 evaluation. For these experiments the systems
are based on 2048 full–covariance GMMs i–vectors.

System
i–vector

% EER DCF08 DCF10
Improvement

normalization % EER DCF08 DCF10
PLDA No 2.92 0.146 0.438 0.0 0.0 0.0

NL–PLDA No 2.41 0.115 0.374 17.5% 21.2% 14.4%
PLDA LN 2.09 0.111 0.405 0.0 0.0 0.0

NL–PLDA LN 2.04 0.104 0.362 2.4% 6.3% 10.6%
NL–PLDA alpha–scaling 1.66 0.087 0.349 20.6% 21.6% 13.8%

the eigenvoice subspace by means of a simple procedure that
produces a new variability matrix,E. The procedure considers
each training segment as belonging to a different speaker, as
it is done in standard i–vector training, but it applies solely
Minimum Divergence Estimation (MDE) [7], [35] during the
training iterations.
In particular, an eigenvoice matrixV is trained, in a first step,
exactly as matrixT is, but assuming that the segments of a
given speaker belong to a single class, i.e., accumulating the
sufficient statistics per speaker, rather than per segment.
In the second step, matrixE is initialized by V. Then, it is
re-estimated considering each training segment as belonging
to a different speaker, as it is done for the estimation of matrix
T, but applying only MDE iterations.

VIII. E XPERIMENTS

The performance of the proposed approach has been as-
sessed by means of a set of experiments on the SRE 2012
evaluation dataset [36] using e–vectors. The e–vectors were
preferred to i–vectors as features because the former have
shown in [26] to produce better results than i–vectors both for
PLDA and AS–PLDA, using different systems and classifiers.

The e–vectors for the SRE 2012 evaluation were extracted
using a relatively small model and feature set. The feature set
consists of 45-dimensional feature vectors obtained by stack-
ing 18 cepstral (c1-c18), 19 delta (∆c0-∆c18) and 8 double–
delta (∆∆c0-∆∆c7) parameters. The e–vector extractor was
based on a gender–independent 1024–component diagonal
covariance UBM, estimated with data from NIST SRE 2004–
2010, and additionally with the Switchboard II, Phases 2
and 3, and Switchboard Cellular, Parts 1 and 2 datasets.
We implemented gender–independent PLDA classifiers ac-
cording to the framework illustrated in [9], and also gender–
independent PSVMs [11]. All the experiments were performed
using e–vectors with dimensionN = 400. The e–vector ex-
traction post–processing does not include any dimensionality
reduction. We also performed a set of experiments using the
hybrid DNN/GMM approach of [3]. In particular, we used
the approach and the DNN described in [6], associating 8
Gaussians to each of 128 output units of the DNN.

The aim of all these experiments was to compare the
effectiveness of the potentially more accurate NL–PLDA
model with respect to the AS–PLDA model, and also with
respect to the Pairwise Support Vector Machine (PSVM)
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model [10], [11]. The results are summarized in Table I,
where the recognition accuracy is given in terms of percent
Equal Error Rate (EER), and of Cprimary, the cost function
defined in the SRE 2012 evaluation plan [36]. The scores were
not normalized. The last two columns of the table show the
percentage of the average Cprimary improvement with respect
to the reference PLDA (with length–normalized i–vectors) and
AS–PLDA systems. The reference systems are easily identified
by the0.0 value in the corresponding rows, both for the GMM,
and for the DNN/GMM approach.

The performance of the baseline G–PLDA system using e–
vectors is shown in the first row of Table I. The second row
shows the results of our best AS–PLDA approach using a cas-
cade of two AS modules, trained with additional constraintson
the transformation parameters (α–AS2 bounded) [25]. Using
more than two AS modules decreases system performance.
These results are consistent with the ones obtained using i–
vectors, reported in [25].

The effect of the e–vector “gaussianization” provided by
AS–PLDA is to reduce the slope of the DET curve, with a loss
of the EER, but a 8.2% improvement of the average Cprimary.
The joint estimation of the PLDA and of the non–linear
transformations parameters is more robust to overfitting when
more than one AS module is combined in cascade. This
probably happens because the NL–PLDA approach takes into
account the speaker information, which is ignored by AS–
PLDA. The latter tries to gaussianize the development e–
vectors assuming that they are independent. Since this is not
the case, better fitting the e–vector distribution does not nec-
essarily correspond to better matching the PLDA assumptions.
Thus, the new approach allows combining more than a single
AS module in cascade to provide a more accurate model. The
results of the NL–PLDA system refer to a model including
four AS modules.
Excluding Condition 1, NL–PLDA improves both the EER
and Cprimary in all conditions with respect to the AS–PLDA,
achieving an average Cprimary improvement of 4.8%, and
outperforming standard PLDA by 12.6%.
It is worth noting that the PSVM classifier gives better % ERR
results than standard and non–linear PLDA models. Since the
discriminative and the new generative models give similar
Cprimary, but they are trained with different objective functions,
we expected a good degree of complementarity between them,
even if they exploit the same set of features. Thus, we
combined the scores of the two systems with equal weights.
The results, given in the row labeled “(3) + (4)”, show that the
system combination is able to sensibly improve both the EER
and the average Cprimary. The latter achieves an improvement
of 9.3%, 8.7%, 13.1%, and 20.2% with respect to PSVM, NL–
PLDA, AS–PLDA and PLDA, respectively.

The proposed transformation is also effective for our hybrid
DNN/GMM approach [6], which has much better Cprimary than
the GMM reference system. The DNN/GMM based systems
are labeled as “D” in Table I.
Again, our best AS–PLDA approach, which uses two bounded
AS modules, gets an average Cprimary improvement of 9.2%
with respect to PLDA.
NL–PLDA provides an additional gain of 4.3% , reaching

13.1% improvement with respect to DNN/GMM PLDA. It is
interesting noting that the new generative NL–PLDA approach
is able to slightly improve the average Cprimary of discrimina-
tive PSVM classifier as well.
Finally, the performance obtained by combining the scores
of the PSVM and NL–PLDA systems with equal weights is
shown in the last row of Table I. The combination of these two
systems produces a significant gain of 11.1%, 9.7%, 13.5%,
and 21.5% with respect to the corresponding PSVM, NL-
PLDA, AS–PLDA and PLDA, respectively.

A second set of experiments was performed to assess the
benefits of the e–vector dependent scaling factors (α–scaling)
with respect to length normalization (LN). The results are
summarized in Table II. Without any dataset mismatch com-
pensation (i.e. without LN orα–scaling), NL–PLDA results
are better than standard PLDA results, but the improvement
is less significant compared with the one provided by PLDA
length normalized models. This can be explained considering
that a better model of the training data is not necessarily more
effective in case of significant mismatch between training and
evaluation data.

Adding LN to both models improves the results, how-
ever, feeding NL-PLDA with length normalized e-vector is
detrimental with respect to the standard PLDA with length-
normalization. Since we initialize the AS modules to provide
an identity transformation, and NL-PLDA with the parameters
of the standard PLDA, respectively, and since the likelihood of
the system increases during the NL-PLDA training iterations,
we argue that an overfitting effect occurs, which increases the
mismatch between development and evaluation distributions.
This is not surprising: although LN is optimal under Gaussian
assumptions (as it has been proved in [25]), it is not optimal
for the non–linear PLDA model. Indeed, jointly estimating the
scaling factors and the non–linear transformation parameters
we obtain optimal factors that allow NL–PLDA to outperform
standard PLDA with LN.

Finally, we report the results of the same comparison
performed on the female core extended NIST SRE 2010
evaluations. In these experiments we used the same feature
set, but i–vectors rather than e–vectors. We trained a gender–
independent 2048–component diagonal full–covariance UBM,
estimated with data from NIST SRE 2004–2006.
The i–vector extractor was based on a gender–dependentT

matrix, of rank 400, estimated with the female speakers of
NIST SRE 2004–2006, and additionally with the Switchboard
II, Phases 2 and 3, and Switchboard Cellular, Parts 1 and 2
datasets. I–vectors were used in these experiments becausee–
vectors require a large enough number of different speaker
segments, which are not readily available on the previously
mentioned datasets, mostly for the phone/interview conditions.
PLDA and NL–PLDA were trained with the dimension of the
speaker subspace matrixU reduced to 150, and also exploiting
the NIST SRE 2008 female data.

Table III summarizes the results, which confirm the ones
obtained on the NIST SRE 2012, with the exception that NL–
PLDA using LN is also better than the corresponding PLDA
model.
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IX. CONCLUSIONS

We have presented a generative model that jointly estimates
the distribution of the development i–vectors and the PLDA
parameters, so that the i–vectors are non–linearly transformed
to a new compact representation of a speech segment that
makes PLDA classification more effective. The i–vector trans-
formation is modeled by means of a sequence of affine and
non–linear functions, the parameters of which are obtained
by Maximum Likelihood estimation on the development set.
The transformation parameters can be estimated using the
same algorithm proposed in [25], just properly changing the
transformation target distribution. This approach improves
both in theory and in practice our previous proposed model,
which aimed at minimizing the deviation of the i–vectors from
the normal distribution. It also incorporates the benefits of
length normalization by estimating speaker–dependent scaling
factors, which have been shown to be essential for reducing
the mismatch between the development and evaluation i–
vector length distributions. Using this new model we were able
not only to improve the performance of the PLDA and AS–
PLDA generative models, but also to reach the performance
of the PSVM discriminative model. The score fusion of these
two models provides an additional 9.7% average Cprimary

improvement with respect to the NL–PLDA model.

APPENDIX

Proposition 1:
∫

N (f(φi,αi);Uy,Λ−1) N (y;0, I) dy =

N (f(φi, αi);0,Λ
−1 +UUT ) .

Proof:

Let k(M) = |M|
1

2

(2π)
D
2

whereD is the dimension ofφi, and let

us define, for the sake of notation simplicity,x = f(φi, αi).
Defining also Λy = I+UTΛU and µy = Λ−1

y UTΛx,
in analogy with (15) withk = 1, and noting that both do not
depend ony, we get with a bit of algebraic manipulation:
∫

N (x;Uy,Λ−1) N (y;0, I) dy =

k(Λ)k(I)

k(Λy)
e−

1

2
xTΛx+ 1

2
µT

y Λyµy ·

∫
ey

TΛyµy−
1

2
yTΛyy−

1

2
µT

y Λyµy k(Λy) dy =

(46)

k(Λ)k(I)

k(Λy)
e−

1

2
xTΛx+ 1

2
xTΛUΛ−1

y UTΛx ·

∫
N (y;µy,Λ

−1
y ) dy = (47)

k(ΛΛ−1
y )e−

1

2
xT (Λ−ΛUΛ−1

y UTΛ)x . (48)

Using Woodbury identity [37]:

(A+BCD)
−1

= A−1−A−1B
(
C−1 +DA−1B

)−1
DA−1 ,

(49)

it is easy verifying that:
(
Λ−1 +UUT

)−1

= Λ−ΛU
(
I+UTΛU

)−1

UTΛ

= Λ−ΛUΛ−1
y UTΛ , (50)

which is the precision matrix appearing in (48).

Finally, we have to show that:

k(ΛΛ−1
y ) = k

((
Λ−1 +UUT

)−1
)

,

that is: ∣∣∣
(
Λ−1 +UUT

)∣∣∣
−1

=
∣∣ΛΛ−1

y .
∣∣

Recalling Sylvester determinant lemma [38]:

|I+AB| = |I+BA| , (51)

and its generalization:

|A+BCD| = |A|
∣∣C−1 +DA−1B

∣∣ |C| , (52)

we have:
∣∣∣Λ−1 +UUT

∣∣∣
−1

=
(∣∣Λ−1

∣∣
∣∣∣I+UTΛU

∣∣∣ |I|
)−1

= |Λ|
∣∣Λ−1

y

∣∣ =
∣∣ΛΛ−1

y

∣∣ . (53)

Thus, (48) is equal toN (x;0,Λ−1 +UUT ) .
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