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Abstract

The main purpose of this dissertation is to study coupledrbelastic behaviors in
disks subjected to thermal shock loads based on the gerestaid classic theories
of coupled thermoelasticity. To this end, this researchdesesn carried out in two
stages.

In the first stage, thermoelasticity problems in an axisytnimeotating disk with
constant thickness made of a homogeneous isotropic materianalytically solved
and closed-form formulations are presented for tempezaind displacement fields.
Since, the analytical solution is not always feasible, thidielement (FE) method
can be employed for more sophisticated coupled thermagtggproblems. Ac-
cordingly, in the second stage of the research, a novel efiefinite element
approach with 3D-like accuracies are developed for thearfeoupled thermoelas-
ticity. Then, the developed FE models are applied for a 3Dtgmi of the dynamic
generalized coupled thermoelasticity problem in diskse bisthe reduced models
with low computational costs may be of interest in a labasitime history analysis
of the dynamic problems.

The obtained analytical and numerical solutions are in gagrédement with the re-
sults available in the literature. It is further shown thet proposed analytical and
FE methods are quite efficient with very high rate of conveoge
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Chapter 1

Introduction

1.1 Rotating disk

Rotating disks subjected to thermal loads are widely usethiny engineering fields
such as aerospace, mechanical, naval, chemical plant,ogli®s, and biomaterials.
Normally, these components can be manufactured by usingremgl. However,
for some specific applications such as in aerospace whérevigight and stiffness
becomes necessary in high temperature environment, thparmnts need to be
made using special material such as a functionally gradedrrab(FGM). For an
example, in a turbine rotor, there is always a possibiligt the heat from the exter-
nal surface transmits to the shaft and from it to the beamagsing adverse effects
on its functioning and efficiency.

In practical problems such as a realistic turbine rotorallguthe disk profile is
complex and designed as a combination of concave, convehkraaadt sections. In
addition, there are other complex components such as shafteals, spacers and
blades along with the disks that represent extra distribated concentrated loads
on the disk surface. Moreover, in operation, when the nogatiisk is exposed to
a hot gas flow, there is a 3D temperature field on the disk, wtéchsignificantly
affect the mechanical properties of the material.

Furthermore, in some of the applications, such as gas wigsigines, the disks may
be subjected to sudden temperature changes in short pefitidse as a result of
start-up and shut-down procedures of the engines. Thesesuwhanges in tem-
perature can cause time dependent thermal stresses irsitse dihermal stresses
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due to large temperature gradients are higher than theysttatd stresses. These
large stresses occur before reaching the steady-statéioandn such conditions,
the disk should be designed with consideration of trans#fatts.

1.2 Theories of thermoelasticity

In the static uncoupled thermoelasticjtthermal effects on a body are restricted
to strains due to a steady-state temperature distributAsra more general the-
ory of thermoelasticity, considering the transient heatdeation equation leads to
time-dependent temperature distributions which can bd tesebtain the transient
thermal stresses. Such problems are caljleaki-static uncoupled thermoelasticity
problems. Alternatively, if external thermo-mechaniczdds applied to the body
vary adequately rapidly with the time so that inertia effeate excited, the inertia
terms must be taken into account in the equations of motibis theory is known
as thedynamic uncoupled thermoelasticitl is obvious that in all these theories,
the temperature field is independently obtained from thé ¢t@aduction equation,
while the displacement and stress fields are assumed to kadkeut of the temper-
ature.

When a structure is exposed to high-speed thermo-mechdmacks, the theories
of uncoupled thermoelasticity may not provide entirelyetphysical behaviors. To
avoid this drawback, interactions of the mechanical sththeelastic body on the
temperature filed may be also simulated using the theoriesuled thermoelas-
ticity. In these theories, the time derivatives of strain appe#tirarheat conduction
equation so as to lead to the coupling between elasticityeardyy equations. Ac-
cordingly, to find the solution for temperature and disphaeat fields and finally
stresses, these coupled equations must be solved cortburren

The thermoelasticity equations with the coupling effecs waroduced by Duhamel
[27]in 1837, for the first time, and then 120 years later, Ri6f, in 1956, presented
the theory of classical thermoelasticity based on the pies of the irreversible
thermodynamics. A history of thermoelasticity can be fartfound in the text-
books [11, 41].

Thus, under thermo-mechanical shock loading, the inenttacaupling effects can
play important role in the thermoelastic behavior of a badgwever, it has been
shown that the coupling term may be more effective on the &atpre and stress



1.3 Literature review 3

distributions than the inertia term in such situations (4de41]).

Applications of the coupled thermoelasticity in advandedcural design problems
have attracted the attention of many researchers duringeibend half of the last
century. These applications can range from aerospacdugtesdo fast-burst reac-
tors, pulsed lasers, and particle accelerators which gaplysaudden heat pulses in
extremely short periods of time [8]. For instance, in ufaat pulsed lasers which
is employed for nondestructive detection [12], measurdéraEmaterial properties
[44] and micro-machining [66], the heat pulse may be impasexth order of Pico-
second or less. The nature of the heat transfer mechanisamiaseously after the
imposition of the pulse and the resulting temperature ibigtion at the surface of
the body are some matters of interest in such applications.

Due to the parabolic nature of the heat conduction equatidhd classical theory
of thermoelasticity, the thermal disturbances are preditd propagate with infi-
nite speed through the elastic body. This prediction mayuffecgently accurate for
most engineering applications. However, it is not phy$yaalalistic and acceptable
in some practical problems involving high thermal loadsxiteanely short time in-
tervals or very low temperatures near the absolute zereekhdn such cases, the
classical theory is not well able to detect thermal waveudisinces (see [22]).

To overcome this drawback, several non-classical modetseo€oupled thermoe-
lasticity with the finite speed of the thermal wave propawativere introduced.
Typically, these models are known as teneralized theories of thermoelasticity
Among these theories, Lord-Shulman (LS), Green-Lindsdy) @ad Green-Naghdi
(GN) are the most well-known models. The detailed discunssad the generalized
thermoelasticity with finite wave speeds have been predentd5].

1.3 Literature review

In general, analytical solutions of the coupled thermdadeg problems are math-
ematically laborious, so that many simplifying assumpionay be required to
achieve a closed form solution for such problems. A survethefliterature in-
dicates that the number of articles using analytical metttodolve the problems is
limited. Most of the analytical studies are restricted te basic problems such as
the infinite space, half-space and layer, where the bourmargitions are simple
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(see [39, 58]). For some bounded problems with simple iratia boundary condi-
tions, analytical solutions of the coupled thermoelasijicagions have been reported
by a few investigators. Among them it may be referred to thecesolutions for
beam [29], and rectangular plate [47] problems, as well aseaddmensional (1D)
axisymmetric solution for spherical [57] and cylindricdP]] problems.

Indeed, the exact solution for more sophisticated geossettnd boundary condi-
tions as well as for all theories of coupled thermoelastisinot available in the lit-
erature. Accordingly, the development of alternative 8otutechniques including
semi-analytical and numerical methods has been essentiatder to obtain nu-
merical solution of the coupled thermoelastic problems,fthite difference (FD),
the finite element (FE) and the boundary element (BE) methegte been used.
Among the procedures, however, the FE method is more widepl@yed for this
class of problems due to the adaptability of this method.

The finite element formulation of the thermoelasticity desbs can be derived
from the variational approach and the weighted residudirtiegies. For elastic
continuum, the variational approach is based on the apjicaf variational cal-
culus, which deals with the extremization of the total ptisdrand kinetic energies,
while in the weighted residual methods; the governing eqoatare multiplied by
a weighting function and then averaged over the domain.

In the beginning, based on the variational principle, Wilsmd Nickell [64] de-
veloped FE formulations for the heat conduction equatiathaeuit the mechanical
coupling term, and Fujino and Ohsaka [37] presented a FHignlto static uncou-
pled thermoelasticity problems. Later, Nickell and Sackijt®] further presented
FE formulations through the variational approach to soheedoupled thermoelas-
tic equations in a half-space problem. A complete discussiothe variational
approach used to thermoelasticity has been presented lootieby Hetnarski and
Ignaczak [40].

On the other hand, the weighted residual methods along withneonditionally
stable implicit-explicit procedure were employed to theamwic coupled thermoe-
lasticity problem by Liu and Chang [50]. Furthermore, Esland Salehzadeh [31]
applied the weighted residual method based on Galerkimigahk to develop a fi-
nite element formulation for coupled thermoelasticity.emhthis formulation was
employed to solve a 1D rod problem by Eslami and Vahedi [34].

Due to the contentious definition of functional for the filstvithermodynamics, in
deriving the coupled thermoelastic equations by the vanat calculus approach,
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some drawbacks may be incurred. However, the weightedualsielchniques such
as Galerkin method which convert directly the governingagiquns to a weak for-
mulation are quite efficient in the convergence rate conthtwehe conventional
method [41].

Although the present dissertation is not a review study,imtite following, it at-
tempts to survey a number of articles in which the FE methadlean used to solve
the transient thermoelasticity problems. It should be alsted that the following
papers are listed in chronological order and essentialbrenemphasis is on the
type of problem solved by researchers.

The coupled thermoelastic problem in a long cylinder exgddsa specified thermo-
mechanical boundary conditions was solved bgtal [48]. They used several dif-
ferent techniques for the spatial and time discretizatithé FE method to demon-
strate the proper numerical techniques for this problemite€and Booker [19]
also solved the 1D classical coupled thermoelastic equafar an infinite cylinder.
However, all these studies had been done assuming thatehaahdisturbances
propagate with infinite speed in the elastic medium.

A FE formulation of GL thermoelasticity model was preseritgdPrevost and Tao
[54]. They applied an implicit-explicit scheme to solve thguations for a semi-
infinite slab problem subject to surface thermal load. Cheth Weng [23] pro-
posed a transfinite element method, in which the combinaifahe FE method
and Laplace transform technique is employed, to analyzgéeheralized coupled
thermoelasticity problems based on LS, GL and GN modelst iShthe problems
can be solved in the Laplace transform domain by the FE methddhen the trans-
formed solution are numerically inverted to find the phykiicae domain response.
Using this approach, Chen and Weng presented solutionedanytinder with infi-
nite length and layer problems in [23].

Farhatet al. [35] obtained the FE equations for the classical coupledhtioelastic-
ity by Galerkin method and then proposed an implicit-imipbtaggered technique
to solve the equations. In this paper, the accuracy of thpgsed algorithm has
been demonstrated by solving half-space and infinitely Eimagft problems. Like-
wise, the FE method along with an explicit time integratioohiecture were ap-
plied by Tamma and Namburu [59] to solve the GL thermoelagtoroblem in an
1D half-space.

For a hollow sphere problem subjected to specified boundamgitons, Eslami
and Vahedi [32] presented the FE formulation of the classioapled thermoelas-
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ticity under spherical symmetry condition by using Galarkiethod. Eslamet al.
[33] studied the coupled thermoelastic behavior of an gxgimmetric cylindrical
shell, as well. In these studies, the FE equations were ddiyea time marching
technigue. In addition, using an axisymmetric FE formuolatithe coupled ther-
moelastic response of a functionally graded cylinder szibgkto specified bound-
ary conditions was investigated by Reddy and Chin [55].

Cannarozzi and Ubertini [13] derived a variational formiué toupled quasi-static
thermoelasticity, in which the elastic equation is statedh& hybrid stress formu-
lation while the mixed flux-temperature formulation is usedthe heat equation.
In the FE implementation, they developed three quadrahtdements and assessed
characteristics of the proposed approach through somenuahiest cases. Based
on the first-order shear deformation theory, Chakrabetigl. [21] presented a FE
formulation for dynamic uncoupled thermoelasticity in ¢tionally graded beam
structures. In this paper, a beam element was developediamab convergence
stiffness matrix and eliminate the shear locking effectted element. In addi-
tion, Chakraborty and Gopalakrishnan [20] investigatedegalized thermoelastic
responses in an anisotropic layered medium based on LS anti€dkies. They
used the spectral FE method to capture the propagation whtetastic waves in-
side the medium.

In a series of papers, using Galerkin FE method, Es&tral. rendered a 1D classi-
cal and generalized thermoelasticity solution for annisiairopic [4] and function-
ally graded [7] disk problems, functionally graded layeslgems [5], functionally
graded sphere problems [6] and functionally graded beaind [&se authors em-
ployed the same procedure as proposed by [23] to obtain themsts.

In addition, the magneto-thermoelastic behavior of a defimite plate subjected
to a magnetic and a thermal shock was investigated by TiarSaed [60]. They
considered the GL model as the generalized thermoelgsiigbry and solved the
dynamic FE equations directly in time-domain. Ableasl. presented generalized
thermoelastic solutions for axisymmetric cylinder [1] amalf-space [2] problems
based on the LS and GL models. In these studies, the weak f@tions were
obtained by Galerkin finite element method and then the NeWwrae integra-
tion scheme was employed to solve the equations. The théaetmeresponse of
a 1D layered region subjected to thermal shock load was aedlpy Hosseini
Zad [43] based on the different theories of coupled therasigity. Darabselet
al. [26] considered the coupled thermoelastic problem in atfonally graded
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thick hollow cylinder under thermal loading. These authesed the GL theory of
thermoelasticity and solved the governing equations bygu&alerkin FE method.
Galerkin FE method along with a traditional time domain gneé method were em-
ployed by Guo [38] to solve the LS coupled thermoelastic [@mis in one- and
two-dimensional models. Based on the LS and GL generaliesaties, Filopoulos
et al. [36] derived coupled thermoelastic models for nonlocaktio-mechanical
problems in micro-structures. Moreover, they solved a dhdér bar problem to
demonstrate how their models work.

The generalized coupled thermoelastic problem in an axisginc infinite cylin-
der subjected to specified boundary conditions was analyz&enkour and Abbas
[65] based on LS theory. In this paper, the transient salubibthe FE equations
was evaluated directly from the model at any time. The atassioupled thermoe-
lastic problem in a plate subjected to a hypersonic re-€idry was analyzed by
Li et al. [49]. They employed the Newmark method and Crank-Nicolsdmeme
to discretize the equation of motion and heat conductioratgu in the time do-
main, respectively. In this paper, the Rayleigh damping taken into account in
the equation of motion as well.

Furthermore, the effect of material microstructure on tlassic coupled thermoe-
lastic behavior in a 1D half-space was studied by Papati@nasal. [53]. These
investigators used the gradient elasticity theory to maldelmicrostructure influ-
ences and applied the FE and time integration methods te sodvgoverning equa-
tions. The classical coupled thermoelastic response incifunally graded annular
plate imposed to lateral thermal shock load was investijayelafarinezhad and Es-
lami [46]. In this paper, the first order shear deformaticaigtheory was used to
obtain the equations of motion and the temperature digtob@across the thickness
was be approximated by a second order polynomial. Thesemuillized the same
procedure as used in [3-7, 23].

Analysis of the works reviewed above concerning solutiothefcoupled thermoe-
lasticity problems may lead to the following inferences

* Due to use of the coupled thermoelasticity theories in aded structural
design, they are still topics of active research.

« The major presented studies deal with the coupled theambeity response
in the basic problems including an infinite medium, a halepand a layer as
well as in the axisymmetric problems. Moreover, two- or éaidgmensional
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coupled thermoelastic solutions for some simple problerag be found in
just a few number of articles.

« analytical solution of the coupled thermoelasticity desb in the disks has
never before been presented.

« After over half a century of application of FE method in timeelasticity, this
method is still applied as a powerful numerical tool in suobltems.

» Most of the investigators applied Galerkin technique ® governing equa-
tions to obtain a weak formulation of the problem, espegifali the theories
of generalized thermoelasticity.

1.4 Objectives and scope of research

The main objective of this dissertation is to study couplesgtitnoelastic behaviors
in disks subjected to thermal shock loads based on the demeerand classic the-
ories of coupled thermoelasticity. To this end, this resledias been carried out in
two stages. In the first stage, thermoelasticity problenasrotating disk are analyt-
ically solved. In the second stage of the research, a nofieeck1D finite element
approach with 3D capabilities are developed and employethfive sophisticated
problems in which the analytical solution is not always flass

Thus, the dissertation has been organized as follows. Ipt€ha, thermoelasticity
problems in an axisymmetric rotating disk with constantkhess made of a ho-
mogeneous isotropic material are analytically solved hls thapter, based on the
classical and generalized coupled theories, and dynardigaasi-static uncoupled
theories, closed-form formulations are presented for tgatpre and displacement
fields. In Chapter 3, a 1D refined FE method in the Carrera Whfbemulation
(CUF) framework is used for static structural analysis dbre and rotating disks
with variable thickness. Chapter 4 presents 1D FE-CUF amprdor the general-
ized coupled thermoelasticity problems. Chapter 5 pra/gtene numerical evalua-
tions related to the proposed FE formulation for the couitedmoelastic problems
and finally Chapter 6 gives a summary of conclusion.



Chapter 2

Analytical solution of coupled
thermoelasticity problems in disks

In this chapter, the coupled and uncoupled thermoelagtmibblems for a rotating

disk subjected to thermal and mechanical shock loads aréyaically solved. Ax-

isymmetric thermal and mechanical boundary conditionscamsidered in general

forms of arbitrary heat transfer and traction, respectiyedt the inner and outer
radii of the disk. To solve the thermoelasticity problemsdzhon the classical
and generalized coupled theories, and dynamic and quast stacoupled theories,
an analytical procedure based on the Fourier-Bessel tramsfis employed. Then,
closed-form formulations are presented for temperatu displacement fields.

2.1 Governing equations

Consider an annular rotating disk, made of isotropic maltewnder axisymmetric
thermal and mechanical shock loads applied to its inner tar@adii. The equation
of motion in radial direction for the rotating disk with cdast thickness can be
written as [41]

dG"Jr}(a — 0gg) + Pro’ = o
ar ;O 66) t P _pdtz

(2.1)
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wheregy, andogg are radial and tangential stress componerits;adial coordinate,
p is density,w is constant angular velocity of the rotating disk, dnd the time
variable. The relations between the radial displacememid the strains are

Ju
_ - 2.2
Er = ar €gp = (2.2)

whereg;; andegg are the radial and tangential strain components, resgdgtiVhe
stress components for the plane stress state, accordingpticets law are

O = (2;1 +)~\) & +Aggo — BT

L ~ ~ (2.3)
Ogg = A&rr + <2H+)\> €99 — BT
Here, T is the temperature change aindindﬁ are obtained as
s 2u ~  2u
/\_)\+2H ) B_)\+2u(3)\+2u)a (2.4)

whereA andu are Lame constants, awdis the coefficient of linear thermal expan-
sion. Equations (2.1) to (2.3) may be combined to yield theaéiqn of motion in
term of the displacement component as

~ 92 10 1 92 ~ 0T )

For the axisymmetric problem, the classical coupled heatlgction equation in
polar coordinates in the absence of heat source is obtainsel t

2 2
{K{%—F%%]—pC%}T—BTo{%—F%%}U:O (2.6)

wherek, ¢ andTy are the thermal conductivity, specific heat and referenogpéza-

ture, respectively.

Equations (2.5) and (2.6) constitute the governing coupjestem of equations for

the classical theory of thermoelasticity in the problensotiopic rotating disk with

constant thickness.

The classical coupled theory of thermoelasticity is basedhe conventional en-

ergy equation (Eq. (2.6)). The parabolic nature of the gnexguation in this

theory, leads to the prediction of infinite propagation sisefer the thermal distur-
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bances. This prediction is physically unrealistic and peots arise when we deal
with special applications involving very short transientrations and sudden me-
chanical and thermal shock loads. On this basis, some madifiepled thermoe-
lasticity models with the finite speed of wave propagatiochsas Lord-Shulman
(LS), Green-Lindsay (GL), and Green—Naghdi (GN) theoria@gehbeen proposed.
The generalized coupled heat conduction equation baselgeolnS theory for the
axisymmetric problem in the absence of heat source is

(x[524] oo (1t} .
~BTo{to| 350 + 1 50| + o + 15 fu=0

wheretg is relaxation time associated with LS model. The relaxdiioe represents

the time-lag needed to establish steady state heat conduotan element of vol-
ume when a temperature gradient is suddenly imposed onehgeat. Equations
(2.5) and (2.7) are the governing equations of the genehlibupled thermoelas-
ticity based on LS model in the problem of isotropic rotataigk with constant

thickness.

For the coupled equations (2.5) and (2.7), The general faftkermal and me-
chanical boundary conditions can be considered as heaféraand traction, re-
spectively, at the inner and outer radii of the disk as folow

oT
ki15r

- +keoT(ri,t) = f1(t) kﬂ%—I o +kooT (ro,t) = fo(t)
_Fkaau(ri ) =Ta(t) |, kar§P|  +kagu(ro,t) = fa(t)

(2.8)

P
ka1 57

wherer; andr, are the inner and outer radii of the disk, respectivélyt) to f4(t)
are time dependent known functions applied to the inner ater oadii.k;; are con-
stant thermal and mechanical parameters related to thaictad and convection
coefficients, and mechanical properties. In general,\foiig initial conditions may
be assumed for the coupled equations (2.5) and (2.7)

T(I’, O) = gl(r>v T(I’, O) = gZ(r)

u(r,0) = ga(r), U(r,0) = ga(r) (2.9)

Heregi(r) to g4(r) are known functions of the space coordinat&he superscript
dot () denotes the differentiation with respect to time.
The governing equations may be introduced in nondimenkformra for simplicity.
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The nondimensional parameters are defined as

mh =% et

A O A 0 T T

i S i SE (2.10)
~  (A2)u A [ pl2

U= 0 YTV Y

wherel = kK /pcVe andVe = \/(5\ +2u)/p represent the unit length and the speed
of elastic wave propagation, respectively. The hat valndgate nondimensional

parameters. Using the nondimensional parameters, thergogecoupled system
of Eqgs. (2.5) and (2.7), and stress-displacement relatakesthe form

1 ] AN
7 —Ff<1+t07f)}T

e 192 2 19 n
—C {to [dfdfz F at?} ot T F af} u=0

2 1 1 92 T .
{" +_£_Tz_‘9_}a_‘9_:_fw2 (2.12)

(2.11)

ST
w

Ao’ (2.13)
pa _ u u
006 = 3op) of +-T

whereC = Toﬁz/pc(i +2u) is called the thermoelastic coupling (or damping) pa-
rameter. For a certain isotropic material, the thermolastupling parameter is a
function of the reference temperatuig

From nondimensional Egs. (2.11) and (2.12), the thermalidiances propagate
with the speed o¥; = \/% and the speed of propagation of the elastic distur-
bances is unity. The value & is finite for the Lord—Shulman theory. When the
relaxation time is zero, the system of Egs. (2.11) and (Zé&@)ces to that of the
classical coupled thermoelasticity which predicts an itdigspeed of propagation
of thermal disturbances.

The boundary and initial conditions (2.8) and (2.9) in tewhthe nondimensional



2.1 Governing equations 13

parameters can be written in the form

R11 orF f:a+ klZ-i;(aat) = fl(f)
R21 or f:b+ kZZf(bvt) = f (f)
Ifgld—r: f:a+‘f32u(avt) = lis(t) (2.14)
kar §7 | +kaii(b,t) = fa(f)
~ f=b . A
( 70) :gl(r)7 T 70) :gz( )

Herea andb are the nondimensional inner and outer radii, respectivEhe hat
values are nondimensional parameters that are defined as

g = k1, kip =2, fi(f) =

koy =22, koo = 22, fao(f) = 13

Lok L ksl £ f3(t)

3= ‘2= Gz fal) = 51,

s = 74 faz = 7 o - &)
1T K2y 2= = P BT

JOEE ST UES 5

Aa(F (A+2p)gs(r) (A+21)ga(r)

Ga(F) = T, 0a(F) = —ﬁToT

As is evident from Eqgs. (2.11) and (2.12), The theories ofpted thermoelastic-
ity take into account the time rate of change of the first irararof strain tensor
in the first law of thermodynamics causing the coupling betwelasticity and
energy equations. This situation occurs when the rate dicgbipon of a thermo-
mechanical load is rapid enough to produce thermal stressswvalo obtain the
solution for temperature and displacements and finally tresses, these coupled
equations must be solved simultaneously.

If the time rate of change of imposed thermo-mechanicaldasthot large enough
to excite the thermal stress wave propagation, the effecoapling term in the
energy equation (2.11) can be negligible. In this case, tieegy equation of the
classical coupled theory reduces to

2
{2_+%2_ﬁ}f:o (2.16)
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Equations (2.12) and (2.16) are the governing equationseofiynamic uncoupled
thermoelasticity for the rotating disk.

In most practical engineering problems the imposed themeohanical load is vary
sufficiently slowly with the time so as not to excite inertiéeets. Such problems
are called quasi-static. Neglecting the inertia term, tipga¢ion of motion (2.12)

reduces to X ~
7} 10 1). 0T oD

{th?ﬁ—f—z}u—ﬁ——rw (2.17)
Therefore, the quasi-static uncoupled thermoelasticitplem in the rotating disk
can be described by Eqgs. (2.16) and (2.17). For a steady-cadition the heat

conduction Eq. (2.16) is further reduced to

92 10 =

{seriz)T-o (2.18)
This equation along with the imposed boundary conditiofig fiefines the field of
temperature distribution in the disk for the steady state.

2.2 Solution of coupled thermoelasticity

The governing Equations (2.11) and (2.12) are a system ohskarder linear par-
tial differential equations (PDE) with nonconstant (raddependent) coefficients
subjected to the nonhomogeneous initial and boundary ttondi These equations
can be solved using the analytical method based on the firat&keél transform,
which can change the partial differential equations intoaue ordinary differen-
tial equations. To this end, first, the principle of superpms can be used to sim-
plify the coupled initial-boundary value problem (IBVP}asimpler sub-IBVPs.
Therefore, using the principle of superposition, the heatcction Equation (2.11)
along with the corresponding boundary and initial condi$i¢2.14) in terms of the
nondimensional parameters (without the hat sign for comever), can be decom-
posed into two following sub-IBVPs

% %%—Tl—toflzo

kll%‘r*a—i— kioT1(a,t) = fi(t) kzl% rfb+k22Tl<b7t) = fa(t) (2.19)

Ty(r,00=0, Ty(r,0)=0
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SF 152 = Ta—toTo=C{to(Us+ ) +0r + 1}
kll%‘r:a"'— ki2T2(a,t) =0 , kﬂ%‘r:bJrkzsz(b,t) =0 (2.20)

T2(r,0) = ga(r) , Ta(r,0) = ga(r)
Note that in the first sub problem, the PDE is homogeneousevth@g boundary
and initial conditions are nonhomogeneous and homogenesgsectively. In the
second sub problem, the PDE is nonhomogeneous and may énttiedcoupled
terms while the boundary and initial conditions are homegers and nonhomoge-

neous, respectively. Similarly, Egs. (2.12) and (2.14) imaglecomposed into two
following sub-IBVPs

2 .
Pup 10w Y g

i
k31% r:a+k32u1(a7t) = fg(t) ’ Ml% r=
Ul(r7 O) =0 ’ U]_(f, O) =0

k(b = fat)  (2.21)

Gl =T, e
kSI% ‘r:a+ kaouz(a,t) =0, Kaz %ufz
Up(r,0) = ga(r) , Uz(r,0) = ga(r)
The final solution for the temperature and displacementdisldbtained from total
of two solutions of these sub-IBVPs as follows

_ Fhatip(bt) =0 (2.22)

T(r,t) =Ta(r,t) + To(r,t) , u(r,t) =ug(r,t) +uy(r,t) (2.23)

where, The solutions of homogeneous equation correspgridiheat conduction
and motion equations are shown By(r,t) anduy(r,t), respectively. To(r,t) and
up(r,t) are solutions of nonhomogeneous form of heat conductiomrattbn equa-
tions, respectively.

Equations (2.19) and (2.21) are called Bessel equationsanbe separately solved
using finite Hankel transform. Using the definition of the tinHankel transform,
the transformed temperature and displacement can exdrasse

HT(r1)] = T:l(t, Em) = J3 TTa(r,t)Ko(r, Em)dr (2.24)
1

HAup(r,t)] = ui(t,nn) = ffrul(r,t)Kl(r, nn)dr
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Here Ko(r,ém) and Ky(r,nn) are the kernel functions related to Egs. (2.19) and
(2.21), respectively, and result in the following relasd@a5]

Ko(r,&m) = Jo(&nt) (ks 22|+l Xo(Emb))
~Yo(&mr) (ke 2250 |  +-lado(Enb) )

(2.25)

K1(r,Mn) = Ja(nnr) (Ml%‘r:tﬁ k42Y1('”Inb))
—=Y1(Nnr) <k41% r:b+k42~]1(l7nb)>
whered, (énr) andYy (&mr) (or Jy(nnr) andy, (nnr) are the Bessel functions of the

first and second kind, and of ordef(v = 0 and 1).¢, andn, are positive roots of
the following equations, respectively [25]

(2.26)

<k11 dYofgfmr) _

_ <k21avo§§mr)

9Jp(ém
.t k12Yo(5ma)> (bl% )r_b + kzzJo(fmb)>
+ klzJo(fma)> =0
r=a

(2.27)
T kzzYo(fmb)> <k11 %

<k31w T k32Y1(nna)> (Ml% _b+k42~]1(l7nb)>

MNu(n (1
_ <k41% r:b+k42Y1(I7nb)) (ksl% .t ksle('?na)> =0

Equations (2.27) and (2.28) have an infinite number of thesrdiecause the Bessel
functions are periodic. According to the properties of Biriouville problem, the
kernel functions are orthogonal with respect to the weigincfion r. Taking the
finite Hankel transform of Egs. (2.19) and (2.21), and theéngighe operational
properties on the derivatives [25], leads to

(2.28)

toT 1+ T2+ E2Ty = Aq(t) (2.29)
lig + Aty = Aa(t) (2.30)

where 5 g
p) = 2 (0 - £00) (2.31)

pelt) = 2 (1a) ~ a0 (2.32)
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and
th =kaiz djoéfmr)

d3 = ka1 —‘”1(5?“”

ot kioJo(&ma) , dp = k21%

r:a"‘ k32\]1(nna> , d4: ml%

+ kzzJo(fmb)
r=b

(2.33)
ot Ka2J1(nnb)

T, and Uz are obtained by solving the nonhomogeneous second orderetifial
equations (2.29) and (2.30), respectively, as follows

_ t
Ta(t) = %/O Au(T) {eﬂio”%o@‘” _ e%“‘”} dr (2.34)

Gt o) = ni / ' Ao(T)sin(in(t— 1)) dr (2.35)

whereA = /1 — 4tpé2. The inverse finite Hankel transforms of Egs. (2.24) can be
defined by the following series

AT &) =T = 3 EnTa(t Em)Ko(r ém)

_ o ., _ (2.36)
A7 (t, nn)] = wa(r,t) = Elbnul(tﬂn)Kl(r, Nn)
n=
where the coefficients of the series can be computed as
an=1/IIKo(r.EmI? , Bn=1/]IKa(r,0)]1 (2.37)

||Ko(r, <$m)||2 and||Kq(r, r7n)||2 are the square of the norm K§(r, &yn) andKs(r, nn),
respectively, on the intervéa, b] with weight functionr, and are defined as
2 b 2 2 b 2
[Kor.&ml* = [ rlKo(r.&mldr . [Ka(rm)l*= [ rlKa(r.mo)dr (238)
Due to the orthogonality properties of the kernel functjoime solutions of Egs.

(2.20) and (2.22)T,(r,t) andux(r,t), can be expanded in terms of functidtgr, {m)
andKi(r,nn), respectively as follows

[oe] [oe] 00 00

TZ(rvt): Z Z an(UKO(r,Em) ) U2(|’,t>: Z ZSnn(t)Kl(rJ]n) (239)

m=1n=1 m=1n=1
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whereQmn(t) andSyn(t) are unknown time dependent functions to be found. Sub-
stituting Eqgs. (2.36) and (2.39) into Egs. (2.20) and (2&48) simplifying yields

(tOan+ an‘|‘ Er%an) Ko(r, ém)

S ' P R 2.40

=-C {tOSmn+ Snin+tobnug + bnul} <0K1§:J7n) + Kl(rr’nn)> ( )
S IKo(r, -

(Smn+ nﬁSmn) Ka(r,nn) = raw’— % (Qmn+ 8mT1) (2.41)

Using the orthogonality conditions fdfo(r,&m) and K1(r,n,), multiplying both
sides of Egs. (2.40) and (2.41) bKo(r, &) andrKy(r,n;), respectively, and inte-
grating fromato b, yields

toQmn+ an+ E%an =CU; {toémn-i— Smn—i—tOBnTJl + BnTll} (2.42)
SnntN2Smn= U2 (Qmn+8mT1) + Uz w? (2.43)
where b IKq(r,nn) | K1(r,nn)
U rKo(r,Em){l,,—;jlf’}dr
U?léo(rr,sém)\l (2.44)
U, — _amalem) T dr - K ar
Ky ()17 ’ K2 (r,n)1°

Also, according to the orthogonality conditions, by suiogitng Eqs. (2.39) into
(2.20) and (2.22), respectively, the initial conditions Ems. (2.42) and (2.43) can
be obtained. To solve the coupled Egs. (2.42) and (2.43y, dhe decoupled by
eliminatingQmnfrom Eq. (2.42) using Eq. (2.43). Upon elimination, the dgued
equation is written as

0S¥ mn -+ S¥mn+ (&5 +tond — CtoU1Uz) Snn+ (nZ — CU1U2) Sn+ E3N4Smn
= CU Uz (tolly +Ug) +Uz8im (toT1 + T1+ &3T1) + E2w?Us
(2.45)

Substituting Eqgs. (2.29) into Eq. (2.45) yields

tOS<4)mn+~S(3)mn+ (En21‘|‘t0’7§ - CJ[OU1U2) Sﬂn"‘ (’7% - CU1U2) Snn+ Er%r’r%Snn
= CUyUgbn (toly +Uy) 4 Uo8mAg (1) + E3w?Us
(2.46)

Qmn(t) can be obtained by solving Eq. (2.46) f&nn(t) and substituting into Eq.
(2.43) as

1 . —
Qmn(t) = T (Snn+ NESnn— w?U3) — &mTy (2.47)
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Euation (2.46) is a nonhomogeneous ordinary differentijalagion with constant
coefficients and has general and particular solutions. dhgptete solution of this
equation may be represented as

Sn(t) = Shn(t) + Shin(t) (2.48)

whereShn(t) is a general solution of Eq. (2.46), with the right-hand terqual
zero. Shi(t) is particular solutions which is related to boundary cdodi of the
problem and angular velocity of the disk. The characterigdiynomial correspond-
ing to Eq. (2.46) is

tos* + 8%+ (&5 +1on2 —CUUsto) £+ (NF —CUUp) s+ EaNE =0 (2.49)

Solving Eq. (2.49) for every value of m and n gives four pafrsamplex conjugate
roots Symnj) (i = 1,---,4), with a negative real part and an imaginary part. These
roots cause four modes of mechanical oscillation relatéldedunctionSy(t). The
period and frequency of the oscillation only depend on thagmary part. The
damping of this oscillation is caused by the negative real, pghich means the
thermomechanical oscillation is stable.

Thus, the general solution of Eq. (2.46) with the right-hasicns equal zero is

obtained as .

Shn(t) = _Zcies‘““it (2.50)

i=
where the constant coefficiergsare determined by substituting the complete solu-
tion of EQ. (2.46) into the initial conditions.

Finally, the closed form solutions for the nondimensioeatperature and displace-
ment fields obtained from solving the governing coupledesystf Egs. (2.11) and
(2.12), can be stated as follows

00

T(0) = 5 EnTalt.EmKo(tém) + 5 3 Quolt)Ko(r,&n)

® (2.51)
u(r,t) =3

1 n=
bt (t, Nn)Ka(r,n) + 33 Smn(t)Ka(r, nn)
m=1ln=1

The expressions for the stress components in the disk azentieed by substitut-
ing Egs. (2.51) into (2.13). When the relaxation time is zggo= 0), the same
mathematical procedure may be used to solve the classioplembthermoelastic
equations.
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2.3 Solution of uncoupled thermoelasticity

In the case of dynamic uncoupled thermoelasticity problethe rotating disk@ =

0 and the effect of inertia term is considered), the solgimuncoupled equations
(2.12) and (2.16) can be separately obtained using the fiatékel transform in a

similar manner to that of coupled problems.

For the case of the quasi-static thermoelasticity probkbe differential equation

of heat conduction (2.16) is a Bessel-type equation. Thistgn can be solved in
a similar way to the previous problems to yield the tempeeatield. The equation

of motion (2.17) can be written in the following form

J [10 oT 2
e {Fﬁ(ru)} =5 W (2.52)
Integrating Eq. (2.52) twice and designating the two irdéign constants as (t)

andcy(t) gives the radial displacement as
/ T(r,t)rdr — r W +rcl(t)+CZT<t) (2.53)

By substituting Eq. (2.53) into Egs. (2.13), without the bin for convenience,
the stress components are obtained as

- _ _1(4r46u\ 2. 2
O = <A+2“> 2 [aT(r,t)rdr <A+2u ) rew (2.54)
+<2u+2)\>c_<2u >c2 :
At2p ) YT R
o0s = (524 ) {3 A T(rrdr —T} .55
AA+2u\ 1 2A+2u 2u C ’
(/\+2u ) 8 w2+ < A2y )C1+ (A+2u) v
The unknownsci(t) and cp(t) may be determined by applying the mechanical

boundary conditions.

2.4 Results and discussions

To investigate the accuracy of the presented formulatiansexample is chosen
from Ref. [4], where the coupled thermoelasticity of a diskanalyzed using the
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finite element method. In this example, a stationary disker@fcaluminum, with
the Lamé constants = 40.4 GPa,u = 27 GPa andr = 23x 10 6 K~1, p = 2707
kg/m3, k = 204 W/mK and ¢ = 903 J/kgK is considered. The nondimensional
inner and outer radii of the disk is given as= 1 andb = 2, respectively. The
inside boundary of the disk is assumed to be radially fixetl elsposed to a step
function heat flux. The outside boundary is traction freehwaero temperature
change. The initial conditions for the displacement, vigjptemperature, and the
rate of temperature are assumed to be zero.

In the case of zero angular velocity, assuming @at 0.02 andfp = 0.64, the time
variation of the nondimensional temperature and radigdldcement at mid-radius
of the disk are plotted in Figs. 2.1. Good agreements arerobsddetween the
results of presented analytical method and those obtaisied the Galerkin finite
element method in Ref. [4].
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Fig. 2.1 Time history of the nondimensional temperaturedisglacement at mid-radius of
the stationary disk.

Assuming that the disk is rotating with nondimensional daguelocity 0.01,
the time histories of temperature and radial displacemiemi@radius of the disk
for the different theories of thermoelasticity are showrrig. 2.2. Moreover, for
these theories, the time histories of radial stress ancetara) stress are plotted in
Figs. 2.3 and 2.4, respectively. In this case, the refertaroperature is considered
to be 293 K.

As shown in Figs. 2.2-2.4, when thermal shock load is applied generalized
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coupled theory based on LS model leads to larger maximune\althe curves for
temperature, displacement and stresses compared to lo¢oeiets.

The classical coupled theory and uncoupled theories ofritbelasticity predict an
infinite propagation speed for the thermal disturbancesthar words, whefy = 0
the hyperbolic heat conduction equation (2.11) reducegptrabolic equation with
infinite speed for thermal wave propagation. Moreover, Bigs 2.2 shows that in
the case of dynamic uncoupled soluti@n= 0, the influence of temperature field on
displacement filed is ignored and thus the radial displac¢weries harmonically
along the time with constant amplitudes. For coupled thetastic solutions, the
displacement amplitudes are decreasing along the time @kisreason is that for
C # 0, damping term appears in the heat conduction equationtharkfore, the
energy dissipation occurs in the system.

jul B ] _
®=0.01,=1.5 09k ®=0.01r=15

————————— Generalized Coupled Theory (LS)
———— Classical Coupled Theory
——— Dynamic Uncoupled Theory
fffffffff Quasi Static Uncoupled Theory

Eoi™ 08f
035F ¢
Pl 07f

0.6

osf [ o Y

4 %
% A A~y o
04fF ) Y | g
; | i 5 g g
03f Y ! | é \ i
0.2f” ;v' w ¢; P,, 1 !
01f /8 J /
[ X /¢ 3
o/ N

7777777777777 Generalized Coupled Theory (LS)
S Classical Coupled Theory

———— Dynamic Uncoupled Theory

————————— Quasi Static Uncoupled Theory

Nondimensional Temperaturé)(
Nondimensional Radial Displacemetj (

2 4/ 6 87 10
4 [ 8 10 12 12 01f 7 o
-0.2
Nondimensional Timet) Nondimensional Timet)
(a) temperature change (b) radial displacement

Fig. 2.2 Time history of the nondimensional temperaturedisglacement at mid-radius of
the rotating disk for different theories of thermoelasici
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Fig. 2.4 Time history of the nondimensional tangential sgrat mid-radius of the rotating
disk for different theories of thermoelasticity.

The radial distribution of nondimensional temperaturengjeg radial stress and
circumferential stress for different theories of thernaséity at different values
of the time are shown in Figs. 2.5, 2.6 and 2.7, respectivelyhese figures, the
temperature wave front is clearly observed from the figulated to generalized
coupled solution. In this figure, timés= 0.25,0.5 and 075 show the temperature
wave propagation, while timés=1,1.25 indicate the wave reflection from the outer
radius of the disk. However, the temperature gradient albegadius is smooth for
the classical coupled and uncoupled theories of thermiv@tgdue to the infinite
speed of thermal wave disturbances in these theories. Bls@celvave fronts are
clearly seen from the figures related to coupled and dynamtouwpled solutions,
while the radial distribution of radial stress related tasjstatic uncoupled solution
is smooth at different values of the time.
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Fig. 2.7 Radial distribution of nondimensional circumfeial stress for different theories
of thermoelasticity.

The effects of coupling parametéZ)(and relaxation timetg) on time histories
of temperature and displacement at mid-radius of the rgjatisk are illustrated in
Figs. 2.8 and 2.9 fow = 0.01.
Figure 2.8 shows temperature and radial displacement elsavgrsus nondimen-
sional time for values o€ = 0,0.05,0.1 and 015. The case of = 0 is related
to the uncoupled solution. As shown in Fig. 2.8, wh&iakes a greater value,
the maximum value of temperature reduce, while the ampguaf oscillations of
temperature increase. The reason is that with increasingpidg parameter, the
conversion between the mechanical and thermal energiesas®s. Moreover, in
the case of uncoupled solutidd= 0, the influence of temperature field on displace-
ment filed is ignored and thus the radial displacement vaaesonically along the
time with constant amplitudes. F@r= 0, the amplitudes are decreasing along the
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time axis, and the damping is more noticeable for greateregabfC. The reason is
that forC £ 0, damping term appears in the heat conduction equatiorttaer@fore,
the energy dissipation occurs in the system.
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(a) temperature change (b) radial displacement

Fig. 2.8 Effect of coupling parameter on time history of tiduons at mid-radius of the
rotating disk.

Figure 2.9 shows the time histories of temperature and Irddiplacement, for
different values of relaxation time when the reference terafure isTp = 293 K.
The nondimensional values of relaxation time associatéulvard-Shulman model
are assumed to be 0.64 and 1.5625. The cake-00 is related to the classical the-
ory of thermoelasticity that predicts an infinite propagatspeed for the thermal
disturbances. In other words, whin= 0 the hyperbolic heat conduction equation
(2.11) reduces to a parabolic equation with infinite speedifermal wave propa-
gation. As shown in Fig. 2.9, with increasing relaxationdijrthe maximum value
of the curves for temperature and displacement increaseetr, since with the
increase of relaxation time the propagation speed of thetisi@rbances decreases,
these maximum values occur at the later times.
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disk.

2.5 Summary

In this chapter, thermoelasticity problems based on thesaial and generalized
coupled theories, and dynamic and quasi static uncoupéedlitrs for a rotating disk
are solved using a fully analytical procedure. Assumingtimadisk is subjected to
an arbitrary heat transfer and traction at its inner androat#i, closed form formu-
lations are presented for temperature and displacemeds fighe procedure used
in this work, is based on the finite Hankel transform. To \ati&the formulations,
the results are compared with those obtained using the mcatharethod in the lit-
erature, which show good agreement. The radial distribatamd time histories of
temperature, displacement and stresses for the diffdreaties of thermoelasticity
in the disk are plotted and compared to each other.



Chapter 3

Stress analysis of disks using refined
1D FE models

Since providing an analytical solution for disk problemghunore sophisticated
geometries and boundary conditions is mathematically ¢éexrgind may be impos-
sible, the development of alternative numerical soluterhhiques seems essential.
In the present chapter, a refined finite element method is@ragifor stress analysis
of rotors and rotating disks with an arbitrary geometry.

3.1 FE methods refined through CUF

Despite significant advances in computing power, compleX8Dnodels still im-
pose large computational costs, especially during thatiterdesign stage. For this
reason, reduced refined models may be used to obtain sauwtiibn lower com-
putational efforts. A general approach which can be empldgedevelop refined
finite element models has been suggested in the book by @atral [15]. They
introduced the Carrera Unified Formulations (CUF) in whica FE methods are
formulated on the basis of a class of theories of structuregact, Carrereet al.
[14] first developed a unified formulation for the 2D FE meti{@d FE-CUF) to
overcome the limitations of classical theories of plates strells. A 1D FE method
in framework of the CUF (1D FE-CUF) was later extended by &aret al. [17]
based on the beam model to go beyond the classical beamebedndeed, the
CUF has been able to enhance the capabilities of the 1D and@iotional finite
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element methods, so that using these refined methods le@Bslike solutions but
with lower computational costs. Furthermore, analysis oltrfield problems such
as mechanical, thermal, electric and magnetic fields, dsaself layered structures
is of other outstanding features of the CUF models.

3.2 Governing equations of rotating disks

Consider a variable thickness disk with an arbitrary prpfiaich is located in a
reference stationary coordinate systemz) and it is rotating at a constant angular
velocity w about its axis. The disk is assumed to be at static equihbrxhile

it is subjected to body forces (1), surface forces (2), cotraged loads (3) and
temperature gradients (4) as shown in Fig. 3.1.

(@) (b)

Fig. 3.1 A rotating disk with variable thickness subjectedrtechanical and thermal loads
(a) Structural coordinate systems, (b) A meridional sactibthe disk and loads.

The total potential energy], that is the sum of the internal strain energy and the
potential energy of the external forces, can be written as

n::_L/ geTO.dV_/ qude_/quSds_ZquCk (3.1)
2/ % S

where g€ stands for the elastic strain vectar,denotes the stress vector ang-=u
{ux uy u}Tis the displacement vector. Furthermai®= {f¢ {2 f2}Tis
the vector of body forces per unit volurive fS is the vector of surface forces per
unit surface are& of the body, and% = {f« f* {77 is the vector of con-
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centrated loads where denotes the load application point. It is noted that the
components of® andfS may be a function of the coordinatesy andz however
the specificx, y andz coordinates oS are considered fdi® [9].

The Hooke law for a linear thermoelastic material can betemitis

o =Ce® (3.2)

whereC is the forth order tensor of elastic moduli. In the linearrtheelasticity,
the elastic strain vect@® is equal to

=g—¢ (3.3)

wheree denotes the total strain vector aglds the strain vector due to the tempera-
ture chang®&T =T — Ty, that is

gl =a(AT) (3.4)

whereTy is the reference temperature. The steady-state tempemdistribution
T may be, in general, a function of all three space coordinatestands for the
vector of linear thermal expansion coefficients. Moreotleg, strain-displacement
relations can be written as

e=Du (3.5)

whereD is the matrix of linear differential operators.
Neglecting the time rate of elastic deformation, the bodgd@er unit volume due
to rotation can be obtained as

8 = pQTOr (3.6)

wherer = {xp 0 zp}' is the position vector of the material point with respect to
the rotational axis, and is the material density. The matriX is

0 01
Q=w| 0 00 (3.7)
-1 00
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Substituting Egs. (3.2), (3.3) and (3.6) into Eqg. (3.1), th&l potential energy
becomes

n-_ [ 1wone@wjav- [ [WoT)casT)av

+% / (ATa CaAT)dV — / uT (pQ2r)dV (3.8)
\Y \Y%
T¢S T¢C
— [ u'f2dS— Y u'f
/s %

whereQ? = QTQ.

3.3 1D FE-CUF approach for variable thickness disks

A finite element formulation of Eq. (3.8) can be obtained gdime 1D FE-CUF
approach. To this end, the structure of Fig. 3.1 is assumacdaam along its axis
(y) so that each cross section of the begh) is defined in any orthogonal— z
plane. The structure is discretized into a finite number ob&Bm elements in the
y-direction, while the Lagrange-type expansions are enguldg assume the model
kinematics (see Fig. 3.2).

Fig. 3.2 A sample 1D FE model of a disk with arbitrary profilete CUF framework.

Thus, the displacement field is characterized as
u(x.y,2) = Ni(y)F(x,2)U"" (3.9)

where U" = {U}" UJT Ui} is the nodal displacement vectdy;(y) are the
shape functions, ang; are Lagrange polynomial expansions. In Eq. (3191 =
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1,2,...,M) andi (i =1,2,...,Nnodeg indicate summation, according to the gen-
eralized Einstein’s notation. Here, M angd¥esare the number of terms of the
expansion and the number of element nodes, respectively.

It is obvious that in the discretization process along tis& diis, the length of beam
elements can be unequal. In other words, the cross seceaasnot be equidistant;
in fact, it is advisable to select the sections closely togewhere there is sudden
change in geometry, in loadings or in mechanical properties

In this approach, three types of beam elements, two nodes (@2e nodes (B3)
and four nodes (B4), may be adopted to provide a linear, argtiacand a cubic
interpolation of the displacement variable along the ltudjnal direction, respec-
tively. For these elements, the distribution of the nodeghenatural coordinate
system in which-1 < y <1 is shown in Fig. 3.3.

1 2

0, © Linear element B2

1 3 2

@ © Quadratic element B3
1 3 4 2

(o, O O © Cubic element B4

-1 -2/3 -1/3 0 /3 2/3 1 Y
} t 4 } + i —p

Fig. 3.3 Two-, three- and four- node beam elements in ace@ingtry.

Moreover, the shape functions of B2, B3 and B4 elements im#taral system,
respectively, are express as follows

Ny(y) = 3(1—)

Na(y) = S(1+y) (3-10)
Ni(y) = 3¥(1—vy)
Na(y) = (1+y)(1-y) (3.11)

Z
“
=

I
NI
=

H

+
=
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(3.12)

On the other hand, the cross sections can be discretizedny different types of
Lagrange elements (LES) such as linear three-point (ddraxtd_3), bilinear four-
point (L4), quadratic nine-point (L9) and cubic sixteerifgdL16) elements (see
Fig. 3.4).

e (2]

Fig. 3.4 Three-, six-, nine- and sixteen- node Lagrange etem(L3, L6, L9 and L16) in
actual geometry.

Furthermore, a sample scheme of L9 element in the actualhendatural coordi-
nate systems is shown in Fig. 3.5. In general, the coordinatsformation from
an arbitrary cross section referred(t0z) coordinates to the natural squdée n)
is trivial and more details can be found in Ref. [9].

(1,0)

(@) (b)

Fig. 3.5 Sample scheme of L9 element in the actual (a) andaheal (b) coordinate sys-
tems.
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Thus, the Lagrange polynomial expansions for L4 and L9 etdsim the natural
coordinate syster(¢, n) are expressed by the following relations [18]

FlEM=ZA1EE)Ann)  T=1234 (313

FT(E:’7>:%(EZ+E ET)(’72+’7 ’7r> T:1737577
FT(E?”) = %n‘?(nz_n n1‘)<1_£2)+%61'2(€2_£ ET)(l_nZ) T= 2747678
F(&m)=(1-85(1-n% 1=9

(3.14)

here—1< ¢ <1land—1<n <1, wherea€; andn; are the natural coordinates of
' Lagrange point of the element. In addition, the polynomielated to L16 are

give by [18]

FTJK(E?”):LJ<E)LK(’7) J7K:1727374 (315)
where
Li(&) = &(E—1)(1-982)  La(&) = %(1—&2)(1—3¢)
La(§) = 2(1—E2)(1+38)  La() = &(1+&)(982—1)

For instance, the displacement components for a basic bleaneet B2 (Nges=
2) and one L9 element (M 9) over the cross-section is

Ux = NiFUJT = Ny (FlU + - - + FUL®) + No(FU21 + - - - + U 20)
Uy = NiFeUIT = Ny (FU 4 -+ FU®) + Np(FLlUZE+ -+ RUZ%)  (3.16)

Uz = NiF{UIT = Ny (FUM + -+ 4+ FUL%) + N (FlUZL + - + RU29)
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3.4 Finite element equations in CUF form

Substituting the unified displacement field (Eg. (3.9)) iGtp (3.8), the total poten-
tial energy becomes

M ::—ZL/ UjST[(DTNjFS)C(DNiFT)]UdeV—/ [(DTNiFT)CC(AT]UdeV
v \%
v Y

—/S(NiFrfS)U”dS—Z(NiFTka)U”

The principle of minimum potential energy requires

orl
— =0 3.18

30 (3.18)
Thus, differentiation of 1 with respect to the nodal displacements U yields the fol-

lowing equilibrium equations for a finite element

/ [(DTN;Fs)C(DNiFr)|UISAV — / [(DTNiFy) BAT]dV
Vv Vv

NiF; 0Q2r ) dV NiFfS)dS— § (NiF <) = 0 (3.19)
—/V<.rp r) —/S<.r> - Y (N =

in which 8 = Ca stands for the vector of stress-temperature moduli. Thatexu
(3.19) may be presented in matrix form as

KiTsyls = Fit (3.20)

where

The KIS matrix is the structural stiffness matrix. The superseripaind j are
similar tot andi, respectively, and indicate summation based on Einsteaiation.
FIT is the thermal load vector, which represents artificialésrfor modeling thermal
expansioan is the vector of the body force due to rotational speF%Hi,s the force
vector due to tractions applied on the surface areaF%nid the force vector due to



38 Stress analysis of disks using refined 1D FE models

concentrated external loads. The matrix and vectors aneatkés

KIS = [, [(DTN;Fs)C(DNiF;)]dV

FII = /i, [(DTNiF;)BAT]dV

FII = [, (NiFrpQ?r)dV (3.22)
FI = [ (NiFfS)dS

F& = Sk(NFf%)

Four superscripts, s, i and j are exploited to assemble the stiffness matrix and
the load vectors. In fact, the CUF presents a condensedarotaat leads to the
so-called fundamental nucleus (FN) of all the FE matrix amcters involved. Equa-
tions (3.19) or (3.20) can be used for a disk made of a hetasmges anisotropic
material that is subjected to arbitrary surface and comated forces, as well as an
arbitrary steady-state temperature field.

According to 1D CUF theory (see Fig. 3.2), the componentgrairs €, stressgo

and thermal expansion coefficient, vectors may be grouped as it follows

Sp - {£ZZ gxx sz}T gn - {Syy Syz gxy}T (323)
ap - {azz axx axz}T an - {ayy ayz axy}T (324)
ap - {azz axx axz}T an - {ayy ayz axy}T (325)

where the subscrigt denotes the in-plane components over a cross section of the
disk, while n indicates the normal components to the cross section. Tdrere
strain-displacement relations (3.5) can be decomposedliat two following ex-
pressions

g€p=Dpu

(3.26)
&En= (Dny+ an)U
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where the matriceBp, Dnp andDpy are the linear differential operators

0 0 9d/oz 0O 0 O
Dp=1]9/0x 0 O |, Dnp=|0 9/0z O
d/0z 0 0/0x 0 d/ox O (3.27)
0 d/ogy O
Dhy=1| O 0 d/oy
d/oy O 0

In a similar manner, the grouped stresses and stress-tatapgemoduli are obtained
as

(3.28)
On = Cnp€p+Cnnén

Bp=Cppap+Cpnin

3.29
B = Cnpdp+Cnnan ( )

whereCpnp= an. In order to summarize, the expanded expressions for coemsn
of the matrixC for anisotropic materials are not given here, but they cafobed
in Refs. [61] and [56]. For isotropic materiats, = a{1 1 0}, an=a{1 0 O}T
andCpp, Cpn andChpy result in the following matrices

A+2u A 0 A 0O
0 0 0 O u o
(3.30)
A+2u 0 O
Chn = 0O 00
0 0 u

in whichA andu are Lame constants, amdis the thermal expansion coefficient of
the material.

A\ — VE B E
Tarwia-2v) M 2atv
For a general anisotropic material but homogeneous aloaghilckness, which

means material properties may continuously vary alongusadf the disk, the fun-
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damental nuclei (3.22) can be written as

Kiits = 11 9 DT (Fel) [EnpDp(Fel) + CanDnp(Fsl)| +
+DJ(Fel) [EppDp(Fel) + CpnDnp(Fsl)] &+
+|I!M,/<] [Dgp(Frl) + DE(FTI)épn] Fsl> +
—HE?yJ.Iqu Fr [énpr(Fsl) + énnan(FSU] >+
+|Il7yj7y|XylAy<] FrénnFSD

<07 08, OR8]

i (3.31)
+1|Y SATF [1 ayBn] >
FI =1 <Frpr>Q?
FI = [5(NIFfS)dS
FE = SK(NFA)
where
001 10 0
lay= 1|1 0 0 =010 (3.32)
010 00 1
<1--->:/---dA (3.33)
A
oy 2
URELEE LI (3.34)

TN (NN, (NN ). (N, NG (N, N ) dy
In order to obtain the governing equations of thermoelagtproblem in rotating
disks, Eq. (3.20) can be expanded with respect to the sup@sst, s,i and | as

KU=F (3.35)

where K and F are the total stiffness matrix and the vectogoi@lent nodal forces,
respectively. The nodal displacement vector U containshallnodal degrees of
freedom (DOFs) of the structural model, which can be catedlas

NBn

DOFs= _;(3 x NI y) (3.36)
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here Ny is the total number of Lagrange nodal points on each crossseand
Ngn Stands for the total number of beam nodes along the longialidixis. More
details about assembly technique of these matrix and \&ector be found in Ref.
[16].

The governing equations of the structure (Eq. (3.35)) caadbeed for the nodal
displacement vector U in the Cartesian reference systerheébgtandard numerical
solvers. Stress and displacement fields for axisymmetnictsires are typically
presented in a cylindrical coordinate system. Hence, usamgformation relations,
the fields in the rectangular Cartesian systexyz) can be transformed into the
cylindrical coordinate systeifr 6z") as it follows

u={u ug uz}'
e={&r 9o &rz Eo Eor €} (3.37)

.
0 ={0n Opg Ozz Org Opz Oz}

As shown in Fig. 3.1y, 8 andz" show the radial, circumferential and axial direc-
tions, respectively.

3.5 Numerical results

To investigate the validity of the formulations presentethie previous sections for
stress analysis of rotors, several illustrative exampiekiding rotating disks with
constant and variable thickness; and a complex rotor algzathin this section.

3.5.1 Rotating disk with constant thickness

Consider a disk with constant thickness made of steel, wighYbung’s modulus
E = 210 (GPa), Poisson’s ratio= 0.3 and densityp = 7800(kg/mq). The inner

and outer radii; and the thickness of the disk are assumed @s®(m), 0.2032 (m)
and 0.01 (m), respectively. The disk is rotating with angukgocity 2000 (rad/s).
The inside boundary of the disk (hub) is assumed to be fulgdfigmounted on a
rigid shaft), while the outside boundary is traction free.
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To solve this problem by the presented 1D CUF model, geonudttiye disk can
be discretized into a number of B2 or B3 elements along its dkiection and
used a number of L4, L9 or L16 approximations over the relateds-sections. For
example, Fig. 3.6 shows discretization of the disk into glei3-node beam element
(1B3) along the axis, while 100 elements of L@®0 L9) have been employed for
approximation of deformations on its cross-section.

1B3~—"

(a) 1B3 (b) 5x20 L9

Fig. 3.6 Discretizing a constant thickness disk into one Bigdielement along the axis with
a distribution of L9 elements over the cross-section.

In this example, the effect of the various discretizatiossogiated with the CUF
approach on stress and displacement fields of the disk wastigated. Considering
1B3 along the axis, radial displacemeant)( radial stressd,) and circumferential
stress @gg) for the point located at the mid-radius of the disk0.1524 (m)) for
different distributions of LEs on the cross-section arespréed and compared with
analytical and converged 3D conventional finite elemen) @effutions in Table 3.1.
The closed form formulation of the analytical solutions,iethare reported in the
second row of Tables 3.1 and 3.2, for annular disks with @righickness can
be found in Ref. [62]. The 3D conventional FE solution, in tast row of these
tables, was performed by the ANSYS FE package. Several swdkls with finer
meshes especially at vicinity of the inner and outer radthefdisk were analyzed
in order to check convergence of the ANSYS model. In the caaeg ANSYS
model, the geometry of the disk has been meshed into 19200386l (3D 8-node
structural solid) elements as 240 elements on the cross-section (24 elements in
radial direction and 40 element in circumferential direnjiand 2 elements across
the thickness of the disk, and in this case, the total numidie©d-s is equal to 9000.
In this dissertation, the computational costs of FE modedgaovided in terms of
DOFs.
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Table 3.1 Displacement and stresses at mid-radius of taénmgtdisk with constant thick-
ness for different LEs on the cross-section.

Model DOFs u; (um) or (MPa)  ogg (MPa)
Analytical 1 85093 276.70 201.42

4x32 L4 1440 8156507 26545400 18607(7-62

4x40 L4 1800 8139528 27027232 18554(7-88)

Ax48 L4 2160 8150519 27070216 18573779

5x32L4 1728 8198459 27208169 18937(5%)

1D CUF 8x32L4 2592 833279 27372107 19400367

4x20L9 3240 8491118 27533049 19593272

5x16 L9 3168 8519085 27645008 19805167

5x20L9 3960 8519080 27658004 19788179

2x16L16 3024 833082 27588029 19901119

3D FE (ANSYS) 9000 829074 27555041 20010069

*= With a single B3 element along the axis of the disk.
0= Absolute percentage difference with respect to the aicalygolution.

In Table 3.1, it is observed that if L4 elements are emplotteglmaximum error for
the solution of nodal displacement with respect to the ditallysolution is about
5% that is related to models with 4 elements in the radiaktima. An appropriate
distribution of L4 elements may improve the accuracy of tiatson. A significant
improvement has been achieved by enriching the discretizatong the radius. In-
deed, the maximum error decreases below 2.8% with thehlisivn of 8x32 L4.
Moreover, it can be found from the table that the effect ohkhagder elements, like
L9, is significant on the accuracy. Considering the mesB@lof L9 elements on
the cross-section, for instance, the error is reduced t8%.1Refining the distri-
bution of L9 elements through the radius, the differencenef CZUF solution can
be reduced to less than one percent. For example, using thle 5rd6 L9, the
maximum relative error is decreased to 0.86%, however, @&®is less than the
distribution of 4<20. In addition, employing the>616 L9 model with almost on-
third DOFs of the 3D FE model can lead to the solid-like accyra
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As presented in Table 3.1, by using L16 elements, more atecuesults are ob-
tained even with less DOFs compare to those of L9 elementsinBtance, using
only 32 L16 elements with 3024 DOFs and distribution of1®, the solution of
nodal displacement is obtained somewhat more accuratesthaé and 5<20 dis-
tributions of L9 with, respectively, 3160 and 3960 DOFs.

The comparisons in Table 3.1 reveal that by selecting prdserbution and type
of LE on cross-section of the disk, the results of 1D CUF metealve close agree-
ment with the analytical reference solutions. MoreoveRaal refinement of LE
over cross-section makes 1D CUF models able to reduce caigmal costs com-
pared to the 3D FE model. From Table 3.1, it is also found thatrate of con-
vergence of L9 element is higher than L4. The reason is thatlethent uses
guadratic polynomials as interpolation functions to apprate the displacement
field, while polynomials related to L4 element are of a biéing/pe, see Egs (3.13)
and (3.14). Therefore, increasing numbers of L4 elements@nss section can be
very effective. Furthermore, the results obtained for Ld Bfi elements show that
a refinement of LEs distribution in the radial direction ismaeffective than one
in the circumferential direction. In other words, increasenumber of elements
along the radial direction, compared to circumferentiaéclion, is more effective
in improving the accuracy of the solution. Since distribatrefinements of LEs
over a cross-section may cause computational costs to beaged, making use of
a higher-order LE (L16 cubic element for example) can redb@d-s, while pre-
serving the accuracy.

Refinement of the discretization along the axis of the disl also be investigated
to improve the solution accuracy and to optimize computati@osts. The effect
of different beam elements along the axis on values of thglatiement and the
stresses at the mid-radius of the disk is represented i Bab] with the assumption
that the distribution of %20 L9 has been used on the cross-section. It is observed
that using only a single B2 element in the CUF model of the detlects the 3D-like
result with very low computational costs (almost 3.4 timessIDOFs). Also, it may
be found from Table 3.2 that as the number of beam elementsases, the solution
accuracy may not arise. In addition, since the disk is tlhia use of quadratic beam
elements B3 across the thickness does not have signifidant eh the accuracy of
the results and only increases the DOFs.
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Table 3.2 Displacement and stresses at mid-radius of taénmgtdisk with constant thick-
ness for different LEs on the cross-section.

Model DOFs u; (um) or (MPa)  ogg (MPa)
Analytical 1 85.93 276.70 201.42
1B2 2640 86077 27560040 19762189

2B2 3960 852308D) 27645009 19789179

1D CUF 3B2 5280 85308) 27645009 19789179
1B3 3960 8518080 27658004 19788179

2B3 6600 8518087 27663002 19801169

3B3 9240 8518087 27664002 19805167

3D FE (ANSYS) 9000 829074 27555041 20010069

*= With a distribution of 5<20 L9 over the cross-section.
0= Absolute percentage difference with respect to the aicalygolution.

3.5.2 Rotating disk with variable thickness

To demonstrate the ability of the method to analyze rotadiis§gs with arbitrary
profile, an annular disk with hyperbolic profile may be coesédl. In this example,
the disk profile is assumed to be symmetric with respect tarttuglle plane per-
pendicular to the axis. The inner and outer radii gge= 0.05 (m),ro = 0.2 (M),
while thickness of the disk from the value lof= 0.06 (m) in inner radius varies
ash(r) = Cr2 to the value oh, = 0.03 (m) in outer radius, whei@ = 0.0134 and
a= —0.5. The material of the disk is assumed to be steel \Eith 207 (GPa),
v = 0.28 andp = 7860(kg/mq). Angular velocity and boundary conditions of the
disk are identical to those of the previous example.

According to the approach presented in this chapter, thaharthickness disk can
be considered as a beam with non-uniform cross-sectionssits axis. A FE rep-
resentation of the geometry may significantly differ fromttf the real 3D disk.
Hence, an appropriate FE modeling of the 3D structure igi@@rand lengthy task
which can also affect accuracy of the results and compunaltcosts.

To find an acceptable model of the disk in the CUF framewod@&lD FE models
of the 3D geometry are considered, namely, models (1)-8%hawn in Fig. 3.7.
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Moreover, a detailed description of these models is presantTable 3.3. The mod-
els (1)-(8) are obtained by dividing the disk across itskhess at the inner radius
into 8, 10, 12, 14, 16, 18 or 22 discrete elements of type B2.|&hgth and related
cross-section of the beam elements in each model may beettifffom each other.
Figure 3.7 clearly shows that due to symmetry of the disk ler@fith respect to the
middle plane perpendicular to the axis, 3 to 8 types of ceession with different
radii are needed to generate the models (1) to (8). Furthesrtitte models (2) and
(3) as well as the models (7) and (8) are, however, geomiyridentical but the
number of beam elements used in the tow models is differaft ether, as shown
in Fig. 3.7.

To describe the deformations over each cross-section ahtiuels (1)-(8), a distri-
bution of L4 elements is employed, as presented in TableTh8.distributions of
L4 elements in the model (1) with three different crossisast for instance, may
be indicated a$2/6/8) x 32 which means the number of the elements in the cir-
cumferential direction of all cross-sections is 32, while tross sections, from the
smaller to the larger, are divided into 2, 6 and 8 elementpeetively, along the
radial direction. In Fig. 3.8, the discretization and the AP model (7) of the disk
using 18 B2 across it axis and the distributions of L4 elementr the 8 different
cross-sections are shown.
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1) () 3) (4)

() (6) () (8)

Fig. 3.7 Different 1D FE models of the variable thickneskdiased on the CUF approach,
discretizing along the disk axis into: (1) 8 B2 with 3 diffatecross-sections (Sec.), (2) 8
B2, 4 Sec., (3) 10 B2, 4 Sec., (4) 12 B2, 5 Sec., (5) 14 B2, 6 816 B2, 7 Sec., (7) 18
B2, 8 Sec., (8) 22 B2, 8 Sec.

Table 3.3 1D CUF FE models of the variable thickness disk

Discretizing
Model DOFs
along the axis over the cross-sections
(1) 8B2,3Sec. (2/6/8)x32L4 6240
(2) 8B2,4Sec. (2/4/6/8)x32L4 5472
(3) 10B2,4 Sec. (2/4/6/8) x 32 L4 7200
(4) 12B2,5Sec. (1/2/4/6/8) x 32 L4 7584
(5) 14B2,6 Sec. (1/2/3/4/6/8) x 32 L4 8352
(6) 16 B2, 7 Sec. (1/2/3/4/5/6/8) x 32 L4 9504
(7) 18 B2,8 Sec. (1/2/3/4/5/6/7/8) x32L4 11040

(8) 22B2,8Sec. (1/2/3/4/5/6/7/8) x32L4 14496

* = 3 types of cross-section with different radii
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!

(a) (b) (©)
Fig. 3.8 A FE model of the variable thickness disk based orlihé&UF approach, (a) 18
B2 elements along the axis, (b) distribution of L4 elemest8a32 over cross-section with
the outer radius, (c) the FE model (7) of the disk with totalfE3911040.

In Fig. 3.9, distributions of the radial displacement aloadjus of the disk at the
middle plane perpendicular to the axis obtained from thatei® CUF FE models
are plotted and compared with analytical and converged 3Bdfions. Moreover,
values of the displacement at mid and outer radii of the diska{r = 0.1250.2 m)
for the different models are reported and compared with éference solutions in
Table 3.4.

The analytical solution for this example may be obtainedgiselations presented
in Ref. [62] for annular disks of hyperbolic thickness. THe BE analysis was
also done by ANSYS using a converged model, as shown in Fig, &ith 14400
total DOFs made of 3120 8-node solid elements with three D&@Fglement node.
To check convergence of the ANSYS model in relation to thael totmber of the
elements in the solution domain, several models with fineshrag especially at
vicinity of the inner and outer radii were investigated.

From the comparisons presented in Fig. 3.9 and Table 3.4ytbe found that 1D
CUF FE models have an acceptable accuracy and very highfratenergence in
predicting the displacement field. Good overall agreemargsobserved between
the results obtained by these models and the referencetiaabolution. The max-
imum difference between the results of the CUF models ancefieeence analytical
solution is less than 1.7 percent that is related to the nsad@@land (8). Further-
more, the results given in Table 3.4 reveal that discraginhthe disk profile into
an appropriate number of beam elements and cross-sectentead to solid-like
accuracy with much lower computational effort. For insgrtbe model (2) which
is created by 8 B2 elements with distributiong®f4/6/8) x 32 L4 over 4 different
cross-sections provides an excellent accuracy (below @ifféence with respect
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to the analytical solution for the nodal displacement) adtlie the ANSYS result,
but with about 2.6 times less DOFs of the 3D ANSYS model. Orother hand, a
comparison between the results of the models (2) and (3péamibdels (7) and (8))
which are geometrically identical shows that the incregjb@am elements may not
result in more accurate solution and only leads to a modél \arger DOFs.
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Fig. 3.9 Radial distributions of the radial displacemenrtatmiddle plane perpendicular to
the axis of the variable thickness disk for the different Fadeis.
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Table 3.4 Comparison of the radial displacements at mid arndraadii of the variable
thickness disk for the different FE models.

radial displacment, (um)

Model DOFs
at mid-radius at outer radius

Analytical 1 119.01 157.57
(1) 6240 12082110 15600100

(2) 5472 1183605 15700039

(3) 7200 1183605 15642073

IDCUFFE @ 7584 118750022 157.150027)
(5) 8352 11%004) 15808032

(6) 9504 118004% 15793029

(7) 11040 11726140  15492(168

(8) 14496 117061649 15500169

3D FE (ANSYS) 14400 119000) 15710030

0 = absolute percentage difference
with respect to the analytical solution.

Fig. 3.10 ANSYS model with 3120 8-node elements (SOLID188gl DOFs 14400.

Figure 3.11 shows distributions of the averaged radial asdmferential stresses
along the radius of the disk for the different models. As magéen from the figure,
the results of the presented models are in close agreem#nmthei analytical and
3D FE solutions, especially, in zones far from the boundarihere are, however,
some deviations between the FE and analytical results &iinedaries of the disk,
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where higher-order elements or mesh refinement over the-sextions may be typ-
ical remedies.
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Fig. 3.11 Radial distributions of the stresses at the migtilae perpendicular to the axis of
the variable thickness disk for the different FE models.

It should be noted that FE discretization along the axis efdisk is, by defini-
tion, a process that leads to a modified geometry of the sireiciThis means that
all 1D FE models shown in Fig. 3.7 are not geometrically ia=tand can not be
compared with each other. On the other hand, the investigafithe models shows
that since the disk has been assumed as a thick beam, imgdssam elements
along its axis may not have significant effect on accuracyhefresults and only
leads to more DOFs. In fact, the purpose of the differentrdisgations presented
in Fig. 3.7, as well as the investigations of the displacdaraad the stresses in Figs.
3.9 and 3.11 and Table 3.4, could be to find a proper 1D FE mddbealisk for
stress analysis with an acceptable initial accuracy andsoreble number of DOFs
compared to the 3D FEM.

Thus, in this numerical example, the model (2) may be adoggesl 1D FE model
that satisfactorily balances accuracy and DOFs. Furthprawement in the accu-
racy of the solution may be obtained by a discretization esfient over the cross-
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sections. A convergence study on the solution can be pegidtmfind an appropri-
ate mesh of L4 elements over the cross-sections.

It has been already verified that in a disk problem, increasumber of discretized
elements through the radial direction, compared to ciremeritial direction, is
more effective in improving the accuracy of the solution.this study, therefore,
five types of mesh refined in the radial direction(482/3/4) x 32,(2/4/6/8) x 32,
(5/7/9/14) x 32,(4/8/12/16) x 32 and(10/12/14/20) x 32 are considered over
the four cross-sections of the model (2). These five mesleeshawed in Fig. 3.12.
The effect of the different discretizations on the disptaeat and the stresses of the
model (2) is shown in Tables 3.5 and 3.6, as well as Figs. J1ti34l4.

(@) (b) (c) (d) (e)

Fig. 3.12 Different discretizations over the cross-seiof the 1D CUF FE model (2): (a)
(1/2/3/4) x 32, (b) (2/4/6/8) x 32, (c)(5/7/9/14) x 32, (d) (4/8/12/16) x 32 and (e)
(10/12/14/20) x 32.

Table 3.5 presents the convergence of the radial displatevadues at mid
and outer radii of the disk. Also, the distributions of theplacement are plotted
along the radial direction for the different meshes in Figl33 It is seen that the
results rapidly converge to the analytical solution by @nirig the discretization
along the radius. Using the me&y8/12/16) x 32 over the cross-sections, instead
of (1/2/3/4) x 32 or (2/4/6/8) x 32, for instance, an excellent agreement and
solid-like accuracy is observed between result of the CUHehand the analytical
solution. It may be preferable to tune the refinement locallgrder to optimize
computational costs. For this purpose, the mgsty/9/14) x 32 which has finer
discretization at the vicinity of the inner and outer radinde sufficient for reaching
the convergent solution with about 1.6 times less DOFs coeapto the 3D FE
analysis.
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Table 3.5 Comparison of radial displacements at mid and caitii of the variable thickness
disk for the different meshes over the cross-sections.

radial displacment;, (um)

Model DOFs
at mid-radius at outer radius
Analytical 1 119.01 157.57
8 B2,(1/2/3/4) x 32 3168 11460879 15400227
8 B2,(2/4/6/8) x 32 5472 1180089 157000039

8 B2,(5/7/9/14) x 32 8928 119000) 15700039
8 B2,(4/8/12/16)x32 10080 11900 15800027
8 B2,(10/12/14/20) x32 13536 119000D 15700036

3D FE (ANSYS) 14400 1190000 15710039

0 = absolute percentage difference
with respect to the analytical solution.
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Fig. 3.13 Radial distribution of radial displacement atiieldle plane perpendicular to the
axis of the variable thickness disk for the different meshes the cross-sections.
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In Table 3.6, values of the stresseg, andadgg, at mid-radiusi(= 0.125 (m)) of
the model for the different meshes are given and comparduthet reference solu-
tions. The table shows that with the increase of the numbdisafetized elements
through the radius, the convergence of the stresses carhievad. Furthermore,
the results presented in the table may emphasize that arprgsh of the elements
over the cross-sections of the model can be effective irctiatethe solid-like solu-
tion.

Table 3.6 Comparison of stresses at mid-radius of the Jarialtkness disk for the different
meshes over the cross-sections.

Model DOFs gy (MPa) 0ggg (MPa)
Analytical 1 313.19 284.78
8B2,(1/2/3/4) x 32 3168 3037314 27575317
8 B2,(2/4/6/8) x 32 5472 31125062 2g8125(1-24)
8 B2,(5/7/9/14) x 32 8928 30&71%4 28287067
8 B2,(4/8/12/16)x32 10080 310007 28550025
8 B2,(10/12/14/20) x 32 13536 3050182 28250008
3D FE (ANSYS) 14400 3080166 28500008

0 = absolute percentage difference
with respect to the analytical solution.

Moreover, radial distributions of the stresses are ploiteBig. 3.14 for the
different meshes over cross-sections of the model (2). Reahbe improvements
in the stress distributions, especially at vicinity of trmuhdaries, are observed by
refining the meshes.

It should be noted that the stresses are obtained from theuiech nodal dis-
placements and, therefore, may be considered as derivatamtities in FEM. In
other words, once the FE matrix equations are solved fotatisment field at the
nodes, in postprocessing these derivative quantitiesadocalated and graphically
displayed. The calculated stresses at the mutual nodal peiween adjacent ele-
ments over the cross-section are not generally identidails dauses jumps in the
stresses at the boundary between any two adjacent elervartg.techniques have
been proposed in literatures to overcome these discotitawnd improve accu-
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racy of the stress distributions such as averaged simplel mvdluation, averaged
extrapolation using a reduced polynomial, and continumasdiscrete smoothing
methods on elements. Depending on numerical technique tosedlculate the
stresses, the accuracy of the derivative quantities isrgyp&wer than that of the
displacements, especially, at boundaries of the disk. dmptiesent study, the aver-
aged extrapolation technique using a reduced polynomesh{goyed to recover the
stresses and to smooth out the jumps in curves of the stretsibdiions, as shown
in Figs. 3.11 and 3.14.
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Fig. 3.14 Radial distribution of radial stress at the midulkne perpendicular to the axis of
the variable thickness disk for the different L4 distrilouis.

It can also be observed from Figs. 3.11 and 3.14 that therscane minor dif-
ferences between the analytical and the converged FE @odutdr stresses at the
inner radius of the disk. The reason may be due to the diffetefinitions of the
clamped boundary conditions in the analytical and the FEetsod he closed form
solutions related to the analytical method for the stressesobtained under ax-
isymmetric plane stress assumptions. It should be merditrat in axisymmetric
problems all quantities are independent of the circumtekvariablef, as well as
the circumferential displacemeniy, is assumed to be zero. Thus, the components
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of radial and circumferential stressas,(and ggg) are the only non-zero stresses.
In addition, in the analytical model the clamped conditiahthe inner radius of the
disk is defined asy, = 0. In the FE models, however, all components of displace-
ment and stress fields in any direction are involved in thetgoi and the clamped
constraints are simulated by using zero displacement fielet (lg = uz = 0) in all
nodes located on the inside surface of the disk.

3.5.3 Rotating disk with variable thickness subjected stedy-State
temperature gradient

An annular disk with variable thickness subjected to céugal and thermal loads is
analyzed to validate the formulation presented in the pres/section. The inner and
outer radii of the disk, whose thickness varies accordirtpedchyperbolic function
h(r) =0.013 %5, are assumed to sg, = 0.05m and o,; = 0.2m. This disk, made

of a nickel based alloy=10038 GPa,u=66.92GPa,a = 16.3x 10°°1/°C), is
rotating atw = 14975rad/s. The inner radius may be considered fully fixed (the
zero displacements) or deformable on xz@lane (i = 0), while other boundaries
are free of surface tractions and concentrated loads. Thpetature at the inner
and outer radii is supposed to g = 537 andTy,: = 614°C, while the reference
temperature i99 = 20°C. The variation of temperature is assumed to occur in the
radial direction only, such that the radial steady-statgoerature distribution in the
disk can be considered as uniform, linear, parabolic andrexptial (Eq. 3.38)

T(I’) = Tout
T(r) =Tin+ (Tout— Tin)(r = in)/(Fout—in) (3.38)
T(r) = Tin+ (Tout— Tin)(r — I'in)z/(rout— rin)2

(r)

T(r) = Tin+ (Tout— Tin) IN(r /rin) / In(rout/Tin)

The different temperature distributions along the radigation are plotted in Fig.
3.15.
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Fig. 3.15 Different distributions of temperature changenglradius of the disk.

To solve this problem, the geometry of the disk is discretizeo 10 B2 elements

along its axis. As shown in Fig. 3.16, the length of these el are unequal,
and the cross sections are selected closely together wiereeis sudden change in
geometry of the disk.

(@) (b)
Fig. 3.16 Discretization of variable thickness disk alohg &xis based on 1D CUF (a) disk
profile, (b) discretization into 10 B2 with four differentags sections.

A number of L4, L9 and L16 elements can be used to describe ¢f@rdations
over the cross sections. Figure 3.16 clearly shows thattawymmetry of the
disk profile with respect to the middle plane perpendicudahe axis, four different
types of cross section are needed to generate the FE modek fitpes of meshes,
which are indicated a€l/2/3/4) x 32,(2/4/6/8) x 32 and(4/8/12/16) x 32, are
considered over the four cross sections in this exampleinstance, in the case of
(4/8/12/16) x 32, the number of Lagrange elements in the circumferentiatd
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tion of the four cross sections is 32, while these cross@estifrom the smaller to
the larger, are divided into 4, 8, 12 and 16 elements, resedgtalong the radial
direction. Figure 3.17 shows the different types of mestsesidor the Lagrange
elements over the four cross sections.

(a) (1/2/3/4) x 32 (b) (2/4/6/8) x 32 (c) (4/8/12/16) x 32

Fig. 3.17 Three different types of meshes used for the Lagratements over the cross
sections.

Assuming that the disk is subjected to the parabolic distidim of temperature and
its inner radius is fully fixed, non-dimensional radial desgement ;) for the point
located at the mid-radius of the disk £ 0.125 (m)) in the cross section related
to the beam node 6 (see Fig. 3.16-(b)) for the three diffeme@ghes and types of
elements are presented and compared with an exact solati@able 3.7. The non-
dimensional radial displacement is defineduas- Uy /ug whereug = rout0 AT oyt +
(pw?r3,)/E. In this table, the computational costs of each model argiged

in terms of DOFs which is determined by Eq. (4.39). The exatit®n can be
obtained using relations given in Ref. [63] for hyperbolisk$ subjected thermal
loads.
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Table 3.7 Non-dimensional displacement at mid-radius @fdisk for the different LEs and
meshes on the four cross section.

Mesh Element DOFs u~ Diff. * (%)

L4 4128 0.3497 2.91

(1/2/3/4) x 32 L9 14400 0.3486 2.59
L16 30816 0.3487 2.62

L4 7200 0.3487 2.62

(2/4/6/8) x 32 L9 26688 0.3487 2.62
L16 58464 0.3489 2.67

L4 13344 0.3486 2.59

(4/8/12/16) x 32 L9 51264 0.3487 2.62
L16 93760 0.3488 2.64

*Absolute percentage difference with respect to the exdatiso.

The comparisons show that the difference between the sokitbtained with the
different CUF models and the reference exact solution s tlean 3 percent. The
maximum error for the nodal displacement is 2.91% that iateel to the mesh
(1/2/3/4) x 32 with L4 elements. Using the same discretization, if L9redats
are used, the error is reduced to 2.59% while the number offiGdfeases from
4128 to 14400. It means that usifity2/3/4) x 32 L9 over the cross sections with
almost 3.5 times more DOFs, accuracy of the solution is asad about 11%. Fur-
thermore, the use of L16 elements, compared to L4, in1@/3/4)x 32 mesh
leads to increase of about 10% in the accuracy and 7.5 times DOFs.

For the L4 elements, it is observed that improvements in tietisn accuracy
can be achieved by enriching the discretization along theusa Indeed, for the
(2/4/6/8) x 32 distribution, the error with respect to the exact soluti@comes
2.62% that is about 10% lower than the difference obtainddlthie(1/2/3/4) x 32
mesh. A further improvement has been achieved by using4/®/12/16) x 32.
From the computational point of view, the numbers of DOFdweéspect to the
coarsest L4 mesh are increased of 1.7 and 3.2 times, resggcti

In addition, it can be observed from Table 3.7 that the rateonivergence of L9
model is higher than L4. The reason is that L9 element usedrgtia polynomials
as interpolation functions to approximate the displacerfield, while polynomials
related to L4 element are of a bilinear type, see Egs. (3.48)3a.14). Therefore,
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increasing numbers of L4 elements on a cross section in thal direction can be
very effective. On the other hand, the use of higher-ordes (f& example the L16
cubic element) may lead to a negative effect on accuracyeo$ditution, although
the computational cost increases.

Consequently, the comparisons in Table 3.7 reveal that proppate distribution

of the Lagrange elements and type of element used over tke seztions can lead
to a reduction in computational costs and the convergencesafts. Therefore, for
this example, th¢2/4/6/8) x 32 mesh with L4 elements over the cross sections
may be sufficient to obtain a converged result.

In Figs. 3.18 and 3.19, distributions of radial displacetr(gp), radial stressd;;)

and circumferential stresg{g) related to the sixth beam node, are plotted and com-
pared with the results obtained by analytical and FD metligaen in Refs. [63]
and [51], respectively). The constraint on the displacdrfiela at the inner radius

is such that the displacementsxiandz directions are allowed, while the displace-
ment iny direction is prevented. The disk is still subjected to theapalic tempera-
ture gradient along its radius. Moreover, in Figs. 3.18 ai®3he CUF curves are
related to the model witf2/4/3/4) x 32 L4 elements. Figure 3.18 shows distribu-
tion of the radial displacement along the radius of the diSkcellent agreement is
observed between the results of the presented model anel dltsined using the
analytical and FD solutions.

1.75F CUF Solution

——— FD Solution
—————————— Analytical Solution

Radial Displacement), (mm)

L L L 1 L L L 1 L L L 1 L L L 1 L L L 1 L L L
0'8,05 0.075 0.1 0.125 0.15 0.175 0.2
Radius (m)

Fig. 3.18 Distribution of radial displacement along theiuadat the middle plane perpendic-
ular to the axis of the disk.
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The distributions of averaged radial and circumferenti@sses along the radius of
the disk are plotted in Fig. 3.19. It is seen that the preskerdsults are in close
agreement with the references solutions.

It should be mentioned that in a displacement-based FE mside$ses are consid-
ered as derivative quantities which are directly derivedfthe nodal displacements
through postprocessing methodologies. Depending on timerncal technique used
to calculate stresses, the accuracy of the derivative gigaris generally lower than
that of the displacements, especially, at the structuretbaties. Furthermore, the
calculated stresses at the mutual nodal point betweeneadjatements over the
cross section are not generally identical. This nodal d&ncy determines jumps
in the stress distributions at the boundary between any tjaxant elements. There-
fore, techniques of stress averaging may be employed tmwefhe stress accuracy
and to smooth out these jumps in curves of stress distribsitio

600——mmr——T— 77T 7T T T

500\

CUF Solution
3 ———— FD Solution
400F N, 000 e Analytical Solution

300

Stress (MPa)

200} a,

100

.05 0.075 0.1 0.125 0.15 0.175 }EIZ
-100

Radius (m)

[=X=]

Fig. 3.19 Distribution of radial and circumferential sses along the radius at the middle
plane perpendicular to the axis of the disk.

Contour plots of the field variables can be preferred to shamations of a field
along the model or mesh. Recalling capability of the pressdD CUF approach
to provide 3D-like solutions, the obtained results can lspldiyed as 2D or 3D con-
tour plots (see Fig. 3.20-(a) for instance) by a proper posgssing.

In Figs. 3.20-3.22, the contour plots related to the radegdldcement, radial stress,
and circumferential stress are shown on an axisymmetrigeplfor two different
boundary conditions. In particular, Fig. 3.20 shows thaalaithermoelastic dis-
placementsi, for the fully fixed disk at inner radius as well as the axial stpained
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disk at inner radius. As expected, the maximum deformatfahefully fixed disk
is higher than that one of the axially constrained disk.

u(mm) u(mm)

(a) (b) (©)
Fig. 3.20 Distribution of radial displacement on CUF modethe disk (a) fully fixed at
inner radius, (b) axial constrained at inner radius.

Figure 3.21 represents the contour plots for the radiassirethe disk under the two
different boundary conditions. As shown in this figure, threeamum value of radial
stress for the fixed condition occurs at inner surface of thleahd it is significantly
higher than the maximum value predicted for the disk with dialadeformable
inner surface. The maximum radial thermoelastic stress foisk, which is only
constrained in the axial direction, occurs roughly at thd-naidius.

o, (MPa) o, (MPa)

500 1000 1500 50 150 250
Min=0

Max=1230

(a) (b)
Fig. 3.21 Distribution of radial stress on CUF model of thekd{a) fully fixed at inner
radius, (b) axial constrained at inner radius.

The contour plots related to circumferential stress in ibk dre shown in Fig. 3.22.
If the inner surface of the disk is fully fixed, the values afcamferential stress is
very high compared to the axial constrained disk.
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(a) (b)
Fig. 3.22 Distribution of circumferential stress on CUF rabdf the disk (a) fully fixed at
inner radius, (b) axial constrained at inner radius.

In the case of a non-rotating disk (zero angular velocitg} ik fully fixed at its
inner radius, assuming thermal loading only, the non-dsi@ral thermal displace-
ment and stresses distributions are presented in Figs. aB@3.24 for different
temperature profiles. These distributions are relatedgeithss section in the beam
node 6 which is shown in Fig. 3.16-(b). The non-dimensionatrmal displacement
and stresses are defined as

At U ~t _ Orr Gl — Ogo
r— 7t > m— Tt 66 — t
Uy ) )

Wherea(t) =EalATout andug = routd AT out. It can be seen from Fig. 3.23 that, when
the fixed disk is exposed to a uniform temperature, the radiftirmation due to the
thermal expansion is higher than that produced by a tempergtadient along the
radius. A similar description may be presented for the taaha circumferential
stresses in Fig. 3.24.
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Fig. 3.23 Non-dimensional thermal displacement distiing along the radius on node 6
for Fixed BC.
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Fig. 3.24 Non-dimensional thermal stress distributiorm@lthe radius on node 6 Fixed
BC.

3.5.4 Complex rotor

It should be recalled that rotors used in practical problsaeh as aircraft and in-
dustrial turbine engines have various configurations aedj@aometrically complex
where the loading and boundary conditions are complicé&edie of these config-
urations can include; a disk-type rotor in which severakslispacers and air seals
with a shaft are clamped by tie bolts; a forged integrateddtype rotor with rings
to carry the blades that is bolted to adjacent disks on theda and aft flanges,
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a welded-type rotor in which a special welding method is useattach disks and
spacers to each other. Moreover, there are various disk Imedeh as ring, web
and hyperbolic models which are used in the rotors.

In order to perform a detailed analysis, find a 3D state ofstesd assess allowed
stresses in the parts of theses complex rotors with variatenmals and with vari-
ous loading conditions, and also to investigate interastioetween adjacent parts
on each other, the FEM are often preferred. Due to the iteratture of design of
such structures, the refined FEM in the 1D CUF framework cagffeetively used
to obtain the results that are only provided by 3D FE analysiswith much lower
computational costs as verified in the previous illusteadxamples.

As the final example of this chapter, to show the performaricbeopresented 1D
CUF approach for the analysis of complex rotors, consideta that is composed
of one turbine disk and two compressor disks. These disksatsted on an elas-
tic hollow shaft, as shown in Fig. 3.25. The profile of the toeébdisk has been
assumed to be hyperbolic, however, two compressor disks haveb-type profile
and are smaller in radius compared to the turbine disk. B@kample, the profile
of the turbine disk, the angular velocity of the rotor and inechanical properties
of the rotor material are identical to those of the previowmple. Both ends of the
shaft of this rotor are assumed to be fully fixed.

Fig. 3.25 3D model of a complex rotor.

Using a similar procedure to the previous example, the felgenent model of the
problem can be obtained by discretizing the rotor into soiserete beam elements
through its axis. In this example as illustrated in Fig. 3.2& geometry of the
rotor is divided into 32 B2 elements along the axis, so thaR®Bthese elements
are employed for discretizing the disks and the shaft thnaihg axis in the hub
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zone. A distribution of the four-point Lagrange (L4) elertgeis considered over the
cross-sections of the 1D FE model. Proper meshes of L4 eksnoger the cross-
sections can be choose through a convergence analysis, theusodel with the
mesh 32 over the shaft cross-section, as well as the megh€s8/16) x 32 and
(4/5/6/12) x 32, respectively, over the cross-sections of turbine amdpressor
disks may be sufficient for reaching a convergent solutiorhis case, the number
of total DOFs of the model is equal to 27072.

02l , Turbine Comp. Comp.
| 1] Disk Disk 2 Disk 1

o
o
a

Radius (m)

o
=3
o

S}

() (b)
Fig. 3.26 A 1D CUF FE model of the complex rotor, with DGF87072 (a) The mesh of
L4 elements over the cross-section with the largest radijsThe mesh of B2 elements in
the axial direction.

Using the CUF approach, 3D distributions of all of the threenponents of dis-
placement and the six components of stress and strain cdrtdieed. Since radial
displacementy), radial stressdj,) and circumferential stresggg) are often more
important in structural analysis and design of such strestuherefore, in this ex-
ample only distributions of these components are repredentFigs. 3.27-3.30.

In order to verify the accuracy of the 1D CUF model, the présetution is com-
pared with the result of a 3D stress analysis obtained by ABIBIYFigs. 3.27 and
3.28 as well. The converged solid model in the ANSYS solutiath 44280 total
DOFs has been generated by 10160 8-node solid elements.

Figures 3.27 and 3.29 show the contour plots as two-dimaabjoin an axisym-
metric plane for the displacement and the stresses on ther@ddfel of the rotor.
These contour plots may be preferred to display variatidrhe field variables
along the model or the mesh.

Furthermore, Fig. 3.28 shows the variation of radial disphaent through the radial
direction at the middle plane perpendicular to the axis efrtitor disks which are
mounted on the elastic shaft. In this figure, as well as theexged displacement
distribution for the single disk presented in the previoxeeple with rigid hub (Fig.
3.7) is plotted. It is seen from Fig. 3.28 that the solutionie present model for
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the turbine disk has excellent agreement with the solutioANSYS. Also, Figs.
3.27 and 3.28 reveal that the proposed 1D model is able tatdéesolid solution
perfectly, with a significant reduction in the computatibrasts.

Also, the distribution of the stresses for the turbine disktumted on the elastic
shaft and the single disk with rigid hub are presented in F3§3The interactions
between the shaft and the disks and the effect of mechanmcaddary conditions
in the hub on the deformation and stresses distributionBearturbine disk can be
clearly observed from Figs. 3.28 and 3.30. As expected, ytioesseen in Fig. 3.28
that with the decrease of rigidity in the inner radius of aatioty disk, the radial
deformation of the disk is increased. For example in thisrégthe total radial
deformation of the turbine disk mounted on the elastic sisaftbout 20% larger
than that of the disk with rigid hub. On the other hand, as sedng. 3.30, the
maximum radial stress for the rigid hub conditions occurthatinner surface and
it is greater than its corresponding value for the disk widstc hub conditions.
Furthermore, if effect of the elastic shaft is taken intocast, the maximum cir-
cumferential stress occurs at the inner surface of the dibie for the disk with
rigid hub this value is close to mid-radius of the disk.
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Fig. 3.27 Distribution of the radial displacement on the ptex rotor (a) 1D CUF solution
with 27072 DOFs, (b) 3D ANSYS solution with 44280 DOFs .
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Fig. 3.29 Distribution of the radial and circumferentialesises on the CUF model of the
complex rotor.
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Fig. 3.30 Radial distribution of the stresses in turbinddis

3.6 Summary

In this chapter, the 1D refined FE method based on the CUF wasided for
steady-state thermoelastic analysis of rotating diské it arbitrary geometry.
The governing FE formulation was developed for the diskserafcheterogeneous
anisotropic materials that are subjected to arbitraryntiadr surface, and concen-
trated loads. To validate the proposed formulation, theltesbtained for different
numerical examples were compared with those obtained asialytical, 1D finite
difference and 3D FE solutions, which showed good agreement



Chapter 4

Development of 1D FE-CUF
approach for dynamic coupled
thermoelasticity

Since the time history analysis of the dynamic thermoelgstiblems is very time
consuming, the reduced FE models have been recommendeiio thie solutions
with lower computational effort. Thus, in this chapter, asabFE approach refined
through the CUF is developed for the dynamic generalizegplasuthermoelastic
analysis of 3D beam-type structures.

4.1 Governing equations of coupled thermoelasticity

The equation of motion for a 3D elastic body in the physicardinate system
(x,y,2) is stated as follows [41, 49]

Gij,j + X = pUli + (Ui (4.1)

whereagjj andu; are stress and displacement components, respectiXetienotes
body forces per unit volume is mass density, andl stands for the damping coef-
ficient of the material. Likewise, the superscript dgptand the subscript comm3 (
indicate the derivatives with respect to the tinheand the space variables Y, 2),
respectively.
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In addition, the strain-displacement relations within kinear context of small de-
formation theory are expressed as [41]

1
&j = 5(Uij +Uji) (4.2)
and according to GL generalized theory, Hooke’s law for ehmmnogeneous anisotropic

thermoelastic material can be written as [41]
0ij = Cijpagpq — Bij (T +t2T) (4.3)

whereCijpq is a fourth-order tensor containing all the elastic coedfits of a general
nonhomogeneous anisotropic materf&).= CijpqQpq iS the second order tensor of
thermoelastic moduli where iamjj is the coefficient of thermal expansion tensor. In
Eq. (4.3),T denotes the temperature change relative to the referengeetature
To, so that this temperature difference creates thermahstrdso, t; is one of the
two relaxation times defined by Green and Lindsay.

On the other hand, the energy balance equation can be eagras$§41]

gi=R-ToS (4.4)

whereq; is heat flux vector an® stands for internal heat source per unit volume
per unit time. S denotes entropy per unit volume and is givetié following rela-
tionship [41]

pe,

s=5
0

: 1.

T+1tT) + Gij&ij —T—OCiTJ (4.5)
Here,c is specific heat, whil& andc; are another relaxation time and a vector

of material new constants, respectively, proposed by Gaedr_indsay. Moreover,

based on LS and GL theories of thermoelasticity the heatwtiah equation for

an anisotropic material can be stated as [41]

g +todj = —kij T,j —GT (4.6)

wherekij is the thermal conductivity tensor ahidls relaxation time associated with
LS theory.
Equations (4.1) to (4.3) may be combined to give the equationotion in term of
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the displacement components as

Cijk)) j— (BiT).) — (B T) j +X = plii + {0 (4.7)

Likewise, by using Egs. (4.4)-(4.6) and Eq. (4.2), the epaxguation can be
expressed in terms of the temperature and displacemert &sld

pelto+1t2)T + pcT — 26T — (ki T.j)

- . (4.8)
+toToBij i j + ToBijUi,j = R+ 1R

Equations (4.7) and (4.8) constitute the governing systieseations for the gener-
alized coupled thermoelasticity problems based on the &S t, = ¢ = 0) and
GL (for tog = 0) theories in an anisotropic and nonhomogeneous mediuitinebe
equations, the derivatives of the relaxation times gndith respect to position
variables are ignored. Thus, the four coupled equatior$iyding three equations
of motion and one heat conduction equation, under specifigidliand boundary
conditions must be simultaneously solved for the three amkndisplacement com-
ponents () and the one unknown temperature change (

4.2 FE formulation through Galerkin technique

To obtain a FE formulation of the governing equations (41 4.8), Galerkin
technigue may be utilized. In implementation of the coniaral FE method, the
3D domain with the volum¥ can be discretized into a finite number of regular 3D
solid elements. Thus, the components of displacement anpleti@ture change in
each base element can be approximated by identical shagttohsas follows

u(x,y,2,t) = @n(x Yy, 2UM(1)

(4.9)
TE(xy,2t) = ¢n(x,¥,2)0M(t)

whereUM(t) and ©M(t) are the displacement vector and the temperature change
at each nodal point of the elemertiy(X,Y,z) denotes shape functions in the base
element. It is noted that in these approximations, time qade variables are sep-
arated into distinct functions. Furthermore, the repeatdsscripmm(m=1,---,r)

is a dummy index and indicates summation whiktands for the number of nodal
points in the element [30, 41].
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According to Galerkin method, multiplying both sides of E@.1) by the shape
functions@, and then integrating over volume of the element, yields

/(Uij7j—|-Xi—pUi—ZUi)(nndV=0 (4.10)
\VIC)

On the first term of Eq. (4.10) the divergence theorem can pkeapas

/(OiLj)(nﬂdV:/Gijnj(nﬂdS—/(nmaijdv (4.11)
V(e g v(©

wheren; is the unit vector normal to the boundary surface of the eter8&. Sub-
stituting relation (4.11) into Eq. (4.10) gives

/aijnjfnnds— @njoijdV + [ (Xigm)dV
ge) \C) v
- [ (pigmav- [ Cuamav=o

v v(©

(4.12)

Furthermore, by using the relationship between the tractector (f) acting on
an arbitrary surface and the stress tensor, the first iftegiag. (4.12) may be
expressed as

/aijn,-%dsz /tP%dS (4.13)
Se) se)
Therefore, Eq. (4.12) can be rewritten as follows

[ (ptiamav+ [ Qugmav+ [ (amo)av
V(e V(e V(e

= /Xi(nndv +/ti”¢}nd8

V(e ge

(4.14)

Similarly, applying Galerkin method to the energy equa(@®s) gives

/ (pC(to—i—tz)T +pCT — 26|T| - (KijTaj)J
Ve (4.15)

+toToBij Ui j + TofBijUi,j — R—toR) @ndV =0
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where the weak form of the terix;; T,;) i can be written according to the diver-
gence theorem as

/(KijT,j)J(pde: /(KijT,jnimn)dS— (KijT,j(nm)dV (4.16)
V(e gSe) V(e

and likewise substituting this form into Eq. (4.15) and ranging the terms result
in the following

/(toToBijULj(pm)dV—i— / (topCT%)dV—i— / (tzpCT(nn)dV

V(e v (® V(e

+ [ oyt gmiav+ [ (pcTamav— [ (@6Tigmiav 4.17)
V(e V(e V(e

+/(Ki,~T,j<nm>dV: /(Qinifpm>d5+/(R%)dv+/(t0R(Hn>dV
V(e ge) V(e V(e

The system of equations (4.17) and (4.14) as well as thessstesin relations (4.3)
may be expressed in vector form as

/<pu%)dv+ / (Cugm)dV + / (DT gna)dV

V(e \VAC) \VAC) (4 18)
- / (X(nn)dv+/(t(nn)d8
V(e Se)
/ (tsToB T Diign)dV + / (topCT @)V + / (tpCT @) AV
V(e V(e V(e
+ [ (Top™Dugmav+ [ (pcTamav— [ (28T0T grjav (4.19)
V(© \V4C) v
+ [ (O"TkOgn)dV = /(an(ﬂn)dS‘|—/(R(ﬂn)dV+ (toR@m)dV
V(e ge) V(€ V(e
0=Ce—B(T+4T) (4.20)

Equations (4.14) and (4.17), or (4.18) and (4.19), repitedengeneral weak for-
mulation containing all possible boundary conditions toe generalized coupled
thermoelasticity problems.
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4.3 1D FE-CUF approach for dynamic coupled ther-
moelastic problems

The 3D FE model presented in the previous Section, howes&as|to more accu-
rate results than the traditional 1D or 2D models, but thenntiawback of this
method is the significant increase of degrees of freedom (D&, consequently,
computational efforts. The computational competence fgitlely reduced in a
3D model with enormous DOF especially in an iterative soluscheme of the dy-
namic coupled thermoelasticity problems. To lower the cotational costs of such
problems without loss of accuracy, refined 1D FE models infitnmework of the
CUF with 3D capabilities can be developed.

Consider an arbitrary structure subjected to thermo-nrechbshock loads which
is located in the rectangular Cartesian coordinate sygkeynz). As shown in Fig.
4.1, if the structure can be assumed as a beam alongdhection, each cross sec-
tion, whose centroid G, of the beam is defined inxk@lane and perpendicular to
they-axis.

Fig. 4.1 A beam structure with an arbitrary cross section

According to the traditional 1D FE procedure, the structtae be discretized into
a finite number of 1D beam elements along yk&xis. In this case, as illustrated
in Fig. 4.2-a, the approximate displacement and tempexdieids in each element
can be obtained by the beam shape functidng/) as

U= Nynu™m

4.21
T =NpT™ (4.21)
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in whichu™ andT™ are the nodal displacement vector and temperature chasge, r
spectively. In addition, the dummy index'm=1,--- ;M) denotes the summation
andM is the number of nodes in the beam element.

(a) (b)

Fig. 4.2 A beam base element

On the other hand, based on the unified formulation for bearsepted by Crarrea
[17], to overcome the limitations of the classical beam tle=osuch as the Euler-
Bernoulli and the Timoshenko models, the distributions isphcements and the
temperature over the cross section related to each node betim element can be
described by an expansion of generic functibpas

Um - F‘[ UmT

4.22
Tm — FT@mT ( )

whereF; are the functions of the cross section coordinatasdz (see Fig 4.2-b),
ume(t) = {ugm™ Ut U/ is the generalized displacement vector, @7 (t)
denotes the generalized temperature change. Hérer 1,2, --- . Ncug) indicates
summation, as well, whillcyr is the number of terms of the expansion.

The hierarchical capabilities of the presented unified fdation (4.22) play a es-
sential role in dealing with variable kinematic models inoanpact unified manner.
The order of the model is taken into account as a free pararoétbe analysis
(i.e., as input) in this formulation. In other words, the mefi models can be ob-
tained with no need for ad hoc formulations. In Fig. 4.3, a 3bo8es element is
schematically compared with a 1D 2-nodes element refinetidCtUF.
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z . (U3, ©%)

(a) (b)
Fig. 4.3 A schematic comparison between a 3D element andeedefiD element, (a) a 3D
8-nodes element, (b) a refined 1D 2-nodes element.

Thus, comparing the relations (4.21) and (4.22) with Eq9)(desults in the
following relationship

@n(X,Y,2) = Nm(Y)Fr (X, 2) (4.23)

In this approach, three types of the beam element, two-etlaned four-nodes, may
be used to give a linear, a quadratic and a cubic interpaldtioction of the dis-
placement and temperature fields along yexis, respectively. Likewise, the se-
lection of Fr(x,z) andNcyr is arbitrary. That is, various kinds of basic functions
including polynomials, harmonics and exponentials of arnyer can be assumed
to predict the displacement components and temperaturgetan the beam cross
section. For instance, different classes of polynomiatt sis Taylor, Legendre and
Lagrange polynomials are extensively employed as appatkim functions in the
numerical modeling of structures. More details about thieatée kinematic models
and the interpolating functions can be found in [17].
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4.4 FE equations of coupled thermoelasticity in CUF
form

The relations (4.9) and (4.23) can be substituted into E448j and (4.19) to give

/ (N Fs NP ) U'SdV + / (N FsNif7) U'SdV

V(e v(©
-~ / (t.D"NmF BN Fs)O'SdV + / (D"NmF;CDNFs)U'SdV (4.24)
V(e v(©

_ / (DN BN Fs)©'5dV = / (XNinFr)dV +/(t”NmFr)dS
V(e V(e Se)

/ (toToB DN FsNF7 ) U'SdV
V(e

+ / (toPCN FsNmF + topcN FsNmfFr ) ©'Sdv

V(e

+ / (ToBTDN;FsNmF,)U'SdV

Ve | (4.25)
+ / (PCN FsNmFy — 26T Ny FeNiFr ) ©15dV/

V(e

+ / (0N Fsk ONmF7 ) ©'5dV

V(e
_ / (GNNmF7)dS+ / (RNnF)dV + / (toRNnFr )dV
gSe) V(e v (e

here, the indexesand| are similar tor andm, respectively, and indicate summa-
tion based on Einstein’s notation. Equations (4.24) argbj&ender the 1D unified
finite element formulation which can be employed to 3D analgkthe generalized
coupled thermoelastic problems.

The presented approach enables all the FE matrix and veotdesived as a con-
densed notation which is named the so-cafi@idamental nucleug=N). Indeed,
theses fundamental nuclei do not depend on either the ofdee expansion or the
base functions used. Accordingly, the Egs. (4.24) and §4caB be rewritten in
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matrix form as
MImrsg™ | glmrsy™ | Imrsgmr _ p's (4.26)

here,M'm?s  GIMTs and KM which are 4<4 matrices, represent thiendamental
nucleus(FN) of the total mass, damping, and stiffness matricepees/ely. Like-
wise,8™ ={U's @S}Tandps={F's Q's}T indicate the nuclei of the unknowns
and load vectors, respectively. Equation (4.26) may alsexipeessed as

SZENE) .,
(©)-%)

'mfﬂgxg_/ / (pNmN; | FrFs) dAdL
MES s = [ [, (TN (B (DoFs) + BT (Dnpfs) ) dAdL
+ / / (toTo[ B Nm(DnyNi )FsFr]) dAdL (4.28)
[MEES] 11 = / / (pCtoNmN| FrFs) dAdL

L(® A(e)

Imts
Imts Imts
M U M 00

Imrs Imts
G| Glo

Imrs Imts
GOU G@O
K Imts Klumés

Tloo ki

where

(G %3x3 = /(e) (e)
[GUTES) 33 = — /L /A (tyNmN [(D] TFel )Bp+( F )6, ]2 dAdL
/ / nyNm)Ni [Fz B, Fs]) dAdL
Imrﬂm_/ / (ToNmNi [B1(DpFs) + B (DnpFs)]Fr) dAdL
* /L(e) /A(e) TolB nNm(Dnle)FsFr) dAdL
[Glggﬂlxlz/l_(e) " (pCNmN FrFs) dAdL
N /L(e) / o (28" N[Oy F2Fs) dAdL

B /L(e) /(e) (ZéTNle Fr [DDFS]) dAdL

(4.29)

>

>
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[K{MIS)3y 3 = / / (NmNi [(DpFe!) [Crn(DnpFsl ) + Cnp(DpFsl )]

+ (DFe1)[Cpp(DpFsl) + Cpn(DngFsl)]] ) dAdL
+/ / (Nm(DnyND[(Df pFel)Crn+ (D Fel ) CpnlFs) dAdL
+/ /A ((DTNm)NiF¢[Cnp(DpFsl) + Can(DnpFsl )]) dAdL
* Lo Js

[KU83x1 = — / o Jao NmNI [(DpFo)By+(Dp )Bn]Fs) dAdL (4.30)

(( Nim)N Fr 8Fs) dAdL

>\

( Nm DnyN|)FTCnnFs) dAdL

e

K811 = (NmN. (OBFs)K(OpFr) ) dAdL

(TN (Nm) K (OFr)Fs) dAdL

_|_

_|_
.\.&.&,\;\
>\>\>\>\>\

n(
<N (OnNm)K DTFS)FT> dAdL
n(

(OTN ) (CnNem) FTKFS) dAdL

_|_

{me}gxlz/ / (XNmFT)dAdLJr/ (tNF)dS

L JAe) ge)

{Q’“T}lx1=/ (anNmFT)dS+/ (RNnF7) dAdL (4.31)
S(e) L Jae

+/ / (toRNmF) dAdL
L® JA®

In the expressions (4.28)-(4.31),represents the identity matrix. The subscript
p denotes the in-plane components over a cross section otriewse, whilen
indicates the normal components to the cross section. Aougly, the matrices
Dp, Dnp andDyy and the vectorsl, andl, can be defined as

D.— a0l D 050| D 0 4.32
= 1400 =100,0], 00 :
P [az oax] " [0 & 0} v [ay 0 dy] (4-32)

and
Op={d 0 &} ,0Oh={0 4 0} (4.33)
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Similarly, the grouped elastic coefficients matrix andstreemperature moduli vec-
tor are given as

C11 C12 Ca4 Cs3 C35 Cge C13 C15 Cie

Cpp= | Co1C2Coa Chn= [Cs3Cs5Cs6| , Cpn= [C3Co5Cos| (4.34)
C41 Cyg2 Cyq Ce3 Co5 Cop Ca3 Cys Cap

Bp = {Bzz Bxx .BXZ}T Bn - {Byy Byz Bxy}T (4-35)

whereCpnp= an. In order to summarize, the expanded expressions for coemsn
of the matrixC for anisotropic materials are not given here, but they cafobed
in Ref. [56].

Furthermore, in most practical engineering problems, thegiral damping matrix
G{J”[}S may be computed by the Rayleigh damping model as [24]

Gl = MU+ oK e (4.36)

inwhich 1M yy and{,Kyy are the structural mass and stiffness proportional damp-
ing terms, respectively, and the paramet@rand ¢, are typically obtained by ex-
periments for materials.

Therefore the FNs (4.28)-(4.31) must be expanded with ctspehe superscripts

m, |, T ands in order to obtain the FE matrices and vectors of the wholesire.

In fact, indexesn and| are exploited to assemble the matrices in the FE procedure
while T ands are used to provide the order of the model. The assembly guoee

of the FNs are concerned in the companion paper (Part 2)., Theignatrix form of

the governing equation for the whole structure can be egpreas

MA+GA+KA=P (4.37)

whereM, G andK are the global mass, damping and stiffness matrices. Laewi
P is the global vector of the applied mechanical and thermadi$oandA stands
for the global vector of unknowns. Equation (4.37) of the \ehstructure can be
solved for the nodal displacements and temperature chantpe itime domain by
the standard numerical techniques used to such problerhs iitdrature.

It is noted that in the presented formulation, the thermdl mechanical boundary
conditions as well as the body forces and the heat sourcesoamsdered as the
most general forms. The mechanical boundary conditionstmeagpplied through
specified traction vectors or displacements on the boueslatikewise, the differ-
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ent types of thermal boundary conditions including a knoempgerature change
on a part of the boundary surface, a known heat flux on the yrahd the con-
vection and radiation conditions may be assumed in problérssfurther obvious
that the concentrated thermal and mechanical loads carkbe tato account as
the particular cases of the surface loads. Moreover, thialithermal and mechani-
cal conditions may be assumed in general form as arbitraswkrfunctions of the
space coordinates.

In the unified FE formulation (4.27), indeed, addition toitekinto account the
mechanical damping effect by the mat@j®, six theories of GL, LS, classical,
dynamic uncoupled, quasi-static uncoupled and static wrled thermoelasticity
are included. Accordingly, the generalized theory of thesfasticity based on the
Green-Lindsay and Lord-Shulman can be involvedtgor 0 andt; =t, =€ =0,
respectively. The four other theories can be provided asicpéar cases as repre-
sented in Table 4.1. Equation (4.27) can be simplified to tmm@lation of the
classical coupled thermoelasticity problems by taking- t, = € = 0 andtg = 0.
The classical coupled theory reduces to dy@gamic uncoupled thermaoelasticity
by eliminating the coupling matri>G'@mJS) from the formulation. The dynamic un-
coupled formulation can be employed for the problems in Whie rate of imposed
thermo-mechanical loads is not rapid enough to generatemtiestress waves. If
the inertia forces can be further neglected/h{%l}s = 0, the governing formulation
for the quasi-static uncoupled thermaoelasticiyoblems is obtained. Moreover,
in a steady-state conditioKisg”TS = 0), the formulation can be more simplified to
static uncoupled thermoelasticityhere thermal stresses are imposed by the defor-
mations due to the steady-state temperature field.
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Table 4.1 Different theories of thermoelasticity through 1D FE-CUF

Conditions Theory
to=0 Generalized, GL
Dynamic t1=t,=C=0 Generalized, LS
Coupled
to=0 .
0 . Classical
tj=t,b=2¢=0
GIIS=0  dynamic
MImTs — o
to=0 o quasi-static
Uncoupled - Gay~ =0
t1=t,=Cc=0 -
GJIs=0 static
|
Gl =0

4.5 Component-wise approach for the coupled ther-
moelastic problems

In this dissertation, the approximating expansions hawen bebtained using bi-
dimensional Lagrange functions. The Lagrange-based elsnemable the physi-
cal surfaces to be modeled adopting arbitrary kinematitgs ihherent capability
makes it possible to create component-wise (CW) mathealatiodels, which can
accurately describe the geometry of the real structurehiihe CW context, cross
sections can be discretized by using different types of iage elements (LES) such
as linear three-point (denoted as L3), bi-linear 4-point)(Lbi-quadratic 9-point
(L9), and bi-cubic 16-point (L16) elements (see Fig. 3.4).

As far as the longitudinal discretization is concerned nbetements with 2, 3 or 4
nodes can be chosen (Fig. 3.3). Figure 4.4 shows a possibbleematical model
used to discretize a simple 3D geometry.
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# Beam element

Lagrange node

3D Geometry L4 Modelling Computational Model

Fig. 4.4 32 DOF total, 16 DOF per beam node, 4 DOF per Lagrande.n

The model shown in Fig. 4.4 consists of 8 Lagrange points (€aeh beam node),
and 32 degrees of freedom (DOF) (4 DOF per each Lagrangian)pdihus, the
corresponding displacement field and the temperature eharey

Uy = Nt U™ = Ny (FlUM + -+ 4+ FaU4) + No(F UX21+-~-+F4U24)
Uy = NFeUJ™ = Ny (FaUgt + - + RoUp ) -+ No(FUS + - + FaU

uZ_NmFTU M — Ny (FU 4 -+ FULY) + Np(FlUZ - 1 FU 24
T = NyF © Ny (FLOM 4 - 4 Fg@M) £ Np(FLO%L 4 ... 1+ F4024)

7
4.38
) (4.38)

For the assembly procedure, Fig. 4.5 graphically shows #thodology followed
to build the CUF matrices. It should be observed that, ingkemple, the structure
has been modeled using two L4 elements above the crossiseatid three 4-node
beam elements along the longitudinal axis.

The total number of DOF of the computational model can bdyeesmputed as

Nsn

DOF = _;(4 x Niy) (4.39)

whereLN' andSNrepresent the number of Lagrangian points of threlleam node
and the total number of structural nodes, respectivelyofdiag to the example of
Fig. 4.5, Eq. 4.39 reduces to

10
DOF = _2(4 x 6) = 240 (4.40)
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1 BN 1 SN
1
l
2
T
/
1 —_—> SN
Element Structure

Fig. 4.5 Graphical representation of the assembly proeedur

4.6 Time history analysis

The transfinite element technique through the Laplace fivamscan be effectively

used to find the time history responses of the dynamic cougblednoelasticity

equations in very short time intervals. In this method, thabjems are solved in
the Laplace transform domain by the FE method and then theftlaned solutions
are numerically inverted to obtain the physical responséisea time domain. Thus,
taking Laplace transform of Eq. (4.26) results in

Keq™(8)8™ =p'(§) (4.41)

where I{E“(}TS is the FN of the equivalent stiffness matrix that includesriial, stiff-
ness and damping contributions and is obtained as

Keqlm15(§> _ Mlmrs§2+GImrs§+ Klmrs (4_42)

Here,s'stands for the Laplace variable and the superscript asteisotes Laplace
transform of the terms.
The linear system of Eq. (4.41) is solved for different valué s, and then the
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solutions are obtained in the time domain using the numlaniearsion of Laplace
transforms proposed by [28].

4.7 Non-dimensional FNs

Itis expedient to express the governing equations in a moaasional form. To this
end, the following parameters are introduced

X = X |/| :Vet/l ;
T=T/Tqg; G=A+2u)u/(1BTy) ; fo=Velo/I (4.43)
G =ai/(cTapVe) ; Gij = 0ij/(BTa) ; '

=Xi/(TaB) ; R=DR/(cTy(A +2u))

where the hat values indicate nondimensional paramefgds a characteristic
temperature. Moreovét = /(A +2p)/p, | = k /Vecp andD = k /cp are, respec-
tively, the velocity of elastic longitudinal wave propaigat, the dimensionless unit
length and the thermal diffusivity of material.

Using the nondimensional parameters and considering thé-&bulman general-
ized theory of coupled thermoelasticity, the explicit nmnensional expressions of
the equivalent fundamental nucleus componelﬁt%"(g) in EQ. (4.41) for homoge-
neous isotropic materials are written as it follows

KISIm = §4FTFS>Im+4FTXFSx>IL
—|-C66<1 FTF3>||_ - y—i—C44<l F stzl>||_
KIS = CopaFrFoxt 1™ + aFr xFsr 1™ (4.44)
ng'm = Cag<aFr 2Fsx > 1M 4+ Cog aFp xFsz > I[™
KISM= — aFxFst> 1™

Krslm C66<1Fers> IL Y_|_C32<1FrstD ||_

K™ — @ aF Fyo 17 CapaFexFsxt 111
+<1FrFs>I[n’yl'y+és5<1Frstz>|L (4.45)

KISM = Co5<Fr 2Fs > ||_ Y+ Ca1aFFozb> |L7y|

K™ = — aFeFao 1T
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KTSlm é44QFTXFSZI>IL|+612<]FTZFSXI>I|_

KTS'm C55<1FTF32>I,_7V+Clg<1FTZFS>Im|y

KTS'm &L aFFsp 1M+ CpqaFrxFox > 1M+ (4.46)
+CosaFrFo 1] i Y4 aFy Fe I

KISM= — aF JFs 1M

KM= C(&fo + 8§ <FrFsxo I[™
KISm = C(&fo + §) < Fr Fsr 1™
KTS'm C(&fo+8) aFFez 1M (4.47)
KTS'm (Plo+ 9 <FeFsp 1M+
+ aFpxFoxt 1M+ aF For 1™ 4 aFp R0 1M

where

| I, l,
|Imy ‘ |m Wy ‘ Imy y _ /L<e) (NmNI |Nm_’yN| ‘ NmN|,y ‘ Nm_,yNI_’y) dy

Geooo D> =
ot

FurthermoreC = ToB?/[cp(A +2u)] is the thermoelastic coupling (or damping)
parameter. The dimensionless elastic coeffici€tare

644 = CA:55 = CA:66 = ()\_{_Jizu)
A A A A
Clz = C13 = C23 - m

Likewise, by considering surface and volume forces, theeggmondimensional
expression of the loading vector in the Laplace domain besom

P = [ W FNndS+ [ X;FNmdV

SO V(e
PI = [ B FNadS+ [ X FNmdV
SO V(e
* ot 5 4.48
SO V(e

pI = [ [(fo5+ DR IFNndV + [ (Gni)FNmdS
V(e S®



88 Development of 1D FE-CUF approach for dynamic coupled tloelasticity

Here, the superscript asterisk denotes Laplace transfbthederms i andd are
the dimensionless traction and heat flux vectors, respytiv; is the unit vector
normal to the boundary surface of the elem&#t

4.8 Summary

In the framework of the the Carrera unified formulation, tii® BE procedure is
developed to the 3D solution of the static, transient, anthdyic problems in the
coupled and uncoupled thermoelasticity for the nonhomeges anisotropic mate-
rials. As particular cases, the generalized theories bas¢ke Lord-Shulman and
the Green-Lindsay models, as well as the classical couplgtamic uncoupled,
quasi-static uncoupled and steady-state uncoupled gseofithermoelasticity can
be extracted from the presented formulation. The mechbdaraping effect can
be further taken into account in the problems. In additibe,thermal and mechan-
ical boundary conditions, the body force and the heat soame&onsidered in the
most general forms where no limiting assumption is applidds generality allows
to analyze varieties of more practical thermoelastic g@otsd. Since this approach
reduces the 3D problems to the 1D models with 3D-like acdesaand very low
computational costs, it may seem to be a competent tool inesative solution
process of the dynamic coupled thermoelasticity problems.



Chapter 5

Coupled thermoelastic analysis:
Numerical evaluations and results

This chapter aims to evaluate the high-fidelity 1D FE-CUF magh proposed in

the chapter 4. To this end, first, the approach is evaluated simple metallic beam
problem and then is employed for the coupled thermoelastityais of disks. Static,
quasi-static, and dynamic analyses of the coupled and ypieduhermoelasticity

have been performed in this chapter.

5.1 Thermoelastic analysis of a beam

Firstly, a static coupled thermoelastic analysis is penkxt on a simple metallic

cantilever beam. The related results, which have obtaindd different mathe-

matical models, have been compared with a solution compwitida simple one-

dimensional analytical formula. Secondly, the same cordigon has been consid-
ered for a transient quasi-static analysis.

5.1.1 Static uncoupled thermoelastic analysis of a beam

The structure is a cantilever square beam, which has begecsedh to a heat flux
(=100 W) at the clamped edge. The free tip has been considesedkaent tem-
perature To=20° C). The cross-section area and the beam length wer@0 cnr?,
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andL = 50 cm, respectively. The material is aluminum with the Ygammod-
ulus E=73.1 GPa, the Poisson’s ratic= 0.33, the thermal conductivity = 237
W-(m-K)~1 and the coefficient of thermal expansior23.1x10-6 K—1. The anal-
yses have been performed using several mathematical mddedarticular, Table
5.1 lists the temperature changes and the longitudinalatisments along the beam
axis using the 2-node finite elements. Further mesh studies been performed
considering the 4-node beam elements and different kiriertte¢ories obtained
with the L4, L9 and L16 Lagrange elements. The results arerteg in Tables. 5.2,
5.3 and 5.4, respectively.

Table 5.1 Displacement and temperature change vs. numig® efements, 1L4.

Location along the-axis in mm ;)

Nr. elements 0.0 0.1 0.2 0.3 0.4 0.5

u 0.0 0.319 0.473 0.597 0.670 0.696

5-B2
T 1055 84.38 63.28 42.19 21.09 0.0
10-B2 uy 0.0 0.263 0.435 0.556 0.629 0.654
T 1055 84.38 63.28 42.19 21.09 0.0
20-B2 u 0.0 0.245 0.416 0.537 0.611 0.635
T 1055 84.38 63.28 42.19 21.09 0.0
30-B2 u 0.0 0.240 0.410 0.532 0.605 0.630
T 1055 84.38 63.28 42.19 21.09 0.0
50-B2 u 0.0 0.236 0.407 0.529 0.602 0.626
T 1055 84.38 63.28 4219 21.09 0.0
100-B2 uy 0.0 0.235 0.406 0.527 0.601 0.625

T 1055 84.38 63.28 42.19 21.09 0.0
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Table 5.2 Displacement and temperature change vs. numiB elements, 1L4.

Location along the-axis in mm ;)

Nr. elements 0.0 0.1 0.2 0.3 0.4 0.5
584 uy 0.0 0.242 0.412 0.534 0.607 0.631
T 1055 84.38 63.28 42.19 21.09 0.0
10-B4 uy 0.0 0.236 0.406 0.528 0.601 0.625
T 1055 84.38 63.28 42.19 21.09 0.0
20-B4 uy 0.0 0.234 0.405 0.527 0.600 0.624
T 1055 84.38 63.28 42.19 21.09 0.0
30-B4 uy 0.0 0.234 0.405 0.527 0.600 0.624
T 1055 84.38 63.28 42.19 21.09 0.0
50-B4 uy 0.0 0.234 0.405 0.527 0.600 0.624
T 1055 84.38 63.28 42.19 21.09 0.0
100-B4 uy 0.0 0.234 0.405 0.527 0.600 0.624
T 1055 84.38 63.28 42.19 21.09 0.0
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Table 5.3 Displacement and temperature change vs. numiB elements, 1L9.

Location along the-axis in mm ;)

Nr. elements 0.0 0.1 0.2 0.3 0.4 0.5
584 uy 0.0 0.242 0.409 0.531 0.604 0.629
T 1055 84.38 63.28 42.19 21.09 0.0
10-B4 uy 0.0 0.233 0.404 0.526 0.601 0.623
T 1055 84.38 63.28 42.19 21.09 0.0
20-B4 uy 0.0 0.232 0.403 0.525 0.599 0.622
T 1055 84.38 63.28 42.19 21.09 0.0
30-B4 uy 0.0 0.232 0.403 0.525 0.598 0.622
T 1055 84.38 63.28 42.19 21.09 0.0
50-B4 uy 0.0 0.232 0.403 0.525 0.598 0.622
T 1055 84.38 63.28 42.19 21.09 0.0
100-B4 uy 0.0 0.232 0.403 0.525 0.598 0.622
T 1055 84.38 63.28 42.19 21.09 0.0
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Table 5.4 Displacement and temperature change vs. numBer efements, 1L16.

Location along thg-axis in mm ;)
Nr. elements 0.0 0.1 0.2 0.3 0.4 0.5
uy 0.0 0.242 0.409 0.531 0.604 0.629

5-B4
T 1055 84.38 63.28 42.19 21.09 0.0
10-B4 u 0.0 0.233 0.404 0.526 0.598 0.623
T 1055 84.38 63.28 4219 21.09 0.0
20-B4 uy 0.0 0.231 0.402 0.524 0.597 0.621
T 1055 84.38 63.28 4219 21.09 0.0
uy 0.0 0.231 0.402 0.524 0.597 0.621
100-B4

T 1055 84.38 63.28 42.19 21.09 0.0

It is observed that the predicted temperature changesl(5.5°C ) satisfies
the conduction equation

T
q=KAL =100W (5.1)

For the axial elongations, the CUF results can be comparddansimple one-
dimensional relation

WWOzwagi%étQ (5.2)

wherey; is the axial location. The results revealed that the progpsam ele-

ments ensure a significant rate of convergence. In fact, ®elgments are enough

to predict the correct values of temperature changes, whddels with 10 ele-

ments provide converged solutions also for the displacésneggardless of which
Lagrange elements are used.



94 Coupled thermoelastic analysis: Numerical evaluatiomsrasults

5.1.2 Quasi-static uncoupled thermoelastic analysis

The quasi-static response of the previous structure hasdeadysed. The govern-
ing equations have been modified such that the inertial teasisvell as the time
variations of strains into the energy equation, are discegh The mathematical
model used to perform the transient analysis consisted d4L@inite elements
along the beam axis and 1 L4 element above the cross-setti@time history of
the temperature changes and the longitudinal displacena¢rdifferent locations
along the beam axis are shown in Figs. 5.1.
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Fig. 5.1 Time histories of axial displacements and tempegathanges as functions of the
location. 10B4/1L4 model.

The figures show that, as the time passes (timeo), the steady state values
of the temperature changes and the axial displacementsatcbkead (see Table 5.2).
In the case in point, the steady-state solutions are olatafter about 2000 sec-
onds. Figures 5.2 and 5.3 show the axial displacements antiperature fields
at different times.
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Fig. 5.2 Axial displacements (in meters) at different tim&@B4/1L4 model.
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Fig. 5.3 Temperature changé€j at different times. 10B4/1L4 model.
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5.2 Dynamic coupled thermoelastic analysis of a disk

Based on the LS theory of thermoelasticity, the non-din@radifinite element equa-
tions are solved and evaluated for an axisymmetric and agromisk made of
homogeneous isotropic materials.

5.2.1 Axisymmetric disk

To evaluate and validate the present method, a numericaipras selected from
reference [4] in which a 1D FE method has been used to solvedhpled ther-
moelasticity problem in a disk. Furthermore, this examms heen analytically
solved in the chapter 2. It is noted that the solution in befenences obtained un-
der axisymmetric and plane stress assumptions. Theratoumify the nondimen-
sional parameters and compare the obtained results wittetbeence solutions\
and B in the relations (4.43) must be respectively replacekbyandk( where
kK=2u/(A+2u).

Thus, an annular disk with constant thickness made of alumiwvithA = 40.4 GPa,
U =27 GPap=2707 kg/nf, a=23x 10 8 K—1, k=204 W/m- K, c=903 J/kg K is
considered. The dimensionless inner and outer radii of ibleate equal ta = 1
andb = 2, respectively, while the the dimensionless value 0.1 isictered to be
the thickness of the disk. As the mechanical boundary cmmdit the surface at
inner radius is rigidly fixed while the other surfaces areuassd to be stress free.
The temperature change on the outer surface is equal towhbile, the surface at
inner radius is suddenly exposed to a heat flux as the Heavsid step function.
Two side surfaces of the disk are assumed to be thermalljaiteslas well.

In the 1D FE-CUF approach, the disk can be assumed as a beagii@@xis so
that each cross section of the beam is defined in any planemaiqular to the axis.
Accordingly, to study the convergence of the results anceffext of discretization
quality and type of the elements on the accuracy of the metBadodels of 1D
FE-CUF are considered in accordance with Table 5.5. Alggs.F.4 and 5.5 show
the types of discretizations considered along the axis apdtbe cross section of
the disk.
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Table 5.5 Different 1D FE-CUF models for the constant thedsdisk

Discretizin
Model istrenzing DOF
along axis over cross section

Q) 1B2 1680
(2) 1B3 (6 x 30) L4 2520
3) 1B4 3360
4 3x15) L9

4) (3x15) 1680
(5) 1B2 (2x10)L16

(6) (6x18) L9 3744

*DOF: total degrees of freedom

(3% 15) L9 (2% 10) L16

Fig. 5.5 Discretizing and distribution of Lagrange elenseovter the cross section of the
disk.
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Based on the classical theory of thermoelasticity and asguthe numerical value
of the coupling parameter to be 0.02, the time history of #ukal displacement and
the temperature change in the mid-radius of the disk are siowigs. 5.6-5.8 and
compared with the analytical solutions reported in the tdrap.

Considering the distribution @6 x 30) L4 on the cross-section of the disk, Fig. 5.6
shows these time history for the different types of beam elgmalong the axis.
It is observed that since the disk is thin, the use of highdeoelements B3 and
B4 in comparison with the linear element B2 not only does fifecathe accuracy
of the results, but also significantly increases the degoééeedom (DOF) and
consequently the computational costs. Therefore, one &Razit along the axial
direction can be enough to obtain converge solution with thodel. Further im-
provement in the accuracy of the solution may be achieved fiefimement of the
discretization over the cross sections.
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Fig. 5.6 Time histories of the nondimensional temperatta@nge (a), and radial displace-
ment (b) at mid-radius of the disk.

Thus, considering 1 B2 element along the axis, the effecthelagrangian ele-
ment type on the accuracy of the time histories obtainedeatru-radius of the
models with same DOF are shown in Fig. 5.7. As observed, usthgnd L16

elements, instead of L4, the accuracy of the solution ari$bs reason is that the
L9 and L16 elements respectively use fourth- and ninth4godé/nomials as inter-
polation functions, while L4 is a bilinear element with sedeorder polynomials.
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In this case, increasing the number of L4 elements over s@sfons may increase
the accuracy. Also, it is seen from Fig. 5.7 that, for the nt®dath the same DOF,
the use of L9 and L16 elements over cross sections of the ngwdes approxi-
mately the same results. In addition, although there idigié difference between
the obtained solution and the reference result, the effebedigher-order elements
on the accuracy of the displacement field is more obviousttiatemperature field.
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g 8 o05F  ———— (2x10)L16 g
o ]
[ ) , S [ 7 ]
s H 0 - Exact Solution (Kouchakzadeh, 2015 g 0.4F A N\ -
c | | - ) 4
S ] =
@ 0150 CUF models with 1 B2 & DOF = 1680 g [
2 (6%30) L4 £ o3p
5 ——e—— (3x15)L9 1 S [
g o1 ——«—— (2x10) L16 b £ r
z E 5 02f
2 N
(=]
z [
0.05 ] 0.1f
07\\\I\\\I\\\I\\\I\\\I\\\I\\\I\’ 7\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Nondimensional Timet) Nondimensional Timet)
() (b)

Fig. 5.7 Time history of the nondimensional temperaturengega) and radial displacement
(b) at mid-radius of the disk.

Moreover, refining the distribution of L9 elements over thess section of the disk
with 1 B2 along its axis, may improve the accuracy of the sofutin Fig. 5.8, the
results obtained by two different distributions of L9 elarteeare compared with
the reference solution. As seen from this figure, there ameesminor differences,
at the peaks of oscillations, between the result obtainatiéglistribution(3 x 15)

L9 and the analytical solution for the radial displacem@&ytutilizing an improved
distribution such as thg x 18) L9, the difference is largely eliminated, and an ex-
cellent match appears between the obtained result andféremee solution.



100 Coupled thermoelastic analysis: Numerical evaluatiomsrasults
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Fig. 5.8 Time history of the nondimensional temperaturenglega) and radial displacement
(b) at mid-radius of the disk.

Likewise, the accuracy of the model 1 B&/ 18) L9 of the disk can be evalu-
ated for solving the generalized coupled thermoelastimitpblem based on Lord-
Shulman (LS) theory. In this case, the values of the coupgbagmeter and the
relaxation time are assumed to be 0.02 and 0.64, respsctiadFig. 5.9, the time

histories of temperature and radial displacement at nddisaof the disk for this

model are shown and compared with the reference solutiormedder, the time

histories of radial stress and tangential stress are dloitBig. 5.10. These figures
reveal that the 1D FE-CUF model is able to provide the refeeanalytical solu-
tions. However, slight differences between the axisymimé&te solution proposed
by [4] and the other results are observed in Fig. 5.9.
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Fig. 5.9 Time history of the nondimensional temperaturenglega) and radial displacement
(b) at mid-radius of the disk.
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Fig. 5.10 Time history of the nondimensional radial change ercumferential stresses at
mid-radius of the disk.

It may be useful to visualize variations of field variableke ltemperature and dis-
placement, over a computational model as contour plotss,Tiegalling capability
of the 1D FE-CUF models to provide 3D-like solutions, theabféd results can
be shown as 2D or 3D contour plots by an appropriate postpsotg Based on
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the LS thermoelasticity theory, Figs 5.11-5.13 show the@anplots related to dis-
tribution of the temperature change and radial displac¢émerthe computational
model of the disk at different times. The propagation of thertal and elastic
waves along the time is clearly observed from these figurésceShe geometry
and the boundary conditions of the disk are axisymmetri témperature change
and radial displacement waves propagate in circular foongthe radial direction.
The velocity of the thermal wave propagation can be evatlaging the contour
plots shown in Fig. 5.11. For instance, at the time 0.4, the dimensionless value
of the temperature change at the inner radius is about O ite thirs value becomes
zero from the radial position= 1.5 toward the outer surface. That is, the temper-
ature wave front at the dimensionless tifne 0.4 is at the radial position = 1.5.
Accordingly, the velocity of temperature wave propagat®of.25. This value can
also be computed expectedly from EQ?) through the square root of the inverse
of nondimensional relaxation time. It can be, thereforal 8zt the plots related to
timest = 0.2,0.4,0.6 and 0.8, in Fig. 5.11, show the radial propagation of the the
mal wave, while those related to timés- 1 and 1.2 represent the wave reflection
from the outer surface of the disk.
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Fig. 5.11 Distribution of nondimensional temperature g®for different values of the
time.
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Figures 5.12 and 5.13 show the distribution of nondimeradicadial displacement
onyzplane of the deformed model at several different times. Adiog to Eq. ¢7?),
longitudinal elastic waves propagate at unit velocity. e&rthe nondimensional
time at which the elastic wave front reaches any nondimeasiadial positiont()
for the first time can be calculated using relatica f — a. For instance, at the time
t = 0.4, the elastic wave front is at the radial positior="1.4. This occurrence
can also be observed in Fig. 5.12, where the elastic wavédesate outer sur-
face of the disk at the time= 1. Moreover, as illustrated in this figure, under the
propagating longitudinal elastic waves, in addition torafiag the outer radius, the
thickness of the disk also expands and contracts, whichawhras thePoisson ef-
fect This effect can be only detected through the 3D solutiomefaroblem which
is of capabilities of the 1D FE-CUF models. It may be furtheers that during the
wave propagation and before the wave front reaches the sutirce of the disk,
although the thickness is changing, the disk does not exipathé radial direction.

g
.
-
-
.

(@) (b) (c) (d) (e) (f)

Fig. 5.12 Distribution of nondimensional radial displaeernfor different values of the
time.

Figure 5.13 shows distributions of the radial displacemaefier the reflection of
the elastic wave from the outer boundary, at the tiinesl.2,2.7,4.6,6.5,8.5 and
10.5. In addition, to clarify how the thickness of the dislanbes along the time, the
percent change in the thickness at the mid-radius, nhamedhitkihess, is shown

in Fig. 5.14. It may be seen from Fig. 5.13 that due to destodf the wave front
after the timef = 1, the displacement gradient along the radius becomes &moot
Moreover, after the incidence of the wave on the outer sarfadhe time = 2.7,

the disk begins to expand radially, and since the inner sardthe disc is assumed
to be completely constrained, the outer radius of the diskeases.
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As observed from Figs 5.13 and 5.14, after the wave refle¢tarard the inner
surface, although the disk is radially expanding, the théss at the mid-radius in-
creases up to the time= 1.2. Then, with the increase of the outer radius, the
mid-thickness decreases so that at the fime2.7, the disk reaches the maximum
expansion in the radial direction, while the mid-thicknesguces to about the ini-
tial value. After the timé = 2.7, while the disk contracts radially to the tirhe- 4.6,

the mid-thickness increases. These deformations contiralbarmonic form along
the time, because the equations of motion (see E®)) (epresent harmonic solu-
tions for the displacements when the temperature is damped.

(@) (b) () (d) (e) (f)

Fig. 5.13 Distribution of nondimensional radial displaeernfor different values of the
time.
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Fig. 5.14 Percentage change of thickness at the mid-radlire plate along the time
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5.2.2 Non-axisymmetric disk

To demonstrate the ability of the 1D FE-CUF models to prod@esolutions of
asymmetric problems, an annular disk with asymmetric banndonditions can
be analyzed. The geometry and material properties of tHeatis considered to
be the same as those of the previous example. The inner swfdbe disk is as-
sumed to be partially fixed in accordance with Fig. 5.15, wfkiile other surfaces
are stress free. As the thermal boundary conditions, thpeeature change on the
inner surface is equal to zero and two side surfaces of theadesthermally insu-
lated. Likewise, on the outer surface the temperature veispect to the reference
temperature is suddenly changed by the funciign) = Tq(1—e /') which, us-
ing the nondimensional parameters (4.43), can be expresdee: 1 — et

T=T()
Ad abach&

T =Const.
z

-
H

— Clamped

(@) (b)

Fig. 5.15 Boundary conditions (BCs) in the asymmetric deskMechanical BCs; (b) Ther-
mal BCs.

Considering the model 1 B@ x 18) L9 of the disk and based on the LS gener-
alized theory of thermoelasticity, Figs. 5.16 and 5.17 slwowtour plots of the
nondimensional temperature change and radial displadedignibutions on the
deformed model at different values of the time. Moreover féother clarification,
the time histories of the temperature change and radialatisment at the points
(X=1.06,y=0.052=1.06) and = —1.06,y = 0.05,Z = 1.06) located on the
mid-radius of the model are plotted in Fig. 5.18.

It may be seen in Figs. 5.16 and 5.17 that the elastic wav@esabe inner surface
of the disk at the timé = 1. After the incidence of the wave on the inner surface,
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due to asymmetry of the mechanical boundary conditionsfigi@dacement waves
reflect asymmetrically from the boundary which causes tlyenasetric deforma-
tions of the disk. Therefore, after the elastic wave refbextthe distribution of the
temperature change on the deformed model is not axisynmastivell. It is further

observed from Fig. 5.18 that the amplitudes of oscillatiohthe displacement in
the first quarter of the disk are smaller than those in therskqaarter, however the
frequency of these oscillations in the first quarter is highan that in the second
quarter. The reason is that the stiffness of the first quaftdre disk is larger due
to its constrained inner surface.

Fig. 5.16 Distribution of the nondimensional temperaturarge at different values of the
time.
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at mid-radius of the disk in the first (a) and the second (b)teus.
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5.3 Summary

The 1D FE-CUF approach developed in the chapter 4 has beglateal through
comparisons with available reference solutions considestatic, quasi-static, and
dynamic thermoelastic analyses. Simulations have bedorpexd on isotropic and
homogeneous structures. Comparison of the obtained sesith the results re-
ported in the literature verifies accuracy of the modelsterdisk problem. Indeed,
as expected, the accuracy given by the 1D CUF models is eglyesubordinate to
the order of the Lagrange-type expansions. It was demdedtthat the FE-CUF
models are quite efficient and have a very high rate of comverg, so that making
use of an appropriate discretization, they are able to geowesults with analyti-
cal accuracy. The propagation of thermoelastic waves agidréflection from the
boundaries in an axisymmetric and asymmetric disk problemwnvestigated and
it was shown that the Poisson effect can be detected in th@REia obtained by
the models. It is hence concluded that the 1D FE-CUF approacioe effectively
used to obtain 3D solution of the coupled thermoelasticlerob in disks subjected
to arbitrary boundary and loading conditions including the body force and the
heat source.



Chapter 6
Conclusion

The main subject of this dissertation has been to study ofdlpled thermoelastic
behaviors in rotating disks subjected to thermal loads.tRisrpurpose, firstly, us-
ing an analytical procedure based on the Fourier-Besseftvem, the generalized
coupled thermoelasticity problems in an axisymmetrictiotadisk with constant
thickness made of a homogeneous isotropic material argtaraly solved. Then,
closed-form formulations are presented for temperatudedssplacement fields.
Secondly, a 1D FE methodology refined through the Carreredniormulation
(1D FE-CUF) has been developed for the static uncoupledntbeliastic and the
dynamic coupled thermoelastic analyses of structures mad@nhomogeneous
anisotropic materials. In the unified FE formulation, indlesddition to taking into
account the mechanical damping effect, six theories oftbetasticity, including
coupled generalized (Green-Lindsay and Lord-Shulman)cassical theories as
well as uncoupled dynamic, quasi-static and static thepdan be involved. The
thermal and mechanical boundary conditions, the body fanckthe heat source are
considered in the most general forms where no limiting aggiomis applied. This
generality allows to analyze varieties of more practicarmmoelastic problems. Fur-
thermore, The enhanced capabilities of 1D FE-CUF approbmived to deal with
problems that usually require sophisticated solutionk witow number of degrees
of freedom. The validity and capabilities of the numericadgedure and conver-
gence of results have been investigated in a number of noaheamples.

The obtained analytical and numerical solutions are in gmydement with the ref-
erence solutions. It is further shown that the proposedytinal and FE methods
are quite efficient with very high rate of convergence. bistiions and time his-
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tories of temperature, displacements and stresses, @bpag@f the thermoelastic
waves, the wave reflection from the boundaries are shown sedssed. In addi-
tion, effects of coupling parameter, relaxation time onpenature, displacement
and stress fields are investigated. Likewise, using the Fietapthe solutions have
been represented as contour plots to highlight 3D capaiilif the models.

6.1 Outline and contribution to the literature

The results obtained from the solution of the coupled thelasiicity problems in
disks can be outlined as:

» Before reaching the steady state condition, the translespiacement and
stresses may be higher than the steady state. Thereforepdoralized ap-
plications involving sudden temperature changes in shaibgs of time, the
disk should be designed with consideration of transiemioest

* Due to the presence of the thermoelastic damping parartaiapling pa-
rameter) in heat conduction equation, the time history eftdmperature is
damped faster than the time history of the radial displaceme

» With increasing relaxation time, the maximum value of theves of time
histories of temperature and displacement increases,dout @t later times
due to the decrease in the propagation speed of thermal waves

» Comparison between different theories of thermoeldgtgtiows that under
thermal shock loading, generalized coupled theory basddai-Shulman
model predicts larger temperature and stresses compaiteel dther theories.
Therefore, for specialized applications involving sudtienperature changes
in short periods of time, the disk should be designed usimgesmodified
coupled thermoelasticity models with the finite speed of evpropagation
such as Lord-Shulman (LS).

« When the coupling parameter takes a greater value, theitanhgs of oscil-
lations of temperature increase. The reason is that witte@asing coupling
(or damping) parameter, the conversion between the mezddamd thermal
energies increases.
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In addition, some general points on the 1D FE-CUF modelindisks can be out-
lined as follows:

» The 1D FE method refined by the CUF can be effectively emploganalyze
rotating disks with variable thickness and reduce the cdatfmnal cost of 3D
FE analysis without affecting the accuracy.

* Since the presented 1D CUF model is invariant with respethe order of
the beam theory in the finite element axial discretizatiba,mmodel provides
a unified formulation that can easily consider different@gorder theories
where large bending loads are involved in the problem.

* Increasing beam elements along the axis of disks may na s@nificant
effect on accuracy of results and only leads to more DOFs s,Té appro-
priate distribution and type of beam elements or discregiznf disk profile
into a proper number of cross-sections can significantly teaa reduction in
computational costs. In fact, the 1D FE model of a rotor stibel selected so
that it balance accuracy of results and DOFs reasonably amdpo a similar
solid model.

» To increase accuracy of a 1D CUF FE model along with optichz@mputa-
tional costs in a rotating disk problem, it would be preféeaib tune a mesh
refinement locally. Local refinements may be implementetgittforwardly
through a finer mesh of elements on a cross-section of thendiske needed,
for example, at vicinity of the problem boundaries.

« Since distribution refinements of LEs over a cross-secatiag cause compu-
tational costs to be increased, making use of higher-ordgrdnge elements
(like L9 and L16) can reduce DOFs, while preserving the aaoyur

» Due to quadratic interpolations in L9 element, the ratearfvergence of L9
is higher than L4 element in which bilinear polynomials asedi as inter-
polation functions of displacement field. Therefore, iasiag numbers of
L4 elements on a cross section can be effective in improvtiegracy of the
solution.

» A refinement of LEs along the radial direction is more effecthan one in
the circumferential direction. In other words, increasawfiber of elements
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along the radial direction, compared to circumferentiaéction, is more ef-
fective in improving the results.

* The innovative FE procedure presented in this dissertatm be used as an
accurate tool of structural-thermal analysis for complabors with arbitrary
configuration and loading conditions to reduce the companat costs in an
iterative design phase of rotors as well as an iterativetisolyprocess of the
dynamic coupled thermoelasticity problems.

6.2 Future works

Within this work, the FE-CUF approach has shown excellemtopemance in the
study of the coupled thermoelastic behavior in rotors,dfoge, as future work, it
is of interests to extend the study to more complicated prablas follows

* Nonlinear thermoelasticity problems (geometrical ad aglmaterial nonlin-
earities).

» Dynamic analysis of rotors subjected to transient thepnesgtresses.

 Study of thermoelastic damping effect on dynamic behawidrotors.
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