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space heating, construction age and thermo-physical and geometrical
features. Moreover, Fracastoro and Serraino (2011) developed an ana-
lytical method, starting from census data and energy statistics to de�ne
the statistical distribution of residential buildings according to energy
consumption for heating demand. Another interesting statistical mod-
elling and analysis of energy consumption for the buildings sector were
conducted by Hsu (2015). This study highlighted the interactions of
several parameters, both technical and non-technical, for developing
accurate analysis and policy formulation at the local level.

In 2016, a multivariate linear regression model with numerical
predictors and categorical indicator variables to predict energy use
intensity was developed by Walter and Sohn (2016). This model mea-
sures the contribution of building characteristics and systems to energy
use based on the cross-validation approach.

In all aforementioned studies, statistical analysis techniques were
applied to identify the most in�uential variables on energy consump-
tion in buildings. One of the major strengths of statistical analysis is the
widespread familiarity of this methodology and its simplicity. On the
other hand, there is still an inadequate integration between energy data
and spatial planning (Zanon and Verones, 2013).

Since built environment data and information at the local level are
signi�cantly scattered among several entities, and there is a lack of
interoperability among the data sources, one of the most challenging
barriers in developing a robust and detailed analysis is data collection
(Caputo & Pasetti, 2015). In this regard, a huge e�ort is required in
order to provide a supportive and comprehensive accessible building
stock database, at the local level for di�erent goals and di�erent sta-
keholders, gathering all the necessary data from various sources (Cajot
et al., 2017; Caputo & Pasetti, 2015).

In Italy, information about building stock and their energy perfor-
mances are derived from di�erent regional and local authorities and
often are not homogeneous (e.g., ISTAT, Italian National Institute of
Statistics, ARPA, Regional Agency for Environmental Protection,
Regional register of energy performance certi�cates and AEEG
Regulatory Authority for Electricity and Gas) (Caputo, Costa, & Ferrari,
2013; Torabi Moghadam, Lombardi, & Mutani, 2017).

Therefore, in order to set up an e�ective energy planning at the
local scale, it is crucial to improve data availability and management.
Data availability about buildings energy consumption will be increas-
ingly improved in the future, thanks to smart metering and real-time
data monitoring, following recent open data policies (COM n.882 �nal,
2011).

In this context, Geographic Information Systems (GIS) helps to
identify and visualise buildings data and their distribution, supporting
decision-making, at urban and regional scale. This approach can
manage location-based information, linking alfa-numerical information
databases to spatial maps to create dynamic displays. Moreover, GIS
highlights the high energy use hotspots that need requali�cation
(Chalal, Benachir, White, & Shrahily, 2016). Although GIS is principally
used for buildings’ geometrical data, it can signi�cantly assist the en-
ergy performance of buildings.

GIS-based methodologies for modelling energy consumption and
environmental performance have been progressively increased in the
last decade in order to help urban energy planning such as (Caputo &
Pasetti, 2017; Carozza, Mutani, Coccolo, & Kaempf, 2017; Cheng &
Steemers, 2011; Grassi et al., 2012; Iowerth, Lannon, Waldron, Bassett,
& Jones, 2013; La Gennusa, Lascari, Rizzo, Scaccianoce, & Sorrentino,
2011; Li, Quan, Augenbroe, Yang, & Brown, 2015; Yang & Yan, 2016).

An interesting example is the hybrid energy model of building stock
developed for the City of Goteborg, based on GIS systems by Tornberg
and Thuvander (2005). The energy data were measured at a metering
station and were linked to function and age of buildings. The outcomes
were presented in energy maps, which provided a very useful overview
of the energy performance of the city of Goteborg. Recently, Dall’O’,
Galante, and Pasetti (2012) introduced a GIS-based methodology for
creating the comprehensive framework of the energy performance in

buildings and applied it to �ve municipalities in the province of Milan,
considering energy using energy audits of sample buildings. This model
used the speci�c primary energy for space heating data to construct
regression lines based on shape factor ratio during di�erent construc-
tion periods.

Howard et al. (2012) developed the statistical bottom-up GIS-based
model for New York City with the aim at estimating the building sector
energy end-use intensity for domestic hot water, space heating, and
electricity. In this study, building age factor was not considered and the
model was performed by robust multivariate linear regression.

Furthermore, Mastrucci et al. (2014a) developed a bottom-up sta-
tistical methodology considering dwelling type, period of construction,
�oor surface and number of occupants. The Ordinary Least- Squares
(OLS) method was used to �t the model.

In 2015, Nouvel et al. (2015) proposed a combined methodology, as
a multi-framework for urban scale applications, based on Ordinary
Least- Squares (OLS) multiple linear-GIS (Mastrucci et al., 2014a) and
an engineering model making use of 3D city models.

Another GIS integrated data mining methodology framework for
estimating building performances in the urban scale was proposed by
Ma & Cheng (2016). This model is based on 216 building features for a
case study of 3640 multi-family residential buildings in New York City
and is tested and validated. Recently, Braulio-Gonzalo et al. modelled
energy performance of existing residential building stocks based on �ve
parameters using simulation software (Braulio-Gonzalo, Juan, Bovea, &
Ruá, 2016).

Furthermore, several recent studies highlight experimental new
methodologies for evaluating the energy performance of building stock
using GIS with regression methods (Torabi Moghadam, Delmastro,
Corgnati, & Lombardi, 2017; Torabi Moghadam, Lombardi et al., 2017;
Yeo, Yoon, & Yee, 2013).

Although many studies focused on the development of statistical
building stock models, the number of studies which adopted a GIS-
statistical methodology is quite limited.

Moreover, the previous studies did not use real data but only pre-
dicted values. The main di�erence between the Urban Energy
Modelling (UEM) model proposed in this paper and the previously
mentioned studies is that it takes into account various real measured
data and a signi�cant number of predicted values. The proposed UEM is
useful for reducing time-consuming energy demand estimation pro-
cesses, supporting urban energy planning. Moreover, the spatial results
of this study are a useful tool to help decision-makers in the urban
planning process to create future energy transition strategies, im-
plementing energy e�ciency and renewable energy technologies in the
context of sustainable cities. Additionally, the presented model can be
applicable to all cities with comparable building stock.

As Section 2 will better illustrate, the authors developed an urban
energy model, which describes the current state of urban energy con-
sumption to support decisional process in evaluating future scenarios.
The present work represents a useful tool to estimate the energy de-
mand for space heating of existing residential building stock at the
urban scale. The speci�c goal is to create an energy map of the entire
city, integrating multiple linear regression statistical techniques and
2D/3D GIS-based methodologies.

The data used in this study derive from a sample of 290 residential
buildings, built in di�erent construction periods. Relationships were
searched between the various variables that are appropriately com-
bined to discover statistical relations. The estimated energy demand
was validated by splitting the data-set into training and testing subsets.
Moreover, the cross-validation was also applied for selecting the fea-
tures more accurately.

For the development of the GIS database, the input data were
composed by:

• climate (external air temperatures);

• geometric data (e.g., surface to volume ratio, �oor area, number of



�oors);

• typology of the building envelope (class of thermal transmittance U
for opaque surfaces, class of U for transparent surfaces);

• period of construction

• ground-�oor type (commercial, residential and pilotis, which means
open space entrance with pillars that support building on the ground
�oor);

• roof type (�at, gable);

• building type (residential);

• monthly measured data of space heating consumption (two heating
seasons).

This work is part of an ongoing Smart City research, a national
project called “EEB-Zero Energy Buildings in Smart Urban Districts”
(www.smartcommunitiestech.it/). It represents a primary step for the
implementation of future energy analyses at the urban level. The results
from this study will aid spatial decision-making processes in performing
energy planning and testing how di�erent scenarios a�ect energy per-
formance and carbon emissions and its relationship as well as main-
taining the dynamic context of the smart city.

The rest of the paper is organized as follows: details of the proposed
framework are illustrated in Section 2. Section 3 presents the applica-
tion of the proposed methodology to the case study. This application is
used for testing the e�ectiveness of the proposed framework. Finally,
conclusive remarks are discussed in Section 4 and future developments
are identi�ed.

2. Methodology framework

In order to create a valid and understandable model for urban en-
ergy consumption, a methodology was developed to evaluate space
heating of residential building stock in an Italian context. This model is
applicable to other similar cities. It represents the spatial distribution of
urban building energy consumption to ease the decision-making pro-
cess to simulate di�erent urban transition energy policies according to
local conditions.

The proposed methodology is mainly based on existing census data
and real measured district heating (DH) energy consumption data.
Moreover, GIS was used to identify the geometrical characteristics, data
and information of the building stock. The geo-referencing process as-
sists signi�cantly in managing, analysing and visualizing a huge
amount of data to support the participative and collaborative work-
shops for making the better decisions at the urban scale analysis.

Based on the available data, a regression methodology was applied
to estimate the energy demand of city residential building stock. Fig. 1
shows the proposed methodology consisting of three major steps:

• Step 1- data collection and data integration: the available data on the
existing building stock was collected and analysed. All the collected
data were overlapped and integrated at this step. Each building
polygon was associated with the relative energy consumption and
other data. The building stock was thereby characterised. The goal
was to create a city GIS Database framework on the factors in�u-
encing building energy consumption.

• Step 2- Parameter identi�cation, modelling and validation: Firstly, a
pre-processing procedure was performed using “missing value re-
placement” and “outlier detection.” Next, a feature selection pro-
cedure was applied to the given dataset to identify the most in�u-
encing factors on energy performances. Lastly, a robust Multiple
Linear Regression (MLR) was employed to evaluate the energy
consumption of building stock. The feature selection process and
regression models were integrated with the cross-validation and
splitting dataset process to produce more objective and robust out-
comes.

• Step 3- model expansion at urban scale: the model obtained from the
Step 2 was expanded to the urban scale of a medium-sized city,
located in North-West of Italy. At this step, the buildings, which
were not accurately estimated, were excluded.

The proposed approach could be used by everyone involved in the
formulation and optimisation of operation strategy. The methodology is
introduced in the sub-sections below.

2.1. Data collection and data integration

The data collection procedure and its main reference sources, (e.g.,
building stock characterisation and distribution) are fundamental to
model the building energy consumption at the urban scale. Although
the data collection procedure can be generalised, data and information
availability depends strongly on each speci�c context. The research
began with the collection and analysis of the available data of building
stock, which a�ects space heating energy consumption. The proposed
methodology (Fig. 1) integrates GIS as a supportive data collection tool,
which can join di�erent types of information or datasets by using lo-
cation as the common feature. For instance, the census datasets consist
of demographical and housing information can easily be overlapped to
individual buildings which have shape �les (Ma & Cheng, 2016).

Since the target is regional and/or local scale, the de�nition of the
building’s database is crucial. Table 1 shows the di�erent predictors
that principally characterise the heating space energy consumption of
buildings with their references. The geometrical data were mostly ac-
quired from the cartographic base using the automatic functions of the
GIS tool.

geo-referenced data 
non-geo-referenced data

preprocessing
feature selection
cross-validation

heteroskedasticity test
regression

base for future retrofitting scenarios 
and spatial decision support system

Step 1
Data Collection and Data Integration

Step 2
Robust Multiple Linear Regression

Step 3
Expansion the Model to City

GIS Database Parameter Identification, 
Modelling and Validation Urban Energy Map

Modelling 
Approach

Building Stock
Characterization Approach

Fig. 1. Proposed methodology framework of the research.
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In this study, the data collected consists in:
First, geo-referenced data: geometrical information on the building

stock derived from the digital cartographic technical map of the mu-
nicipality (perimeter, number of �oors, heated volume, and area).
Building height (eave height) was determined by multiplying the
number of �oors by the average height of the �oor. The average �oor
height used depends on the age of a building (Chiara Delmastro,
Mutani, & Corgnati, 2016), and consequently, it can be used to calcu-
late gross heated volume. Another interesting approach to determine
the height of buildings that it is used in this research just for the vali-
dation is to evaluate the height of buildings from the LiDAR Data or
DSM (Digital Surface Model) subtracting the DTM (Digital Terrain
Model) height data (Normalized Digital Surface Model: NDSM = DSM-
DTM), source (Berlin Environmental Atlas, 2014). This process is ap-
plicable when the relative data is available.

The prevailing period of construction of a large building stock was
extracted from the ISTAT (2011) national Census database, which
provides information for each census parcel. This variable implies the
typical envelope characteristics of buildings (e.g., roofs, �oors and
windows) and heating systems e�ciencies. According to the Italian
national classi�cation, the period of construction can be divided into
nine classes characterised by homogeneous features of buildings i.e.,
age1: before 1919; age2: 1919–1945; age3: 1946–1960; age4:1961-
1970; age5: 1971 1980; age6: 1981–1990; age7: 1981–2000; age8:
2001–2005; age9: after 2005. This variable considers the building en-
velope, such as the percentage of the transparent envelope and a class
of U-value (W·m�2K�1) for both opaque and transparent surfaces, and
the performance of the heating system.

According to Guglielmina Mutani & Todeschi (2017), the Italian
periods of construction before 1919–1960 may have an increasing en-
ergy consumption. On the other hand, the buildings built during the
economic boom period (1961–1980) have higher energy consumption
values. Finally, buildings constructed after 1981 show a decreasing
energy consumption. This evidently means that Italian building stock is
characterised by high-rise energy consumption before the �rst energy
regulation (e.g., Law 373/1976), when any envelope insulation and
energy e�cient system was required.

Furthermore, from the percentage of the occupied building the
building's occupation factor can be identi�ed, which is derived from the

ISTAT national census database. Unlike many previous studies, ground-
�oor typology (R: residential, C: commercial and P: pilotis) was also
considered in this study, which is derived from the digital cartographic
buildings map of technical departments of the municipality.

The model for determining the space heating consumption of the
buildings depends clearly on the surface to volume ratio of the build-
ings (S/V, dispersing surface/heated volume). This factor represents the
non-compactness of the building, and it was determined using GIS,
excluding the contiguous surfaces between two heated buildings. In this
study, the automatic calculation of the adjacent walls was applied ac-
cording to Guglielmina Mutani & Vicentini (2013). This procedure
permitted the subtraction of this parameter from the gross dispersant
surface to obtain the real dispersant surface and also the unheated
volumes. Subsequently, the higher dispersant surfaces were considered
for typical Italian building archetypes. The surface to volume ratio is
classi�ed as Detached House (DH): S/V� 0.8 m�1; Terrace House (TH):
0.6 �S/V� 0.8 m�1; Multi-Family House (MFH): 0.4 �S/V�
0.6 m�1; Apartment Block (AB): S/V� 0.4 m�1 (TABULA, 2012).

Finally, the roof type (G: gable, F: �at) and the mean daily climate
temperature were also added to other information.

On the other hand, the non-georeferenced necessary energy con-
sumption data of buildings were collected, such as measured monthly
energy consumption for DH with its installed power information. When
the measured real data is not available (in many countries), other
methodologies such as building simulation tools can be used to de-
termine the energy consumption.

The database was updated monthly in the two heating seasons
2011–2012 and 2014–2015. The monthly DH energy consumption was
given by the district heating company. In this step, these kinds of data
were geo-referenced and associated to each building entity using
Google maps and in-situ analyses (sometimes it is possible to perform
this operation automatically based on buildings address and geo-
coding).

Finally, in order to create a supportive and strong GIS database, it
was necessary to integrate all the data collected at two levels: (a) the
individual building level (e.g., the base �oor area, the perimeter, the
gross volume and eaves height of the buildings, the external surface, DH
data) and (b) the ISTAT census cartography level (e.g., the main con-
struction period and the average building occupation percentage).

Table 1
Structure of the database and the relative description of the variables.

Data Raw data unite Source of information Reference

Dispersing Surface Floor area m2 Cartography Dall’O’, Galante, and Pasetti (2012); Fracastoro and Serraino (2011)
Perimeter Cartography
Height Derived
Contiguity Derived

Net �oor Area Gross �oor area m2 Cartography Caputo et al. (2013); Fracastoro and Serraino (2011)
Gross/net ratio Normative

Height Number of �oors m Cartography Dall’O’, Galante, and Pasetti (2012)
Floor height Literature

Heated Volumes Net �oor area m3 Derived Dall’O’, Galante, and Torri (2012), Fracastoro and Serraino (2011)
Net �oor height Derived

Number of �oors – number Cartography Dall’O’, Galante, & Pasetti (2012)
Perimeter – m Cartography (Caputo et al., 2013; Dall’O’, Galante, & Pasetti, 2012)
Building shape factor Net �oor area m�1 Derived Aksoezen, Daniel, Hassler, and Kohler, (2015); Braulio-Gonzalo et al. (2016), Florio

and Teissier, (2015), Penna, Prada, Cappelletti, and Gasparella (2015)Net �oor height
Gross �oor area
Gross/net ratio

Roof type – – Google earth/In-situ
analysis

Dall’O’, Galante, & Pasetti (2012)

Period of construction – – ISTAT national census Aksoezen et al. (2015), Dascalaki, Droutsa, Gaglia, Kontoyiannidis, and Balaras (2010),
Florio and Teissier (2015), Theodoridou et al. (2011)

Temperature Typical meteorological C° ARPA Mastrucci et al. (2014b)
Building occupation ratio Occupied buildings % ISTAT national census Mutani and Vicentini (2015)

Empty buildings ISTAT national census
Ground �oor type – – Cartography Evans, Liddiard, and Steadman (2015)
Installed power – kW DH Company –



Fig. 2 summarises the procedure of GIS database framework, which
consists in all data and information describing each building as a basis
for estimating the related energy consumption for space heating. This is
a key stage since it is a foundation of the entire calculation process and
other substantial actions. In this phase, the stakeholders’ involvement
should be integrated as well to obtain the existing data and determine
relevant sustainable objectives for future planning (Pelzer, Arciniegas,
Geertman, & Lenferink, 2015)

2.2. Parameter identi�cation, modelling and validation

The statistical methodology based on a geospatial multiple linear
regression model was applied at the urban scale. In the building sector,
many di�erent statistical bottom-up methods exist (Torabi Moghadam,
Delmastro et al., 2017). From a comparison of regression analysis, de-
cision tree and neural networks it emerged that these methods are
comparable in predicting energy consumption with a quite small dif-
ference in terms of errors (Tso & Yau, 2007). Using regressions helps in
easing the usage and interpretation of the parameters introduced in the
analysis (Mastrucci, Baume, Stazi, & Leopold, 2014b). One of the most
popular regression algorithms is the multiple linear regression (MLR).
Speci�cally, many researchers have used the MLR method with the aim
of predicting energy consumption using a range of di�erent predictors
(Section 1). These techniques determine the strength of the relationship
between one dependent variable used for numerical prediction. More-
over, the regression models are highly rated due to their simple appli-
cation (Bassani, Catani, Cirillo, & Mutani, 2016).

Eq. (1) describes a multiple linear regression model with more than
one explanatory variable:

= + + + �+ +y I � x � x � x �p p1 1 2 2 (1)

Where:

• y is the output variable;

• I the general model intercept;

• �i the regression coe�cient (i = 1,2,…,p);

• xi the input variables (i = 1, 2,…,p)

• � the random e�ect (to measure the random di�erence between the
y variables for all buildings and the corresponding prediction for a
speci�c building) and remaining errors.

Pre-processing: There are usually features with missing values in
the dataset. In this study, they were replaced by the mean value of that
attribute (Han, Kamber, & Pei, 2011). Moreover, a detection procedure
was performed to check the presence of outliers, which were subse-
quently removed.

Feature selection: Many variables for estimating the energy con-
sumption in statistical models could be irrelevant or redundant;
therefore, key variables selection is an important step in achieving more
accurate predictions (Hsu, 2015). Indeed, those redundant variables
lead to reduce the model performance. Hence, a proper feature selec-
tion process and identi�cation of the correlation that measures the
degree of association between two attributes is fundamental.

Computer science o�ers a number of di�erent approaches for fea-
ture selection. This study used Akaike Information Criterion (AIC) to
select features for the linear regression (Akaike, 1973). It selects the
attribute with the smallest standardised coe�cient in each iteration,
removing it and performing another regression (Deshpande, 2012). In
order to robustly select the features, the removed correlation variables
operation was applied in the proposed methodology to remove the high
correlated variables. Correlated attributes are usually removed since
they behave in a similar manner and they have the same impact in
prediction calculations; therefore, keeping those attributes is redundant
and time-space consuming.

Validation: With the aim of assuring prediction accuracy and
proper model characteristics, assumptions at the basis of the regression
model should be carefully veri�ed. Validation of the statistical model

Fig. 2. Conceptual scheme of GIS data platform.



can be internally performed, using techniques such as cross-validation.
This study compares the performance of the representative regres-

sion approach in these two aspects. To verify the energy demand esti-
mated, the actual energy consumption of the target area was compared
with the calculated energy demand. Details are as follows:

First, very high correlated variables were removed before applying
the regression model. Then, the dataset was divided into two subsets,
training and testing, to assess the model performance. In this way, a
model was �rst trained on a 90% of the dataset, and then that model
was applied to the testing partition to validate and identify the relia-
bility of the methodology. The performance showed the di�erence be-
tween training and testing set estimates in terms of �tting (coe�cient of
determination, R2) and prediction error (Mean-Root-Squared-Error,
MRSE) (Fig. 3).

Second, the feature selection procedure and regression were vali-
dated by cross-validation approach to achieve more stable results and to
avoid the high risk of over�tting (Han et al., 2011). In the cross-vali-
dation process, the dataset was divided into the ten same size folds. A
single fold was considered as the testing data set and the remaining nine
subsets were used as training data set. The cross-validation process was
then repeated ten times, with each of the ten subsets used exactly once
as the testing data. By applying cross-validation, the model was able to
compare the features selection strategies and identify the regression
algorithms (Fig. 4).

The results show (Section 3.2.) that both approaches produce si-
milar performances and coe�cients.

Heteroskedasticity test: Homoskedasticity is a signi�cant as-
sumption in regression analysis (Hayes & Cai, 2007). Therefore, the
appropriate diagnostics (e.g., Breusch–Pagan test and White test) were
performed to carefully check the multiple linear regression model as-
sumptions, verifying the correct speci�cation and accuracy of the
model prediction. The homoscedasticity (assumption of homogeneous
variance for residuals) was tested through the scatter plot of residuals
(or the squared residuals) against predicted values. The initial presence
of heteroscedasticity was reduced thorough heteroskedasticity-con-
sistent standard errors (HCSE) (or robust errors) in the Linear Regres-
sion Model (White, 1980), which allowed the �tting of a model that
contains heteroscedastic residuals. The software SPSS was used

additionally for this scope. Finally, no signi�cant heteroskedasticity
issues were detected as residuals were randomly scattered.

2.3. Model expansion into the city

As previously stated, the goal of the study was the evaluation of a
simpli�ed energy consumption model for space heating at the urban
scale. All the considered variables needed to be extendable and avail-
able for the whole city. Once the statistical analysis using building
function was performed, the results were mapped across the city. Since
the sample of dataset includes a speci�c range of heated volume, the
buildings that were lower and much higher than this value were ex-
cluded. The database information quality and, accordingly, the geo-
referenced model can be continuously improved (Ascione et al., 2013).
This methodology is �exible enough to add variables according to the
data availability and purpose of the analysis, such as occupants’ beha-
viour or buildings renovation ratio information.

3. Case study

The residential building stock of the city of Settimo Torinese, a
medium-sized urban area, located in the North-West of Italy in the
continental temperature climatic zone, was chosen as a case study to
develop and test the methodology. The building stock characterisation,
energy consumption pro�les and the dataset used are presented in this
section. The city is composed of 300 census sections and about 3600
residential buildings with 47,831 inhabitants. The GIS used for this
study was ArcGIS 10.3. The total heated volume of the residential
buildings is equal to 8.55 Mm3.

3.1. Data Set

The measured energy consumption data available consist of
monthly records of DH energy consumption for the residential sector for
the heating seasons 2011–2012/2014-2015, with respectively 2597 and
2342 HDD at 20 °C. The data were pre-processed and carefully analysed
before being put into the model. In this study, the monthly data energy
consumption was elaborated �rst for each month (from the exact �rst

Fig. 3. Validation Process.

Fig. 4. Cross-validation Process.



day of the month to the last day), and then it was divided by the
number of days of each month in order to have a normalised daily
energy consumption.

The monthly measured DH energy consumption data of 290 residential
buildings were used for the analysis (the local DH Company provided the
total number of mixed typology buildings connected to the DH network,
which was 350). Almost 50% of the data were excluded before creating the
model due to the di�culty of associating the address of the building to its
heated volume and due to some di�erences between the GIS calculated
heated volume and the heated volume given by the DH company.
Moreover, the GIS data was optimised by comparing the volume of the
buildings and the measured volume provided by the DH company, with an
acceptable limit of 15% di�erence. 165 buildings out of a total number of
290 residential buildings connected to the DH were successfully associated
and geo-referenced with the polygon of each building on the GIS map. This
operation was performed manually using the Google Maps platform and in-
situ analysis to identify the relative buildings.

In order to create a supportive database and to have enough
available data, these 165 residential buildings were considered over 7
months (from October to April) of two heating seasons,taking into ac-
count the residential typology; ground �oor typology (C: commercial,
R: residential, P: pilotis); occupation factor; number of �oors; geome-
trical information of each building (area, perimeter, heated volume,
height); the surface to heated volume ratio S/V. Regarding the period of
construction, a linear correlation can be hypothesised by dividing the
buildings into three clusters, with higher energy consumption for the
buildings built from 1961 to 1980 (n. data 1344), lower consumption
for the older ones (n. data 678) and for the newer ones (n. data 245).

As a complement to the data set provided directly by the city, daily
records of the outdoor air temperature of these two years were made
available through the Regional Agency for Environmental Protection
(ARPA). The acquired input data set is summarised in Table 2.

By using the GIS tool, it was possible to represent how these vari-
ables are distributed in the city of the case study. Fig. 5 shows the urban
block distribution according to the year of construction, ground �oor
type, and S/V as reported in Table 2. Among all the surveyed buildings,
82% of the buildings are characterised by the ground �oor as a re-
sidential type, and just 14% have a commercial ground �oor. Regarding
the period of construction, 47 buildings were built in the category of
age3 (1946–1960), accounting for 29%, while 84 buildings were con-
structed in age4 (1961–1970), accounting for 51%. This fact is very
much proportionate with the reality of the entire building stock and it
means that the building stock is mostly characterised by buildings built
before the �rst Italian energy regulation. Fig. 5 shows that the MFH

typology is the most widely used, accounting for 68%, followed by TH
and AB, accounting for 16%. This fact indicates that the single SFH
houses are not connected to the DH network. The results of the MLR
analysis strongly depend on the sample of buildings analysed.

3.2. Results and discussion

This section discusses the outcomes of the regression analysis and the
spatial distribution of the annual energy consumption. The data mining
software RapidMiner 7.1 was employed to analyse and model the energy
consumption of residential buildings in Settimo Torinese. Furthermore, the
in�uence of every single variable on energy consumption was analysed.

Fig. 6 illustrates the scatter plots for each of the variables with respect to
the daily space heating energy consumption. As is shown, there are corre-
lations between the energy-use for space heating and some of the selected
variables of buildings, such as the perimeter, heated volume, installed
power and area. It should be noted that in this analysis not all the variables
were taken into account, due to the fact that data about them were not
available, such as the level of renovation of the buildings and the adoption
of renewable energy technologies. This may have a slight in�uence on the
dispersion of the results. Moreover, the results of this �rst analysis are af-
fected by the number of buildings analysed. For instance, for each period of
construction and each value of surface to volume ratio (S/V), the number of
buildings is not the same. The sample of buildings connected to the DH
network mainly consists of big apartment blocks built in 1961-70.

In Table 3 the correlation coe�cients between the daily heating energy
consumption (kWh) and di�erent single variables of the available sample of
data are shown. Some correlations appear to be very rational and intuitive,
such as perimeter, surface, area, height, heated volume, installed power,
occupation ratio, and air temperature. A particularly interesting result is
that some correlations seem to be controversial, taking into account basic
thermosphysics of buildings, such as S/V ratio.

Table 3 reports that the S/V ratio correlation is negatively corre-
lated with space heating energy consumption. This fact is explained by
the strong correlation between the variables heated volumes and S/V.
Due to building geometry, high values of S/V are generally related to
small buildings (e.g., semi-detached houses) with low energy con-
sumption, while small S/V values are related to large sie condominiums
with higher energy consumption. However, a positive correlation is
expected between the S/V and the speci�c daily energy consumption
(kWh/m2 or kWh/m3) (see Fig. 7).

The correlations of each of these variables on energy-use for space
heating were analysed and a MLR was modelled identifying the best
coe�cient of determination (R2).

Table 2
Input sample dataset indicating minimum, maximum, average and standard deviation values.

Sample of data (165 residential buildings) Entire Building stock (3600 residential buildings)

Numerical Input Variable Min Max SD Ave. Min Max SD Ave.

Dispersing Surface (m2) 802.28 11678.66 1618.38 2822.98 190.02 13910.40 1336.19 1384.72
Area (m2) 147.46 1688.17 270.62 502.89 6.10 2953.72 221.70 230.97
Height (m) 7.00 27.00 5.51 16.49 3.10 27.20 4.35 8.06
Heated volumes (m3) 1504.11 40178.46 6205.36 8609.83 20.76 51063.76 3902.08 2370.95
Number of �oors (number) 2.00 8.00 1.66 4.00 1.00 8.00 1.28 2.35
Perimeter (m) 49.24 348.84 46.91 107.65 9.90 498.90 41.04 66.22
S/Vreal (m�1) 0.34 0.78 0.09 0.51 0.32 2.39 0.31 0.93
Temperature (C°) �0.30 12.85 4.27 6.81 �0.30 12.85 4.27 6.81
Building occupation ratio (%) 0.00 1.00 0.06 0.95 0.00 1.00 0.20 0.85
Installed power (kW) 50.00 1000.00 126.23 196.43 n.d. n.d. n.d. n.d.

Nominal Input Variable Least Most Least Most

Period of construction > 1919 (1) 1961–1970 (84) – – 2001–2005 (82) 1946–1960 (1028) – –
Ground �oor type P (6) R (135) – – P (48) R (2962) – –
Roof type F (5) G (160) – – n.d. n.d. – –



The estimated coe�cients, standard error, and p-values (the prob-
ability for a given statistical model) for energy consumption robust
linear regression are shown in Table 4 (Model A) and Table 5 (Model B),
respectively.

All numerical predictors strongly rejected the null hypothesis for a
value of �0.05 indicating that the estimated intensities are statistically
signi�cant. Moreover, the code factor (*) is based directly on p-value,
where more stars mean the variable is more signi�cant. In the following
paragraphs, the predicted values from the model will be compared to
the real data provided by the city.

In the analysis of variance, known as the ANOVA, the F-sta-
tistic = 1132.478 (p-value < 0.0001), indicating the results of the re-
gression model is satisfactory.

The correlation coe�cient between the predicted and observed
values, measured by the mean squared error (MSE) and squared cor-
relation (R2), are shown Table 4 (Model A) Table 5 (Model B). In the
second model (B), the data about the installed power and the type of
roof were excluded because they are not available for the entire
building stock. As a result, the performance of the second model (B) was
slightly diminished with respect to Model A. The coe�cients of the
regression equation for each variable seem to have the expected trend:

• the highest coe�cient for the buildings built in 1961–1980, as they
consume more energy, and lower consumption for the older build-
ings due to their lower percentage of transparent envelope and
higher structure thickness and for the newer buildings due to their
thermally insulated envelopes;

• a positive coe�cient with gable roofs, as the dispersant surface and
heated volume is greater with higher energy consumption;

• a negative coe�cient for the commercial typology of the ground
�oor, as it is usually heated autonomously;

• a positive coe�cient for the pilotis, as the �oor disperses more heat
to the outside environment;

• a positive coe�cient for bigger buildings, as the high heated vo-
lume, number of �oors, and perimeter leads to higher energy con-
sumption;

• a positive coe�cient for the installed power of the heat exchanger as

it depends on the dimensions and the level of energy e�ciency of
buildings;

• a negative coe�cient for the outdoor air temperature, as with lower
air temperatures the energy consumption increases;

• a positive coe�cient for the occupation factor as the buildings
consume more if they are utilised and occupied.

In Figs. 8 and 9, it is possible to notice the good correlation of the
models and the correspondence between measured and predicted an-
nual energy consumption. The colours of the points indicate the heated
volumes of the buildings and it is shown that the model does not work
for massive buildings.

The coe�cients of determination R2 for the two models are of 0.84
and 0.80, meaning a high-performance correlation even without the
installed power and the type of roof variables. The precision of a model
depends on the availability and the accuracy of data and, mostly, on the
typology of the data sample.

Finally, applying the energy regression model to the entire building
stock area in Settimo Torinese, through the GIS framework, the energy
consumption spatial distribution was represented, creating a visual
map. The total annual energy consumption (kWh/m3) for each in-
dividual building is shown in Fig. 10. Moreover, the spatial results of
this study help to identify in which neighbourhoods the energy con-
sumption is mostly concentrated. Since the sample of dataset includes
heated volumes greater than 1500 m3 (see Table 2), the building vo-
lumes less than this value were excluded (grey polygons). The results
show that the residential buildings constructed before 1980 have a
mean annual energy consumption of 27.47 kWh/m3. Indeed, the
buildings located in the historic city centre are one of the largest annual
energy consumers, as is shown by the dark colours on the map (about
47.70 kWh/m3). Those constructed after 2005 show a decrease in the
heating energy consumption of 10%.

4. Conclusion and future developments

Urban energy e�ciency plays a crucial role in the implementation
of energy policies in the context of low-carbon cities and smart cities.

Fig. 5. The comparison between the sample of input data (165 buildings) on the left and the entire building stock (3608 buildings) on the right for ground �oor typology, period of
construction and S/V respectively.



The research presented in this paper demonstrates that urban actors
(e.g., energy planners, local and public administrators and other sta-
keholders) can be supported by an appropriate urban scale energy
consumption model in delivering the most e�ective strategies. The
whole procedure was successfully tested at the city level for Settimo
Torinese and validated. Given available data, the proposed metho-
dology can be applied to any similar city and also to other kinds of
energy usage (e.g., electricity, cooling).

Analysis of the available data regarding the existing building stock
is crucial to understand the measurements needed to achieve energy
e�ciency or lower gas emissions in the construction sector. This
methodological approach was chosen to determine the energy con-
sumption for space heating of a residential building stock at the urban

scale. A framework combining statistical analysis with GIS-based
techniques was employed to identify the most appropriate variables
in�uencing energy consumption, using detailed measured building
data. Moreover, GIS tools were used to support both the geometrical
building stock characterisation and the energy assessment process. The
spatial distribution of urban energy consumption in 2D and 3D visua-
lisations represents a useful tool � a new Spatial Decision Support
System (SDSS) � to facilitate decision-making process in order to de-
�ne a variety of urban transition energy policies according to local
conditions in a smart cities context.

The Multiple Linear Regression (MLR) analysis applied in this study
has highlighted the variables most related to energy consumption, as
follows: period of construction, heated volume, type of ground �oor,

Fig. 6. Scatter plot: DH energy consumption and variables.














