Results from CHIPIX-FE0, a Small Scale Prototype of a New Generation Pixel Readout ASIC in 65nm CMOS for HL-LHC
Results from CHIPIX-FE0, a Small-Scale Prototype of a New Generation Pixel Readout ASIC in 65 nm CMOS for HL-LHC

Luca Pacher

on behalf of INFN/CHIPIX65 project

TWEPP 2017 Topical Workshop on Electronics for Particle Physics

Sep 12, 2017 - UC Santa Cruz, CA, US
Contributors

G. Dellacasa, L. Demaria, G. Mazza, E. Monteil, L. Pacher, A. Rivetti, M. Rolo, F. Rotondo, R. Wheadon
INFN Sezione di Torino, Torino, Italy

S. Panati, A. Paternò
Politecnico di Torino and INFN Sezione di Torino, Italy

F. Loddo, F. Licciulli
INFN Sezione di Bari, Bari, Italy

F. Ciciriello, C. Marzocca
Politecnico di Bari and INFN Sezione di Bari, Bari, Italy

L. Gaioni, G. Traversi, V. Re
Università di Bergamo and INFN Sezione di Pavia, Bergamo, Italy

F. De Canio, L. Ratti
Università di Pavia and INFN Sezione di Pavia, Pavia, Italy

S. Marconi, P. Placidi
Università di Perugia and INFN Sezione di Perugia, Perugia, Italy

G. Magazzù
INFN Sezione di Pisa, Pisa, Italy

A. Stabile
Università di Milano and INFN Sezione di Milano, Milano, Italy

S. Mattiazzo
Università di Padova, Italy
Goals:

- development of an innovative CHIP for a PIXel detector at extreme rates and radiation HL-LHC conditions using a CMOS 65 nm technology for the first time in HEP community

- an efficient propagation across INFN of CMOS 65 nm technology (Bari, Lecce, Milano, Padova, Pavia, Perugia, Pisa and Torino groups)

- close synergy with the CERN RD53 international collaboration

Designed to be compliant with the expected requirements of HL-LHC pixel detectors:

- 40 MHz bunch crossing frequency
- 50 μm × 50 μm pixel size, large chips ~ 2 cm × 2 cm
- up to 200 event pile-up, 3 GHz/cm² hit rate, 75 kHz/pixel particle rate
- 1 MHz trigger rate, 12.5 μs trigger latency
- low power consumption < 0.55 W/cm², 10 μW/pixel
- hit efficiency > 99% at 3 GHz/cm²
The purpose of the **CHIPIX65 demonstrator** has been to satisfy these requirements as a first, intermediate step, towards the **RD53-A prototype** [see **E. Conti** presentation]

- **64×64** pixel matrix, embedding **two different Analog Front End (AFE) designs** working in parallel
 - **synchronous** architecture
 - **asynchronous** architecture

- **design and implementation of a novel 4×4 region-based** **Centralized Buffering Architecture (CBA)** for latency buffering and trigger matching

- **FIFO-based readout architecture** running at 40 MHz, **SPI-based chip configuration** at 13.33 MHz
 - support for **triggerless, triggered** and **scan-chain** operations
 - nominal 320 Mb/s serial-output

- **integration of available silicon-proven IP-blocks designed for RD53**
 - **bandgap voltage reference**
 - **SLVS transmitters/receivers** and **high-speed SER** [see **G. Magazzù** poster]
 - **10-bit biasing DAC**
 - **12-bit monitoring ADC**

- usage of the modified CERN rad-hard I/O library

- independent development from **FE65-P2 demonstrator** [see **T. Heim** presentation]
1. 32×64 pixels with synchronous FE architecture

2. 32×64 pixels with asynchronous FE architecture

3. replicated bias cells with current mirrors

4. 10-bit biasing DACs

5. bandgap voltage reference

6. 12-bit monitoring ADC

7. readout/configuration digital block and high-speed serializer at the chip periphery

8. SLVS transmitters/receivers and I/O cells

3.5 mm × 5.1 mm MPW
Synchronous front-end architecture

Torino INFN design group [JINST 11(2016), C03013]

- telescopic-cascode CSA with Krummenacher feedback for linear Time-over-Threshold (ToT) charge encoding
- synchronous hit discriminator with track-and-latch voltage comparator
- threshold trimming by means of autozeroing using capacitors
- 40 MHz 4-bit ToT or 5-bit fast ToT counting with latch turned into a local oscillator (100-900 MHz)
- efficient self-calibrations can be performed according to online machine operations
- successfully tested (also after irradiation) using dedicated mini@sic small-prototypes
Asynchronous front-end architecture

Bergamo/Pavia INFN design group [JINST 11(2016), C02049]

- folded-cascode CSA with Krummenacher feedback
- fast current comparator
- threshold trimming by means of 4-bit local DAC
- effective 80 MHz 5-bit dual-edge ToT counting at 40 MHz
- successfully tested (also after irradiation) using dedicated mini@sic small-prototypes
Test results
- chips received back from the foundry at the end of September, 2016
- tests performed in Bari, Bergamo and Torino INFN labs
- fully-digital ASIC/FPGA interface based on FMC
- prototype wire-bonded on a **custom test board**
- a few test points to monitor global bias voltages/currents
- custom **Ethernet/UDP firmware** supporting both Kintex-7 and Artix-7 Xilinx FPGA boards
- **NI/LabView** data acquisition interface supporting all chip operations
Irradiation tests

- several irradiation campaigns performed with X-rays at Padova INFN and CERN PH/ESE facilities
- electronics always biased at nominal operating conditions
- continuous monitoring of proper chip configuration and operations, charge scans performed at different steps
- non-uniform irradiation at room temperature up to 230 Mrad TID
- uniform and cold irradiation up to 600 Mrad TID
- uniform irradiation at room temperature up to 630 Mrad TID
- chips fully-functional up to 630 Mrad TID and one-week annealing
- all presented results confirm negligible degradation of analog front-ends performance after irradiation, digital readout and configuration OK

pacher@to.infn.it

TWEPP 2017
Charge-injection calibration and monitoring results
— per-pixel generation of the analog test pulse starting from two well defined DC levels
— charge-injection triggered in selected pixels by a digital switching signal distributed to all pixels
— precise 8 fF per-pixel injection capacitance using MOM cap
— one global 10-bit calibration DAC common to both synchronous and asynchronous pixels
— good agreement between measured linearity and CAD simulated data
- calibration voltage fed to monitoring ADC, converted data \textbf{read back through SPI}
- embedded \textbf{self-calibration algorithm} to minimize gain and offset errors
- \textbf{digital trimming} using dedicated configuration registers is also supported
- \textbf{linear ADC characteristic}, good agreement between measurements and CAD simulated data
- DNL/INL performance metrics extracted with automated code-density tests
- measured \(-0.1\) LSB < DNL < 0.1 LSB as from CAD simulations (self-calibration operating mode)
- \(-5\) LSB < INL < 4 LSB, slight larger than simulated values (self-calibration operating mode)
- additional measurements with digital trimming ongoing in Bari
Synchronous FE results
all pixels tested and fully working

autozeroing performed each 200 μs

effective noise and threshold values determined by means of S-curves

measurements performed with charge scans and fixed threshold

hit efficiency recorded for 100 charge-injection pulses

measured points fitted using an error function (sigmoid)

noise and threshold values extracted from means and variances distributions
Threshold measurements with autozeroing

- effective threshold measured for different values of fixed global threshold
- autozeroing works, residual offset value of about 100 e\(^{-}\) RMS in good agreement with CAD simulations (\(\approx 70 \text{ e}\(^{-}\) RMS latch dynamic offset)
- linear increase as expected
- threshold-to-charge characteristic from fit
- \(\approx 250 \text{ e}\(^{-}\) minimum threshold
Noise measurements

ENC measured for different values of fixed global threshold

- constant behavior with threshold values as expected
- ENC ≈ 90 e$^-$ in good agreement with CAD simulations
- low-noise performance assured despite continuous latch and region-logic digital switching activity
Fast Time-over-Threshold (ToT) counting

- very good linearity for the 5-bit fast ToT
- 320 MHz frequency reached for a 5 ke⁻
- slope dispersion of about 10% due to mismatches in the analog part, as from CAD simulations
Test-pulse phase scan

- average threshold value measured as a function of the relative delay between the charge-injection pulse and the clock strobing the latch (nominal BX clock from FPGA reduced from 40 MHz to 20 MHz)

- simplified analytical model assumed for CSA output waveform:

 \[
 V_{out}(t) = \frac{Q_{in}}{C_F} \left[1 - e^{-(t-t_0)/\tau} \right] - \frac{I_F}{C_F} (t - t_0) = p_0 \left[1 - e^{-(t-p_1)/p_2} \right] - \frac{p_3}{C_F} (t - p_1)
 \]

- preamplifier analog output partially reconstructed from fit, good agreement between fit parameters and electrical settings

\[\begin{align*}
p_0 &= 0.13 \pm 0.0011 \\
p_1 &= -7.3 \pm 0.045 \\
p_2 &= 5.1 \pm 0.053 \\
p_3 &= 9.9 \pm 0.14 \\
p_0 &= 0.0011 \pm 0.13 \\
p_1 &= 0.045 \pm 7.3 \\
p_2 &= 0.14 \pm 9.9 \\
p_3 &= 0.053 \pm 5.1
\end{align*}\]
Post-irradiation results

- 3 μs calibration cycles required for efficient autozeroing after 230 Mrad, still compliant with online LHC machine operations
- threshold linearity verified, no significant threshold variations observed after irradiation
Post-irradiation results

- **ENC constant behavior** still present after 230 Mrad TID (room temperature irradiation)
- no significant degradation of **low-noise performance** observed, $\text{ENC} \approx 100 \text{ e}^-$
− ≈ 15% degradation of **latch oscillation-frequency** (recoverable through current starving in the delay-line)

− negligible degradation of **threshold performance** after 600 Mrad TID (cold irradiation)
Asynchronous FE results
Untrimmed threshold dispersion and noise

- Test setup delivered to Bergamo/Pavia INFN group, requiring some firmware modifications to target Xilinx Artix-7 evaluation board
- All pixels tested and fully working
- \(\approx 400 \, e^- \) RMS untrimmed threshold dispersion and ENC \(\approx 85 \, e^- \) noise before irradiation
- Good agreement with CAD simulations
Threshold linearity

- effective threshold measured for different values of **fixed global threshold**
- linear increase as expected
- threshold-to-charge characteristic from fit
- \(\approx 500 \text{ e}^- \) **minimum threshold**
— **per-pixel DAC codes** extracted from untrimmed S-curves using a set of ROOT macros and then loaded into the chip
— electrical functionality OK, **threshold compensation** works for all pixels
— ≈ 45 e⁻ RMS **residual threshold dispersion** before irradiation, in good agreement with CAD simulations
— ≈ 150 e⁻ after **1-week annealing** (630 Mrad TID) and ≈ 125 e⁻ after **4-weeks annealing**, global threshold-current DAC dynamic range kept as before irradiation
— reduced to ≈ 85 e⁻ by **re-optimizing global DACs settings**
Preliminary results with 3D sensors
— bump-bonding performed at SLAC with **FBK 3D pixel sensors** (2016 wafers)
— sample prototypes coupled to both $50 \, \mu m \times 50 \, \mu m$ and $25 \, \mu m \times 100 \, \mu m$-1E
— chips received back from SLAC three weeks ago, **preliminary tests** just started in Torino
— first 50- and 25- μm 3D sensors coupled to a complete readout chip in 65 nm CMOS, **never before**!
Noise measurements

- **bump-bonding** and proper sensor electrical connectivity with the chip verified
- **average noise** value extracted from all-pixels S-curves as a function of the sensor reverse bias
- lower noise measured for 25 μm \times 100 μm-1E sensors as expected (slight lower capacitance in -1E geometry)
- very promising and comparable results for both front-end architectures!
First tests with laser and sources

- additional preliminary tests performed using **laser** (1060 nm) and **sources** (137Cs, 241Am and 90Sr)
- **proper readout/masking** of all exposed pixels verified
- major efforts now in developing missing offline-software components for data analysis
Conclusions

- **CHIPIX65 demonstrator** submitted in July 2016, chips received back from the foundry at the end of September
 - 64×64 pixel matrix, 50 µm × 50 µm pixel size
 - first 50- and 25-µm **3D sensors** bump-bonded to a complete readout chip in 65 nm CMOS!

- **full-system integration** with digital-on-top design methodology
 - two different **analog front-end designs** working in parallel
 - novel **region-based centralized buffering architecture**
 - **silicon proven IP-blocks** developed for RD53 (DAC, ADC, BGR, SER, SLVS TX/RX)

- **highly encouraging results** from all pre- and post-irradiation tests
 - fully working electronics **during/after irradiation**, good agreement with all CAD simulations
 - **low-noise** and **low-threshold** performance achieved for both designs despite digital activity
 - **fully-working chip** after 630 Mrad TID with negligible degradation of analog key parameters

- **selected CHIPIX demonstrator components** have been **included into RD53-A prototype**
 - global-bias components (DAC, BGR)
 - improved versions of synchronous and asynchronous front-ends
 - improved version of region digital architecture coupled to synchronous front-end

- **prototype just re-submitted** as part of the shared **RD53/MPA/SSA engineering run** with **further improvements** in analog front-ends

- **next steps**
 - completion of DAQ software, **extensive measurements with 3D sensors, test beam**
 - bump-bonding with **planar sensors** (Hamamatsu)
 - characterization of CHIPIX65 components **now embedded into the RD53-A prototype**
Thank you for your attention

N. Demaria et al., *CHIPIX65: Developments on a new generation pixel readout ASIC in CMOS 65 nm for HEP experiments*. Proceeding of the 2015 IEEE International Workshop on Advances in Sensors and Interfaces (IWASI)

L. Pacher et al., *A Low-Power Low-Noise Synchronous Pixel Front-End Chain in 65 nm CMOS Technology with Local Fast ToT Encoding and Autozeroing for Extreme Rate and Radiation at HL-LHC*. Proceeding of the 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE NSS/MIC)

L. Ratti et al., *An asynchronous front-end channel for pixel detectors at the HL-LHC experiment upgrades*. Proceeding of the 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE NSS/MIC)

E. Monteil et al., *A synchronous analog very front-end in 65 nm CMOS with local fast ToT encoding for pixel detectors at HL-LHC*. Proceeding of the 2016 Topical Workshop on Electronics for Particle Physics (TWEPP).Submitted to Journal of Instrumentation (JINST)
