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A B S T R A C T

Energy consumption modelling at the urban scale is crucial for supporting a transition towards the low-carbon city. 
Unfortunately, there are not many robust examples or standardised approaches available in the literature
for delivering effective low-carbon urban energy planning. In particular, there is a lack of appropriate frame-
works or systems which allow an effective and reliable assessment of energy use in the built environment at district-urban 
scale.
This paper illustrates the development of a geospatial bottom-up statistical model to estimate the energy

consumption of a large number of residential building stocks for heating space, considering a wide range of variables. The 
proposed methodology is based on a 2D/3D- Geographic Information System (GIS) and Multiple Linear Regression (MLR), 
which provides location-based information for each single dwelling to identify cor-
relations and assess the demand-side consumption at the urban scale. This framework was tested on a medium- sized Italian 
city, including around 3600 residential buildings. The results provided by the model are validated
using residual analysis and cross-validation. Moreover, the spatial results provided by this study represent a
useful tool to aid decision-makers in the urban planning process. These results can help to create future energy transition 
strategies, implementing energy efficiency and renewable energy technologies in the context of sus- tainable cities. This 
work is part of a national Smart City & Communities project, named “EEB- Zero Energy
Buildings in Smart Urban Districts”; nonetheless, the methodology illustrated in this paper can be generalised and applied to 
other European urban contexts.

1. Introduction

Cities are one the most energy consumers in the world (United
Nations, 2015), especially, urban buildings account for 60% of total
building final energy use (IEA, 2016). In Europe, existing buildings
represent the vast majority of the building stock, which are pre-
dominantly characterised by low energy performance (BPIE, 2011).
Therefore, a rapid transition of urban areas towards a low-carbon sce-
nario is required, taking into account national priorities in the defini-
tion of strategic goals at regional and local level (Lombardi et al.,
2014).

An accurate diagnosis of the current state of energy consumption is
the preliminary key step for the development of low-carbon urban
strategies (Howard et al., 2012). Diagnoses require the development of
energy consumption modelling to quantify the actual consumption.
This will support better urban energy management and the identifica-
tion of urban energy retrofitting (Howard et al., 2012).

Although different effective energy performance analyses for single

buildings are well documented in the literature, comprehensive energy
performance analyses at urban-scale have not been developed yet.

According to the rapid growth of data availability sources, statistical
techniques can extensively identify the associations and correlations
among various variables influencing building energy performance.
These methods utilise samples of historical consumption information as
a data source for energy modelling, analysing them based on different
variables. They are also capable to take into account socioeconomic
effects in the consumption equation (Nouvel et al., 2015).

Recently, several appropriate models were presented by means of
statistical analysis on energy planning and building stock at the urban
scale. In this context, Theodoridou, Papadopoulos, and Hegger (2011)
conducted a statistical analysis of the features of the residential
building stock relative to energy consumption and potential of energy
savings to classify the building typologies in Greece. In 2008, the sta-
tistical method for space heating carried out by Caldera, Corgnati, and
Filippi (2008) was based on a dataset of 50 multifamily residential
buildings, finding out a simple correlation among energy demand for
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space heating, construction age and thermo-physical and geometrical
features. Moreover, Fracastoro and Serraino (2011) developed an ana-
lytical method, starting from census data and energy statistics to define
the statistical distribution of residential buildings according to energy
consumption for heating demand. Another interesting statistical mod-
elling and analysis of energy consumption for the buildings sector were
conducted by Hsu (2015). This study highlighted the interactions of
several parameters, both technical and non-technical, for developing
accurate analysis and policy formulation at the local level.

In 2016, a multivariate linear regression model with numerical
predictors and categorical indicator variables to predict energy use
intensity was developed by Walter and Sohn (2016). This model mea-
sures the contribution of building characteristics and systems to energy
use based on the cross-validation approach.

In all aforementioned studies, statistical analysis techniques were
applied to identify the most influential variables on energy consump-
tion in buildings. One of the major strengths of statistical analysis is the
widespread familiarity of this methodology and its simplicity. On the
other hand, there is still an inadequate integration between energy data
and spatial planning (Zanon and Verones, 2013).

Since built environment data and information at the local level are
significantly scattered among several entities, and there is a lack of
interoperability among the data sources, one of the most challenging
barriers in developing a robust and detailed analysis is data collection
(Caputo & Pasetti, 2015). In this regard, a huge effort is required in
order to provide a supportive and comprehensive accessible building
stock database, at the local level for different goals and different sta-
keholders, gathering all the necessary data from various sources (Cajot
et al., 2017; Caputo & Pasetti, 2015).

In Italy, information about building stock and their energy perfor-
mances are derived from different regional and local authorities and
often are not homogeneous (e.g., ISTAT, Italian National Institute of
Statistics, ARPA, Regional Agency for Environmental Protection,
Regional register of energy performance certificates and AEEG
Regulatory Authority for Electricity and Gas) (Caputo, Costa, & Ferrari,
2013; Torabi Moghadam, Lombardi, & Mutani, 2017).

Therefore, in order to set up an effective energy planning at the
local scale, it is crucial to improve data availability and management.
Data availability about buildings energy consumption will be increas-
ingly improved in the future, thanks to smart metering and real-time
data monitoring, following recent open data policies (COM n.882 final,
2011).

In this context, Geographic Information Systems (GIS) helps to
identify and visualise buildings data and their distribution, supporting
decision-making, at urban and regional scale. This approach can
manage location-based information, linking alfa-numerical information
databases to spatial maps to create dynamic displays. Moreover, GIS
highlights the high energy use hotspots that need requalification
(Chalal, Benachir, White, & Shrahily, 2016). Although GIS is principally
used for buildings’ geometrical data, it can significantly assist the en-
ergy performance of buildings.

GIS-based methodologies for modelling energy consumption and
environmental performance have been progressively increased in the
last decade in order to help urban energy planning such as (Caputo &
Pasetti, 2017; Carozza, Mutani, Coccolo, & Kaempf, 2017; Cheng &
Steemers, 2011; Grassi et al., 2012; Iowerth, Lannon, Waldron, Bassett,
& Jones, 2013; La Gennusa, Lascari, Rizzo, Scaccianoce, & Sorrentino,
2011; Li, Quan, Augenbroe, Yang, & Brown, 2015; Yang & Yan, 2016).

An interesting example is the hybrid energy model of building stock
developed for the City of Goteborg, based on GIS systems by Tornberg
and Thuvander (2005). The energy data were measured at a metering
station and were linked to function and age of buildings. The outcomes
were presented in energy maps, which provided a very useful overview
of the energy performance of the city of Goteborg. Recently, Dall’O’,
Galante, and Pasetti (2012) introduced a GIS-based methodology for
creating the comprehensive framework of the energy performance in

buildings and applied it to five municipalities in the province of Milan,
considering energy using energy audits of sample buildings. This model
used the specific primary energy for space heating data to construct
regression lines based on shape factor ratio during different construc-
tion periods.

Howard et al. (2012) developed the statistical bottom-up GIS-based
model for New York City with the aim at estimating the building sector
energy end-use intensity for domestic hot water, space heating, and
electricity. In this study, building age factor was not considered and the
model was performed by robust multivariate linear regression.

Furthermore, Mastrucci et al. (2014a) developed a bottom-up sta-
tistical methodology considering dwelling type, period of construction,
floor surface and number of occupants. The Ordinary Least- Squares
(OLS) method was used to fit the model.

In 2015, Nouvel et al. (2015) proposed a combined methodology, as
a multi-framework for urban scale applications, based on Ordinary
Least- Squares (OLS) multiple linear-GIS (Mastrucci et al., 2014a) and
an engineering model making use of 3D city models.

Another GIS integrated data mining methodology framework for
estimating building performances in the urban scale was proposed by
Ma & Cheng (2016). This model is based on 216 building features for a
case study of 3640 multi-family residential buildings in New York City
and is tested and validated. Recently, Braulio-Gonzalo et al. modelled
energy performance of existing residential building stocks based on five
parameters using simulation software (Braulio-Gonzalo, Juan, Bovea, &
Ruá, 2016).

Furthermore, several recent studies highlight experimental new
methodologies for evaluating the energy performance of building stock
using GIS with regression methods (Torabi Moghadam, Delmastro,
Corgnati, & Lombardi, 2017; Torabi Moghadam, Lombardi et al., 2017;
Yeo, Yoon, & Yee, 2013).

Although many studies focused on the development of statistical
building stock models, the number of studies which adopted a GIS-
statistical methodology is quite limited.

Moreover, the previous studies did not use real data but only pre-
dicted values. The main difference between the Urban Energy
Modelling (UEM) model proposed in this paper and the previously
mentioned studies is that it takes into account various real measured
data and a significant number of predicted values. The proposed UEM is
useful for reducing time-consuming energy demand estimation pro-
cesses, supporting urban energy planning. Moreover, the spatial results
of this study are a useful tool to help decision-makers in the urban
planning process to create future energy transition strategies, im-
plementing energy efficiency and renewable energy technologies in the
context of sustainable cities. Additionally, the presented model can be
applicable to all cities with comparable building stock.

As Section 2 will better illustrate, the authors developed an urban
energy model, which describes the current state of urban energy con-
sumption to support decisional process in evaluating future scenarios.
The present work represents a useful tool to estimate the energy de-
mand for space heating of existing residential building stock at the
urban scale. The specific goal is to create an energy map of the entire
city, integrating multiple linear regression statistical techniques and
2D/3D GIS-based methodologies.

The data used in this study derive from a sample of 290 residential
buildings, built in different construction periods. Relationships were
searched between the various variables that are appropriately com-
bined to discover statistical relations. The estimated energy demand
was validated by splitting the data-set into training and testing subsets.
Moreover, the cross-validation was also applied for selecting the fea-
tures more accurately.

For the development of the GIS database, the input data were
composed by:

• climate (external air temperatures);

• geometric data (e.g., surface to volume ratio, floor area, number of



floors);

• typology of the building envelope (class of thermal transmittance U
for opaque surfaces, class of U for transparent surfaces);

• period of construction

• ground-floor type (commercial, residential and pilotis, which means
open space entrance with pillars that support building on the ground
floor);

• roof type (flat, gable);

• building type (residential);

• monthly measured data of space heating consumption (two heating
seasons).

This work is part of an ongoing Smart City research, a national
project called “EEB-Zero Energy Buildings in Smart Urban Districts”
(www.smartcommunitiestech.it/). It represents a primary step for the
implementation of future energy analyses at the urban level. The results
from this study will aid spatial decision-making processes in performing
energy planning and testing how different scenarios affect energy per-
formance and carbon emissions and its relationship as well as main-
taining the dynamic context of the smart city.

The rest of the paper is organized as follows: details of the proposed
framework are illustrated in Section 2. Section 3 presents the applica-
tion of the proposed methodology to the case study. This application is
used for testing the effectiveness of the proposed framework. Finally,
conclusive remarks are discussed in Section 4 and future developments
are identified.

2. Methodology framework

In order to create a valid and understandable model for urban en-
ergy consumption, a methodology was developed to evaluate space
heating of residential building stock in an Italian context. This model is
applicable to other similar cities. It represents the spatial distribution of
urban building energy consumption to ease the decision-making pro-
cess to simulate different urban transition energy policies according to
local conditions.

The proposed methodology is mainly based on existing census data
and real measured district heating (DH) energy consumption data.
Moreover, GIS was used to identify the geometrical characteristics, data
and information of the building stock. The geo-referencing process as-
sists significantly in managing, analysing and visualizing a huge
amount of data to support the participative and collaborative work-
shops for making the better decisions at the urban scale analysis.

Based on the available data, a regression methodology was applied
to estimate the energy demand of city residential building stock. Fig. 1
shows the proposed methodology consisting of three major steps:

• Step 1- data collection and data integration: the available data on the
existing building stock was collected and analysed. All the collected
data were overlapped and integrated at this step. Each building
polygon was associated with the relative energy consumption and
other data. The building stock was thereby characterised. The goal
was to create a city GIS Database framework on the factors influ-
encing building energy consumption.

• Step 2- Parameter identification, modelling and validation: Firstly, a
pre-processing procedure was performed using “missing value re-
placement” and “outlier detection.” Next, a feature selection pro-
cedure was applied to the given dataset to identify the most influ-
encing factors on energy performances. Lastly, a robust Multiple
Linear Regression (MLR) was employed to evaluate the energy
consumption of building stock. The feature selection process and
regression models were integrated with the cross-validation and
splitting dataset process to produce more objective and robust out-
comes.

• Step 3- model expansion at urban scale: the model obtained from the
Step 2 was expanded to the urban scale of a medium-sized city,
located in North-West of Italy. At this step, the buildings, which
were not accurately estimated, were excluded.

The proposed approach could be used by everyone involved in the
formulation and optimisation of operation strategy. The methodology is
introduced in the sub-sections below.

2.1. Data collection and data integration

The data collection procedure and its main reference sources, (e.g.,
building stock characterisation and distribution) are fundamental to
model the building energy consumption at the urban scale. Although
the data collection procedure can be generalised, data and information
availability depends strongly on each specific context. The research
began with the collection and analysis of the available data of building
stock, which affects space heating energy consumption. The proposed
methodology (Fig. 1) integrates GIS as a supportive data collection tool,
which can join different types of information or datasets by using lo-
cation as the common feature. For instance, the census datasets consist
of demographical and housing information can easily be overlapped to
individual buildings which have shape files (Ma & Cheng, 2016).

Since the target is regional and/or local scale, the definition of the
building’s database is crucial. Table 1 shows the different predictors
that principally characterise the heating space energy consumption of
buildings with their references. The geometrical data were mostly ac-
quired from the cartographic base using the automatic functions of the
GIS tool.

geo-referenced data 

non-geo-referenced data

preprocessing

feature selection

cross-validation

heteroskedasticity test

regression

base for future retrofitting scenarios 
and spatial decision support system

Step 1

Data Collection and Data Integration

Step 2

Robust Multiple Linear Regression

Step 3

Expansion the Model to City

GIS Database Parameter Identification, 
Modelling and Validation Urban Energy Map

Modelling 
Approach

Building Stock
Characterization Approach

Fig. 1. Proposed methodology framework of the research.
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In this study, the data collected consists in:
First, geo-referenced data: geometrical information on the building

stock derived from the digital cartographic technical map of the mu-
nicipality (perimeter, number of floors, heated volume, and area).
Building height (eave height) was determined by multiplying the
number of floors by the average height of the floor. The average floor
height used depends on the age of a building (Chiara Delmastro,
Mutani, & Corgnati, 2016), and consequently, it can be used to calcu-
late gross heated volume. Another interesting approach to determine
the height of buildings that it is used in this research just for the vali-
dation is to evaluate the height of buildings from the LiDAR Data or
DSM (Digital Surface Model) subtracting the DTM (Digital Terrain
Model) height data (Normalized Digital Surface Model: NDSM=DSM-
DTM), source (Berlin Environmental Atlas, 2014). This process is ap-
plicable when the relative data is available.

The prevailing period of construction of a large building stock was
extracted from the ISTAT (2011) national Census database, which
provides information for each census parcel. This variable implies the
typical envelope characteristics of buildings (e.g., roofs, floors and
windows) and heating systems efficiencies. According to the Italian
national classification, the period of construction can be divided into
nine classes characterised by homogeneous features of buildings i.e.,
age1: before 1919; age2: 1919–1945; age3: 1946–1960; age4:1961-
1970; age5: 1971 1980; age6: 1981–1990; age7: 1981–2000; age8:
2001–2005; age9: after 2005. This variable considers the building en-
velope, such as the percentage of the transparent envelope and a class
of U-value (W·m−2K−1) for both opaque and transparent surfaces, and
the performance of the heating system.

According to Guglielmina Mutani & Todeschi (2017), the Italian
periods of construction before 1919–1960 may have an increasing en-
ergy consumption. On the other hand, the buildings built during the
economic boom period (1961–1980) have higher energy consumption
values. Finally, buildings constructed after 1981 show a decreasing
energy consumption. This evidently means that Italian building stock is
characterised by high-rise energy consumption before the first energy
regulation (e.g., Law 373/1976), when any envelope insulation and
energy efficient system was required.

Furthermore, from the percentage of the occupied building the
building's occupation factor can be identified, which is derived from the

ISTAT national census database. Unlike many previous studies, ground-
floor typology (R: residential, C: commercial and P: pilotis) was also
considered in this study, which is derived from the digital cartographic
buildings map of technical departments of the municipality.

The model for determining the space heating consumption of the
buildings depends clearly on the surface to volume ratio of the build-
ings (S/V, dispersing surface/heated volume). This factor represents the
non-compactness of the building, and it was determined using GIS,
excluding the contiguous surfaces between two heated buildings. In this
study, the automatic calculation of the adjacent walls was applied ac-
cording to Guglielmina Mutani & Vicentini (2013). This procedure
permitted the subtraction of this parameter from the gross dispersant
surface to obtain the real dispersant surface and also the unheated
volumes. Subsequently, the higher dispersant surfaces were considered
for typical Italian building archetypes. The surface to volume ratio is
classified as Detached House (DH): S/V≥ 0.8m−1; Terrace House (TH):
0.6 ≤S/V≤ 0.8m−1; Multi-Family House (MFH): 0.4 ≤S/V≤
0.6 m−1; Apartment Block (AB): S/V≤ 0.4m−1 (TABULA, 2012).

Finally, the roof type (G: gable, F: flat) and the mean daily climate
temperature were also added to other information.

On the other hand, the non-georeferenced necessary energy con-
sumption data of buildings were collected, such as measured monthly
energy consumption for DH with its installed power information. When
the measured real data is not available (in many countries), other
methodologies such as building simulation tools can be used to de-
termine the energy consumption.

The database was updated monthly in the two heating seasons
2011–2012 and 2014–2015. The monthly DH energy consumption was
given by the district heating company. In this step, these kinds of data
were geo-referenced and associated to each building entity using
Google maps and in-situ analyses (sometimes it is possible to perform
this operation automatically based on buildings address and geo-
coding).

Finally, in order to create a supportive and strong GIS database, it
was necessary to integrate all the data collected at two levels: (a) the
individual building level (e.g., the base floor area, the perimeter, the
gross volume and eaves height of the buildings, the external surface, DH
data) and (b) the ISTAT census cartography level (e.g., the main con-
struction period and the average building occupation percentage).

Table 1
Structure of the database and the relative description of the variables.

Data Raw data unite Source of information Reference

Dispersing Surface Floor area m2 Cartography Dall’O’, Galante, and Pasetti (2012); Fracastoro and Serraino (2011)
Perimeter Cartography
Height Derived
Contiguity Derived

Net floor Area Gross floor area m2 Cartography Caputo et al. (2013); Fracastoro and Serraino (2011)
Gross/net ratio Normative

Height Number of floors m Cartography Dall’O’, Galante, and Pasetti (2012)
Floor height Literature

Heated Volumes Net floor area m3 Derived Dall’O’, Galante, and Torri (2012), Fracastoro and Serraino (2011)
Net floor height Derived

Number of floors – number Cartography Dall’O’, Galante, & Pasetti (2012)
Perimeter – m Cartography (Caputo et al., 2013; Dall’O’, Galante, & Pasetti, 2012)
Building shape factor Net floor area m−1 Derived Aksoezen, Daniel, Hassler, and Kohler, (2015); Braulio-Gonzalo et al. (2016), Florio

and Teissier, (2015), Penna, Prada, Cappelletti, and Gasparella (2015)Net floor height
Gross floor area
Gross/net ratio

Roof type – – Google earth/In-situ
analysis

Dall’O’, Galante, & Pasetti (2012)

Period of construction – – ISTAT national census Aksoezen et al. (2015), Dascalaki, Droutsa, Gaglia, Kontoyiannidis, and Balaras (2010),
Florio and Teissier (2015), Theodoridou et al. (2011)

Temperature Typical meteorological C° ARPA Mastrucci et al. (2014b)
Building occupation ratio Occupied buildings % ISTAT national census Mutani and Vicentini (2015)

Empty buildings ISTAT national census
Ground floor type – – Cartography Evans, Liddiard, and Steadman (2015)
Installed power – kW DH Company –



Fig. 2 summarises the procedure of GIS database framework, which
consists in all data and information describing each building as a basis
for estimating the related energy consumption for space heating. This is
a key stage since it is a foundation of the entire calculation process and
other substantial actions. In this phase, the stakeholders’ involvement
should be integrated as well to obtain the existing data and determine
relevant sustainable objectives for future planning (Pelzer, Arciniegas,
Geertman, & Lenferink, 2015)

2.2. Parameter identification, modelling and validation

The statistical methodology based on a geospatial multiple linear
regression model was applied at the urban scale. In the building sector,
many different statistical bottom-up methods exist (Torabi Moghadam,
Delmastro et al., 2017). From a comparison of regression analysis, de-
cision tree and neural networks it emerged that these methods are
comparable in predicting energy consumption with a quite small dif-
ference in terms of errors (Tso & Yau, 2007). Using regressions helps in
easing the usage and interpretation of the parameters introduced in the
analysis (Mastrucci, Baume, Stazi, & Leopold, 2014b). One of the most
popular regression algorithms is the multiple linear regression (MLR).
Specifically, many researchers have used the MLR method with the aim
of predicting energy consumption using a range of different predictors
(Section 1). These techniques determine the strength of the relationship
between one dependent variable used for numerical prediction. More-
over, the regression models are highly rated due to their simple appli-
cation (Bassani, Catani, Cirillo, & Mutani, 2016).

Eq. (1) describes a multiple linear regression model with more than
one explanatory variable:

= + + + …+ +y I β x β x β x εp p1 1 2 2 (1)

Where:

• y is the output variable;

• I the general model intercept;

• βi the regression coefficient (i= 1,2,…,p);

• xi the input variables (i = 1, 2,…,p)

• ε the random effect (to measure the random difference between the
y variables for all buildings and the corresponding prediction for a
specific building) and remaining errors.

Pre-processing: There are usually features with missing values in
the dataset. In this study, they were replaced by the mean value of that
attribute (Han, Kamber, & Pei, 2011). Moreover, a detection procedure
was performed to check the presence of outliers, which were subse-
quently removed.

Feature selection: Many variables for estimating the energy con-
sumption in statistical models could be irrelevant or redundant;
therefore, key variables selection is an important step in achieving more
accurate predictions (Hsu, 2015). Indeed, those redundant variables
lead to reduce the model performance. Hence, a proper feature selec-
tion process and identification of the correlation that measures the
degree of association between two attributes is fundamental.

Computer science offers a number of different approaches for fea-
ture selection. This study used Akaike Information Criterion (AIC) to
select features for the linear regression (Akaike, 1973). It selects the
attribute with the smallest standardised coefficient in each iteration,
removing it and performing another regression (Deshpande, 2012). In
order to robustly select the features, the removed correlation variables
operation was applied in the proposed methodology to remove the high
correlated variables. Correlated attributes are usually removed since
they behave in a similar manner and they have the same impact in
prediction calculations; therefore, keeping those attributes is redundant
and time-space consuming.

Validation: With the aim of assuring prediction accuracy and
proper model characteristics, assumptions at the basis of the regression
model should be carefully verified. Validation of the statistical model

Fig. 2. Conceptual scheme of GIS data platform.



can be internally performed, using techniques such as cross-validation.
This study compares the performance of the representative regres-

sion approach in these two aspects. To verify the energy demand esti-
mated, the actual energy consumption of the target area was compared
with the calculated energy demand. Details are as follows:

First, very high correlated variables were removed before applying
the regression model. Then, the dataset was divided into two subsets,
training and testing, to assess the model performance. In this way, a
model was first trained on a 90% of the dataset, and then that model
was applied to the testing partition to validate and identify the relia-
bility of the methodology. The performance showed the difference be-
tween training and testing set estimates in terms of fitting (coefficient of
determination, R2) and prediction error (Mean-Root-Squared-Error,
MRSE) (Fig. 3).

Second, the feature selection procedure and regression were vali-
dated by cross-validation approach to achieve more stable results and to
avoid the high risk of overfitting (Han et al., 2011). In the cross-vali-
dation process, the dataset was divided into the ten same size folds. A
single fold was considered as the testing data set and the remaining nine
subsets were used as training data set. The cross-validation process was
then repeated ten times, with each of the ten subsets used exactly once
as the testing data. By applying cross-validation, the model was able to
compare the features selection strategies and identify the regression
algorithms (Fig. 4).

The results show (Section 3.2.) that both approaches produce si-
milar performances and coefficients.

Heteroskedasticity test: Homoskedasticity is a significant as-
sumption in regression analysis (Hayes & Cai, 2007). Therefore, the
appropriate diagnostics (e.g., Breusch–Pagan test and White test) were
performed to carefully check the multiple linear regression model as-
sumptions, verifying the correct specification and accuracy of the
model prediction. The homoscedasticity (assumption of homogeneous
variance for residuals) was tested through the scatter plot of residuals
(or the squared residuals) against predicted values. The initial presence
of heteroscedasticity was reduced thorough heteroskedasticity-con-
sistent standard errors (HCSE) (or robust errors) in the Linear Regres-
sion Model (White, 1980), which allowed the fitting of a model that
contains heteroscedastic residuals. The software SPSS was used

additionally for this scope. Finally, no significant heteroskedasticity
issues were detected as residuals were randomly scattered.

2.3. Model expansion into the city

As previously stated, the goal of the study was the evaluation of a
simplified energy consumption model for space heating at the urban
scale. All the considered variables needed to be extendable and avail-
able for the whole city. Once the statistical analysis using building
function was performed, the results were mapped across the city. Since
the sample of dataset includes a specific range of heated volume, the
buildings that were lower and much higher than this value were ex-
cluded. The database information quality and, accordingly, the geo-
referenced model can be continuously improved (Ascione et al., 2013).
This methodology is flexible enough to add variables according to the
data availability and purpose of the analysis, such as occupants’ beha-
viour or buildings renovation ratio information.

3. Case study

The residential building stock of the city of Settimo Torinese, a
medium-sized urban area, located in the North-West of Italy in the
continental temperature climatic zone, was chosen as a case study to
develop and test the methodology. The building stock characterisation,
energy consumption profiles and the dataset used are presented in this
section. The city is composed of 300 census sections and about 3600
residential buildings with 47,831 inhabitants. The GIS used for this
study was ArcGIS 10.3. The total heated volume of the residential
buildings is equal to 8.55Mm3.

3.1. Data Set

The measured energy consumption data available consist of
monthly records of DH energy consumption for the residential sector for
the heating seasons 2011–2012/2014-2015, with respectively 2597 and
2342 HDD at 20 °C. The data were pre-processed and carefully analysed
before being put into the model. In this study, the monthly data energy
consumption was elaborated first for each month (from the exact first

Fig. 3. Validation Process.

Fig. 4. Cross-validation Process.



day of the month to the last day), and then it was divided by the
number of days of each month in order to have a normalised daily
energy consumption.

The monthly measured DH energy consumption data of 290 residential
buildings were used for the analysis (the local DH Company provided the
total number of mixed typology buildings connected to the DH network,
which was 350). Almost 50% of the data were excluded before creating the
model due to the difficulty of associating the address of the building to its
heated volume and due to some differences between the GIS calculated
heated volume and the heated volume given by the DH company.
Moreover, the GIS data was optimised by comparing the volume of the
buildings and the measured volume provided by the DH company, with an
acceptable limit of 15% difference. 165 buildings out of a total number of
290 residential buildings connected to the DH were successfully associated
and geo-referenced with the polygon of each building on the GIS map. This
operation was performed manually using the Google Maps platform and in-
situ analysis to identify the relative buildings.

In order to create a supportive database and to have enough
available data, these 165 residential buildings were considered over 7
months (from October to April) of two heating seasons,taking into ac-
count the residential typology; ground floor typology (C: commercial,
R: residential, P: pilotis); occupation factor; number of floors; geome-
trical information of each building (area, perimeter, heated volume,
height); the surface to heated volume ratio S/V. Regarding the period of
construction, a linear correlation can be hypothesised by dividing the
buildings into three clusters, with higher energy consumption for the
buildings built from 1961 to 1980 (n. data 1344), lower consumption
for the older ones (n. data 678) and for the newer ones (n. data 245).

As a complement to the data set provided directly by the city, daily
records of the outdoor air temperature of these two years were made
available through the Regional Agency for Environmental Protection
(ARPA). The acquired input data set is summarised in Table 2.

By using the GIS tool, it was possible to represent how these vari-
ables are distributed in the city of the case study. Fig. 5 shows the urban
block distribution according to the year of construction, ground floor
type, and S/V as reported in Table 2. Among all the surveyed buildings,
82% of the buildings are characterised by the ground floor as a re-
sidential type, and just 14% have a commercial ground floor. Regarding
the period of construction, 47 buildings were built in the category of
age3 (1946–1960), accounting for 29%, while 84 buildings were con-
structed in age4 (1961–1970), accounting for 51%. This fact is very
much proportionate with the reality of the entire building stock and it
means that the building stock is mostly characterised by buildings built
before the first Italian energy regulation. Fig. 5 shows that the MFH

typology is the most widely used, accounting for 68%, followed by TH
and AB, accounting for 16%. This fact indicates that the single SFH
houses are not connected to the DH network. The results of the MLR
analysis strongly depend on the sample of buildings analysed.

3.2. Results and discussion

This section discusses the outcomes of the regression analysis and the
spatial distribution of the annual energy consumption. The data mining
software RapidMiner 7.1 was employed to analyse and model the energy
consumption of residential buildings in Settimo Torinese. Furthermore, the
influence of every single variable on energy consumption was analysed.

Fig. 6 illustrates the scatter plots for each of the variables with respect to
the daily space heating energy consumption. As is shown, there are corre-
lations between the energy-use for space heating and some of the selected
variables of buildings, such as the perimeter, heated volume, installed
power and area. It should be noted that in this analysis not all the variables
were taken into account, due to the fact that data about them were not
available, such as the level of renovation of the buildings and the adoption
of renewable energy technologies. This may have a slight influence on the
dispersion of the results. Moreover, the results of this first analysis are af-
fected by the number of buildings analysed. For instance, for each period of
construction and each value of surface to volume ratio (S/V), the number of
buildings is not the same. The sample of buildings connected to the DH
network mainly consists of big apartment blocks built in 1961-70.

In Table 3 the correlation coefficients between the daily heating energy
consumption (kWh) and different single variables of the available sample of
data are shown. Some correlations appear to be very rational and intuitive,
such as perimeter, surface, area, height, heated volume, installed power,
occupation ratio, and air temperature. A particularly interesting result is
that some correlations seem to be controversial, taking into account basic
thermosphysics of buildings, such as S/V ratio.

Table 3 reports that the S/V ratio correlation is negatively corre-
lated with space heating energy consumption. This fact is explained by
the strong correlation between the variables heated volumes and S/V.
Due to building geometry, high values of S/V are generally related to
small buildings (e.g., semi-detached houses) with low energy con-
sumption, while small S/V values are related to large sie condominiums
with higher energy consumption. However, a positive correlation is
expected between the S/V and the specific daily energy consumption
(kWh/m2 or kWh/m3) (see Fig. 7).

The correlations of each of these variables on energy-use for space
heating were analysed and a MLR was modelled identifying the best
coefficient of determination (R2).

Table 2
Input sample dataset indicating minimum, maximum, average and standard deviation values.

Sample of data (165 residential buildings) Entire Building stock (3600 residential buildings)

Numerical Input Variable Min Max SD Ave. Min Max SD Ave.

Dispersing Surface (m2) 802.28 11678.66 1618.38 2822.98 190.02 13910.40 1336.19 1384.72
Area (m2) 147.46 1688.17 270.62 502.89 6.10 2953.72 221.70 230.97
Height (m) 7.00 27.00 5.51 16.49 3.10 27.20 4.35 8.06
Heated volumes (m3) 1504.11 40178.46 6205.36 8609.83 20.76 51063.76 3902.08 2370.95
Number of floors (number) 2.00 8.00 1.66 4.00 1.00 8.00 1.28 2.35
Perimeter (m) 49.24 348.84 46.91 107.65 9.90 498.90 41.04 66.22
S/Vreal (m−1) 0.34 0.78 0.09 0.51 0.32 2.39 0.31 0.93
Temperature (C°) −0.30 12.85 4.27 6.81 −0.30 12.85 4.27 6.81
Building occupation ratio (%) 0.00 1.00 0.06 0.95 0.00 1.00 0.20 0.85
Installed power (kW) 50.00 1000.00 126.23 196.43 n.d. n.d. n.d. n.d.

Nominal Input Variable Least Most Least Most

Period of construction >1919 (1) 1961–1970 (84) – – 2001–2005 (82) 1946–1960 (1028) – –
Ground floor type P (6) R (135) – – P (48) R (2962) – –
Roof type F (5) G (160) – – n.d. n.d. – –



The estimated coefficients, standard error, and p-values (the prob-
ability for a given statistical model) for energy consumption robust
linear regression are shown in Table 4 (Model A) and Table 5 (Model B),
respectively.

All numerical predictors strongly rejected the null hypothesis for a
value of ≤0.05 indicating that the estimated intensities are statistically
significant. Moreover, the code factor (*) is based directly on p-value,
where more stars mean the variable is more significant. In the following
paragraphs, the predicted values from the model will be compared to
the real data provided by the city.

In the analysis of variance, known as the ANOVA, the F-sta-
tistic= 1132.478 (p-value < 0.0001), indicating the results of the re-
gression model is satisfactory.

The correlation coefficient between the predicted and observed
values, measured by the mean squared error (MSE) and squared cor-
relation (R2), are shown Table 4 (Model A) Table 5 (Model B). In the
second model (B), the data about the installed power and the type of
roof were excluded because they are not available for the entire
building stock. As a result, the performance of the second model (B) was
slightly diminished with respect to Model A. The coefficients of the
regression equation for each variable seem to have the expected trend:

• the highest coefficient for the buildings built in 1961–1980, as they
consume more energy, and lower consumption for the older build-
ings due to their lower percentage of transparent envelope and
higher structure thickness and for the newer buildings due to their
thermally insulated envelopes;

• a positive coefficient with gable roofs, as the dispersant surface and
heated volume is greater with higher energy consumption;

• a negative coefficient for the commercial typology of the ground
floor, as it is usually heated autonomously;

• a positive coefficient for the pilotis, as the floor disperses more heat
to the outside environment;

• a positive coefficient for bigger buildings, as the high heated vo-
lume, number of floors, and perimeter leads to higher energy con-
sumption;

• a positive coefficient for the installed power of the heat exchanger as

it depends on the dimensions and the level of energy efficiency of
buildings;

• a negative coefficient for the outdoor air temperature, as with lower
air temperatures the energy consumption increases;

• a positive coefficient for the occupation factor as the buildings
consume more if they are utilised and occupied.

In Figs. 8 and 9, it is possible to notice the good correlation of the
models and the correspondence between measured and predicted an-
nual energy consumption. The colours of the points indicate the heated
volumes of the buildings and it is shown that the model does not work
for massive buildings.

The coefficients of determination R2 for the two models are of 0.84
and 0.80, meaning a high-performance correlation even without the
installed power and the type of roof variables. The precision of a model
depends on the availability and the accuracy of data and, mostly, on the
typology of the data sample.

Finally, applying the energy regression model to the entire building
stock area in Settimo Torinese, through the GIS framework, the energy
consumption spatial distribution was represented, creating a visual
map. The total annual energy consumption (kWh/m3) for each in-
dividual building is shown in Fig. 10. Moreover, the spatial results of
this study help to identify in which neighbourhoods the energy con-
sumption is mostly concentrated. Since the sample of dataset includes
heated volumes greater than 1500m3 (see Table 2), the building vo-
lumes less than this value were excluded (grey polygons). The results
show that the residential buildings constructed before 1980 have a
mean annual energy consumption of 27.47 kWh/m3. Indeed, the
buildings located in the historic city centre are one of the largest annual
energy consumers, as is shown by the dark colours on the map (about
47.70 kWh/m3). Those constructed after 2005 show a decrease in the
heating energy consumption of 10%.

4. Conclusion and future developments

Urban energy efficiency plays a crucial role in the implementation
of energy policies in the context of low-carbon cities and smart cities.

Fig. 5. The comparison between the sample of input data (165 buildings) on the left and the entire building stock (3608 buildings) on the right for ground floor typology, period of
construction and S/V respectively.



The research presented in this paper demonstrates that urban actors
(e.g., energy planners, local and public administrators and other sta-
keholders) can be supported by an appropriate urban scale energy
consumption model in delivering the most effective strategies. The
whole procedure was successfully tested at the city level for Settimo
Torinese and validated. Given available data, the proposed metho-
dology can be applied to any similar city and also to other kinds of
energy usage (e.g., electricity, cooling).

Analysis of the available data regarding the existing building stock
is crucial to understand the measurements needed to achieve energy
efficiency or lower gas emissions in the construction sector. This
methodological approach was chosen to determine the energy con-
sumption for space heating of a residential building stock at the urban

scale. A framework combining statistical analysis with GIS-based
techniques was employed to identify the most appropriate variables
influencing energy consumption, using detailed measured building
data. Moreover, GIS tools were used to support both the geometrical
building stock characterisation and the energy assessment process. The
spatial distribution of urban energy consumption in 2D and 3D visua-
lisations represents a useful tool − a new Spatial Decision Support
System (SDSS) − to facilitate decision-making process in order to de-
fine a variety of urban transition energy policies according to local
conditions in a smart cities context.

The Multiple Linear Regression (MLR) analysis applied in this study
has highlighted the variables most related to energy consumption, as
follows: period of construction, heated volume, type of ground floor,

Fig. 6. Scatter plot: DH energy consumption and variables.



occupation factor, air temperature, type of roof and the installed
heating power. In case two variables are not available, such as the type
of roof and the installed power, the model reaches a determination
coefficient of 0.8, but only for buildings of a limited heated volume.
Since the building stock is constituted mostly by large condominiums,
the models have a higher margin of error on low volume buildings; for
the same reason, this model should be utilised only for buildings con-
nected to the district heating network. It is important to remember that
the level of uncertainty for a model of this type is strongly dependent on
the characteristics of the sample.

Finally, this model makes it possible to evaluate an average con-
sumption of residential buildings for space heating and it can be used to
spatially distribute the energy demand, supply and emissions at the
urban/local scale.

One of the limitations of this study regards microclimate effects,
which were not taken into account in the presented method. In fact, a
microclimate model that would give a single value for the whole city for
air temperature would not significantly improve the results of the
current model presented in this paper. The current paper aimed to

provide a statistical relationship for the energy demand. Running a
microclimate model would mean including a dynamic and full-year
simulation that would be beyond the context of this study. Instead, this
research will continue by using a meteorological model developed by
Mauree, Coccolo, Kaempf, and Scartezzini (2017) on the city of Settimo
Torinese and couple it with the CitySim (Mauree, Lee, Naboni, Coccolo,
& Scartezzini, 2017; Robinson et al., 2009) to evaluate the influence of
the microclimate on the energy demand of the buildings. In this case,
the current MLR-GIS model will be a basis for the future integration
evaluating different energy saving scenarios.

Within the EEB project, further development and improvement will
be necessary, including other new databases regarding natural gas
measured consumption (for a larger part of the city) and regarding
building stock characterisation (for each building). Further research
will also be necessary for improving this model by taking into account
additional elements, such as solar exposure, microclimate effects and
urban variables of the surrounding environment (Delmastro, Mutani,
Pastorelli, & Vicentini, 2015; Mutani & Todeschi, 2017).

In conclusion, this study represents the first step towards the goal of

Table 3
Correlations of the selected variables with energy consumption (kWh).

Attributes Daily Energy Consumption (kWh) Association

Numerical variables
Installed power (kW) 0.789 Strong positive association
Dispersing Surface (m2) 0.631 Strong positive association
Heated volumes (GIS) (m3) 0.619 Strong positive association
Perimeter (m) 0.544 Strong positive association
Area (m2) 0.541 Strong positive association
S/Vreal (m−1) −0.528 Strong negative association
Height (m) 0.440 Weak positive association
Number of floors (number) 0.434 Weak positive association
Temperature (Cᵒ) −0.383 Weak negative association
Building occupation ratio (%) 0.161 Weak positive association
Non-numerical variables
Ground-floor type R −0.074 Weak negative association
Ground-floor type C −0.057 Weak negative association
Ground-floor type P 0.261 Weak positive association
Roof type F 0.045 Little positive or no association
Roof type G −0.045 Little negative or no association
Period of construction(Period 1:< 1960) −0.009 Little negative or No association
Period of construction(Period 2:1961–1980) 0.003 Little positive or No association
Period of construction(Period 3:> 1981) −0.019 Little negative or No association

Fig. 7. Relationship between S/Vreal (m2/m3) with heated volume (m3) and daily energy consumption (kWh/m3).
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developing future urban energy scenarios through the development of a
Spatial Decision Support System (SDSS) (Lombardi, Abastante, &
Moghadam, 2017; Torabi Moghadam, Lombardi et al., 2017)

Currently, the work is in progress for developing a powerful Multi-
Criteria Spatial Decision Support System (MC-SDSS) visualisation tool

to structure group decision-making problems and managing conflicting
aspects. The future MC-SDSS will allow the development of scenarios
taking into account not only energy consumption but also socio-eco-
nomic and environmental aspects of future sustainable cities.

Table 5
Linear regressions considering the influencing variables that are expandable at the urban scale, removing installed power and the roof type (Model B).

X-Validation Validation

Attribute Coef. Std.error t-stat p-value Coef. Std.error t-stat p-value

Period of construction (< 1960) 15.86 17.77 0.89 0.372 10.24 19.23 0.53 0.59
Period of construction (1961–1980) 17.74 16.81 1.06 0.291 18.11 18.19 0.99 0.32
Period of construction (> 1981) −33.19 28.71 −1.16 0.247 −28.38 31.22 −0.90 0.36
Ground floor_C −25.88 23.58 −1.10 0.272 −28.45 25.28 −1.12 0.26
Ground floor_P 27.00 50.03 0.54 0.589 23.4 57.90 0.40 0.68
Perimeter (m) 5.77 0.29 19.73 00**** 6.44 0.33 19.25 0****
Number of floor (Eaves) 108.43 5.85 18.54 0**** 126.62 6.42 19.69 0****
Heated volumes-GIS (m3) 0.03 0.00 9.97 0**** 0.021 0.00 6.15 9.06E-10****
Monthly average temperatures (C°) −63.34 1.91 −33.11 0**** −63.52 2.05 −30.96 0****
Occupation factor 885.29 137.48 6.44 1.49E-10**** 917.00 146.48 6.25 4.79E-10****
(Intercept) −776.06 Infinity 0.00 1 −873.41 Infinity 0.53 1
Performances root_mean_squared_error: 234.668 ± 28.713 (mikro: 236.333 ± 0.000) root_mean_squared_error: 216.811 ± 0.000

squared_correlation: 0.803 ± 0.058 (mikro: 0.802) squared_correlation: 0.826

*Signific.code:< 0.5; **Signific.code:< 0.01; ***Signific.code:< 0.001.

Fig. 8. the comparison between the predicted and the real daily energy consumption (kWh), considering installed power and the roof type (X-validation).
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