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Joint estimation of PLDA and non—linear

transformations

Sandro Cumani

Abstract—The Gaussian Probabilistic Linear Discriminant
Analysis (PLDA) model assumes Gaussian distributed priors
for the latent variables that represent the speaker and channel
factors. Assuming that each training i-vector belongs to a differ-
ent speaker, as is usually done in i—vector extraction, i—vectors
generated by a PLDA model can be considered independent and
identically distributed with Gaussian distribution. Thus, we have
recently proposed to transform the development i—vectors so tt
their distribution becomes more Gaussian-like. This is obtained
by means of a sequence of affine and non-linear transformations
whose parameters are trained by Maximum Likelihood (ML)
estimation on the development set. The evaluation i—vectors are
then subject to the same transformation.

Although the i—vector “gaussianization” has shown to be
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Fig. 1. Block diagram of the transformation functions.

A number of alternative approaches based on Restricted
Boltzmann Machines or DNN, alternative to the hybrid
DNN/GMM technique, have been proposed in the last years
for speaker—dependent and speaker—independent recogniti
Indeed, the success of DNNs for speech recognition [14]

effective, since the i-vectors extracted from segments of the has fostered the study of new DNN architectures for speaker

same speaker are not independent, the original assumption is not
satisfactory. In this work we show that the model can be improved
by properly exploiting the information about the speaker labels,
which was ignored in the previous model. In particular, a more
effective PLDA model can be obtained by jointly estimating
the PLDA parameters and the parameters of the non-linear
transformation of the i—vectors. In other words, while the goal ¢
the previous approach was to “gaussianize” the training i-vectors
distribution, the objective of this work is to embed the estimation
of the non-linear i—vector transformation in the PLDA model
estimation. We will thus refer to this model as the non-linear
PLDA model (NL-PLDA).

We show that this new approach provides significant gain
with respect to PLDA, and a small, yet consistent, improvement
with respect to our former i-vector “gaussianization” approach,
without further additional costs.

Index Terms—Speaker recognition, i—vector, PLDA, non-linear
density transformation.

I. INTRODUCTION

recognition with the aim of replacing totally or in part the
traditional GMM approach [15]-[20]. In particular, based o
the success of the DNN techniques in face recognition [21],
the so called end-to—end speaker verification is activelygoe
explored with interesting results [22], [23].

Although we believe that the end—to—end architectures pave
the way for the next generation of state—of-the—art systeras
have recently shown that there is still place for improvemen
of the current state—of-the—art systems based on gereerativ
models [24]-[26]. This paper is a further contribution ajon
this line of research, aiming at estimating more effectiv®R
models.

PLDA models the underlying speaker and channel variabil-
ity in the i—vector space using a probabilistic framewontark
the PLDA distributions it is possible to evaluate the likeldod
ratio between the “same speaker” hypothesis and “different
speaker” hypothesis for a set of i—vectors. I-vector etivac
is usually performed ignoring the model that will be used for

Most speaker recognition systems are based on Gaussiggsification, but it is reasonable to expect better perémce
Mixture Models (GMMs) [1], where a speech segment i§ the features provided to a classifier fulfill its assumptioln

represented by a compact “identity vector” (i-vector foosh particular, the simplified Gaussian PLDA model assumes that
[2], extracted by means of Factor Analysis. The main advathe j—vector generation process can be described by means
tage of this representation is that the problem of intefsessof 3 |atent variable probabilistic model where an i-vector
variability is deferred to a second stage, dealing with lows s represented as the sum of three factors, namely the i-
dimensional vectors rather than W|th the high-dimension@éctor g|oba| meamm, a Speaker factoy, and a factor6

space of the GMM means. In particular, systems based #fat represents the inter-session and the residual naise, b
i-vectors, extracted by means of the hybrid Deep Neurglyssian distributed, as:

Network (DNN) and GMM approach, [3]-[6], and on Prob-
abilistic Linear Discriminant Analysis (PLDA) [7]-[9], or
discriminative classifiers [10]—-[13], represent the cotigtate—
of-the—art in text-independent speaker recognition.

¢=m+Uy+e, )

where matrixU can constrain the speaker factors to be of
lower dimension than the i—vectors space.

PLDA estimates the model parameters that maximize the
likelihood of the observed i—vectors, assuming that the i—
vectors of a given speaker share the same speaker factpr, i.e
the same value for latent variabje[7].

Assuming that each training i—vector belongs to a different

The authors are with the Dipartimento di Automatica e Inforosti
Politecnico di Torino, 10143 Torino, Italy (e-mail: sandnemani@polito.it,
pietro.laface @polito.it).
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Fig. 2: (a) Plot of sinh-arcsinh transformation functiomith ¢ = 0, and variable). (b) Pdf of the corresponding
transformed random variables. (c) and (d) Same as (a) andu¢byith 6 = 0.75, and variable:.

speaker, i—vectors generated by a PLDA model can be caomectors distribution, the objective of this work is to embed
sidered independent and identically distributed with Gars the estimation of the non-linear i—vector transformatioithie
distribution. Although this assumption is not too reatistt PLDA model estimation. We will thus refer to this model as

is consistent with the i—vector extraction processing, nehethe non-linear PLDA model (NL—PLDA).

all utterances are considered independent. Thus, we ha¥e results of this approach will be compared with the
recently proposed to transform the development i—vectstandard PLDA, and with the AS—PLDA approach on the NIST
so that their distribution becomes more Gaussian-like,[24]012 evaluation trials, using different systems and diassj

[25]. This transformation is obtained by means of a sequenaed a recently proposed compact representation of a speech
of affine and non-linear transformations whose parametsegment, similar to i—vector, which we have called e—vector
are trained by Maximum Likelihood (ML) estimation on thg26]. We rely on e—vectors because we have shown in [26]
development set. We will refer to this transformation in ththat simply replacing the i—vectors with e—vectors, we have
following as the AS (Affine—SAS) transformation becauss it iobtained approximately 10% average improvement of the
obtained by means of a cascade of affine and non-linear si@rmary cost function on the NIST 2012 evaluation trials, using
arcsinh (SAS) functions, as illustrated in Fig. 1, and dethi different systems and classifiers.

in Section Il. We will also refer to the PLDA classifier using

the AS transformed i—vectors as the AS—PLDA system. The paper is organized as follows: In Section Il we briefly

recall the non—linear transformations proposed in [245].[2
The assumption that i—vectors are independent is not, hoBection Il introduces our new generative non—linear PLDA
ever, satisfactory because the training set normally @edu model, which allows us to embed the estimation of the non-
several segments for each speaker, which are of course lhmar i—vector transformation in the PLDA model estima-
independent. Aiming at obtaining a more effective PLDAion. NL-PLDA model training and scoring are illustrated
classifier, we present a new approach that tackles thisgmoblin Sections IV, and V, respectively. In Section VI we detail
by properly exploiting the information about the speakdhe scaling—factor normalization technique, which is olr a
labels, which was ignored in the previous model. We proposernative to i—vector length normalization for the nonehn
to embed the estimation of the non-linear i—vector transfamodels, and we illustrate NL-PLDA scoring with scaling—
mation in the PLDA model estimation, i.e., to jointly estima factor normalization. The e—vector representation, itatian
the PLDA parameters and the parameters of the non-linedth i—vectors, and its estimation procedure are brieflaled
transformation of the i—vectors. In other words, while tloalg in Section VII. Section VIl is devoted to the experimental
of the previous approach was to “gaussianize” the training settings and results, and conclusions are drawn in Section |
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IIl. DENSITY FUNCTION TRANSFORMATIONS shown that a number of AS modules can be concatenated,
The non-linear i~vector transformation model proposed |§2ding to more accurate transformation functions.

[24], [25] assumes that i-vectors are independently sainpféince both the affine and the proposed transformations are
from a standard normal distribution, and independentlgsira invertible it is possible to fit, for example, the samples of a

formed by means of an invertible non-linear functipn': multi-modal distribution by transforming the samples o th
) standard normal distribution.
®=f(2), (2) Looking at the transformation the other way around, applyin

where & is a random variable that generates i—vectdts, the inverse function, the samples of the original Qist!'rtbm_t
is a standard normal random variable, apd~ & is a C&" be transformed to 'mat.ch a standard nqrmal d|st'r|bl.1t|on.
sampled i—vectof. By applying functionf to i~vectorsé, In [25] PLDA classification based on this “gaussianized”
they are transformed into samples that follow a standafd/€ctors (AS-PLDA) has been successfully tested on the
normal distribution. The transformed i—vectof$¢), are then NIST SRE-2010 and SRE-2012 evaluation datasets showing a

used as features for training a PLDA classifier relative improvement between 7% and 14% of their Detection

This model is approximate, because it assumes that e&e§st Function with respect to the use of standard i-vectors.
training i—vector belongs to a different speaker, as is msuaCrumal to the success of this approach was the reductidmeof t

done in i—vector extraction, nevertheless since Gausdigip Mismatch between the development and evaluation i-vector

assumes that independently sampled i—vectors, belonging'etngth distributions by means of an i—vector dependentrsgal

different speakers, follow a Gaussian distribution, tfamaing factor, which we detail in Section V.
i~vectors by means of a functighestimated on a development

set, allows better fitting the PLDA assumptions. Il. NON-LINEAR PLDA MODEL
In particular, to fit a Gaussian distribution, in [24], [25kw  We here detail our approach that embeds the estimation
make use of the affine transformation defined as: of the non-linear i—vector transformation in the PLDA model

estimation. Since we jointly estimate both the PLDA param-
i{$,A,b)=Ad+D, ®) eters, and the parameters of the non-linear transformation
where A is a full-rank matrix, and is an offset vector, for of the i-vectors, also for the latter we intrinsically acobu
the linear part of the i—vector transformation. The noredin for the speaker information associated to each i-vector, an
transformation is based on the sinh—arcsinh function [28];  information that was ignored in the approach proposed ii [24

_ ) A [25].
f(@,6,e) = sinh(dsinh™ " (¢) +¢) , (4)

which can be generalized fav¥—dimensional variables as: ~A. Model description

f(¢1,01,€1) The generative NL-PLDA model that we propose in this
f(¢p,8,e) = : (5) work is given by:
f(on,0n,en) z=Uy+e€
_ r—1
where §; > 0 controls the tailweight of the distribution, ¢=f"'(2), (6)

and £; affects the skewness of each variable. This fUnCtiqnherey, e and U have been defined in (1) We assume that
has been selected because it is invertible, and flexible ti{é Speaker factoy has a standard normal prior, and that the
mapping a distribution to another distribution. Fig. 2atplo residual terme is sampled from\V'(0,A™1), whereA is the

a family of SAS functions of a mono-dimensional variableithin—class precision matrix. Without loss of generaliye
with fixed e = 0, and variable value of, whereas Fig. 2b also dropped the i—vector mean to s|mp||fy the equations
shows how a standard normal distribution is transformed Rypearing in the following.

applying the corresponding SAS function. Fig. 2¢ and Fig. 2d |t can be noticed that, iff is the identity transformation
show the same plots of the previous figures, but with fixefka) = a, the NL-PLDA model of (6) corresponds to the
6 = 0.75, and variable value ot. By changing the value standard PLDA model with centered i-vectors.

of the two parameters of the SAS function, a wide variety Given model (6), we can define the following random

of mappings can be performed, ranging from linear mappiRgriables, and related probability distributions:
(with e = 0 and§ = 1.0, which would keep the original

standard normal distribution), to semi—heavy—tailed symin Y ~ N(0,T) )
or skewed distributions (see Fig. 2b, and Fig. 2d, respelgjiv Z|(Y =y) ~N(Uy,A™h) (8)
The aim of the affine transformation is to de—correlate the i— B(Y=y) =fLZIY =y) 9)

vector variables so that they can be independently tramsfdr
by the SAS function, and to re—scale their values towards the

most suitable range for the SAS function. In [24] we have Py(y) =N(y;0,I) (10)
Pgy(zly) = N(z; Uy, A7} 11
1in [25] ® and Z were denoted aX andY, respectively. Sinc& andy ZlY( |y) ( Y ) ( )
are traditionally used for the channel and speaker factbRL®A, and we P@\Y((ﬁb’) = PZ|Y(f(¢)‘ZY) |D¢f(¢)|
propose here the joint estimation of PLDA and transformatarameters, we - . -1
decided to change the notation for the i-vectors and tramsfd i-vectors = N(f(¢)a Uy, A ) ‘D¢’f(¢)| ) (12)
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where|Dg f(¢)| is the absolute value of the determinant of thalso simplify the notation by dropping the explicit distiion
Jacobian off (¢). The probability distribution of equation (12) between random variables and samples.
is obtained by exploiting the change-of-variable techajqu The joint log—likelihood of i—vectors and speaker varigble
which allows computing the pdf of a random variable functiois: s
[29] (pp.149-150).

Given a set ofk i—vectors belonging to theame speaker ZlogP(MS’ys‘O) ’
{¢1,...,61}, and applying (7) and (11), the joint log— =1
likelihood of the i—vectors and speaker facgoiis given by: ~where S is the number of speakers in the development set,

. and @ is the set of parameters that must be optimized. The

log P(¢y, ..., y) = Z [log Pay (¢ily)] + log Py (v) rEel\S/Ipael(J;i![if\.;y. function is given by the expectation of (16) kit

(16)

i=1

-

N
Il
_

S
[log Pz (f(,)ly) +1og [Dg, £(6,)]] + log Py (y) Q(6.0) = E, |\ 5log P(M,,y,0), (A7)
s=1

|

(bg A= (f(¢;) — Uy)TA (f(;) — Uy)) where 0 is the new estimate of the model parametdls,
denotes the model parameters that have been used to compute
the expectations in the E—step, and the posteriorsare

N |

U

Q
Il
_

1 .
+log |D¢if<<z>,;>|] — ¥y e, (13) computed using (15).
2 Substituting (13) in (17), and ignoring the terms that are ir
where all constant terms have been collected. in relevant for the optimization, we obtain the objective fiimr:

Since (13) is quadratic igr, the posterior foly is Gaussian: k(s)

= 1
Y| (®1=6,...., 0 =) ~N(py, ASY),  (14) Q1(6,6) :gEyS\MS,E {Z (§IOg|A|

i=1

with posterior precision matri, and mearnu,,. The values 1 T
of these parameters can be dyerived by ex)banding (13) and N §(f(¢i>5’19) - Uy,) A(f(¢i.:9) — Uy,)
identifying the contributions of the second and first order
terms, respectively, as: + log ‘D%Sf(@,s»ﬂ)‘ )] (18)
Ay =1+kUTAU where we have exposed the set of parameteis function
k f, which complete the set of model paramet@rs [, U, A].
ty = A;TUTAD " f(o,) - (15)
=1

i= Before proceeding with the steps that lead us to the es-
It is worth noting that (15) is very similar to the expressiotimation of the model parameters, we show thatcan be
for the posterior of the speaker variable in standard PLDd&liminated from the parameter set. Indeed, as longf ds
[7]. The only difference is that the posterior mean in the NLtepresented as a compositionofunctionsy,, (f,—1 (-f1(¢))),
PLDA model is computed using the transformed i—-vectoemnd f,, is affine, the model is over—parametrized.

f(¢;) rather than the original i—vectous,; . In particular, using the function composition:
Although different, possibly more accurate, flavors of non—
linear PLDA generative model can be devised, the proposed f(#) = g(h(9)) , (19)

model haS the SubStantial advantage that the Conditid{ml Iiwhereh iS a (non_"near) transformation’ amis the aﬁ:ine
lihood of the i—vectors, given a value for the speaker hiddemnsformation:
variabley, is conjugate to the speaker prior distribution. This 9(p)=Adp+b, (20)
allows computing posteriors, which are Gaussian distetbut _ _ _ _ 3
in closed form, without resorting to expensive Variationadith A an invertible matrix, we can rewrite the EM auxiliary
Bayesian methods. Given the transformed i—vectors, sgorignction (18) as:
with the NL-PLDA model has the same computational com- k(s)
plexity of standard PLDA. Q.(0,6) = Z E, .8 [Z
s =1
IV. NL—-PLDA TRAINING 1 .
Since we can easily compute closed form expressions for <_2(Ah(¢i,s7'l9) +b—Uy,) -
the posterior ofy, model training can be performed by means
of Expectation Maximization (EM) iterations. However, cin
closed form solutions for the update of the parameters are no
available, we have to rely on numerical optimization in the )
maximization steps. _ 4> log A —&—log‘Dd, (Ah(¢,,.9) +b>D
In the following we will denote the set of thgs) i-vectors 2 '
belonging to speakes as My = ¢ ,,..., Py (y),,- We will (21)

A - (Ah(¢;,, ) +b—Uy,)
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Considering that the ternb is not a function of¢,,, be estimated reduces ® = [, U], and the EM auxiliary

log ’an,s (Ah(e,,,9) + b)‘ can be rewritten as: function (18) can be simplified as:
N k()
o8 [y, (A6, ) + 1) = 0:(0:0) = X5, 0|2
s i=1
log |A| + log ’qu,i,sh(qbi_’s,ﬂ)‘ . (22) | .
(-50@09) - Uy.) A (f(61,.9) - Uy.)
Since we can also write, for convenience:
log |A| = %log(‘AAT') - % (log|A| +log ‘ATD . (23) +log ‘D:m,sf(%s»ﬁ)’) (29)
we can collect the last two terms in (21) obtaining: Moving the expectation operator inside the summation op-

eration, and omitting its subscripts for the sake of siniiylic

k(s) .
0.0)=3"E, 1.5 [Z e get
s i=1 k(s)
<—;(h(¢i’5, 9)+ A 'b— A 'Uy,) AT @ <0’ 0) - Z v
1 T
A-A (h(d)m,ﬂ) LA - A_lUys) <_2(f(¢i,s’0) - U]E[ys]) A(f(d)i,s?ﬂ) - UE[yS])

1 T
1 ——Tr (UTAU
+Zlog‘ATAA‘+log‘D¢i‘sh(¢i,s70)D1 51 ( Cov (¥.,y.))

24
@) seDy, f(4:.9)) (30)
Finally, defining:
T Equation (30) has been obtained by using the property
=ATAA (25)  of the trace of a product, which is invariant under cyclical
m; = —-A"'b (26) permutations of the product factors,
U, =A"'U 27
! ’ 7) xTAx = Tr(x? Ax) = Tr(AxxT) | (31)
we get: .
furthermore, we have also used the property that expentatio
N k(s) and trace are linear operators, which can be commuted,
@1(0,0)=>» E =
1(6,8) Z velMs, ; E[x” Ax] = Tr(AE[xx"]) , (32)
<_; (h(¢i ) —my — Ulys)TA1 and the properties of the covariance matrix of random vector
E[xx’] = E[x]E[x"] + Cov(x,x). (33)
(h(¢i,sa 19) —mj — Ulys)
Expanding (30) we get:
1
+ 510811 +1og Dy, 1(8..9)) N
2 | | Q:(0.0) = — ZZ[ (Af(¢: 09 ($:0:9)")
(28) s
T
which is equivalent, except for the mean temm, to (18). —2Tr (AUE[y,] f(;,5,9)")

Therefore, the parameters of the final affine function are abl
to embed the global model meam, which was not considered
in the model for the sake of notation simplicity. Another +log’D¢”f ?; s’ﬂ>H , (34
important effect of the final affine transformation is that we ’
can set the precision matriX to a constant value becaugg
can be obtained by estimating matux, and using equation
(25).

Matrix A could be set to the identity matrix, but it is morey. ; 1 [AUE [y,] f(¢; ,9)7] = ATf(¢, .. O)E y7]
reasonable to set it to the matriX estimated by standard "
PLDA. Since A is kept constant, the set of parameters tyu It [AUE[YJS]UT} = ATUE[y,y!]" + AUE[y,y!]

T (AU]E[y y? ]UT)

where the expectations are taken with respegtsﬂtMs,é.
Recalling equations (101), and (118) of [30]:
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and thatA = AT, the gradient 0fQ, with respect toU is: VI. |-VECTOR SCALING

VuQa(6 'é)— We have shown in Section IV of [25] that length—
Ul2i% V) = normalization is crucial for PLDA mainly because it reduces

k(s) " T the mismatch between the development and evaluation sets,
> A F(#i9) | Elys] —k()UE [yys]| - rather than better meeting the PLDA Gaussian assumption. We
s i=1 also proved that length—normalization is optimal for a dine

(35) transformation, but a different utterance—dependentirggal

The specific derivatives and gradients for the affine tran%qctor is necessary for a non-linear transformation.

: : . I=vector normalization is also crucial for NL—PLDA, but ds i
Loggﬁté%n ag)a:t:l?l efgri;hg’féii;ul?fzogf(?Z)é](?z%rnhgg eeg(raac\lcpi;'veen ill be shown i.n the sgction devot_ed to the experimentsdblin
are passed as arguments, together with the objective @umcti ength—nqrmallzatllon Is not effective. : .
to a Limited memory Broyden—Fletcher—Goldfarb—Shanno ( _Assummg that |_—vectors_ are sampled fro.m different distri-
BFGS) optimizer [31]-[34] for obtaining the parameterstth dg‘:ﬁzst,h(eizérsigleergign%i;Zi?ﬁ?;:sig:rigmg paramefters
maximize the log-likelihood of the development set. The L= ' '
BFGS optimization is iterated until the log—likelihood dfet g(b;, ) = a; @, (40)
development data stops improving. 4 _ .

The steps required for estimating the objective functiod an H(¢is i, 9) = hg(¢i, ), 9) (41)
the gradients with respect to the non-linear function patans whereh is a non—linear transformation, aid is an i-vector
are summarized in Algorithm 1 of [25]. dependent positive scaling parameter. It is worth notireg th

It is interesting noting that, since the gradients with rex; can be considered as the single parameter of a simplified
spect to the transformation parametetsare similar to the affine transformation located at the beginning of the i-eect
ones derived for the speaker—independent non-linear tewedransformation chain, as shown in Fig. 3. Seen from the
transformation, NL—-PLDA model training can be performedther side of the chain, we consider that an i-veeporis
by means of the same forward—backward steps illustratedganerated by a random variable whose pdf is described by the
Algorithm 1 of [25]. transformation:
The unique difference is that in [25] we targeted a speaker— Fi—a'hY(z,9)
independent standard normal distribution for the latertide ¢ AP ’
z, i.e., Pz(z) = N'(0,1), whereas from (30) we see that in the =g (W (z.9), ) , (42)
NL-PLDA model we have to target a speaker—dependent
tribution Pz, (z) = N (z; UE[y,], A™"). The only difference
thus, consists in replacing equation (16) of [25] by:

d\'ﬁﬁereh*1 andg~! denote the inverse gf andg with respect
' 1o ¢, given a value forn? and ;.
The composition of functiog with the non-linear function
(36) h acts as an i—vector dependent length normalization, tuned
for the i—vector distribution described by functian

The corresponding gradient in equation (17) of [25] becomes
A. Estimation of scaling factors for model training

Pz (z) =N (z; UE[y,],A™") .

Dy, [log Pz(x,)] = Vi, log N (x,; UE[y,],A™")

The scaling factory; can be obtained by ML estimation,
= A(UE[y,] - x,) . (37) . Y

similarly to the other parameten® of the non-linear trans-
where, in accordance with the notation in [25], is the i formation. The training aIggnthm does not change because
vector transformed applying the non—linear functipx, 9), the a—scaled model can be interpreted as a NL—PLDA model

ie., x, = f(¢,9). Thus, the forward—backward proceduré‘"ith an i—vector dependent transform, where all parameters
illustrated in Algorithm 1 of [25] can be applied as it i of the transformation, excluding eact}, are tied across all

for computing the gradient¥ 3Q(8,0), just replacing the .

i—vectors.
initialization b,, = —x,, in the backward recursion of equation 1€ terms required for the forward and backward steps of

(20) of [25] by: Algorithm 1 in [25] are:
X,0;) = ;X
b, = A(UE[y,] — x») . (38) 9, i)
Dy, g9(x,0;) = x
V. NL—PLDA SCORING Dxglx, i) = el
g(X, ai) = Nlog Q;
The likelihood ratio of a pair of i—vectors in a trial can DyG(x, ;) = 07
be computed for the NL-PLDA model, according to (12), as A N
shown in (39). Please notice that this equation corresptinds Do, G(x,0;) = — (43)
Qy

the computation of the likelihood ratio of the standard PLDA
model, but using transformed i-vectogs and ¢,, and the where D, f(x,a) denotes the matrix of partial derivatives of
matricesU and A estimated as illustrated in the previoushe components off with respect to the components af

section. G(x,a;) = log|Dx(x,;)|, and | - | denotes the absolute
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o _ P61, 6:[Hs)

P(¢1,¢>2\’HD)

_ JN(f( Uy, ) [Dg, (1) N(f )'Uy, A7) |Dg, f(¢2)] N(y;0,1) dy
JN(f(e0); ij |D¢1 ¢1)| N(y;0.T) dny ); Uy, A7) [Dg, f(¢2)| N(y:0,1) dy

_ JN(f(¢1): Uy, A™") N(f(¢,): Uy, A )N(y,O I) dy (39)
TN (f(91); Uy, ) N(y;0,1) dy [N(f(¢2); Uy, A™") N(y;0,1) dy

It is worth noting that the estimation af; and a, can
o e« | oA [ S A L) Tran:fif:':ation ., be performed without resorting to the EM procedure used for

training. In particular, the integration over the spealanable

y can be performed in closed form, before estimating each
Fig. 3: Chain of transformation functions including thelsu@ «; parameter, thus the computation of the parameteiis
factor module. performed by maximizing:

a;j = max P(¢;|a;)
value of the determinant of its argument. A matrix of partial '

derivatives becomes a vector or even a scalar value, if the = H(ljéaX/P@\Y((ﬁAY)P(Y)dy
variablea or the function value is a scalar. '
= max Dy, f(¢;, )] -

B. Scoring with NL—PLDA using scaling factors //\/’(f(qbi,ai);Uy,A_l) N(y;0,I)dy
Differently from PLDA using length normalization, which _ _ z. T 1

does not need any additional processing at evaluation time, ~— I%%X‘D¢'if(¢i’az)| N(f(;,0i);0,UU" + A7) .

NL—-PLDA with a—scaling must estimate the scaling factors (44)

of the trial i-vectors at testing time. In our previous i®c  Tpe proof that

“gaussianization” approacly—scaling was applied to each i—

vector independently with respect to the others, both initig /N(f(qbz-,ai); Uy, A™") N(y;0,1) dy =
and in evaluation, because the non-linear transformatias w
performed before classification. N(f(¢;,);0,A" +UUT) .

Due to the introduction of the scaling factors in the NL=
PLDA model, the parameters of the non—linear transformatio
f become i-vector dependent. This makes much more compﬂﬁ
the likelihood ratio computation for two main reasons:

1) The parameters; and ay of the i-vectors of a trial b,, = 7(A71 + UUT)_lf(qbi,a“ﬁ) , (45)
should be jointly estimated.

2) The termﬁD¢if(¢,;,ai)| cannot be simplified as itwas In summary, at testing time it is only necessary to inde-
done in (39). pendently estimate the parameters and o5, and to apply

the transformatiork(g(¢,, ), ) to each evaluation i—vector.
The likelihood ratio can then be computed as in standard

is given in Appendix.
Thus, o can be obtained exploiting again Algorithm 1 of
§] by |n|t|al|zmg its backward step by:

Proper scoring would involve defining an a priori distrilouti
over the scaling factors, and integrating the likelihoodhef i—
vectors over this prior. Since this computation would beyve’-DA, just usinga—scaled and transformed i-vectors.
expensive, we approximate the likelihood ratio computatio
by optimizing the values ofy; anda, rather than integrating VIl. E-VECTORS
over their prior distribution. Most of the experiments presented in the next section have
The optimization ofa; and as, however, would require been performed using a recently introduced representation
estimating these two parameters under the hypotheses “samfa speech segment, similar to the speaker factors of Joint
speaker” or “different—speaker”, respectively. This wbué- Factor Analysis (JFA) and to i—vectors, referred to as “e—
quire performing a step of numerical optimization for eachector” [26]. This representation is based on the obsamati
trial. Since such approach would be unfeasible for a largje skat JFA estimates a more informative speaker subspace than
of trials, we further assume that the optimal and o, are the “total variability” i—vector subspace, because théetats
the same both for the “same—speaker” and for the “differenbbtained by considering each training segment as belonging
speaker” hypotheses. This allows us to independently attimto a different speaker. The novelty of our proposal consists
their values. estimating a linear transformation that allows keepingsiben
Using these approximations, the terr‘;ﬁ¢if(¢>i,ai)| in of the speaker—specific eigenvoice subspace, but at the same
the likelihood ratio computation of (39) can again be simpltime provides a better prior for i—vector extraction. We dnav
fied. shown in [26] that this subspace can be obtained by adapting
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TABLE [: Equal Error Rate and g&mary for the core extended NIST SRE 2012 evaluations using different, Ga24sian gender—independent
models. Label D refers to a system based on a hybrid DNN/GMM architectine average % improvement ofiferary With respect to the
standard PLDA and to the AS—-PLDA systems is shown in the last two colurasgectively.

Cond 1 Cond 2 Cond 3 Cond 4 Cond 5 Average Grimary
interview phone call interview phone call phone call % improvement
System name without without with with noisy with respect to
added noise added noise added noise added noise environment
% EER Goimary | % EER Gyrimary | % EER Gyimary | % EER Gyrimary | % EER Gyrimary | PLDA  AS-PLDA
(1) PLDA 3.22 0.292 2.24 0.286 2.66 0.248 4.42 0.401 2.76 0.324 0.0 -
(2) AS-PLDA 2.88 0.238 2.37 0.266 2.81 0.204 4.64 0.408 2.91 0.307 8.3 0.0
(3) NL-PLDA 2.99 0.242 2.33 0.256 2.63 0.193 4.08 0.371 2.81 0.293 12.6 4.8
(4) PSVM 291 0.233 2.24 0.264 2.34 0.190 3.89 0.375 2.78 0.302 12.1 4.1
3)+ @4 2.73 0.215 1.96 0.235 2.18 0.175 3.58 0.341 2.45 0.271 20.2 13.1
(D1) PLDA 3.43 0.258 1.68 0.233 2.77 0.215 4.14 0.346 1.93 0.268 0.0 -
(D2) AS-PLDA 3.09 0.212 1.69 0.208 3.13 0.188 4.15 0.349 2.01 0.241 9.2 0.0
(D3) NL-PLDA 3.40 0.222 1.65 0.203 3.69 0.185 3.55 0.308 1.96 0.229 13.1 43
(D4) PSVM 2.86 0.218 1.48 0.208 2.59 0.185 3.39 0.319 1.78 0.236 11.7 2.7
(D3) + (D4) 3.01 0.200 1.28 0.181 2.98 0.168 3.15 0.281 1.54 0.206 215 135

TABLE II: Comparison of PLDA and NL-PLDA system performanafea hybrid DNN/GMM architecture, in terms of average
% EER, DCFO08 and gimary, for the core extended NIST SRE 2012 evaluations used withd with length normalization,
or with e—vector dependent scaling factors.

e-vector ) Improvement
System normalization % EER  DCFO8  Grimary % EER DCF08  Giimary
PLDA No 3,73 0,164 0,347 0.0 0.0 0.0
NL-PLDA No 3,34 0,152 0,326 | 10,5% 7,3% 6,1%
PLDA LN 2,79 0,118 0,264 0.0 0.0 0.0
NL-PLDA LN 3,38 0,138 0,279 | -21,1% -16,9%  -57%
NL-PLDA | alpha-scaling| 2,85 0,108 0,229 | -22% 8,5% 13,3%

TABLE lll: Same as Table Il, but for the female core extendd@ NSRE 2010 evaluation. For these experiments the systems
are based on 2048 full-covariance GMMs i—vectors.

i—vector Improvement
System | ormalization | 7 EER  DCFO8 = DCF10} o ren ™ "peros DCF10
PLDA No 292 0146 0438 00 0.0 0.0
NL-PLDA No 241 0115 0374 175%  212%  14.4%
PLDA N 200 0111 0405| 00 0.0 0.0
NL-PLDA LN 204 0104 0362| 2.4% 6.3%  10.6%
NL-PLDA | alpha-scaling| 1.66  0.087  0.349| 20.6%  21.6%  13.8%

the eigenvoice subspace by means of a simple procedure thathe e—vectors for the SRE 2012 evaluation were extracted
produces a new variability matri¥. The procedure considersusing a relatively small model and feature set. The featete s
each training segment as belonging to a different speaker,cansists of 45-dimensional feature vectors obtained bgksta
it is done in standard i—vector training, but it applies Boleing 18 cepstral (gcig), 19 delta Aco-Acig) and 8 double—
Minimum Divergence Estimation (MDE) [7], [35] during thedelta AAcyo-AAc;) parameters. The e—vector extractor was
training iterations. based on a gender—independent 1024—component diagonal
In particular, an eigenvoice matri is trained, in a first step, covariance UBM, estimated with data from NIST SRE 2004—
exactly as matrixT is, but assuming that the segments of 2010, and additionally with the Switchboard 1l, Phases 2
given speaker belong to a single class, i.e., accumulatiag and 3, and Switchboard Cellular, Parts 1 and 2 datasets.
sufficient statistics per speaker, rather than per segment. We implemented gender—independent PLDA classifiers ac-
In the second step, matrik is initialized by V. Then, it is cording to the framework illustrated in [9], and also gerder
re-estimated considering each training segment as belgngindependent PSVMs [11]. All the experiments were performed
to a different speaker, as it is done for the estimation ofimat using e—vectors with dimensioN = 400. The e—vector ex-
T, but applying only MDE iterations. traction post—processing does not include any dimenstgnal
reduction. We also performed a set of experiments using the
VIIl. EXPERIMENTS hybrid DNN/GMM approach of [3]. In particular, we used

The performance of the proposed approach has been %& approach and the DNN described in [6], associating 8
sessed by means of a set of experiments on the SRE 26§13ussians to each of 128 output units of the DNN.
evaluation dataset [36] using e—vectors. The e—vectorge wer The aim of all these experiments was to compare the
preferred to i—vectors as features because the former haffectiveness of the potentially more accurate NL—PLDA
shown in [26] to produce better results than i—vectors both fmodel with respect to the AS—PLDA model, and also with
PLDA and AS-PLDA, using different systems and classifiersespect to the Pairwise Support Vector Machine (PSVM)
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model [10], [11]. The results are summarized in Table L3.1% improvement with respect to DNN/GMM PLDA. 1t is
where the recognition accuracy is given in terms of perceimteresting noting that the new generative NL—-PLDA apphoac
Equal Error Rate (EER), and of semary, the cost function is able to slightly improve the averagefary Of discrimina-
defined in the SRE 2012 evaluation plan [36]. The scores wdiee PSVM classifier as well.

not normalized. The last two columns of the table show thgnally, the performance obtained by combining the scores
percentage of the average:fsary improvement with respect of the PSVM and NL-PLDA systems with equal weights is
to the reference PLDA (with length—normalized i—vectors) a shown in the last row of Table I. The combination of these two
AS-PLDA systems. The reference systems are easily idehtif®y/stems produces a significant gain of 11.1%, 9.7%, 13.5%,
by the0.0 value in the corresponding rows, both for the GMMand 21.5% with respect to the corresponding PSVM, NL-
and for the DNN/GMM approach. PLDA, AS—-PLDA and PLDA, respectively.

The performance of the baseline G-PLDA system using e-a second set of experiments was performed to assess the
vectors is shown in the first row of Table I. The sec.ond rOWenefits of the e—vector dependent scaling factars¢aling)
shows the results of our best AS-PLDA approach using a cggth respect to length normalization (LN). The results are
cade of two AS modules, trained with additional constradms s, mmarized in Table II. Without any dataset mismatch com-
the transformation parameters+AS, bounded) [25]. Using pensation (j.e. without LN on—scaling), NL-PLDA results
more than two AS modules decreases system performang@ petter than standard PLDA results, but the improvement
These results are consistent with the ones obtained usingd-ess significant compared with the one provided by PLDA
vectors, reported in [25]. o _ length normalized models. This can be explained consigerin

The effect of the e-vector “gaussianization” provided bjnat g better model of the training data is not necessarilgemo

AS—PLDA is to reduce the slope of the DET curve, with a losstfective in case of significant mismatch between trainind a
of the EER, but a 8.2% improvement of the averaggary.  evaluation data.

The joint estimation of the PLDA and of the non-linear . .
transformations parameters is more robust to overfittingrwh Adding LN to both models improves the results, how-
ever, feeding NL-PLDA with length normalized e-vector is

more than one AS module is combined in cascade. Thdtseotrimental with respect to the standard PLDA with length

probably happens because the NL-PLDA approach takes Grmalization. Since we initialize the AS modules to previd

account the speake_r mformatlon,_ W.h'Ch 's ignored by A an identity transformation, and NL-PLDA with the paramster
PLDA. The latter tries to gaussianize the development e— . . -

) ) . .. 0of the standard PLDA, respectively, and since the likelthobd
vectors assuming that they are independent. Since thistis po

the case, better fitting the e—vector distribution does mat n © system increases (.ju.nng the NL-PLDA tr:?umr_\g iteration
essarily correspond to better matching the PLDA assunmtio%v € argue that an overfitting effect occurs, Wh'.Ch '“‘?re‘?‘l‘-’e? t
ismatch between development and evaluation distribsition

Thus, the new approach allows combining more than a sin Ris is not surprising: although LN is optimal under Gaussia

AS module in cascade to provide a more accurate model. The . . . L .

. . _assumptions (as it has been proved in [25]), it is not optimal
results of the NL—PLDA system refer to a model includin . S o
four AS modules or the non-linear PLDA model. Indeed, jointly estimatirg t

Sicluing Condion 1 NL-PLDA impoves both th EERCEELEE 955 516 1 Tov s vemsoren pre,
and Gyimary in all conditions with respect to the AS-PLDA, P P

P : standard PLDA with LN.

achieving an average pfmary improvement of 4.8%, and ) )
outperforming standard PLDA by 12.6%. Finally, we report the results of the same comparison
It is worth noting that the PSVM classifier gives better % ERRerformed on the female core extended NIST SRE 2010
results than standard and non—linear PLDA models. Since fluations. In these experiments we used the same feature
discriminative and the new generative models give simil&€l but i-vectors rather than e-vectors. We trained a gende
Cprimary, bUt they are trained with different objective functionsindependent 2048-component diagonal full-covariance UBM
we expected a good degree of complementarity between thé&stimated with data from NIST SRE 2004-2006.
even if they exploit the same set of features. Thus, wd€ i-vector extractor was based on a gender—deperiient
combined the scores of the two systems with equal weighfarix, of rank 400, estimated with the female speakers of
system combination is able to sensibly improve both the EER Phases 2 and 3, and Switchboard Cellular, Parts 1 and 2
of 9.3%, 8.7%, 13.1%, and 20.2% with respect to PSVM, NL\Lectors require a large enough number of different speaker
PLDA, AS-PLDA and PLDA, respectively. segments, which are not readily available on the previously

The proposed transformation is also effective for our hybrimeéntioned datasets, mostly for the phone/interview catt
the GMM reference system. The DNN/GMM based Systerﬁgeaker subspace matiixreduced to 150, and also exploiting
Again, our best AS—PLDA approach, which uses two boundedTable Ill summarizes the results, which confirm the ones
AS modules, gets an averaggrifmary improvement of 9.2% obtained on the NIST SRE 2012, with the exception that NL—
with respect to PLDA. PLDA using LN is also better than the corresponding PLDA
NL—PLDA provides an additional gain of 4.3% , reachingnodel.
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IX. CONCLUSIONS it is easy verifying that:

We have presented a generative model that jointly estimates (Afl 4 UUT) -t —A—AU (I " UTAU) ‘1UTA
the distribution of the development i—vectors and the PLDA
parameters, so that the i—vectors are non-linearly tramsfo =A—-AUA, 'u'A (50)
to a new compact representation of a speech segment Wm his th L tri ing in (4
makes PLDA classification more effective. The i-vector ¢ran ch s the precision matrix appearing in (48).
formapon is modeled by means of a sequence of afflne.andFina”y, we have to show that:
non-linear functions, the parameters of which are obtained
by Maximum Likelihood estimation on the development set. E(AADY) =k ((A‘l n UUT)l)
The transformation parameters can be estimated using the Y ’
same algorithm proposed in [25], just properly changing thgat is:
transformation target distribution. This approach img®ov ’(A‘l +UUT>‘_1 _ |AA‘1 ‘
both in theory and in practice our previous proposed model, Y
which aimed at minimizing the deviation of the i—vectorsnfro Recalling Sylvester determinant lemma [38]:
the normal distribution. It also incorporates the benefits o _
length normalization by estimating speaker—dependetingca T+ AB|=[I+BA|, (51)
factors, which have been shown to be essential for reduciagd its generalization:
the mismatch between the development and evaluation i— B 1 1
vector length distributions. Using this new model we werke ab A +BCD| = [A] |C +DA B| Il (52)
not only to improve the performance of the PLDA and ASwe have:
PLDA generative models, but also to reach the performance . 7t . - -1
of the PSVM discriminative model. The score fusion of these |4 +UU ‘ = (‘A | ‘I +U AU’ |I|)
two models prpvides an additional 9.7% averagginfary = |A| |Ay‘1| - |AA;1\ ] (53)
improvement with respect to the NL—PLDA model.

Thus, (48) is equal tdV(x; 0, A~' + UUT) .

|
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