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On the discretization and application of two space-time
boundary integral equations for 3D wave propagation

problems in unbounded domains?
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Abstract

In this paper, we consider 3D wave propagation problems in unbounded domains, such as those
of acoustic waves in non viscous fluids, or of seismic waves in (infinite) homogeneous isotropic
materials, where the propagation velocity c is much higher than 1. For example, in the case of air
and water c ≈ 343m/s and c ≈ 1500m/s respectively, while for seismic P-waves in linear solids we
may have c ≈ 6000m/s or higher. These waves can be generated by sources, possible away from
the obstacles. We further assume that the dimensions of the obstacles are much smaller than that
of the wave velocity, and that the problem transients are not excessively short.

For their solution we consider two different approaches. The first directly uses a known space-
time boundary integral equation to determine the problem solution. In the second one, after having
defined an artificial boundary delimiting the region of computational interest, the above mentioned
integral equation is interpreted as a non reflecting boundary condition to be coupled with a classical
finite element method.

For such problems, we show that in some cases the computational cost and storage, required by
the above numerical approaches, can be significantly reduced by taking into account a property
that till now has not been considered. To show the effectiveness of this reduction, the proposed
approach is applied to several problems, including multiple scattering.

Key words: exterior wave propagation problems; space-time boundary integral equations; non

reflecting boundary conditions; numerical methods
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1. Introduction

In the last decades, space-time Boundary Integral Equations (BIE) have been successfully
applied to wave propagation problems defined in the exterior of a bounded domain (see, for
example, [9],[24],[3],[19],[26],[15],[10],[2],[27],[16],[5], [4],[25],[18],[17],[22],[12]).

Most of them, however, are for homogeneous problems with trivial initial values. Fur-
thermore, they are generally used to determine the problem solution at chosen points. Only
in the last few years (see [13], [2], [14],[6]), a BIE for the classical wave equation has been
used to define a Non Reflecting Boundary Condition (NRBC) on a chosen artificial bound-
ary, surrounding the computational domain. Its discretization is then coupled with that of
the domain of interest by means of finite elements or finite differences.

In the case of the classical 3D non homogeneous wave equation, the problem we consider
in this paper is the following:



















1
c2
uett(x, t)−∆ue(x, t) = f(x, t) inΩe × (0, T )

ue(x, t) = g(x, t) in Γ× (0, T )

ue(x, 0) = u0(x) inΩe

uet(x, 0) = v0(x) inΩe

(1)

where Ωe = R
3 \Ωi, Ωi being a bounded open domain, having a smooth boundary Γ, or the

union ∪κ
k=1Ω

i
k of well separated domains of this type. As often occurs in practical situations,

we assume that the initial values u0, v0 and the source term f have local supports. Further-
more, we also assume that these data satisfy the smoothness and compatibility conditions
which guarantee a sufficiently smooth solution ue, as required (see [15],[24]) by the numerical
approach we will describe in the next section.

To solve problem (1) we will consider the following single-double layer BIE (see [14]):

1

2
ue(x, t)− (V∂nu

e)(x, t) + (Kue)(x, t) = Iu0(x, t) + Iv0(x, t) + If (x, t) x ∈ Γ, (2)

with

Vψ(x, t) :=

∫ t

0

∫

Γ

G(x− y, t− τ)ψ(y, τ) dΓy dτ =

∫

Γ

ψ(y, t− ‖x− y‖/c)
4π‖x− y‖ dΓy (3)

and

Kϕ(x, t) :=

∫ t

0

∫

Γ

∂nG(x− y, t− τ)ϕ(y, τ) dΓy dτ =

∫

Γ

∂n
ϕ(y, t− ‖x− y‖/c)

4π‖x− y‖ dΓy. (4)

The last expressions in (3) and (4) have been obtained by interchanging (see [15]) the time
and space integrals in the corresponding representations, and using the wave equation fun-
damental solution expression

G(x, t) =
δ(t− ‖x‖/c)

4π‖x‖ , (5)
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where δ(·) is the well known Dirac delta function. The symbol ∂n = ∂ny denotes the outward
unit normal (distributional) derivative, with respect to the y-variable, on the boundary Γ.

The “volume” terms Iu0 , Iv0 and If are generated by the non homogeneous initial condi-
tions and the non trivial source, respectively. These volume terms have the following integral
representations (see [15]):

Iu0(x, t) =
∂

∂t

∫

supp(u0)

G(x− y, t) u0(y) dy, (6)

Iv0(x, t) =

∫

supp(v0)

G(x− y, t) v0(y) dy, (7)

If (x, t) =

∫ t

0

∫

supp(f)

G(x− y, t− τ) f(y, τ) dy dτ. (8)

The mapping properties of the above operators V , K, when these are acting in proper
functional spaces, are well-known; see, for example, [24], [21], [28]. In particular, for any real
r ≥ 0,

V : Hr+1
0 (0, T ;H−1/2(Γ)) → Hr

0(0, T ;H
1/2(Γ)) (9)

and
K : H

r+3/2
0 (0, T ;H1/2(Γ)) → Hr

0(0, T ;H
1/2(Γ)) (10)

are bounded.
The above spaces are defined as follows. Set first Hr

0(0, T ) = {g|(0,T )
: g ∈ Hr(R) with g ≡

0 on (−∞, 0)}, where Hr denotes the classical Sobolev space of order r. When r is an integer,
this space consists of those functions g whose r-th distributional derivative is in L2(0, T ) and
which have g(0) = . . . g(r−1)(0) = 0. Then:

• Hr
0(0, T ;X) is the space of Hr

0(0, T ) functions of t, φ(x, t), such that, setting φ(x, t) =
φ(t)(x), we have φ(t) ∈ X , with ‖ ‖φ(t)‖X‖Hr(0,T ) <∞.

• H1/2(Γ) and H−1/2(Γ) are the trace space on the boundary Γ, of H1(Ωe) functions, and
the corresponding dual space, respectively.

Recalling the well known embedding property: Hr(0, T ) ⊂ Cm[0, T ] for r > m + 1/2,
from (9) and (10) we deduce that for r > 3/2 we have

V : Hr
0(0, T ;H

−1/2(Γ)) → C([0, T ];H1/2(Γ)),

while if r > 2,
K : Hr

0(0, T ;H
1/2(Γ)) → C([0, T ];H1/2(Γ)).

Moreover, under the assumptions we have made on the problem data, all terms of the above
BIE will be, in particular, continuous functions of x ∈ Γ.

Once the function λ = ∂nu
e has been determined, the solution ue, for x ∈ Ωe and

t ∈ [0, T ], is given by the following integral representation:

ue(x, t) =

∫ t

0

∫

Γ

G(x−y, t−τ)λ(y, τ) dΓy dτ−
∫ t

0

∫

Γ

∂nG(x−y, t−τ)g(y, τ) dΓy dτ+I(x, t),

(11)
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where we have set I(x, t) = Iu0(x, t) + Iv0(x, t) + If(x, t).
We also recall that if we consider the interior problem associated with (1), whose so-

lution is denoted by ui(x, t), hence define the normal derivative jump across Γ: ϕ(y, τ) =
∂nu

e(y, τ)− ∂nu
i(y, τ), the following single-layer BIE (see [24] and [15]) holds:

∫ t

0

∫

Γ

G(x− y, t− τ)ϕ(y, τ) dΓy dτ = g(x, t)− I(x, t), x ∈ Γ, t ∈ [0, T ]. (12)

Once the function ϕ has been determined, the solution ue is given by the following integral
representation:

ue(x, t) =

∫ t

0

∫

Γ

G(x− y, t− τ)ϕ(y, τ) dΓy dτ + I(x, t), x ∈ Ωe, t ∈ [0, T ]. (13)

Actually, if one has to compute the solution ue(x, t) only in a small region away from the
domain Ωi, the best approach is the Boundary Element Method (BEM) defined by repre-
sentations (12) and (13).

In the following, for notational simplicity, we drop the superscript “e” from ue and set
λ(y, t) = ∂nu(y, t).

Very recently, in [14] (see also [6]), for the solution of (1), we have proposed to use
(2) as a global Non Reflecting Boundary Condition, to be imposed on a chosen artificial
boundary B delimiting the domain of interest Ω. This NRBC is interpreted as a relationship
that the problem solution and its normal derivative must satisfy on B, to avoid spurious
wave reflections. It is of exact type and it holds for a (smooth) surface of arbitrary shape;
therefore, it can be used also in situations of multiple scattering, and even in more general
ones. Moreover, it allows the problem to have non trivial data, whose (local) supports do
not have necessarily to be included in the Ω domain, as it is usually done, in particular when
they are away from the domain of interest. In such a case, the proposed NRBC naturally
includes the effects of these data and it is automatically transparent for outgoing waves as
well as for incoming ones.

For the discretization of the BIE (2), or of the corresponding NRBC, namely for the ap-
proximation of the single and double layer operators, we have proposed a numerical scheme
which is based on a second order Lubich discrete convolution quadrature formula (see [23]),
later denoted by the symbol BDF2, for the discretization of the time integral, coupled with
a classical collocation method in space. The BDF2 formula is obtained from the classical
second order Backward Differentiation Formula for ordinary differential equations. Its com-
putational complexity is of order N logN , being N the total number of time steps performed,
while that of the global (space-time) discretization is of order M2N logN , where M is the
number of collocation points chosen on the domain surface. The required working storage
is M2N . We recall that, in the case of the NRBC, when the discretization of the bounded
domain Ω where we apply the chosen finite element scheme is refined, and the time step-size
is simultaneously reduced, the accuracy of the NRBC discretization increases.

In all the papers where the above approach has been applied, the wave propagation
velocity has been taken equal to 1, and also the size of the physical domains is of order 1.
Furthermore, the final time instant T is generally not large, let us say, from 1 up to about
50. Of course, by properly scaling the variables, we can always reduce problem (1) to an
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equivalent one having unitary velocity and diameter. For example, in the case of velocity
c and domain diameter d, it is sufficient to set x = dx and t = d

c
t. This scaling, however,

changes also the original time interval of integration (0, T ] into (0, T ], with T = cT/d, and
in several applications T is not small. This is the case, for example, we have when the
source f is far away from the domain Ωi, or when we have to deal with wave packets, or
multiple scattering - multiple sources problems, or scattering from (non convex) domains
having cavities. That is, when we have to solve wave propagation problems having a long
transient phase with respect to d/c. Thus, in these cases, when c is much larger than d, T
can be much larger than 50. These are the situations that we examine in this paper. To
show explicitly the dependence on the physical parameters of the conditions we will derive
in Section 2, we will not take advantage of the above mentioned changes of variables.

In particular, we consider 3D wave propagation problems in unbounded domains, such
as those of acoustic waves in non viscous fluids, of seismic waves in (infinite) homogeneous
isotropic materials, or of electromagnetic waves, where the propagation velocity c is much
higher than 1. For example, for the acoustic waves in air and water we have c ≈ 343m/s
and c ≈ 1500m/s, respectively, while for seismic P-waves in linear solids we may have
c ≈ 6000m/s or higher. We allow waves generated by sources, that can be located far away
from the obstacles. Finally, we assume that the order of magnitude of the obstacles is much
smaller than that of the wave velocity, and that the problem transients are not excessively
short.

Our main goal is to show that for such problems, the computational cost and storage
required by the numerical approach mentioned above can be significantly reduced by taking
into account a property that, to our best knowledge, till now has been ignored or underes-
timated. This allows to replace, in the above mentioned computational cost and working
storage, the integer N by a much smaller (positive) integer N0, explicitly defined by a simple
formula.

We note that in some papers (see [20], [19], [5], [17]), to reduce the method compu-
tational cost and storage, a rule for approximating the matrices generated by the chosen
Lubich discrete convolution, when this is combined with a Galerkin space discretization, by
corresponding sparse ones have been proposed and examined when c = 1, d ≈ 1. However,
this is valid only for the single-layer BIE representation, not for the single-double BIE case
we consider in this paper. Moreover, as it is pointed out in Remark 3.6 of this paper, this
rule turns out to be little effective when it is applied to the problems we consider in this
paper.

Thus, after briefly recalling, in Section 2, definitions and construction of the BIE dis-
cretization, in Section 3 we derive some bounds for the coefficients of the (time) discrete
convolution quadrature, when the wave propagation velocity is much higher than the ob-
stacle dimensions. These bounds will show how computational cost and work storage can
be significantly reduced. Then, in Section 4, we apply the proposed numerical approach to
several problems; these include cases where the BIE plays the role of a NRBC and a multiple
scattering example.
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2. Discretization of the single-double layer BIE

In this section we outline the formulas used in [14] to discretize the BIE formulation (2).

2.1. Approximation in time

The single and double layer operators appearing in (2) are approximated by combining
the second order BDF2 convolution quadrature formula of Lubich (see [23]) with a classical
space collocation method. Thus, the interval [0, T ] is subdivided into N steps of equal length
∆t = T/N and the BIE is collocated at the discrete time levels tn = n∆t, n = 0, . . . , N :

1

2
u(x, tn)− (Vλ)(x, tn) + (Ku)(x, tn) = Iu0(x, tn) + Iv0(x, tn) + If(x, tn). (14)

The time integrals appearing in the definition of the single and double layer operators (see
(3), (4)) are discretized by means of the above mentioned second order Lubich convolution
quadrature formula (see [14]). We obtain:

(Vλ)(x, tn) ≈
n
∑

j=0

∫

Γ

ωV
n−j

(

∆t;
‖x− y‖

c

)

λ(y, tj) dΓy, n = 0, . . . , N, (15)

(Ku)(x, tn) ≈
n
∑

j=0

∫

Γ

ωK
n−j

(

∆t;
‖x− y‖

c

)

u(y, tj) dΓy, n = 0, . . . , N,

whose coefficients ωJ
n ,J = V ,K, are given by

ωJ
n

(

∆t;
‖x− y‖

c

)

=
1

2πi

∫

|z|=ρ

KJ

(‖x− y‖
c

,
γ(z)

∆t

)

z−(n+1) dz

where

KV

(r

c
, s
)

=
1

4πr
e−

rs
c , KK

(r

c
, s
)

= − 1

4πr
e−

rs
c

(

1

r
+
s

c

)

∂r

∂ny

, (16)

γ(z) = 3/2 − 2z + 1/2z2 is the so called characteristic quotient of the chosen BDF method
of order 2, and the parameter ρ > 0 is chosen as described below.

By introducing the polar coordinate z = ρeı̇ϕ, the above integrals are efficiently computed
by using the trapezoidal rule with L ≥ N equal steps of length 2π/L:

ωJ
n

(

∆t;
r

c

)

≈ ρ−n

L

L−1
∑

l=0

KJ

(

r

c
,
γ(ρ exp(ı̇l2π/L))

∆t

)

exp(−ı̇nl2π/L). (17)

As suggested in [23] (see also [14]) for the case c = 1, the choice L = 2N and ρ = 10−5/N gives
a relative accuracy of order (at least) 10−5÷10−6. We remark however that for the values of
c we are considering in this paper, the choice L = N seems to be more than sufficient. For
each given x ∈ Γ, all the ωJ

n , n = 0, . . . , L−1, can be computed simultaneously by the FFT,
with a number of arithmetic operations proportional to L logL. Note that, when one takes
L > N , the required ωJ

n are given by the first N +1 components of the coefficient vector, of
dimension L, determined by the FFT.

6



Lemma 2.1. Let assume that the surface Γ has a parametric representation y = Ψ(u) =
Ψ(u1, u2), with Ψ ∈ C3(Γ). Let x = Ψ(v) = Ψ(v1, v2), so that r = ‖Ψ(v)−Ψ(u)‖. Then,
we have

1

r

∂r

∂ny

= O(1), r → 0

Proof. Recall the known representation of the gradient vector ∇yr:

∇yr =
1

r
[Ψ(v)−Ψ(u)]

and that of ny:

ny =
∂u1Ψ(u)× ∂u2Ψ(u)

‖∂u1Ψ(u)× ∂u2Ψ(u)‖ .

From these we obtain:
∂r

∂ny

=
1

r

3
∑

i=1

(ny)i[Ψi(v)−Ψi(u)].

Finally, by performing the Taylor expansion

Ψi(v)−Ψi(u) = (v − u)T∇Ψi(u) +
1

2
(v − u)THi(v− u) +O(‖v− u‖3)

where Hi denotes the Hessian matrix associated with the i-component (Ψ)i = Ψi, and
recalling the property ∇Ψ(u) · ny = 0, we easily obtain:

1

r

∂r

∂ny

=
1

2

(v − u)T

r

(

3
∑

i=1

(ny)iHi(u)

)

(v − u)

r
+O(‖v− u‖) = O(1), r → 0.

�

In view of the next theorem, we recall that the following property

ωJ
n

(

∆t;
r

c

)

=
1

∆t
ωJ
n

(

1;
r

c∆t

)

(18)

holds for the ωJ
n -coefficients defined in (15).

Theorem 2.2. Let x ∈ Γ, ∆t ∈ R+ be given, and r = ‖x − y‖,y ∈ Γ; furthermore, for
notational simplicity, set ξ = r

c∆t
. The ωJ

n (1; ξ)-coefficients associated with the operators
V , K can be simultaneously computed by means of the following recurrence relationship:

ωV
1 (1; ξ) =

1

2πc
e−

3
2
ξ,

ωV
0 (1; ξ) =

ωV
1 (1; ξ)

2ξ
,

ωV
2 (1; ξ) =

(

ξ − 1

4

)

ωV
1 (1; ξ),

ωV
n (1; ξ) =

ξ

n

[

2ωV
n−1(1; ξ)− ωV

n−2(1; ξ)
]

, n > 2, (19)
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and

ωK
0 (1; ξ) = −αr

(

1 +
3

2
ξ

)

ωV
0 (1; ξ),

ωK
1 (1; ξ) = −3

2
αrξ ω

V
1 (1; ξ),

ωK
2 (1, ξ) = −αr

2
ξ

(

3ξ − 11

4

)

ωV
1 (1; ξ),

ωK
n (1; ξ) = −αr

[(

1− n

2
+

3

2
ξ

)

ωV
n (1; ξ)− ξ ωV

n−1(1; ξ)

]

, n > 2, (20)

with αr =
1
r
∂r
∂n

= O(1).

Proof. The formulas for the ωV
n -coefficients follow immediately from their explicit represen-

tation given in [19], [26]:

ωV
0

(

∆t;
r

c

)

=
1

4πr
e
− 3r

2c∆t ,

ωV
n

(

∆t;
r

c

)

=
1

4πrn!
e
− 3r

2c∆t

(

r

2c∆t

)n/2

Hn

(
√

2r

c∆t

)

, n ≥ 1, (21)

where Hn(x) = 2nxn + . . . is the n-degree Hermite orthogonal polynomial, and the well-
known recurrence relationship Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x) (see [1]).

Similar expressions can be easily obtained for the ωK
n -coefficients, starting from the iden-

tity ωK
n (∆t; r/c) = ∂

∂n
ωV
n (∆t; r/c) and recalling the relationship H ′

n(x) = 2nHn−1(x) (see
[1]). They are:

ωK
0

(

∆t;
r

c

)

= − αr

4πr
e
− 3r

2c∆t

(

1 +
3r

2c∆t

)

,

ωK
1

(

∆t;
r

c

)

= −3αr

(

r

c∆t

)2
1

4πr
e
− 3r

2c∆t ,

ωK
n

(

∆t;
r

c

)

= −αr

[

(

1− n

2
+

3r

2c∆t

)

1

4πrn!
e
− 3r

2c∆t

(

r

2c∆t

)
n
2

Hn

(
√

2r

c∆t

)

− r

c∆t

1

4πr(n− 1)!
e
− 3r

2c∆t

(

r

2c∆t

)
n−1
2

Hn−1

(
√

2r

c∆t

)

]

, n ≥ 2. (22)

From these, taking also into account the previous representations of the ωV
n -coefficients,

together with identity (18), the expressions given in (19) and (20) follow. �

Note that, contrary to the approximation (17), under the assumption we have made
on ξ = r

c∆t
(see Theorem 2.2) the above recurrence relationships allow to determine the

values of the ωJ
n -coefficients up to machine accuracy, requiring only very few real arithmetic

operations per iteration. Furthermore, once the initial coefficients ωJ
0 , ωJ

1 and ωJ
2 have

been computed, only N−2 iterations need to be performed. Thus, expressions (19) and (20)
must be preferred to (17), and we will use them in all the examples reported in Section 4.
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Remark 2.3. Let Γ be the boundary of a sphere of radius R. Recalling the representation

∂r

∂ny

=
1

Rr

3
∑

i=1

(yi − xi)yi

and using the spherical coordinates, it is quite simple to show, without performing much
calculation, that αr = 1/(2R).

Corollary 2.4. The coefficients ωV
0 and ωK

0 , as functions of r, have an integrable singularity
of type r−1, while all the remaining coefficients are smooth functions. In particular, for all

n ≥ 1, ωV
n and ωK

n are of the type e
− 3r

2c∆t pn−1(
2r
c∆t

) and αre
− 3r

2c∆t qn(
2r
c∆t

), respectively, where
pn−1 and qn are two polynomials of exact degree n− 1 and n.

2.2. Approximation in space

For the space discretization, the surface Γ is approximated by a continuous piecewise
triangular surface Γ∆, interpolating Γ at the triangle vertices {xi, i = 1, . . . ,M}. We denote
by ∆x the mesh size of Γ∆, which is given by the maximum triangle diameter. We also
assume that ∆x is sufficiently small, so that a local parametrization of the surface Γ on each
Γ∆ triangle can be obtained from that of Γ.

At each time instant tj, the unknown function u(·, tj) and its normal derivative λ(·, tj)
are approximated by

u∆x
(x, tj) :=

M
∑

i=1

ujibi(x), x ∈ Γ, (23)

and

λ∆x
(x, tj) :=

M
∑

i=1

λjibi(x), x ∈ Γ, (24)

respectively, where uji ≈ u(xi, tj), λ
j
i ≈ λ(xi, tj) and {bi}Mi=1 are the classical continuous

piecewise linear basis functions associated with the chosen triangulation.

2.3. Time-space discretization

After having introduced the above time and space discretizations, we collocate the result-
ing discretized BIE at the (collocation) points xk, k = 1, . . . ,M . To write the final system
of equations in vectorial notation, for j = 0, . . . , N we define the matrices

(Vn−j)ki =

∫

Γ

ωV
n−j

(

∆t;
‖xk − y‖

c

)

bi(y)dΓy, i, k = 1, . . . ,M, (25)

(Kn−j)ki =

∫

Γ

ωK
n−j

(

∆t;
‖xk − y‖

c

)

bi(y)dΓy, i, k = 1, . . . ,M (26)

and the vectors

Inu0
= [Iu0(x1, tn), Iu0(x2, tn), · · · , Iu0(xM , tn)]

T ,

Inv0 = [Iv0(x1, tn), Iv0(x2, tn), · · · , Iv0(xM , tn)]
T ,

Inf = [If (x1, tn), If(x2, tn), · · · , If(xM , tn)]
T .
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Then, we introduce the unknown vectors uj =
[

uj1, . . . , u
j
M

]T
and λλλj =

[

λj1, . . . , λ
j
M

]T
, for

j = 0, . . . , n, and obtain the following system of equations (see [14] for the case of a multi
domain):

(

1

2
I+K0

)

un +

n−1
∑

j=0

Kn−ju
j −V0λλλ

n −
n−1
∑

j=0

Vn−jλλλ
j

= Inu0
+ Inv0 + Inf , n = 0, . . . , N, (27)

where I denotes the identity matrix of order M .
From the computational point of view, supposing to know uj and λλλj at the time steps

j = 0, . . . , n− 1, the discretized BIE at time tn is given by:

(

1

2
I+K0

)

un −V0λλλ
n = −

n−1
∑

j=0

Kn−ju
j +

n−1
∑

j=0

Vn−jλλλ
j + Inu0

+ Inv0 + Inf . (28)

The only unknown is λλλn for the Dirichlet problem, un for a Neumann problem, while for a
Dirichlet-Neumann problem the unknowns are λλλn and un, each one defined in the boundary
portion where it is not given.

In the case of the NRBC, in (28), the boundary Γ is replaced by the chosen artificial
one, that we denote by B, and both un and λλλn are unknown. Furthermore, in the case of
a multiple scattering problem (see [14]) having κ scatterers, each one with its own artificial
boundary B`, the BIE right hand side (block vector) has the following form:

−
κ
∑

`=1

n−1
∑

j=0

Ki,`
n−ju

j
B`

+

κ
∑

`=1

n−1
∑

j=0

Vi,`
n−jλλλ

j
B`

+ Ii,nu0
+ Ii,nv0 + Ii,nf , i = 1, . . . , κ. (29)

For each row index, the corresponding row elements of all the above matrices can be com-
puted simultaneously by means of the FFT algorithm, after replacing, in the representations
(25) and (26), the ωJ

n kernel by its discretization (17), and exchanging the integration sym-
bol with that of the quadrature sum (for details see [15]). The computation of the required
integrals is performed by using a classical approach based on a m-point Gauss-Legendre
product quadrature, with m very small.

The evaluation of the volume integrals Inu0
, Inv0 , I

n
f has been discussed in [15]. For sim-

plicity, in the forthcoming numerical tests we will consider only sources concentrated at a
point. This choice extremely simplifies the evaluation of the volume term appearing in the
BIE.

3. Reduction of the BIE computational cost and memory space

For simplicity, we consider a single domain Ωi; the results we obtain can be easily extended
to more general situations of multiple domains.

We recall that till now all the sums

n−1
∑

j=0

Kn−ju
j ,

n−1
∑

j=0

Vn−jλλλ
j , n = 1, . . . , N, (30)
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are simultaneously computed by applying a FFT-based algorithm (see [7], Sect. 8.3.1),
with a computational cost of O(M2N logN) flops. The required working space, due to the
construction of the above matrices Kn,Vn, n = 0, . . . , N , is 2M2(N + 1).

In spite of the above statements, in the following we will show that both the computa-
tional cost and the required storage can be significantly reduced when the wave propagation
velocity is much higher than 1. This reduction is suggested by the behavior of the ωJ

n -
coefficients stated in Theorem 2.2. Moreover, the smooth behavior of the ωJ

n -coefficients,
stated in Corollary 2.4, shows that the space integration defined in (25) and (26) can be
performed by applying on each triangular element of Γ∆ a quadrature formulas with very
few nodes (see Remark 3.2 below).

Theorem 3.1. Let ∆t be a given positive real, 0 < r ≤ d and n = 1, 2, . . . . For the ωJ
n -

coefficients, J = V , K, the following bounds hold:

r
∣

∣

∣
ωV
n

(

∆t;
r

c

)
∣

∣

∣
< 0.05462 · n− 1

4

(

r

nc∆t
e
− r

nc∆t
+1

)n/2

(31)

and

r
∣

∣

∣
ωK
n

(

∆t;
r

c

)
∣

∣

∣
< 0.05462 βc∆t

r · n− 1
4

(

r

nc∆t
e
− r

nc∆t
+1

)n/2

, (32)

where βc∆t
r = αr

(

1 + 1

2
√

n(n−1)
+ 3r

c∆t

)

.

Proof. Bound (31) follows immediately from (21) in [14], which has been obtained by using
representations (21) above, the well-known Stirling’s formula for the factorial:

n! =
√
2πnn+ 1

2 e−n+ θ
12n , 0 < θ < 1,

and the bound (see [1], (22.14.17))

|Hn(x)| < 1.0865 · 2n
2 e

x2

2

√
n! .

Bound (32) follows from representation (22). �

Remark 3.2. Bound (31), with c = 1, is identical to that derived in [19], proof of Lemma
4.10. However, in that paper, the authors consider only the single-layer representation and
perform the space discretization by a Galerkin method. Furthermore, their main goal is the
approximation of the Galerkin matrices by corresponding sparse ones. To this end, they show
(see [19], Lemma 4.13) that, for any given (small) real ε′ > 0, when r is outside the interval
In = [tn − 3∆t

√
n| log ε′|, tn + 3∆t

√
n| log ε′|], it holds

|ωV
n (∆t; r)| ≤

ε′

4πr
, n ≥ 1.

Thus, for ε′ sufficiently small, under the above assumption on r the elements of the corre-
sponding matrix become negligible, that is, the matrix itself is negligible.
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We note, however, that for the problems we are considering, being r/c > 0 close to zero,
the above mentioned lemma will produce the desired result only for n sufficiently large, so
that tn − 3∆t

√
n| log(ε′)| > r/c. Note also that only when n > 9| log(ε′)|2 the left hand side

of In is positive. For instance, when ε′ = 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, this happens only
for n ≥ 191, 430, 764, 1193, 1718, 2339, respectively.

In the following, using our estimates (31) and (32), we will derive a simple expression
for a very reasonable cut-off integer N est

0 (see Definition 3.6 below), such that for all n > N0

the matrices Vn,Kn are negligible. For instance, in the above mentioned case of Example 1,
our estimated values of N est

0 are smaller than 10.

The following corollary is a straightforward consequence of the above Theorem 3.1.

Corollary 3.3. Let c and ∆t be fixed, and let 0 < r ≤ d, where d denotes the diameter of
the boundary Γ (or of the chosen artificial boundary B, in the case of a NRBC). Then, for

n → ∞, all elements of the matrices Vn,Kn are bounded by const · n− 1
4

(

d
nc∆t

e
− d

nc∆t
+1
)n/2

,

where the constant does not depend on n, d, c,∆t.

Remark 3.4. From the latter result it follows in particular that, if for the chosen ∆t step-
size and some N0 ≥ 1 sufficiently large, we have ed

N0c∆t
(< 1) sufficiently small, then for all

n > N0 the corresponding ωJ -coefficients are negligible. For example, when c∆t ≥ ed and

n > N0 = 10 we have n− 1
4

(

d
nc∆t

e
− d

nc∆t
+1
)n/2

< ε = 1.03E − 06. Furthermore, the smaller is
ed
c∆t

, the smaller is N0, i.e., the smaller is the number of significant ωJ
n -coefficients. Actually,

in some cases it may even happen that only the ωJ
0 -coefficients are significant.

On the other end, since d, c are given values proper of the problem one has to solve, the
time step-size ∆t cannot be too small. But for many problems, like those we consider in this
paper, this is not a (severe) restriction.

Since from (3) and (4) we obtain

Vψ(x, tn) =

∫

Γ

1

4πr
ψ
(

y, tn −
r

c

)

dΓy

Kϕ(x, tn) =

∫

Γ

∂ny

(

1

4πr
ϕ
(

y, tn −
r

c

)

)

dΓy

the above behavior of the ωJ
n -coefficients, for ∆t > 0 fixed and n → ∞, hence of the

corresponding matrices, is not unexpected. This because ωV
n (∆t; r/c) appears to represent

(see Remark 2 and Fig. 4 in [26]) a smooth “approximation” of the fundamental solution
G(·, tn − r/c) (see (5) above), and ωK

n (∆t; r/c) ≈ ∂ny
G(·, tn − r/c). We also note that the

single layer coefficients ωV
n are those which are needed for the solution of the first kind BIE

examined in [15]; thus, the same computational reduction can be obtained in that case. An
example of this application will be presented in the next section.

Similar bounds could also be obtained for the ωn-coefficients defined by the kernel
∂nx

∂ny
G of the first kind hypersingular integral equation considered in [8] and [16].
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In Figures 1 and 2 we report the behaviors of the coefficients ωV
n (1; ξ) and ωK

n (1; ξ),
for n = 2, 7 (see (15)), when Γ is the surface of the unit sphere. In particular, we have
drawn the graphs of ωV

n (1; ξ) (single layer) and ωK
n (1; ξ) (double layer), as functions of ξ,

0 ≤ ξ = r
c∆t

≤ ξF for the chosen ξF .

Figure 1: Behavior of the coefficients ωV
n , ω

K
n .

0 5 10 15 20 25 30 35 40
−0.05

0

0.05
single layer, n=2, c=1

0 5 10 15 20 25 30 35 40
−1

0

1x 10
−3 double layer, n=2, c=1

0 5 10 15 20 25 30 35 40
−5

0

5x 10
−3 single layer, n=7, c=1

0 5 10 15 20 25 30 35 40
−5

0

5x 10
−4 double layer, n=7, c=1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.05

0

0.05
single layer, n=2, c=1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.01

0

0.01
double layer, n=2, c=1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5x 10
−3 single layer, n=7, c=1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5x 10
−3 double layer, n=7, c=1

We have obtained very similar graphs also for the ωJ
n -coefficients associated with the

2-stage and 3-stage Radau IIA Runge-Kutta methods (see [26]). We recall that for these

coefficients, a bound of the type δc
r
(1 − δ)

n− r
c∆t , n ≥ r

c∆t
, for some δ ∈ (0, 1), has been

recently obtained in [4], Proposition 2.2; however, this bound is too crude for our problem,
since the constant δ does not depend on the velocity c; furthermore, it does not allow the
definition of a priori estimate of a cut-off integer N0.

In the case of the Lubich BDF method of order 1 (see BDF1 in [26]), for the associated
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Figure 2: Behavior of the coefficients ωV
n , ω

K
n .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

4

−5

0

5x 10
−5 single layer, n=2, c=1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

4

−1

0

1x 10
−9 double layer, n=2, c=1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

4

−5

0

5x 10
−6 single layer, n=7, c=1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

4

−5

0

5x 10
−10 double layer, n=7, c=1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3.8

−3.6x 10
−5 single layer, n=2, c=1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−2

0x 10
−7 double layer, n=2, c=1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5x 10
−13 single layer, n=7, c=1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5x 10
−13 double layer, n=7, c=1000

ωJ
n -coefficients we have the following very simple representations:

ωV
n

(

∆t;
r

c

)

=
e
− r

c∆t

4πrn!

(

r

c∆t

)n

> 0, n ≥ 0 (33)

ωK
n

(

∆t;
r

c

)

= αr

(

n− 1− r

c∆t

)

ωV
n

(

∆t;
r

c

)

, n ≥ 0. (34)

Thus, also for this method we can easily derive bounds very similar to those we have obtained
in Corollary 3.3. Actually, the new bounds show a much faster decay to zero, as n→ ∞:

ωV
n

(

∆t;
r

c

)

<
e
− r

c∆t

4π
√
2πr

n− 1
2

(

ed

nc∆t

)n

, n ≥ 1; (35)

(36)

see the graph comparison reported in Figure 3.
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Figure 3: ωJ
n coefficient (J = V ,K) comparison between BDF1 (left side) and BDF2 (right side).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5x 10
−13 single layer, n=4, c=1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4x 10
−13 double layer, n=4, c=1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5x 10
−8 single layer, n=4, c=1000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0x 10
−8 double layer, n=4, c=1000

Remark 3.5. The major consequence of the results we have obtained above, is that only
a very small number of the matrices Vn,Kn, let us say the first N0, with N0 << N , are
significant. These, however, are all full, and cannot be approximated by corresponding sparse
matrices. Therefore, to solve our propagation problem, we only need to construct and store
the first N0 couple of matrices, being neglected all the remaining ones. Actually, when the
velocity is sufficiently high, and the problem sources are not defined by high frequency signals,
only the matrices V0 and K0 turns out to be significant.

Another positive consequence, of the proposed truncation, is that the replacement of N by
N0 in (30) not only reduces significantly the required CPU time and storage, but also makes
stable the corresponding sum evaluations (27), (29), no matter how large is N (as long as
∆t is maintained fixed).

Finally, we note that the smaller is n, the less oscillating are the ωJ
n -coefficients (see

Figures 2, 3) and the fewer are the quadrature nodes needed to compute, with the required
accuracy, the space integrals over each triangular element of Γ∆; see Section 4. This implies
another significant reduction of the computational time.

We end this section by deriving a criterium to determine an estimate of the truncation
integer N0, such that, for all n > N0, the size of all the elements of the matrices Vn,Kn are
less than a given tolerance ε. This follows from the bounds of Theorem 3.1 and Remark 3.4.
With no practical restrictions, we have assumed that the elements of the chosen surface Γ∆,
or at least those having maximum diameters, are equilateral of side h.

Definition 3.6. Let ε > 0 a given error threshold, and h the maximum (triangle) diameter
of the Γ∆ triangulation under consideration. Then we set N est

0 = n − 1, where n is the
smallest (positive) integer n satisfying the following couple of inequalities:

n >
d

c∆t
, 0.052γνhn− 1

4

(

d

nc∆t
e
− d

nc∆t
+1

)n/2

< ε (37)
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where γ = 1 in the case of the single-layer matrices Vn,

γ = max
0≤r≤d

|αr|
(

1 +
1

2
√

n(n− 1)
+

3d

c∆t

)

for the double-layer matrices Kn, and

γ = max

{

1, max
0≤r≤d

|αr|
(

1 +
1

2
√

n(n− 1)
+

3d

c∆t

)}

in the single-double BIE case. The constant ν (=6 in our case) denotes the maximum number
of triangles having a common vertex.

Note that n > d
c∆t

means tn >
d
c
, which is in agreement with (3) and (4).

A reasonable choice of the threshold ε could be, for example, the accuracy one wants to
achieve for his problem solution divided by 100. Furthermore, in the case of the surface of a

sphere of radius R, uniformly partitioned into n∆ plane triangles, we can define h =
√

16π√
3n∆

R.

We recall (see Remark 2.3) that when the surface is that of a sphere of radius R, we have
αr =

1
2R
.

The left hand side of the above bound is obtained by considering the worst case among the
representations (25) and (26), which one has for i = k, i.e. when the factor 1/r is (weakly)
singular at y = xi. Moreover, over each (boundary) triangle, the basis function bi(y) has been
replaced by the constant 1. The above criterium is quite robust with respect to the shape of
the Γ∆ triangular elements, since the equilateral one represents the worst case. For instance,
if one take the triangle having diameter h and vertices at (0, 0), (0, h/

√
2), (h/

√
2, 0), in the

above definition the constant 0.052 must be replaced by 0.022. Of course, more sophisticated
and accurate, but less simple, criteria could be derived. To obtain the final expression, we
have taken the most crude bounds. Therefore, in general we expect that the integer N est

0

is larger than the true (a posteriori determined) N0. In the following examples, we report,
for each case considered, both integers N0 and N est

0 . Note that, the finer is the space
discretization, the smaller is h, hence N0 and N est

0 .

4. Numerical results

To test the effectiveness of the cutting strategy previously described, in this section
we solve several problems of type (1), by using the BEM and the BEM-FEM coupling
approaches. Thus, in Example 1, we will solve a test problem by applying our strategy to
the BIE (2) and (12), and also to the associated potential representations (in Ωe) of our PDE
problem solution. In particular, we perform this test to check the accuracy of the proposed
discretization of (2), since later the first will used as a NRBC to be coupled with a finite
element method.

The problems considered in the subsequent examples will be solved by applying the BEM
approach and the BEM-FEM coupling described above. For all the boundary triangulations
that have been considered we have ν = 6 (see Definition 3.6). For simplicity, we have not
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devised special strategies to avoid, or at least reduce, the repeated evaluation of the ωJ
n -

coefficient evaluation at the same quadrature points, when evaluating the elements (25) and
(26), or to compute simultaneously the required ωV

n , ω
K
n .

Remark 4.1. In our numerical testing, integration over the boundary elements is performed
by considering the original curved triangles. However, to significantly reduce the method
computational cost, without decreasing the BEM overall convergence rate, we replace the Γ-
parametrization Jacobian of each curved triangle by that of the associated plane triangle on
Γ∆. It can be shown that the (absolute) error due to this approximation is O(∆4

x), ∆x → 0.
This approximation will however increase the BEM errors, as shown in Example 1, Tables
2,5.

We also note that for the single-layer BIE, the accuracy we have obtained by replacing
each curved triangle by the associated plane one on Γ∆, is similar to that given by the above
mentioned Jacobian approximation. Instead, in the case of the single-double layer BIE, not
only errors are much higher, but convergence does not show up clearly. For this reason, in
all the examples reported below we have used the “Jacobian approximation” approach.

Finally, we recall that in all the examples, although not explicitly stated, the unit mea-
sures for the physical quantities are: meter (m), second (s) and m/s.

Example 1. We consider problem (1), where Ωi is the unit sphere centered at (0, 0, 0),
u0 = v0 = f = 0 and the Dirichlet boundary datum is of the type g(x, t) = g(t).

First, we solve it by using the approach defined by (12) and (13). In this particular case,
the solutions ϕ and u are explicitly known:

ϕ(x, t) =
2

c

b ct
2
c

∑

k=0

g′
(

t− 2k

c

)

, ∀x ∈ Γ,

and, for x ∈ Ωe,

u(x, t) =

{

0 if t ≤ ||x||−1
c

1
||x||g

(

t− ||x||−1
c

)

otherwise,

and they have been obtained similarly to those in [27] and [14], where they are given for the
velocity c = 1.

In our numerical test we choose

g(t) =
1

2
√
π
t4e−2t, t ∈ [0, 10], c = 1000.

The time interval is divided into N subintervals. The space domain Γ is approximated by
the surface Γ∆ of a regular (inscribed) polyhedron having triangular faces, obtained by using
the algorithm contained in the software library BEMLIB, which has been downloaded from
the internet site: http://dehesa.freeshell.org/BEMLIB/. In particular, for the refinement
labeled by ` = 1 we have 32 triangles and 18 vertices, at ` = 2: 128 triangles and 66 vertices,
at ` = 3: 512 triangles and 258 vertices, at ` = 4: 2048 triangles and 1026 vertices, and at
` = 5: 8192 triangles and 4098 vertices.
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The integrals over each Γ triangular face, which define the matrix elements, are computed
by using the local surface representation, hence applying the 8 × 8-point Gauss Legendre
quadrature rule. This (fairly high) number of nodes has been chosen to be sure that, by
using the same quadrature rule for all discretization refinements, the accuracy of the BEM
method does not deteriorate. In some cases (see tables below), this accuracy is of order
1.0E− 07 or higher. We remark however that by using a 4-point, degree of exactness 3, rule
for the triangle (see [11]), errors up to order 1.0E − 05 do not have significant variations.
Moreover, in the case of the 2-point rule, only the errors of order less than 1.0E−03 become
worse.

Here and in the following, ϕ`,N(x, t) and uS`,N(x, t) denote the approximations of the
density function ϕ(x, t) and the solution u(x, t), respectively, obtained by (12) and (13), a
spatial mesh corresponding to the refinement labeled by ` and a temporal mesh of N + 1
equidistant points. Since in the next examples BIE (2) will be used as a NRBC, to be
imposed in a strong form, in Tables 4-6 below we also report some pointwise absolute errors
associated with these approximations.

In Table 1 we report the absolute errors associated with ϕ`,N(x, t) at t = tn = T/8, T/4,
3T/8, T/2, 7T/8, T ; see also Figure 4. Since, in this example, for fixed t the density function
and its approximation are constant with respect to x, here and in the following tables the
functions ϕ and ϕ`,N have been evaluated at the mesh nodal point x = (0, 0, 1).

Figure 4: Example 1. Density function ϕ2,64(x, t) (left plot) and solution uS2,64(P, t) (right plot),
with P fixed and t varying.
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In the last two columns of Table 1, we also report the maximum of the absolute values
|ϕ(x, tn) − ϕ`,N(x, tn)|, n = 1, ..., N , and the corresponding estimated convergence orders
EOC.

All the values reported in Tables 1-3 have been obtained by computing only the matrices
Vn, n = 0, 1, ..., N0 = 4, thus neglecting the remaining ones, whose element magnitudes are
all smaller than 1.0E−08. This cutting strategy allows to retrieve, with a significantly lower
computational cost and memory space, the same accuracy obtained by using the complete
scheme.

Using formula (37), the estimated cutting integer turns out to be N est
0 = 7. This number

has been obtained by considering level ` = 5, i.e., n∆ = 8192 and N = 256, although for
the accuracy given by the lower levels, a 1.0E − 08 threshold is excessively high. In the
case of the single-layer operator, represented by the matrix Vn, for ε = 1.0E − 05 we have
N est

0 = 4. Using the criterium proposed in [19], recalled above in Remark 3.2, we would have
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the cut-off integer NHKS
0 = 564 for the latter threshold value, and NHKS

0 = 1975 for the
former one. These values have been obtained after noting that, to be fair, in the latter rule
we must choose ε′ = 37ε. In the following, the cut-off integer obtained by applying to the
single-layer matrices Vn the criterium defined in [19] will be denoted by NHKS

0 .
To give an idea of the advantages of the cutting strategy, we remark that, for example,

we could not apply the numerical method with the parameters of level ` = 5, since the
required memory space was prohibitive for our PC. On the contrary, we could perform ` = 5
with N0 = 4, obtaining numerical results which preserve the expected order of convergence.
Moreover, the CPU time required by the method with the cutting strategy is significantly
reduced with respect to that of the complete method with N0 = N , especially when N is
large. Indeed, in the simple case we have considered here, where N is relatively small, the use
of N0 = 4 instead of N = 16, 32, 64, 128 allows to obtain a reduction of the computational
time of 0.5%, 20%, 35% and 49%, respectively.

Table 1: Example 1. Absolute errors |ϕ(x, t) − ϕ`,N (x, t)|, N0 = 4.
` N T/8 T/4 3T/8 T/2 7T/8 maxt EOC
1 16 9.12E − 03 1.19E − 02 4.95E − 03 1.29E − 03 6.70E − 06 1.32E − 02

2.02
2 32 2.26E − 03 2.95E − 03 1.23E − 03 3.18E − 04 1.66E − 06 3.26E − 03

2.04
3 64 5.43E − 04 7.09E − 04 2.95E − 04 7.66E − 05 3.98E − 07 7.90E − 04

2.14
4 128 1.23E − 04 1.60E − 04 6.67E − 05 1.73E − 05 9.01E − 08 1.79E − 04

2.67
5 256 1.93E − 05 2.52E − 05 1.05E − 05 2.74E − 06 1.43E − 08 2.81E − 05

In Table 2 we report the (approximated) L2-norm absolute errors for some values of t,
given by ||ϕ(·, t)− ϕ`,N(·, t)||L2(Γ), where the integral on each triangle T ∈ Γ is first approx-
imated as described in Remark 4.1, and then computed by using the 4-point quadrature
rule of order 3 taken from [11]. As in the previous table, we report first the errors at five
instants, and then its maximum with respect to all computational instants, together with the
associated EOC. The last column, identified by the symbol J∆̃, contains the corresponding
maximum errors obtained by computing all integrals defined on the Γ triangles by using the
exact triangle representation Jacobian. In this latter case, because of the higher accuracy
one can obtain, we had to take N0 = 5. This same procedure has also been applied to obtain
the results reported in Table 5 below.

Table 2: Example 1. Absolute errors ||ϕ(·, t) − ϕ`,N (·, t)||L2(Γ), N0 = 4.
` N T/8 T/4 3T/8 T/2 7T/8 maxt EOC maxt, J∆̃
1 16 3.37E − 02 4.40E − 02 1.83E − 02 4.75E − 03 2.47E − 05 4.87E − 02 1.05E − 04

1.82
2 32 9.58E − 03 1.25E − 02 5.20E − 03 1.35E − 03 7.02E − 06 1.38E − 02 3.66E − 05

1.91
3 64 2.52E − 03 3.29E − 03 1.37E − 03 3.55E − 04 1.84E − 06 3.66E − 03 1.17E − 05

1.97
4 128 6.44E − 04 8.42E − 04 3.50E − 04 9.08E − 05 4.72E − 07 9.37E − 04 3.47E − 06

1.97
5 256 1.64E − 04 2.15E − 04 8.94E − 05 2.32E − 05 1.21E − 07 2.39E − 04 2.00E − 06
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Note that the EOC reported in the above tables confirm the expected second order
convergence rate (see [15]).

In Table 3 we report the maximum value of the absolute errors |u(x, tn)−uS`,N(x, tn)|, n =
1, ..., N , at some fixed points x = P , and the corresponding EOC. Note that the approximant
uS`,N shows a third order super convergent behavior.

Table 3: Example 1. Absolute errors maxt |u(P, t)− uS`,N (P, t)|, N0 = 4.
` N P = (1.01, 0, 0) EOC P = (1.5, 0, 0) EOC P = (2, 0, 0) EOC
1 16 5.00E − 05 9.15E − 04 7.47E − 04

0.91 2.91 2.94
2 32 2.67E − 05 1.22E − 04 9.71E − 05

1.70 3.03 3.04
3 64 8.22E − 06 1.49E − 05 1.18E − 05

2.91 3.07 3.02
4 128 1.09E − 06 1.78E − 06 1.45E − 06

2.63 3.69 3.41
5 256 1.76E − 07 1.38E − 07 1.36E − 07

Finally, we solve the same problem by applying the approach described in Section 2,
taking also in this case N0 = 4; we denote by λ`,N and uSD`,N the approximation of λ and
u respectively, obtained by solving (2) on Γ and computing (11). In Tables 4-6 we report
the numerical results obtained for the unknown density function λ(x, s) = ∂nu(x, s) and for
u(x, t). Also in this case, the first five matrices (N0 = 4) for both the single and the double
layer operators, are sufficient to obtain the same accuracy one would obtain by considering
all the N matrices.

Table 4: Example 1. Absolute errors |λ(P, t) − λ`,N(P, t)| at P = (0, 0, 1), N0 = 4.
` N T/8 T/4 3T/8 T/2 7T/8 maxt EOC
1 16 4.57E − 03 5.95E − 03 2.47E − 03 6.43E − 04 3.37E − 06 6.60E − 03

2.02
2 32 1.13E − 03 1.47E − 03 6.13E − 04 1.59E − 04 8.32E − 07 1.63E − 03

2.04
3 64 2.73E − 04 3.54E − 04 1.47E − 04 3.83E − 05 2.00E − 07 3.95E − 04

2.15
4 128 6.17E − 05 8.02E − 05 3.34E − 05 8.69E − 06 4.53E − 08 8.93E − 05

2.59
5 256 1.01e− 05 1.34E − 05 5.62E − 06 1.47E − 06 7.72E − 09 1.48E − 05

Table 5: Example 1. Absolute errors ||λ(·, t) − λ`,N (·, t)||L2(Γ), N0 = 4.
` N T/8 T/4 3T/8 T/2 7T/8 maxt EOC maxt, J∆̃
1 16 1.69E − 03 2.20E − 02 9.14E − 03 2.38E − 03 1.24E − 05 2.44E − 02 1.03E − 04

1.82
2 32 4.81E − 03 6.25E − 03 2.60E − 03 6.75E − 04 3.52E − 06 6.92E − 03 3.47E − 05

1.92
3 64 1.26E − 03 1.64E − 03 6.83E − 04 1.78E − 04 9.24E − 07 1.83E − 03 1.17E − 05

1.96
4 128 3.23E − 04 4.21E − 04 1.75E − 04 4.55E − 05 2.37E − 07 4.69E − 04 3.15E − 06

1.94
5 256 8.36E − 05 1.09E − 04 4.59E − 05 1.19E − 05 6.23E − 08 1.22E − 04 3.96E − 06
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By comparing the results reported in Tables 3 and 6 we note the superiority of the single-
layer approach proposed in [15]. For example, in Table 3, the errors obtained by taking ` = 1,
N = 16 and ` = 3, N = 64 are smaller than those reported in Table 6 for ` = 2, N = 32
and ` = 5, N = 256, respectively. The single-layer operator apparently increases by one
order the convergence rate of the density approximant. This is probably due to the higher
order smoothing effect of the single-layer operator with respect to the double-layer one (see
[28]). Unfortunately, the single-layer BIE cannot be used to define a non reflection boundary
condition to be coupled with a finite element or finite difference method.

Table 6: Example 1. Absolute errors maxt |u(P, t)− uSD`,N (P, t)|, N0 = 4.
` N P = (1.01, 0, 0) EOC P = (1.5, 0, 0) EOC P = (2, 0, 0) EOC
1 16 1.45E − 02 4.61E − 03 3.77E − 03

1.79 1.83 1.89
2 32 4.18E − 03 1.30E − 03 1.02E − 03

3.11 1.97 1.97
3 64 4.84E − 04 3.31E − 04 2.60E − 04

3.72 2.00 2.00
4 128 3.67E − 05 8.26E − 05 6.48E − 05

1.24 1.97 1.91
5 256 1.55E − 05 2.11E − 05 1.72E − 05

In the following examples, we consider the BEM-FEM coupling method for the solution
of Problem (1), by applying the cutting strategy introduced in the previous sections. In
particular, we solve wave propagation problems in the case of waves generated by incident
fields or external sources. We will see that, as in the BEM approach, the cutting strategy
performs well in the BEM-FEM coupling too, producing the same order of accuracy of the
complete scheme and with no spurious reflections.

Since in the examples we consider next the corresponding exact solution is not known,
to measure the accuracy of the approximations we obtain, we construct a reference “exact”
solution as follows: we first solve the single layer BIE (12) on a fine space and time dis-
cretization with no cutting; then, we retrieve the solution at any point in the infinite domain
Ωe by computing the associated potential (13). This solution will be denoted by uS.

For what concerns the BEM-FEM method, we remark that the discretization of the three
dimensional spatial domain Ω is generated by using the Freefem++ library. In particular
we use the TetGen software, which allows to generate the tetrahedral mesh of the domain
Ω starting from that we define on its boundary. The finite computational domains that we
will consider for our numerical examples are three dimensional shells bounded internally by
a surface Γ and externally by a surface B. The shell discretization, which is constructed by
TetGen, is a three dimensional Piecewise Linear Complex (PLC), having an internal bound-
ary Γ∆ and an external one B∆. In what follows, nT denotes the number of tetrahedra of the
PLC domain discretization, while n∆,Γ and n∆,B denote the number of triangles belonging
to the boundaries Γ∆ and B∆, respectively.

In the forthcoming numerical test, we solve each problem by using the BEM and/or BEM-
FEM approaches; whenever the results are very similar, we report only those obtained by the
latter one. We remark that, for the BEM-FEM coupling approach, in all the numerical tests
the evaluation of the entries of the matrices involved in the NRBC has been performed by
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a 2-point Gauss-Legendre quadrature product formula; this choice revealed to be sufficient
for qualitatively accurate plots.

Example 2. Case a). We consider the scattered field of a plane wave impinging upon a

sphere of radius 1 with velocity c = 343. The incident wave

uinc(x, t) = e−2·10−2(x1−400+ct)2

is centered at the point x0 = (400, 0, 0) and propagates along the x1-axis to the left direction.
The total wave field utot is given by the sum of the incident wave uinc and the scattered one
uscat, where the latter is the solution of (1) with the Dirichlet datum g(x, t) = −uinc(x, t) on
the boundary Γ of the unit sphere.

We approximate utot by using the BEM-FEM approach, in the domain Ω bounded in-
ternally by Γ and externally by the artificial boundary B, chosen as the surface of a sphere
of radius 2. We choose a decomposition of Ω into nT = 32368 tetrahedra and n∆,B = 1772
triangles, and a discretization of the time interval [0, 3] into N = 1024 subintervals. We have
considered the cutting parameter N0 = 14 (N est

0 = 21), which corresponds to the thresh-
old value ε = 1.0E − 05. We recall that a smaller value of N0 does not deteriorate the
qualitative accuracy of the graph. For completeness, we report the percentage of the ratios
of the CPU times and of the memory spaces required by the numerical method, when the
cutting strategy is compared with the complete scheme. In particular, we consider the CPU
times for the computation of the matrices involved in the discretization of the NRBC (in the
sequel denoted by CPU-mat) and the CPU times required for the computation of the right
hand side term of (28) (denoted by CPU-rhs). In this case, we have CPU-mat= 0.1% and
CPU-rhs= 3%, while the ratio of the memory space is 1%.

In Figure 5, we show the behavior of the total field utot,BF computed by the BEM-FEM
coupling method at the point P ≈ (2, 0, 0), belonging to the artificial boundary B (left plot).
In the middle and right plots we show the associated absolute errors |utot,S(P, t)−utot,BF (P, t)|
and energy, respectively. The reference solution utot,S has been obtained by a complete BEM
approach with a discretization of the boundary Γ into n∆,Γ = 1772 triangles, and of the
time interval into N = 2048 subintervals. We point out that, in the BEM-FEM coupling,
the energy test is important to reveal the eventual presence of spurious reflections in case
of evanescent waves. In this case, the energy dissipates as expected even when the cutting
strategy is applied.

Case b). For the same geometrical setting and velocity of Case a), we consider the incident
wave packet

uinc(x, t) =

6
∑

i=1

e−2(x1−ξi+ct)2 ,

with ξi = 50, 55, 60, 65, 70, 75, consisting of a sum of six successive waves spaced at regular
intervals. We solve the problem by using the BEM approach. The time interval of interest
[0, 0.4] has been subdivided into N = 2048 subintervals; the unit sphere has been discretized
with the spatial refinement ` = 3 (n∆,Γ = 512).

We remark that the chosen fine time discretization is necessary to reproduce the very
narrowed and picked behavior of the wave, as Figure 7 shows, where the behaviors of incident,
scattered and total fields are represented at some points P with respect to the time variable.
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Figure 5: Example 2, Case a). Total field at P ≈ (2, 0, 0) (left plot), absolute error (middle plot),
energy (right plot), N = 1024, N0 = 14.
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Figure 6: Example 2, Case b). Snapshots of the solution at different instants.

t ≈ 0.1380 t ≈ 0.1423

t ≈ 0.1450 t ≈ 0.1495

t ≈ 0.1530 t ≈ 0.1571

In Figure 6 we show the 2D and 3D snapshots of the total field at different instants and
at the x1x2-domain [−4, 4]× [−4, 4], external to the obstacle. In all the numerical tests the
cutting parameter isN0 = 71 (N est

0 = 88), corresponding to the error threshold ε = 1.0E−08.
We have obtained the same graphs by setting ε = 1.0E−05, for which we have N0 = 54 and
N est

0 = 74.
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t ≈ 0.1606 t ≈ 0.1710

t ≈ 0.2181 t ≈ 0.2216

t ≈ 0.2261 t ≈ 0.2282

t ≈ 0.2325 t ≈ 0.2335

t ≈ 0.2380 t ≈ 0.2730
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Figure 7: Example 2, Case b). Incident (left plot), scattered (middle plot) and total (right plot)
field at some points P , N = 2048, N0 = 54.
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If we consider solely the single-layer matrices Vn, with error tolerances ε = 1.0E −
05, 1.0E − 08, then our estimate (37) gives N est

0 = 65, 80, respectively, while the corre-
sponding values obtained using the [19] criterium, after setting ε′ = 9.2462ε, are NHKS

0 =
834, 2420.

Example 3. We consider a wave generated by a source f , impinging upon a soft obstacle.
The data of the problem are u0 = 0, v0 = 0, g = 0.

Case a). As a first case, we consider a point source

f(x, t) = h(t)δ(x− x0), x0 = (5, 0, 0), h(t) = e−(t−5)2 cos(60t).

For this example we consider the BEM-FEM approach. The obstacle is the unit sphere
and the artificial boundary B is the surface of the sphere centered at (0, 0, 0) and of radius
2. With this choice, the contribution of the source f , which is located out of the finite
computational domain, is taken into account by the volume term If defined by (8). Because
of the presence of the delta Dirac function in the expression of the fundamental solution, the
volume integral If has the following simple expression:

If(x, t) =

{

h
(
t− ||x−x0||

c

)

4π||x−x0|| for all x : ||x−x0||
c

< t

0 otherwise.
(38)

The velocity is c = 1500, which refers to the propagation of seismic or acoustic waves in the
water. In Figure 8, we show the behavior of the solution uBF obtained by the BEM-FEM
coupling at a point P ≈ (2, 0, 0) in the time interval [0, 10], and the associated absolute
error |uS(P, t) − uBF (P, t)|, where the BEM reference solution uS has been obtained by a
discretization of the unit sphere into n∆,Γ = 1770 triangles. The solution uBF has been
computed by a decomposition of the shell into nT = 32368 tetrahedra; the triangular mesh
inherited on the artificial boundary B consists of n∆,B = 1772 triangles. In both cases the
time interval [0, 10] has been subdivided into N = 2048 subintervals; this choice allows to
obtain a good approximation of the highly oscillating behavior (in time) of the solution.

Besides applying the cutting strategy to the BEM-FEM approach, with N0 = 4 (N est
0 =

9), corresponding to the threshold ε = 1.0E − 05, we have performed truncation also in
the BEM approach with the same value of N0 (N est

0 = 6). We remark that, for a good
approximation of uS, with or without cutting, it is sufficient to consider a coarse triangular
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decomposition of Γ. On the contrary, a decomposition of the shell coarser than that we have
considered, consisting of nT = 7792 tetrahedra and n∆,B = 440 triangles, deteriorates the
accuracy of the solution uBF (see Figure 9). This is due exclusively to the finite element com-
putation; indeed, based on an intensive numerical testing, the accuracy of the uBF solution
does not improve by taking a higher number of quadrature nodes, for the computation of the
matrix elements, and a smaller cutting parameter ε. Incidentally, we remark that the cutting
strategy revealed to be crucial in this case, since the complete scheme with nT = 32368 and
N0 = 2048 could not run on our PC because of an out of memory. For completeness, in
the right plot we show the behavior of the energy of the system. As expected, the energy
is null until the wave generated by the external source reaches the computational domain,
it oscillates as a consequence of the oscillating behavior of the wave, and it decays to zero
when the wave leaves the computational domain since the source f is evanescent.

Figure 8: Example 3, case a). Solution uBF (P, t) at P ≈ (2, 0, 0) (left plot), associated absolute
error (middle plot), and energy of the system (right plot), nT = 32368, n∆,B = 1772, N = 2048,
N0 = 4.
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Figure 9: Example 3, case a). Solution uBF (P, t) at P ≈ (2, 0, 0) (left plot) and associated absolute
error (right plot), nT = 7792, n∆,B = 440, N = 2048, N0 = 4.
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Case b). The second example we consider is a wave generated by a point source, traveling
with velocity c = 3000 towards a large spherical obstacle of radius r = 100. More precisely,
we choose

f(x, t) = h1(t)δ(x− x0), x0 = (6100, 0, 0), h1(t) = 105e−(10t)2 sin(6t).
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In Figure 10 we show the behavior of the solution uS at some point P of the exterior
domain, computed by the BEM approach with ` = 2 (space discretization), N = 1024
(time discretization) and cutting parameter N0 = 41 (N est

0 = 48) defined by the threshold
ε = 1.0E − 05). The time interval of integration is [0, 5]. In this case, to apply the [19] rule,
the proper value of ε′ is 4.6232E − 07, and we have NHKS

0 = 1942.
In this particular example, we observe that the incident wave reaches the points P =

(200, 0, 0), P = (500, 0, 0), P = (1000, 0, 0) at the instants t ≈ 1.7, 1.87, 1.97, respectively;
then it is reflected back by the obstacle and the scattered wave is clearly visible in each plot.

In Figure 11, by assuming as reference values the ones obtained by the complete BEM
scheme, 8-point Gauss-Legendre quadrature product formula and ` = 3 spatial discretization,
we report the absolute error associated to the solution obtained by the partial scheme.

Figure 10: Example 3, case b). Solution uS(P, t) for h1 at some P , N = 1024, N0 = 41.
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Figure 11: Example 3, case b). Absolute errors associated with uS(P, t) for h1 at some P , N = 1024,
N0 = 41.
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For what concerns the BEM-FEM approach, the artificial boundary B is the sphere
of radius 200 centered at the origin. In Figure 12 we show the solution uBF obtained
by partitioning the computational domain into nT = 32368 tetrahedra and n∆,B = 1772
triangles, and time interval [0, 4] into N = 4096 subintervals. The cutting integer, associated
to ε = 1.0E − 05, is N0 = 194 (N est

0 = 226). The finite element method has been associated
with the (second order) Crank-Nicolson (C-N) time integrator.

This is a challenging numerical test because of the choice of f . Indeed, when the wave
generated by the source f reaches the boundary Γ, the incompatibility between the homoge-
neous Dirichlet datum and the value of the impinging wave shows up through unacceptable
oscillations in the numerical solution, caused by the time integrator we have associated to the
FEM. We point out that the choice of a smaller threshold ε does not improve the behavior of
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the solution. The oscillations are slightly reduced when the first order implicit Euler scheme
is used, as Figure 13 shows.

Since the main purpose of this work is the use of the BIE (2) as a non reflecting boundary
condition, we do not proceed further with the search of a proper time integrator to be
associated with the FEM.

Figure 12: Example 3, case b). Solution uBF (P, t) for h1 at some P , N = 4096, N0 = 194. C-N
time integrator.
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Figure 13: Example 3, case b). Solution uBF (P, t) for h1 at some P , N = 4096, N0 = 194. Implicit
Euler time integrator.
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Figure 14: Example 3, case b). Solution uBF (P, t) for h2 at P ≈ (200, 0, 0) (left plot), associated
absolute error (middle plot), and energy of the system (right plot), N = 4096, N0 = 194. C-N time
integrator.
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To confirm what we have remarked about the incompatibility of the chosen data, in Figure
14 we show that the oscillations disappear when, in the same setting considered above, in the
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expression of f , instead of h1 we choose the following function h2(t) = 107t3e−(10t)2 sin(6t).
In this case too, the complete scheme could not run because of an out of memory.

Case c). We conclude this example by considering a wave generated by two sources,

f1(x, t) = h1(t)δ(x− x0,1), x0,1 = (6000, 0, 0), h1(t) = 104e−(t−5)2 cos(60t),

f2(x, t) = h2(t)δ(x− x0,2), x0,2 = (0, 60000, 0), h2(t) = 5 · 104e−(t−5)2 sin(20t).

The wave travels with velocity c = 6000 towards the spherical obstacle of radius 1. The
treatment of multiple sources, external to the finite computational domain, simply consists
in the sum of the corresponding volume integrals. It is easy to check that in this case we
have If = If1 + If2 , where Ifi , i = 1, 2 are given by (38).

Figure 15: Example 3, case c). Solution uBF (P, t) at P ≈ (2, 0, 0) (left plot), associated absolute
error (middle plot), and energy of the system (right plot), N = 4096, N0 = 3.
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In Figure 15, we show the behavior of the solution uBF obtained by the BEM-FEM
coupling at a point P ≈ (2, 0, 0) in the time interval [0, 20], the associated absolute error
|uS(P, t)− uBF (P, t)|, and the energy of the system, in the computational domain bounded
externally by the sphere of radius 2. The BEM reference solution uS has been obtained by
a discretization of the unit sphere into n∆,Γ = 1770 triangles. The solution uBF has been
computed by a decomposition of the shell into nT = 32368 tetrahedra; the triangular mesh
inherited on the artificial boundary B consists of n∆,B = 1772 triangles. In both cases the
time interval [0, 20] has been subdivided into N = 4096 subintervals. The cutting strategy
has been applied to the BEM-FEM with N0 = 3 (N est

0 = 6), which corresponds to a threshold
parameter ε = 1.0E − 05; the complete scheme could not be performed because of an out of
memory.

Example 4. As last test, we consider a plane wave impinging upon four scatterers, rep-
resented by spheres of radius 0.5 centered at the points C1 = (1, 0, 0), C2 = (−1, 0, 0),
C3 = (0, 1, 0) and C4 = (0,−1, 0). The velocity of propagation of the wave is c = 343.
The incident wave uinc consists of two wave packets, represented as the sum of six successive
waves spaced at regular intervals along the x1-axis, and the sum of six successive waves
spaced at regular intervals along the x2-axis. In particular,

uinc(x, t) =

6
∑

i=1

e−2·10−2(x1−ξi+ct)2 +

6
∑

i=1

e−2·10−2(x2−ηi+ct)2 ,
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Figure 16: Example 4. The geometry of the problem: four spherical scatterers (left plot) and a
section of the computational domain with a decomposition into tetrahedra (right plot).

Figure 17: Example 4. Incident, scattered and total field at P ≈ (0, 0, 0) (top-left plot), at P ≈
(2, 0, 0) (top-middle plot) and energy of the system (top-right plot). A zoom of the total field at
P ≈ (2, 0, 0) (bottom plot), N = 4096, N0 = 21.
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with ξi=400,800,1200,1600,2000,2400 and ηi=300,700,1100,1500,1900,2300. The solution is
obtained by the BEM-FEM method, in the computational domain delimited by the surface of
the sphere of radius 2 (see Figure 16). The time interval of interest [0, 8] has been subdivided
into N = 4096 subintervals. The domain has been discretized by nT = 4122 tetrahedra, and
n∆,B = 440 triangles inherited on the artificial boundary. In spite of the high number of time
instants we need to approximate accurately the picked behavior of the solution, N0 = 21
(N est

0 = 27) matrices, corresponding to the threshold value ε = 1.0E − 05, are sufficient for
the approximation of the NRBC without having any spurious reflection. In Figure 17 we
show the behavior of the incident, the scattered and the total field at some points of the
computational domain, as well as the energy of the system in the whole time interval [0, 8].
For this example, we can report the percentage of the ratios of the CPU times and of the
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memory spaces: CPU-mat= 21% and CPU-rhs= 1%, while the ratio of the memory space is
0.5%.

5. Conclusions

In the last years, several papers have been published for the numerical solution of exte-
rior problems for the classical wave equation, as testified by some of those reported in the
bibliography. One of the main approaches is based on space-time boundary integral equa-
tion representations, which are either used to directly compute the problem solution, as in
[15],[16] and [25] for example, or to define a non reflecting boundary condition to be coupled
with a finite difference or finite element method, as in [13], [14] and [6]. A key issue for
the success of the method is the computational cost and the required memory space of the
associated discretization.

A good numerical approach, that has attracted the attention of several researchers, is
based on Lubich discrete convolution quadratures (see [23]) coupled with classical Galerkin or
collocation boundary element discretizations. To reduce its computational cost and memory
space, several proposals have been made. All of them refer to the classical wave equation
with unitary velocity, space domains whose sizes are of order one, and with small or very
moderate time intervals. Furthermore, only the single-layer BIE representation is considered.
The main goal of these proposals is the approximation of the full matrices generated by the
Lubich formula, when this is coupled with a space Galerkin discretization, by corresponding
sparse ones (see [20], [19], [5], [4]). However, the number of these matrices can be fairly large;
this depends on the accuracy one wants to achieve and on the length of the time interval of
integration.

In this paper we have considered a new class of problems, that often occur in practical
applications, which allow to adopt a different and more effective strategy for the reduction
of both the computational cost and the required working space. The space discretization is
performed by a classical collocation BEM. For these problems, the above mentioned matrix
sparsifications cannot be applied, as pointed out in Remark 3.2. Instead, we have shown
that when the wave propagation velocity c is much larger than 1, the ratio between the
physical domain size and the velocity c is small, and the problem transient is not excessively
small, only the first N0 matrices, with N0 very small compared with their total number,
are significant, and thus have to be constructed and stored. For the a priori choice of the
integer N0 we have given a simple criterium. A consequence of this “truncation” is also the
improvement of the stability of the solution method. To further improve the efficiency of
Lubich’s formula, we have derived for its coefficients simple recurrence relationships, which
allow their efficient evaluation.

All the numerical computation has been performed on a PC with Intel Core2r Quad
Q6600 (2.40GHz). To perform our numerical testing we have written standard (i.e., sequen-
tial) Matlabr codes.
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