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Summary

The purpose of this chapter is to critically review some results that our groups obtained in previous
works, which were devoted to the investigation of the elastic properties of composite materials with
a statistical distribution of spheroidal inclusions. These studies were motivated by our interest in the
description of mechanical properties of fibre-reinforced biological tissues (such as articular cartilage),
starting from the internal structure of these tissues. After an introduction to tensor algebra, which
defines the notation and clarifies the mathematical framework adopted in the chapter, we present,
in a covariant setting inspired by Differential Geometry, Walpole’s representation of isotropic and
transversely isotropic second- and fourth-order tensors, along with its properties. Hence, starting
from Eshelby’s seminal work on the problem of an inclusion in an infinite matrix, we briefly review
the theories developed by Hill, Walpole and Weng for the determination of the overall elasticity
tensor of materials with one or more inclusion phases. Then, we discuss in detail the cases of
composite materials with aligned spheroidal inclusions and with statistically oriented spheroidal
inclusions. Emphasis is put on extending Walpole’s formula to the case of inclusions aligned
according to some probability density of orientation, both in the transversely isotropic and the
isotropic case.
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1 Introduction1

From the 1950s to the 1970s, Eshelby published several papers (e.g., Eshelby, 1951, 1957, 1975)2

that turned out to be of fundamental importance in the development of the theory of materials with3

defects or inclusions. In this chapter, we are particularly interested in his work on the ellipsoidal4

inclusion (Eshelby, 1957), which is at the basis of the theory of materials reinforced by one or more5

phases of ellipsoidal inclusions, whose shape ranges from flat discs (which could represent cracks,6

if assigned a null elasticity tensor) to spherical inclusions to fibre-like inclusions.7

The theory for the determination of the elasticity tensor of a composite material with8

inclusions has been developed by, among others, Hill (1963, 1965), Hashin (1963) and Walpole9

(1966a,b, 1969). The case of aligned inclusions has been thoroughly studied by Weng and his group10

(Weng, 1984, 1990; Qiu and Weng, 1990). A few cases of composites with non-aligned inclusions11

have been studied in the 1980s. The first work we are aware of is that by Chou and Nomura (1981),12

who studied a short-fibre composite in which the directions of alignment of the fibres lay on the13

surface of a cone. Tandon and Weng (1986), Weng (1990) and Qiu and Weng (1990) studied the14

case of randomly oriented spheroidal inclusions.15

In this chapter, we report our method of solution for the general case of statistically oriented16

inclusions and, in particular, for the case of probability density being transversely isotropic with17

respect to a given direction. This is the core of one of our first works (Federico et al., 2004), which18

here we would like to present from a more mature point of view (twelve years are not so few...),19

and in a more general setting. Furthermore, we take this chance to correct a few imprecisions in20

our original work and in some subsequent ones.21

Originally, we were motivated by our interest in modelling articular cartilage as a composite22

comprised of a proteoglycan matrix with spheroidal inclusions, representing the chondrocytes (i.e.,23

cartilage cells) and collagen fibres (Federico et al., 2005). This method was able to predict the elastic24

behaviour of articular cartilage only for a given type of deformation (i.e., either in compression or25

in tension). Indeed, the method had been conceived to model “pure” linear elasticity, rather than26

to capture the tension-compression asymmetry caused by the fact that the collagen fibres bear27

load when extended, but almost no load when contracted. Such non-linear effect was highlighted28

by Soltz and Ateshian (2000), who modelled cartilage by means of the conewise linear elastic29

model developed by Curnier et al. (1995), which adopts different elasticity tensors in tension and30

compression. However, considering the sign of deformation explicitly in the original paper (Federico31

et al., 2004) and its application to articular cartilage (Federico et al., 2005) would have prevented32

direct averaging integration of the elasticity tensors over all possible directions. In fact, this difficulty33

emerged also in our subsequent non-linear works (see Federico, 2015, and references therein). Despite34

the limitations of our early paper (Federico et al., 2004), its methods have served as the basis for35

several other projects in our research groups, both in the linear and non-linear settings (see, again,36

Federico, 2015, for an account of all works in this “family”).37

2 Theoretical Background38

We shall exclusively deal with the theory of small deformations, and therefore we shall make no39

distinction between reference and current configuration of a deformable body, which we shall simply40

regard as an open subset B of the physical space S. Consequently, we shall not make distinction41

between uppercase and lowercase symbols as typically done in modern Continuum Mechanics42

(see, e.g., Marsden and Hughes, 1983), and shall exclusively use lowercase indices. However, we43
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decided to keep the distinction between vector and covector quantities, which is reflected in the44

distinction between contravariant and covariant indices, respectively. The rationale for this choice is45

twofold. First, we believe that, even when Cartesian coordinates are used and the difference between46

vectors and covectors fades under orthogonal transformations (and exclusively under orthogonal47

transformations), it is good practice to keep the distinction, from a didactical point of view. Second,48

the theory of composite materials has traditionally been developed under the tacit assumption of49

Cartesian coordinates, and our own past work is no exception; thus, we found appealing the idea50

of attempting to systematically employ a covariant formalism instead.51

We start by presenting the description of the physical space S as an affine space. Then, we52

introduce our general notation for tensors and tensor spaces, the metric tensor and contractions53

of tensors. We continue by introducing the symmetries of second- and fourth-order tensors,54

and the material symmetries of isotropy and transverse isotropy, along with the corresponding55

representations of second- and fourth-order tensors satisfying these symmetries. In particular, we56

present Walpole’s formalism for the representation of transversely isotropic fourth-order tensors.57

Finally, we briefly recall some key relations from the Theory of Linear Elasticity.58

2.1 Affine Spaces, Open Subsets and Tangent Spaces59

We cannot but agree with, e.g., Marsden and Hughes (1983) or Epstein (2010), when they say that60

differentiable manifolds are the most general and most appropriate setting for the description of61

Mechanics. However, in many cases, the much simpler structure of affine space is sufficient for a62

reasonably rigorous presentation. An affine space is in fact a trivial differentiable manifold (i.e., a63

differentiable manifold that can be covered by a single chart) and is the minimal structure that64

allows to develop Differential Calculus and to attach vectors and tensors at any point in space.65

An affine space consists of a set S, called the point space, a vector space V, called the66

modelling space, and a map F : S × S → V that, for every pair of points x, y in S, yields a67

vector in V denoted F(x, y) = y − x = w, called the oriented segment from x to y. The map68

F must be anti-commutative, i.e., [x − y] = −[y − x], and must satisfy the triangle rule, i.e.,69

y − x = [y − z] + [z − x], and the axiom of arbitrary origin, i.e., for every x ∈ S and w ∈ V there70

exists one, and only one, y ∈ S, such that y − x = w. At every point x ∈ S, the set of all vectors71

emanating from x is defined by72

TxS = {wx = y − x : y ∈ S}, (1)

where the notation wx means that “w is attached at x”. The space TxS is a vector space called73

tangent space of S at point x. The tangent bundle of S, denoted by TS, is defined as the disjoint74

union of all tangent spaces TxS for all x ∈ S.75

The definition of tangent space given in Equation (1), however, applies exclusively to affine76

spaces and not to subsets of an affine space. This is crucial, because deformable bodies are often77

seen as open subsets B ⊂ S. The problem for the case of a subset is that, if x ∈ B, there exist78

tangent vectors wx ∈ Tx B such that y = x+wx does not belong to B, i.e., the “tip of the arrow”79

lies outside B (see the example in Figure 1, right). Therefore, in order to properly define the tangent80

space TxB at a point x ∈ B, we need to use the definition inherited from Differential Geometry. In81

this definition, the tangent space TxS is the set of all vectors that are tangent at x to all possible82

regular curves Γ : [a, b]→ S : s 7→ Γ(s) such that Γ(s0) = x, with s0 ∈]a, b[, i.e., the vectors83

wx = lim
h→0

Γ(s0 + h)− Γ(s0)

h
= Γ′(s0) ∈ TxS, (2)
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in which the numerator of the limit is the difference between point Γ(s0 + h) and Γ(s0), which84

is a vector secant to Γ, and the limit is precisely the tangent at x (Figure 1, left). For the case85

of an affine space S, this definition of tangent space TxS coincides with that in Equation (1).86

However, although the definition in Equation (1) does not make sense for an open subset B, that87

in Equation (2) can be automatically inherited by TxB just by saying that x ∈ B and the curves Γ88

are such that Γ : [a, b]→ B : s 7→ Γ(s), with Γ(s0) = x, and s0 ∈]a, b[.89

x
�

B ⇢ S

wx

x = �(s0)

�(s0 + h)

�([a, b]) ⇢ S

Figure 1: Left: The geometrical definition of tangent vector at a point x in the affine space S as the tangent
at x to a curve passing by x, obtained as the limit of the secant passing by x. Right: A body B is an open
subset of the physical space S, which is considered as an affine space. Considering all regular curves Γ passing
by x ∈ B, the tangent space TxB is the set of the tangent vectors wx that are each tangent at x to one of
the curves Γ.

Usually, the affine space of Classical Mechanics is constructed by assuming that both the90

point space and the modelling space are R3, and is often denoted by E3. Here, we shall assume that91

S ≡ E3.92

2.2 Tensors93

For our purposes, we shall refer to tensors on the tangent bundle TB of a material body B, but94

these definitions are completely general and could be used in the tangent bundle TS of the physical95

space S or even in a generic vector space V of dimension n. Whenever we give examples, we use96

second- or fourth-order tensors, which are the types of tensors that are relevant in the subsequent97

sections of this chapter. This section is largely based on a previous work on non-linear elasticity98

(Federico, 2015), and is adapted to the setting of the small-displacement theory.99

A covector, or linear form, or one-form is a linear map100

ϕ : TB → R : u 7→ ϕu ≡ ϕ(u), (3)

where we use simple juxtaposition to indicate the action of the covector ϕ on the vector u. The101

space of all covectors on the tangent bundle TB is the dual of TB, and is denoted T ?B and called102

cotangent bundle. If one looks at a point x ∈ B, the dual of the tangent space TxB is the cotangent103

space T ?xB. It is possible to prove that, given a basis {ei}3i=1 in TB, the covectors {ei}3i=1, defined104

by105

ei u ≡ ei(u) = ui, (4)

constitute a basis for the cotangent bundle T ?B. The basis {ei}3i=1 is called the dual basis of {ei}3i=1.106

Each of the basis covectors ei has a very precise geometrical meaning, as it associates, with every107

4



vector u, the i-th component ui of u with respect to the vector basis {ei}3i=1 and, for this reason,108

the basis covectors ei are often called projections. The definition in Equation (4) implies109

ei ej ≡ ei(ej) = δij , (5)

where δij is the Kronecker symbol. If, in the definition (3) of covector, we express vector u in the110

basis {ei}3i=1, we have111

ϕu = ϕ(ui ei) = uiϕei = ui ϕi (6)

where112

ϕi = ϕei ≡ ϕ(ei). (7)

Using the definition of basis covector, it follows that the covector ϕ can be decomposed as a linear113

combination of the basis covectors {ei}3i=1, i.e., as114

ϕ = ϕi e
i, (8)

where the coefficients ϕi take the meaning of components of ϕ with respect to {ei}3i=1.115

In finite dimension, which is the case we are interested in, the relation between a vector116

space and its dual is symmetric in the sense that TB can be identified with the bi-dual space T ??B117

(the set of all linear maps from T ?B into R). Therefore, the vectors of TB can be made to act on118

the covectors of T ?B as linear forms, and the action of a vector u on a covector ϕ is identical of119

that of ϕ on u120

ϕu = ϕi u
i = uiϕi = uϕ. (9)

Consequently, the basis vectors {ei}3i=1 are the projections in T ?B, i.e.,121

eiϕ = ϕei = ϕi. (10)

We also say that the expression ϕu = uϕ = ui ϕi is the contraction of ϕ and u.122

A tensor of order r+ s = m on the tangent bundle TB is a multilinear form, i.e., a map of123

the type124

T : T ?B × . . .× T ?B︸ ︷︷ ︸
r times

×TB × . . .× TB︸ ︷︷ ︸
s times

→ R, (11a)

T : (ϕ1, ...ϕr,u1, ...us) 7→ T(ϕ1, ...ϕr,u1, ...us), (11b)

that is linear in each of the r + s arguments separately. The space of all tensors of the type in125

Equation (11) is denoted [TB]rs, a notation that will be justified later on (Equation (17)).126

The tensor product of the r vectors v1, ...,vr in TB and the s covectors ψ1, ...,ψs in T ?B127

is the tensor v1 ⊗ ... ⊗ vr ⊗ ψ1 ⊗ ... ⊗ ψs in [TB]rs such that, for every ϕ1, ...,ϕr in T ?B and for128

every u1, ...,us in TB,129

[v1 ⊗ ...⊗ vr ⊗ψ1 ⊗ ...⊗ψs](ϕ1, ...,ϕr,u1, ...,us) = v1(ϕ
1) ... vr(ϕ

r) ψ1(u1) ... ψ
s(us). (12)

The tensor v1 ⊗ ... ⊗ vr ⊗ ψ1 ⊗ ... ⊗ ψs is said to have r vector legs v1, ...,vr and s covector legs130

ψ1, ...,ψs.131
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With the definition of tensor product of vectors and covectors, and using multilinearity, we132

can derive the component expression of any tensor T in [TB]rs with respect to a given basis {ei}ni=1133

and dual basis {ei}ni=1. Indeed, we have134

T(ϕ1, ...,ϕr,u1, ...,us) = T(ϕ1
i1 e

i1 , ..., ϕrir e
ir , uj11 ej1 , ..., u

js
s ejs)

= ϕ1
i1 ... ϕ

r
ir u

j1
1 ... ujss T(ei1 , ..., eir , ej1 , ..., ejs)

= ϕ1
i1 ... ϕ

r
ir u

j1
1 ... ujss Ti1 ... ir

j1 ... js , (13)

where135

Ti1 ... ir
j1 ... js = T(ei1 , ..., eir , ej1 , ..., ejs) (14)

are the components of T. By analogy with the indices of vectors and covectors, the indices i1 ... ir136

are called contravariant and the indices j1 ... js are called covariant. Using Equations (4), (10) and137

(12), we obtain138

T(ϕ1, ...,ϕr,u1, ...,us)

= ϕ1
i1 ... ϕ

r
ir u

j1
1 ... ujss Ti1 ... ir

j1 ... js

= ei1(ϕ1)...eir(ϕr) ej1(u1)...e
js(us) Ti1 ... ir

j1 ... js

= Ti1 ... ir
j1 ... js [ei1 ⊗ ...⊗ eir ⊗ ej1 ⊗ ...⊗ ejs ](ϕ1, ...,ϕr,u1, ...,us). (15)

By dropping the arguments ϕ1, ...,ϕr,u1, ...,us on both sides of Equation (15), we obtain the139

component representation of T in the tensor basis {ei1 ⊗ ...⊗ eir ⊗ ej1 ⊗ ...⊗ ejs}ni1,...,ir,j1,...js=1 of140

the tensor space [TB]rs as141

T = Ti1 ... ir
j1 ... js ei1 ⊗ ...⊗ eir ⊗ ej1 ⊗ ...⊗ ejs . (16)

A tensor T in [TB]rs is said to have r vector legs and s covector legs, and [TB]rs can be represented142

as the tensor product of spaces (Bishop and Goldberg, 1968)143

[TB]rs = TB ⊗ . . .⊗ TB︸ ︷︷ ︸
r times

⊗T ?B ⊗ . . .⊗ T ?B︸ ︷︷ ︸
s times

. (17)

With a widely accepted abuse of terminology, we shall often refer to a tensor in [TB]rs as144

being “r times contravariant and s times covariant” although, rigorously speaking, the adjectives145

contravariant and covariant refer to tensor indices and tensor components.146

Since a tensor leg can be a vector or a covector, there are 2m possible spaces of tensors of147

order m. For instance, there is only one type of space of zero-order tensors (scalars in [TB]00 ≡ R),148

two types of spaces of first-order tensors (vectors in [TB]10 ≡ TB and covectors in [TB]01 ≡ T ?B), 4149

types of spaces of second-order tensors, 16 types of spaces of fourth-order tensors. The table below150

summarises the situation and reports some examples of the 16 types of fourth-order tensors. Here,151

we shall exclusively deal with the first four types of fourth-order tensors.152

6



Order Types Spaces Components Notes

0 20 [TB]00 ≡ R a scalars

1 21 [TB]10 ≡ TB ai vectors
[TB]01 ≡ T ?B ai covectors

2 22 [TB]20 aij “contravariant”
[TB]02 aij “covariant”
[TB]11 aij “mixed”
[TB]1

1 ai
j “mixed”

4 24 [TB]40 Aijkl “contravariant”
[TB]04 Aijkl “covariant”
[TB]22 Aij

kl “mixed”
[TB]2

2 Aij
kl “mixed”

... ...
[TB]11

1
1 Ai

j
k
l

[TB]1
1
1
1 Ai

j
k
l

... ...

153

2.3 Tensor Contractions and Tensor as Linear Maps154

So far, we have seen tensors as multilinear maps, whose legs are all contracted at the same time155

with vectors or covector arguments, as appropriate. However, one could contract part of the legs of156

a tensor with all or part of the legs of another tensor. In this work, we are going to see single and157

double contractions.158

Given a tensor whose last leg is a vector and another tensor whose first leg is a covector, or159

vice versa, we call single contraction the contraction of the last leg of the first tensor with the first160

leg of the second tensor, and denote it by simple juxtaposition. For instance, for a “contravariant”161

second-order tensor a in [TB]20 and a “covariant” second-order tensor c in [TB]02, the contraction162

ac has components aijcjk. The same type of contraction occurs between, e.g., a “mixed” tensor l163

in [TB]11 and a vector u in TB, and the single contraction is the usual l u with components lij u
j .164

The double contraction of two tensors works similarly to the simple contraction, except that165

one contracts the last two legs of the first tensor and the first two legs of the second tensor. As166

with the single contraction, the contracting legs must be of opposite type. Double contraction is167

denoted by a colon. For example, for a fourth-order tensor T in [TB]22 and a second-order tensor168

a in [TB]20, the double contraction T : a has components Tij
kla

kl.169

Tensors can also be regarded as linear maps between tensor spaces. For instance, a “mixed”170

second-order tensor, i.e., a tensor l in [TB]11 could be seen as the linear map l : TB → TB : u 7→ l u171

(in components, lij u
j). Similarly, a “contravariant” fourth-order tensor T in [TB]40 could be regarded172

as the linear map T : [TB]02 → [TB]20 : c 7→ T : c (in components, Tijklckl). Rigorously speaking, a173

tensor seen as a linear map between two tensor spaces should be somehow notationally distinguished174

from its multilinear form counterpart. However, since context and, above all, index notation prevent175

any possible confusion, the customary practice is to use the same symbol T for the tensor employed176

in both manners.177
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2.4 Metric Tensor and Scalar Products178

The physical space S is assumed to be equipped with a metric tensor g, which is inherited by the179

body B. A metric tensor is a symmetric and positive definite tensor in [TB]02, such that, for every180

pair of vectors u and v in TB,181

g(u,v) ≡ ug v ≡ 〈u,v〉 ≡ u.v = ui gij v
j . (18)

Symmetry means that 〈u,v〉 = 〈v,u〉, and positive definiteness means that, for every u 6= 0,182

〈u,u〉 > 0. The equivalent notations g(u,v) ≡ ug v ≡ 〈u,v〉 ≡ u.v denote the scalar product of183

the vectors u and v. The metric tensor induces the Euclidean norm ‖u‖ =
√
g(u,u) ≡

√
〈u,u〉.184

A basis {ei}3i=1 is called orthonormal with respect to g if g(ei, ej) ≡ 〈ei, ej〉 = δij , i.e., if the185

matrix representation of the metric tensor is the identity. Positive definiteness of g also implies186

invertibility, and the inverse is the tensor g−1 valued in [TB]20 such that, for every pair of covectors187

ϕ and ψ in T ?B,188

g−1(ϕ,ψ) ≡ ϕg−1ψ ≡ 〈ϕ,ψ〉 ≡ ϕ.ψ = ϕi (g−1)ij ψj . (19)

When considered as a linear map g : TB → T ?B, the metric tensor g is said to be used189

to “lower contravariant indices”, by mapping the vector u into the associated covector u[ = g u,190

with components ui = giju
j . Analogously, the inverse metric tensor g−1, seen as the linear map191

g−1 : T ?B → TB, is said to “raise covariant indices”, by mapping the covector ϕ into the associated192

vector ϕ] = g−1ϕ, with components ϕi = (g−1)ijϕj . The metric tensor and its inverse can be193

used to lower and rise, respectively, the indices of tensors of any order. For instance, given the194

“contravariant” fourth-order tensor T in [TB]40, its “covariant” associated tensor is denoted T[ and195

has components Tijkl = gip gjq gkr gls Tpqrs. In particular, if we raise the indices of the metric tensor196

g itself by means of the inverse metric tensor g−1, we have the important identity197

g] = g−1g g−1 = g−1, gil = (g−1)ij gjk (g−1)kl = (g−1)il. (20)

The scalar product induced by the metric tensor g can be extended to pairs of tensors of198

the same type of any order, by contracting each pair of homologous indices by means of the metric199

tensor or its inverse, as appropriate. For instance, given two tensors T and Z in [TB]11
1
1, their200

scalar product is 〈T,Z〉 = Ti
j
k
l gip g

jq gkr g
ls Zpq

r
s.201

Finally, we use a single low dot to indicate that the metric tensor (or its inverse) is involved202

in the contraction of two tensors such that the last leg of the first tensor and the first leg of the203

second tensor are of the same type. For instance, given two “contravariant” tensors a, b in [TB]20,204

the expression a.b stands for ag b, which has components (a.b)il = aij gjk b
kl.205

2.5 Symmetries of Second- and Fourth-Order Tensors206

For a “covariant” second-order tensor c in [TB]02, the transpose is defined as the tensor cT in207

[TB]02 such that, for every pair of vectors u,v in TB, ucv = v cTu, which in components reads208

ui cij v
j = vj (cT )ji u

i, implying (cT )ji = cij . The transpose of a “contravariant” second-order tensor209

is defined analogously. For the case of a “mixed” tensor a in [TB]11, the transpose is the tensor aT210

in [TB]1
1 such that, for every vector v in TB and every covector ϕ in T ?B, ϕav = v aTϕ, which in211

components reads ϕi a
i
j v

j = vj (aT )j
i ui, implying (aT )j

i = aij . Note that, while a “covariant” and212

its transpose, or a “contravariant” tensor and its transpose, belong to the same space, a “mixed”213

tensor and its transpose belong to different spaces.214
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A “covariant” second-order tensor c in [TB]02 is called symmetric if c = cT , which, in215

components, means cij = cji. The symmetry of a “contravariant” tensor a in [TB]20 is defined216

analogously. For the case of a “mixed” tensor, speaking about equality of the tensor and its transpose217

has no meaning, as they belong to different spaces. Thus, symmetry of a “mixed” tensor l in [TB]11218

is defined in terms of the symmetry of its “covariant” counterpart l[ = g l or, equivalently, in terms219

of the symmetry of its “contravariant” counterpart l] = l g−1; indeed, we have that l] is symmetric220

if, and only if l[ is such.221

When a fourth-order tensor is viewed as a linear map between spaces of second-order tensors,222

its transpose can be defined in a way similar to that of a second-order tensor. For the purposes223

of our presentation, let us restrict our attention to “covariant” tensors in [TB]04, “contravariant”224

tensors in [TB]40, and “mixed” tensors in [TB]22 and [TB]2
2 (actually, the transpose of fourth-order225

tensors of any other type is defined exactly in the same way, but we do not need these tensors226

here). For instance, the transpose of A in [TB]40 is defined as the tensor AT in [TB]40 such that,227

for every c,d in [TB]02, the identity c : A : d = d : AT : c holds. In components, this reads228

cij Aijkl dkl = dkl [AT ]klij cij , i.e., [AT ]klij = Aijkl.229

Fourth-order tensors admit a variety of symmetries. Here we are interested in those called230

major and minor symmetry. A “contravariant” fourth-order tensor A in [TB]40 is said to have major231

symmetry (or diagonal symmetry) if AT = A. The same definition holds for a “covariant” tensor232

B in [TB]04. The case of “mixed” tensors is of course a little more complicated. We are interested233

in the case of a “mixed” tensor T in [TB]22 or in [TB]2
2. The major symmetry of such tensor234

is checked by looking at the major symmetry of either its “contravariant” counterpart T] or of235

its “covariant” counterpart T[, as T] is major-symmetric if, and only if, T[ is major-symmetric.236

Another important symmetry of fourth-order tensors is called minor symmetry (or pair symmetry),237

and it is straightforward to define for tensors in which the two legs (indices) within the first pair238

and within the second pair are of the same type, i.e., for tensors in [TB]40, [TB]04, [TB]22 and239

[TB]2
2. For instance, a tensor A in [TB]40 is said to possess minor symmetry on the first pair of legs240

(indices) if, for every c in [TB]02, one has c : A = cT : A, and on the second pair of legs (indices) if241

A : c = A : cT . In components, these symmetries read Aijkl = Ajikl and Aijkl = Aijlk, respectively.242

If a tensor enjoys minor symmetry on both the first and the second pair of legs, we simply say243

that it “enjoys minor symmetry”. When there is no danger of confusion, we say that a fourth-order244

tensor is symmetric if it enjoys both major and minor symmetry.1245

2.6 Isotropic Second- and Fourth-Order Tensors246

Isotropy is the invariance of a material property under any arbitrary rotation. A “mixed”247

second-order tensor l in [TB]11 is isotropic if, and only if, it is proportional to the identity tensor i,248

i.e., if l = l i (in components, lij = l δij). A “contravariant” tensor a in [TB]20 is said to be isotropic249

if the associated “mixed” tensor ag is isotropic, which implies that a = a g−1 (i.e., aij = a gij).250

Similarly, a “covariant” tensor c in [TB]02 is said to be isotropic if such is the associated “mixed”251

tensor g−1c, from which c = c g (i.e., cij = c gij). We remark that, as a consequence of the definition252

of isotropic second-order tensor, it follows that any isotropic second-order tensor is symmetric.253

Let us consider the subspace ([TB]22,Sym) of [TB]22 of all tensors with major and minor254

symmetry. Since tensors in [TB]22 are “mixed”, major symmetry of a tensor T is understood in the255

1In our past works, we have called a fourth-order tensor with both major and minor (diagonal- and pair-) symmetry
“fully symmetric”, but we are not going to use this nomenclature here, as it can be confusing. Indeed, what is normally
called fully or completely symmetric is a tensor that is invariant under any permutation of the indices.
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sense of Section 2.5, i.e., in relation to the symmetry of the “contravariant” counterpart T] or of the256

symmetry of the “covariant” counterpart T[. The symmetric identity in ([TB]22, Sym) is defined257

with the help of the special tensor products ⊗ and ⊗ introduced by Curnier et al. (1995) as258

I = 1
2(i ⊗ i+ i ⊗ i), Iijkl = 1

2(δikδ
j
l + δilδ

j
k), (21)

where i, with components δij , is the identity second-order tensor in [TB]11. Since I is the identity, it259

is invariant under rotations and is therefore clearly isotropic. The symmetric identity is such that,260

for every symmetric second-order tensor a in [TB]20, I : a = a.261

The tensor basis of the subspace ([TB]22,Sym, Iso) of the symmetric and isotropic tensors262

is found by decomposing the symmetric identity into (Walpole, 1981, 1984; Federico, 2012)263

I = K + M, (22)

where264

K = 1
3 g
−1⊗ g, Kij

kl = 1
3 g

ijgkl, (23a)

M= I−K, Mij
kl =

1
2(δikδ

j
l + δilδ

j
k)− 1

3 g
ijgkl, (23b)

are the spherical operator and the deviatoric operator, such that, for every symmetric tensor a in265

[TB]20, K : a = 1
3 tr(a) g−1 is the spherical part of a, and M : a = a− 1

3 tr(a) g−1 is the deviatoric266

part of a, where tr( · ) is the natural trace operator, such that tr(a) = g : a = gij a
ij . The tensors267

{K,M} constitute the basis of the space ([TB]22,Sym, Iso) of the symmetric and isotropic tensors.268

We remark that all isotropic fourth-order tensors enjoy minor symmetry (Jog, 2006), and that269

there exist isotropic fourth-order tensors which do not enjoy major symmetry (the additional basis270

tensor is the skew-symmetriser W = 1
2(i ⊗ i− i ⊗ i); see Jog, 2006).271

The bases of the spaces ([TB]40, Sym, Iso) and ([TB]04, Sym, Iso) are obtained by raising and272

lowering, respectively, the indices of {K,M}, or by decomposing the “contravariant” symmetric273

identity I] and the “covariant” symmetric identity I[, respectively. The resulting tensors are274

(Federico, 2012)275

I] = 1
2(g−1 ⊗ g−1 + g−1 ⊗ g−1), Iijkl = 1

2(gikgjl + gilgjk), (24a)

K] = 1
3 g
−1⊗ g−1, Kijkl = 1

3 g
ijgkl, (24b)

M] = I] −K], Mijkl = 1
2(gikgjl + gilgjk)− 1

3 g
ijgkl, (24c)

and276

I[ = 1
2(g ⊗ g + g ⊗ g), Iijkl = 1

2(gikgjl + gilgjk), (25a)

K[ = 1
3 g⊗ g, Kijkl = 1

3 gijgkl, (25b)

M[ = I[ −K[, Mijkl =
1
2(gikgjl + gilgjk)− 1

3 gijgkl. (25c)

The tensors {K],M]} and {K[,M[} constitute the bases of the spaces ([TB]40, Sym, Iso) and277

([TB]04,Sym, Iso), respectively. It is important to recall how to obtain the representation of a278

symmetric isotropic tensor, and we show this in the case that is most important for our purposes,279

i.e., that of a “contravariant” tensor. A symmetric isotropic tensor T in ([TB]40,Sym, Iso) can be280

shown to admit the representation (Walpole, 1981, 1984)281

T = 〈T,K]〉K] + 1
5〈T,M]〉M], (26)
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where282

〈T,K]〉 = Tijkl gip gjq gkr gls
(
1
3 g

pq grs
)

= 1
3 Ti

i
k
k, (27a)

〈T,M]〉 = Tijkl gip gjq gkr gls
(
1
2(gpr gqs + gps gqr)− 1

3 g
pq grs

)
= Tij

ij − 1
3 Ti

i
k
k. (27b)

Note that, in the second of Equations (27), we obtain a term 1
2(Tij

ij+Tij
ji), which reduces to Tij

ij283

because of the minor symmetry of T. We remark that, if T is a generic, not necessarily symmetric284

and isotropic tensor in [TB]40, the right-hand side of Equation (26) yields the projection of T onto285

the isotropic subspace ([TB]40,Sym, Iso) of [TB]40, i.e.,286

Tiso = 〈T,K]〉K] + 1
5〈T,M]〉M] 6= T, (28)

where the coefficients on the right-hand side are found in precisely the same way as in Equation (27).287

A thorough analysis of the properties of idempotence and orthogonality (Walpole, 1981,288

1984) enjoyed by the tensors of each of the bases {K,M}, {K],M]} and {K[,M[} is discussed in a289

previous work (Federico, 2012), in the same covariant formalism used here. The idempotence and290

orthogonality of isotropic basis tensors implies that multiplication and inversion of isotropic tensors291

are performed by multiplying and inverting the individual scalars of the decomposition (26).292

2.7 Transversely Isotropic Second- and Fourth-Order Tensors293

The set294

S2B = {m ∈ TB : ‖m‖ = 1}, (29)

where ‖m‖ =
√
m.m is the Euclidean norm of vector m, is the subset of all unit vectors in the295

tangent bundle TB, and is called the (bundle) unit sphere in the body B. When the point x is296

fixed, one speaks about the unit sphere S2xB = {m ∈ TxB : ‖m‖ = 1} at x. Transverse isotropy297

with respect to m is defined as the symmetry (i.e., the invariance) with respect to rotations about298

m. The direction identified by m is called symmetry axis and the class of equivalence of the planes299

orthogonal to m is called transverse plane.300

The subspace of [TB]20 of all second-order “contravariant” symmetric tensors with transverse301

isotropy with respect to a direction m is denoted ([TB]20,m). The basis of ([TB]20,m) is given by302

(Walpole, 1981, 1984; Federico, 2012)303

a = m⊗m, (30a)

t = g−1 − a, (30b)

where t is the complement of tensor a to g−1, which serves as the “contravariant identity” in [TB]20.304

Evidently, both a and t are invariant under reflections m 7→ −m, i.e., the sense of m is irrelevant.305

Tensors a and t take the geometrical meaning of axial projection operator and transverse projection306

operator, respectively. Indeed, contraction of a and t, by means of the metric tensor g, with a vector307

v in TB yields the axial and transverse vectorial components of v, respectively, as2308

v‖ = a.v = (m.v)m, (31a)

v⊥= t .v =v − (m.v)m. (31b)

2In two of our past works (Equations (2.8) in Federico and Grillo (2012), and Equations (96) in Federico (2015)),
we regrettably forgot to set the font in bold for the parallel and transverse components of a vector v with respect to a
direction m, and we may have therefore given the misleading impression that we were referring to scalar components
when, in fact, we meant to speak about vectorial components.
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In the jargon of composite and fibre-reinforced materials, tensor a is often called the structure tensor309

or fabric tensor of direction m. Tensor t is often simply called projector (Bonet and Wood, 2008;310

Gurtin et al., 2010). It is sometimes convenient to explicitly indicate the dependence of a and t on311

the direction m, in which case we say that {a(m), t(m)} is the basis of the space ([TB]20,m). As312

seen in the case of isotropy, transversely isotropic second-order tensors are necessarily symmetric.313

The basis of the subspace of [TB]40 of all tensors with transverse isotropy with respect to314

direction m, denoted ([TB]40,m), has been obtained in two different versions by Walpole (1981,315

1984). Initially, Walpole (1981) used a tensor basis allowing for a representation in the form of a316

6× 1 array, which has been extensively used by other authors (Weng, 1990; Qiu and Weng, 1990;317

Bhattacharyya and Weng, 1994; Wu and Herzog, 2002; Federico et al., 2004, 2005). Later, Walpole318

(1984) perfected the representation, with new normalisation constants for the basis tensors, which319

allows for an extremely convenient representation in an array constituted by a 2× 2 matrix and 2320

scalars (Walpole (1984) has also provided similar representations for all other symmetry groups).321

This later representation (Walpole, 1984) has been used in more recent works (Federico, 2015;322

Federico et al., 2015), developed within a covariant framework, and we do so in this chapter too.323

The basis of ([TB]40,m) proposed by Walpole (1984) is obtained (similarly to that proposed324

in the older work; Walpole, 1981) by means of suitable tensor products, as325

U11 = a⊗ a, (U11)
ijkl = aij akl, (32a)

U12 =
√
2
2 a⊗ t, (U12)

ijkl =
√
2
2 aij tkl, (32b)

U21 =
√
2
2 t⊗ a, (U21)

ijkl =
√
2
2 tij akl, (32c)

U22 = 1
2 t⊗ t, (U22)

ijkl = 1
2 t

ij tkl, (32d)

V1 = 1
2 (t⊗ t+ t⊗ t− t⊗ t), (V1)

ijkl = 1
2 (tik tjl + til tjk − tij tkl), (32e)

V2 = 1
2 (a⊗ t+ a⊗ t+ t⊗ a+ t⊗ a), (V2)

ijkl = 1
2 (aik tjl + ail tjk + tik ajl + til ajk). (32f)

The transversely isotropic basis in Equation (32) is denoted {Uαβ,Vγ}2α,β,γ=1 and, when it is326

convenient to explicitly indicate the dependence of the basis tensors on the direction m, one says327

that {Uαβ(m),Vγ(m)}2α,β,γ=1 is the basis of the space ([TB]40,m). A tensor T in ([TB]40,m) is328

expressed as329

T = TαβUαβ + TγVγ , (33)

where Einstein’s summation convention is understood for α, β, γ ∈ {1, 2} and the components330

Tαβ and Tγ are obtained by the scalar product of T with each of the basis tensors, with some331

normalisation constants:3332

Tαβ = 〈T,Uαβ〉, Tγ = 1
2 〈T,Vγ〉. (34)

In the basis of Equation (32) the tensors Uαβ constitute an algebra isomorphic to that of333

2× 2 matrices (Walpole, 1984), which allows for grouping the Walpole components Tαβ and Tγ of334

Equation (34) into the array335

T =

{[
T11 T12

T21 T22

]
,T1, T2

}
= {[Tαβ],Tγ}, (35)

3In some previous works (Federico, 2010a,b), we used the normalisation constants of the later work by Walpole
(1984), but kept the formalism with the 6 × 1 array formalism of the earlier work by Walpole (1981). We candidly
admit that this was an infelicitous choice on our part. Also, because of an incautious copy-and-paste operation from
the definitions of the basis tensors, we reported (see Appendices in Federico, 2010a,b) the wrong coefficients for the
scalar products in Equation (34).
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which we call Walpole array representation of tensor T. Note the compact notation T = {[Tαβ],Tγ}.336

It is precisely for the form of the array in Equation (35) that we find Walpole’s formalism337

(Walpole, 1984) to be very convenient. Indeed, all operations on transversely isotropic tensors in338

([TB]40,m) can be performed by working on the 2×2 matrix and the 2 scalars of the Walpole array of339

each tensor. Linear combination of tensors in ([TB]40,m) can be obtained via the linear combination340

of the matrices and the individual scalars. Given a tensor T with Walpole array T = {[Tαβ],Tγ},341

the Walpole array of the transpose T is obtained by simply transposing the 2 × 2 matrix, i.e.,342

TT = TT = {[Tαβ]T ,Tγ}. Moreover, since UT12 = U21, major (diagonal) symmetry of a tensor T343

is attained if T12 = T21, in which case T has only 5 independent components, rather than the344

6 independent components of the general case.4 We also remark that positive definiteness of a345

tensor T in ([TB]40,m) can be checked extremely simply: T is positive definite if, and only if, the346

2 × 2 matrix [Tαβ] is positive definite and the 2 scalars Tγ are strictly positive. We remark that347

all transversely isotropic fourth-order tensors (i.e., tensors of the space ([TB]40,m), spanned by the348

basis in Equation (32)) enjoy minor symmetry.349

At this point, one may wonder how to treat transversely isotropic fourth-order tensors of350

type other than those in ([TB]40,m), for instance the tensors in ([TB]04,m), among which there are351

the inverses (when they exist) of those in ([TB]40,m). Fortunately, the representation with Walpole’s352

array of Equation (39) is independent of the type of fourth-order tensor at hand. For instance, if353

we transform a tensor T in ([TB]40,m) into its “covariant” counterpart T[ in ([TB]04,m), we have354

T = TαβUαβ + TγVγ 7→ T[ = TαβU[αβ + TγV[γ , (36)

i.e., the transformation takes place on the basis tensors, leaving the Walpole components untouched.355

Thus, the double contraction of, e.g., a tensor T in ([TB]22,m) and a tensor Z in ([TB]40,m) is356

obtained by keeping in mind that the resulting tensor belongs to ([TB]40,m), and by performing357

the ordinary row-by-column product of the two matrices, and the multiplication of the homologous358

scalars, i.e.,359

T : Z =

{[
T11 T12

T21 T22

] [
Z11 Z12

Z21 Z22

]
,T1Z1, T2Z2

}
. (37)

Also, it is now clear how to represent the inverse (when it exists) of a tensor T in ([TB]40,m).360

Indeed, the inverse of an invertible tensor T in ([TB]40,m) is the tensor T−1 in ([TB]04,m) such that361

T : T−1 = I and T−1 : T = IT , and has Walpole array representation362

T−1 ≡ T−1 =

{[
T11 T12

T21 T22

]−1
,

1

T1
,

1

T2

}
. (38)

In an orthonormal basis {ei}3i=1, such that e1 = m, the components of the Walpole array T =363

{[Tαβ],Tγ} of a tensor T are related to the conventional components Tijkl by364

T =

{[
T1111

√
2 T1122

√
2 T2211 2 T2222 − 2 T2323

]
, 2 T2323, 2 T1212

}
. (39)

Since an isotropic tensor is transversely isotropic with respect to any direction m, it is possible365

to express it in Walpole’s transversely isotropic representation. In particular, the “contravariant”366

4In our original work (see text immediately following Equation (20) in Federico et al., 2004), we had stated that
U11, U22, V1 and V2 (called B2, B1, B3 and B4, respectively, in Federico et al., 2004) span the whole space of major-
and minor-symmetric (transversely isotropic) tensors, which is of course incorrect, as we should have added also
1
2
(U12 + U21) (corresponding to 1

2
(B5 + B6) in Federico et al., 2004).
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fourth-order identity, and the spherical and deviatoric operators in [TB]40, defined in Equation (24),367

have Walpole array representations368

I] =

{[
1 0
0 1

]
, 1, 1

}
, (40a)

K] =

{[
1
3

√
2
3√

2
3

2
3

]
, 0, 0

}
, (40b)

M] =

{[
2
3 −

√
2
3

−
√
2
3

1
3

]
, 1, 1

}
. (40c)

Thus, a generic symmetric isotropic tensor T in ([TB]40,Sym, Iso), which is written as369

T = 3 kK] + 2mM], (41)

in the symmetric isotropic basis {K],M]} admits the representation370

T =

{[
k + 4

3 m
√

2 (k − 2
3 m)√

2 (k − 2
3 m) 2 (k + 4

3 m)− 2m

]
, 2m, 2m

}
, (42)

where the coefficients 3 k and 2m in Equation (41) echo those typical of isotropic linear elasticity371

(see Equation (54)), and are found as shown in Equation (26).372

2.8 Basic Relations of the Theory of Linear Elasticity373

Linear Elasticity can be developed as an independent branch of Mathematical Physics (see, e.g.,374

the text by Gurtin, 1972), or can be retrieved by linearising the general Theory of (Non-Linear)375

Elasticity (a covariant procedure is presented in the text by Marsden and Hughes, 1983). Linear376

Elasticity has a strong pedagogical character. Indeed, it often allows to find either analytical377

solutions or solutions in closed form to many problems of engineering relevance. Moreover, in378

many circumstances, it suffices to determine first-order approximations that, with relatively low379

computational costs, provide solutions to real-world problems even in the cases in which engineering380

materials undergo finite deformations. Perhaps because of these advantages, Linear Elasticity is381

what is usually taught to the vast majority of the students in structural/mechanical Engineering382

or Physics during their undergraduate studies. Linear Elasticity is so diffused that some call it383

“Classical Elasticity” and that, still today, quite many understand “Linear Elasticity”, when they384

hear the word “Elasticity”. One can choose to present the linear theory of elasticity either, and385

equivalently, by starting from stress or from energy. We choose the latter and we present this386

approach after having briefly introduced displacement, strain and stress.387

In a body B, the displacement is the vector field388

u : B → TB : x 7→ u(x) ∈ TxB, (43)

whose gradient (also called covariant derivative) is called displacement gradient,389

h = gradu, hij = ui|j , (44)
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where the vertical bar denotes covariant differentiation.5 The infinitesimal strain is the “covariant”390

second-order tensor field391

ε : B → [TB]02 : x 7→ ε(x) ∈ [TxB]02, (45)

defined as the symmetric part of the “covariant” displacement gradient tensor h[ = g h (with392

components hij = giph
p
j), i.e.,393

ε = 1
2 (h[ + h[T ), εij = 1

2 (hij + hji). (46)

The Cauchy stress is defined as a “contravariant” second-order tensor field6
394

σ : B → [TB]20 : x 7→ σ(x) ∈ [TxB]20. (47)

In the absence of external body forces and neglecting inertia, the balance of linear momentum395

reduces to the vanishing of the divergence of the Cauchy stress, i.e.,396

divσ = 0, σij |j = 0. (48)

Often, the balance of angular momentum is invoked to obtain the condition of symmetry of the397

Cauchy stress:398

σ = σT , σij = σji. (49)

Balance of linear and angular momentum constitute a system of 6 equations in 12 unknowns399

(the 3 components of the displacement and the 9 components of the Cauchy stress) or, equivalently,400

of 3 independent equations in 9 unknowns (the 3 components of the displacement and the 6401

independent components of the Cauchy stress). In order to be able to close the system, the need402

arises for 6 additional relations, called constitutive laws, expressing the stress tensor as a function403

of the strain tensor.404

A material is said to obey a linear elastic constitutive law if there exists a quadratic function405

of the infinitesimal strain,406

W (x) = Ŵ (ε(x), x) = 1
2 ε(x) : L(x) : ε(x) = 1

2 εij(x) Lijkl(x) εkl(x), (50)

called (quadratic) elastic potential (W : B → R : x 7→ W (x) denotes the scalar field, while407

Ŵ denotes the corresponding constitutive function), such that the stress can be obtained as the408

derivative of Ŵ with respect to the strain, i.e.,409

σ(x) =
∂Ŵ

∂ε
(ε(x), x) = L(x) : ε(x), σij(x) =

∂Ŵ

∂εij
(ε(x), x) = Lijkl(x) εkl(x). (51)

The “contravariant” fourth-order tensor field410

L : B → [TB]40 : x 7→ L(x) ∈ [TxB]40 (52)

5In Cartesian coordinates, covariant differentiation of a vector or tensor field reduces to the regular partial
derivative and one writes, e.g., for a vector field, ui

,j .
6In the general, large-deformation setting of Continuum Mechanics, the Cauchy stress is defined as a spatial tensor

field, valued in [TS]20. In the small-deformation theory, however, the distinction between reference configuration (or
body B) and current configuration fades out, and it is legitimate to define also tensors, which by their nature would
be spatial, in the body B rather than in the space S. In contrast, it is natural to define the infinitesimal strain ε as a
tensor field valued in [TB]02, since it can be thought of as the linearisation of the material Green-Lagrange strain E.
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is called the linear elasticity tensor and does not depend on x if the body is homogeneous.411

Equation (50) and the symmetry of ε imply that the elasticity tensor L enjoys both major and412

minor symmetry. In order to guarantee the positiveness of the elastic potential, which implies the413

positivity of the internal work (or deformation work), one normally requires the positive definiteness414

of the elasticity tensor L. The positive definiteness of L in turn implies its invertibility. Note that415

the inverse of the “contravariant” elasticity tensor L, which is also called stiffness elasticity tensor,416

is the “covariant” compliance elasticity tensor L−1, which is a tensor field valued in [TB]04.417

For a transversely isotropic elasticity tensor L, Walpole’s representation takes the form (see418

Equation (39))419

L =

{[
n

√
2 `√

2 ` 2 c

]
, 2µt, 2µa

}
, (53)

where (see Hill, 1964) n is the modulus in uniaxial strain (also called p-wave modulus or also,420

in the literature on articular cartilage, aggregate modulus: see Holmes and Mow, 1990), c is the421

plane-strain bulk modulus (in the transverse plane of transverse isotropy), ` is the cross modulus422

(transversely isotropic analogue of the first Lamé’s constant λ = κ− 2
3 µ of isotropic linear elasticity:423

see Spencer, 1984), µt is the shear modulus in the transverse plane, and µa is the shear modulus424

in any plane containing the axis of symmetry m of transverse isotropy.425

An isotropic elasticity tensor L can be represented in the basis {K],M]} of symmetric426

isotropic tensors in [TB]40 as (see Equation (41))427

L = 3κK] + 2µM], (54)

where κ and µ are the bulk modulus and shear modulus, respectively. Using Equation (42) for the428

expression of an isotropic tensor in Walpole’s transversely isotropic array, we can represent the429

isotropic elasticity tensor of Equation (54) as430

L =

{[
κ+ 4

3 µ
√

2 (κ− 2
3 µ)√

2 (κ− 2
3 µ) 2 (κ+ 4

3 µ)− 2µ

]
, 2µ, 2µ

}
, (55)

in which it is possible to recognise the first Lamé’s constant λ = κ− 2
3 µ and the modulus in uniaxial431

strain n = κ+ 4
3 µ = λ+ 2µ. In terms of the Lamé’s moduli λ and µ, the Walpole array reads432

L =

{[
λ+ 2µ

√
2λ√

2λ 2(λ+ 2µ)− 2µ

]
, 2µ, 2µ

}
, (56)

where (λ + 2µ) − µ = λ + µ is the isotropic equivalent of the plane-strain bulk modulus c of433

transverse isotropy (Equation (53)).434

3 Composite Materials with Aligned Inclusions435

We first recall the definitions of Eshelby’s fourth-order tensor S introduced by Eshelby (1957) and436

of the closely related strain concentration tensor A, which arises in the case of inclusions with437

material properties different from those of the matrix. Finally, we introduce composite materials438

with inclusions as described by the works of Hill (1963, 1965) and Walpole (1966a,b, 1969), and439

focus on the case of aligned inclusions.440
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3.1 Eshelby’s Inclusion and Fourth-Order Tensor441

Eshelby (1957) studied the problem of an inclusion in an infinite matrix, and in particular the case442

of an ellipsoidal inclusion. Eshelby constructed the inclusion problem in several steps (Eshelby,443

1957, last paragraph of page 376), which we report in our own words, following a previous work444

(Alhasadi and Federico, 2017).445

1) A cavity is cut in a body B and a transformation strain ε∗ is applied to the geometry of the446

region D occupied by the cavity, which is thus mapped into the new region D∗; the remaining447

region M = B \ D is called matrix ;448

2) The transformed region D∗ is now “filled” with a material, which could be the same as449

that of the matrix, with elasticity tensor L0, or another one, with elasticity tensor L1. The450

transformed region D∗, now assigned with certain elastic properties, constitutes the inclusion,451

which no longer fits the original cavity D;452

3) In order to make the inclusion occupying the transformed region D∗ fit again into the original453

cavity D, tractions are applied on the boundary of the inclusion, so that it attains a strain454

−ε∗, and then it is put back into the cavity;455

4) Once the inclusion is back in place, the tractions on the boundary are removed, and so the456

inclusion and the surrounding matrix relax, causing a cancelling strain or constrained strain457

εc, which is discontinuous across the boundary of the inclusion.458

At the end of this sequence of operations, and in the absence of external tractions applied on the459

boundary of the body B, the residual strain due to the geometrical misfit is460

εb = εc, inM, (57a)

εb = εc − ε∗, in D, (57b)

where we emphasise again that the cancelling strain εc is discontinuous across the boundary of D461

and thus must be studied and described piecewise.462

In the absence of the inclusion, i.e., if the body B were perfectly homogeneous (elasticity463

tensor equal to L0 everywhere) and without any region with geometrical misfit (identically vanishing464

transformation strain ε∗), the cancelling strain would vanish identically, and the application of465

traction forces on the boundary of B would cause a stress state described by the continuous field466

σa everywhere in B, which in turn would cause the continuous strain field467

εa = L−10 : σa, everywhere in B. (58)

In the presence of both inclusion and external tractions, the linearity of the problem allows to write468

the total strain as the superposition of that in Equation (57), which was obtained in the absence469

of external applied tractions, and of that in Equation (58), which was obtained in the absence of470

inclusion, as471

ε = εa + εb = εa + εc, inM, (59a)

ε = εa + εb = εa + εc − ε∗ in D. (59b)

For the case of an ellipsoidal inclusion, it is clear that it remains an ellipsoid if, and only if,472

the transformation strain ε∗ is uniform (Eshelby, 1957). In this case, also the cancelling strain εc473
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in the inclusion is uniform, and it is possible to relate it to the transformation strain ε∗ by means474

of the relation (Eshelby, 1957)475

εc = S : ε∗, in D, (60)

where the tensor S in [TB]2
2 is the fourth-order Eshelby tensor, which depends on ratios of the476

elastic constants of the matrix and on the geometry of the inclusion. For an isotropic matrix, there477

is only one independent geometrical ratio of elastic constants, which is usually chosen to be the478

Poisson’s ratio ν0 (e.g., Qiu and Weng, 1990). For the case of spheroidal inclusions, i.e., revolution479

ellipsoids, the only independent geometrical ratio is that of the major to the minor semi-axis (e.g.,480

Qiu and Weng, 1990). Note that the fourth-order Eshelby tensor can be seen as the linear operator481

S : [TB]02 → [TB]02 mapping the transformation strain into the cancelling strain. In components,482

Equation (60) reads483

εcij = Sij
kl ε∗kl, in D. (61)

We remark that the Eshelby tensor S has minor symmetry on each pair of legs, but it lacks major484

symmetry (i.e., its “contravariant” counterpart S], with components (S])ijkl ≡ Sijkl = gip gjq Spq
kl,485

and its “covariant” counterpart S[, with components (S[)ijkl ≡ Sijkl = Sij
rs grk gsl, lack major486

symmetry). Therefore, assuming an isotropic matrix, for the case of an ellipsoidal inclusion with487

three distinct semi-axes, S is a non-major-symmetric orthotropic tensor with 12 independent488

components and, for the case of a spheroidal inclusion with two equal semi-axes (i.e., a revolution489

ellipsoid), it is a non-major-symmetric transversely isotropic tensor with 6 independent components.490

There are three possible inclusion problems:491

• The “homogeneous inclusion”, with geometrical misfit caused by a transformation strain ε∗,492

but material properties identical to those of the matrix, i.e., L0 = L1;493

• The “inhomogeneous inclusion”, with no geometrical misfit, i.e., ε∗ = 0, but material494

properties different from those of matrix, i.e., L0 6= L1;495

• The “general inclusion”, with both geometrical misfit, i.e., ε∗ 6= 0, and material properties496

different from those of matrix, i.e., L0 6= L1.497

The “homogeneous” case is the fundamental one, and indeed the “inhomogeneous” and the498

“general” cases are solved by reducing the effect of the different material properties to an equivalent499

transformation strain (Eshelby, 1957; Mura, 1987; Alhasadi and Federico, 2017). In this work, we500

shall restrict our attention to the “inhomogeneous” case. Thus, we shall exclusively deal with501

inclusions with no geometrical misfit with the matrix, but with material properties different from502

those of the matrix.503

3.2 Strain Concentration Tensor504

The strain concentration tensor arises in the cases of the “inhomogeneous” inclusion and “general”505

inclusion, and is the object that captures the difference in material properties between matrix506

and inclusion within the method of the equivalent transformation strain, which is that fictitious507

transformation strain that has the same effect on the stress and strain fields that the mismatch in508

material properties has. This method is, again, described in detail by Eshelby (1957), and we also509

mention the classical book by Mura (1987).510
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The standard derivation of the strain concentration tensor is done in the case of the511

“inhomogeneous inclusion”, and we report its expression (for the details, see, e.g., Weng, 1984,512

1990; Alhasadi and Federico, 2017)513

A =
[
IT + S : [L−10 : L1 − IT ]

]−1
, in D, (62)

which clearly depends on the Eshelby tensor, S, and the elasticity tensors of matrix and inclusion,514

L0 and L1. Like S, tensor A is in [TB]2
2 and is endowed with minor, but not major symmetry. Its515

component expression is516

(A−1)ijkl = (IT )ij
kl + Sij

pq [(L−10 )pqrs (L1)
rskl − (IT )pq

kl], in D. (63)

Note the use of the transpose of the symmetric identity I. Indeed, since the symmetric identity I517

belongs to [TB]22, it is necessary here to use its transpose IT , which belongs to [TB]2
2, in order518

to be able to sum it to the other tensors. This distinction is unnecessary in Cartesian coordinates,519

and indeed in all papers and books we are aware of, including our own past works, one finds the520

expression in Equation (62) written with I.521

The strain concentration tensor gives the cancelling strain in the inclusion as522

εc =
(
A− IT

)
: εa, in D, (64)

with components523

εcij =
(

Aij
kl − (IT )ij

kl
)
εakl, in D. (65)

It is important to note the structural similarity between Equation (60) and Equation (64). However,524

it is even more important to emphasise that, while in the case of the “homogeneous inclusion”525

(Equation (60)), the cancelling strain εc is a constant once the transformation strain ε∗ is assigned,526

in the case of the “inhomogeneous inclusion”, the cancelling strain εc is linearly related to the527

applied strain εa. Indeed, since there is no geometrical misfit (ε∗ = 0), the cancelling strain εc is528

identically zero when no tractions are applied, i.e., when the applied strain εa is zero.529

By adding the applied strain εa to either side of Equation (64), we obtain the total strain530

in the “inhomogeneous” inclusion as531

ε = εa + εc = A : εa, in D, (66)

with component expression532

εij = εaij + εcij = Aij
kl εakl, in D. (67)

Equation (66) gives A in [TB]2
2 its physical meaning of strain concentration tensor : it can indeed533

be seen as the linear operator A : [TB]02 → [TB]02 that maps the applied strain εa that would be534

attained in the absence of inclusion into the strain ε actually attained by the inclusion.535

3.3 Composites with Spheroidal Inclusions, and the Aligned Case536

In the 1060s, Hill (1963, 1965), Hashin (1963) and Walpole (1966a,b, 1969) gave fundamental537

contributions to the development of techniques for the evaluation of the overall elasticity tensor538

(overall elastic moduli, in the terminology of the time) of a composite starting from the elasticity539
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tensors of the individual constituents of the composite. A composite differs from the system of540

Eshelby’s inclusion problem in that an inclusion is no longer a solitary singularity in an infinite541

matrix, but is one of many other inclusions, which could be of the same or of different type.542

The problem of the evaluation of the overall elasticity tensor for a composite with one or543

more families of inclusions is therefore tackled by means of the concept of representative element of544

volume or, with the customary acronym, REV. The REV could be defined as the smallest region545

whose material properties are equivalent to those of the whole composite. We quote the definition546

of REV given by Hill (1963):547

“This phrase [representative element of volume] will be used when referring to a sample548

that (a) is structurally entirely typical of the whole mixture on average, and (b)549

contains a sufficient number of inclusions for the apparent overall moduli to be effectively550

independent of the surface values of traction and displacement, so long as these values551

are “macroscopically uniform”. That is, they fluctuate about a mean with a wavelength552

small compared with the dimensions of the sample, and the effects of such fluctuations553

become insignificant within a few wavelengths of the surface. The contribution of this554

surface layer to any average can be made negligible by taking the sample large enough.”555

Thus, the REV that we consider must contain a sufficient number of inclusions for the overall556

elasticity tensor (or the collection of the “apparent elastic moduli”, in Hill’s words) to be557

representative of that of the whole composite.558

The composite is assumed to be comprised of N + 1 phases, with phase 0 referring to the559

matrix, and phases r ∈ {1, ..., N} referring to the r-th inclusion families. The inclusions are assumed560

to be perfectly fitted (Walpole, 1966a) in the matrix, which, in Eshelby’s terminology, means that561

they are “inhomogeneous inclusions”, i.e., inclusions with no geometrical misfit with the matrix,562

but with elastic properties different from those of the matrix. It is important to emphasise that, in563

order to be able to apply Eshelby’s theory as described in Sections 3.1 and 3.2, which is based on an564

inclusion in an infinite matrix, we must make sure that each inclusion is far enough from its prime565

neighbours and the interactions among inclusions can be neglected. This is achieved by imposing566

a reasonably low volumetric fraction for each of the inclusion phases. The volumetric fraction of567

each phase is defined as568

φr =
Ωr

Ω
, (68)

where Ω is the volume of the REV, and Ωr is the volume of the portion of the REV occupied by569

phase r. The volumetric fractions obey the constraint570 ∑N

r=0
φr = 1. (69)

The strain concentration tensor seen in Section 3.2 has been extensively used in the571

determination of the overall elastic properties of composite materials with inclusions (see, e.g.,572

Hill, 1963; Walpole, 1966a,b, 1969; Weng, 1984, 1990; Qiu and Weng, 1990). In the formalism573

introduced by Walpole (1966a,b, 1969) and Weng (1990), the overall elasticity tensor L reads574

L =

[∑N

r=0
φr Lr : Ar

]
:

[∑N

r=0
φr Ar

]−1
, (70)

20



where Lr is the elasticity tensor of phase r and575

Ar =
[
IT + Sr : [L−10 : Lr − IT ]

]−1
(71)

is the strain concentration tensor of the r-th phase, in which Sr is the Eshelby fourth-order tensor576

relative to the r-th phase, depending on the shape of the inclusions of phase r and the elastic577

constants of the matrix. Note that the strain concentration tensor A0 of the matrix is identically578

equal to the transpose IT of the symmetric identity. Indeed, since the matrix is not an inclusion579

embedded in itself, from Equation (71) we have580

A0 =
[
IT + S0 : [L−10 : L0 − IT ]

]−1
=
[
IT + S0 : O

]−1
= IT , (72)

where O is the zero tensor, regardless of the value of the tensor S0.7581

We remark that Equation (70) is analogical to that of the centre of mass of a system of582

particles, i.e.,583

xG =

∑N
r=0mr xr∑N
r=0mr

. (73)

In this analogy, Equation (70) provides the “barycentric elasticity tensor” of a composite, in which584

the “masses” are the products φr Ar and the “moment arms” are the elasticity tensors Lr.585

In principle, Equation (70) applies to any composite with ellipsoidal inclusions. However,586

for ellipsoidal inclusion families with different semi-axis ratios, different alignment of the semi-axes,587

and different alignment of the directions or planes of material symmetry, the overall elasticity588

tensor could be completely anisotropic. Equation (70) becomes immediately usable in the case of589

transverse isotropy with respect to a given direction m0, which is obtained when:590

(A1) The matrix is either isotropic or transversely isotropic with respect to direction m0;591

(A2) All inclusions in all families have their axis of symmetry oriented in direction m0, are592

spheroidal (i.e., are revolution ellipsoids), and are either isotropic or transversely isotropic593

with respect to m0.594

When the two conditions (A1) and (A2) are satisfied, all tensors featuring in Equation (70) are595

transversely isotropic in direction m0, and can be represented using Walpole’s formalism (Walpole,596

1981, 1984) presented in Section 2.7. This is the procedure followed by Weng (1990) and Qiu and597

Weng (1990), leading to the Walpole array representation598

L =

[∑N

r=0
φr Lr : Ar

] [∑N

r=0
φr Ar

]−1
. (74)

Qiu and Weng (1990) also noted that the lack of major symmetry of the strain concentration599

tensors Ar causes in general the lack of major symmetry of the overall elasticity tensor obtained via600

Equation (70), except in the perfectly isotropic case mentioned above and when the aligned inclusion601

7On one occasion, we had stated that S0 reduces to the identity IT (paragraph following Equation (35) in Federico
et al., 2004) and, on another occasion, that it reduces to the zero tensor O (paragraph following Equation (12) in
Federico, 2010a). Both statements are incorrect, as this S0 is really arbitrary. One can think to obtain A0 by imagining
to have an inclusion with an arbitrary ellipsoidal shape and an elasticity tensor L′

0, which defines a corresponding S0,
and then by performing the limit L′

0 → L0. This yields A0 → IT regardless of the value of S0.
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phases have all the same shape. Thus, the transversely isotropic overall elasticity tensor found from602

Equation (70) when the conditions (A1) and (A2) are satisfied has Walpole representation603

L =

{[
n

√
2 `√

2 `′ 2 c

]
, 2µt, 2µa

}
, (75)

where, in contrast with Equation (53), `′ 6= `. A “brute force” solution to this problem was proposed604

by Wu and Herzog (2002), who took the (major) symmetric part of the overall elasticity tensor L605

of Equation (75), i.e.,606

Lsym = 1
2(L + LT ), (Lsym)ijkl = 1

2(Lijkl + Lklij), (76)

which, in terms of the symmetrised cross modulus to be used in the Walpole representation Lsym607

of Lsym, reads608

`sym = 1
2(`+ `′). (77)

Finally, we note that, if the matrix is isotropic and all inclusions in all families are spherical609

and isotropic, isotropy is retrieved as a trivial particular case of transverse isotropy.610

4 Composite Materials with Statistically Oriented Inclusions611

In this section, we report, in the more recent notation presented in Section 2 (Federico, 2010a, 2015;612

Federico et al., 2015), our results for the general case of a composite with statistically oriented613

spheroidal inclusions, in which the orientation obeys a given probability density (Federico et al.,614

2004).615

4.1 Generalised Walpole’s Formula616

In order to univocally identify the orientation of an ellipsoid, we need three parameters, e.g.,617

the three Euler angles. In the case of a spheroid, by virtue of the rotational symmetry, only two618

parameters are required, and those could be, e.g., two Euler angles or, equivalently, the unit vector619

describing the direction of the axis of symmetry of the spheroid. We shall restrict our attention620

to the case of spheroidal inclusions. A phase of statistically oriented spheroidal inclusions (i.e.,621

inclusions all sharing the same geometry and elastic properties, but having different orientations)622

can be thought of as an infinity of phases, each oriented in a certain direction, so that the summation623

in Equation (70) becomes an integral on the unit sphere S2B. In this integral, at every point x in624

the body B, the weighing function is a probability density625

ψ : S2B → R+
0 : m 7→ ψ(m), (78)

which describes the probability to find, at each point x in B, an inclusion oriented in direction626

m. In the case of inhomogeneous bodies, ψ depends explicitly on the point x in the body. In the627

present formulation, however, for the sake of a lighter notation, this dependence is omitted but628

understood. The probability density ψ must be normalised over the sphere and must be invariant629

for reflections m 7→ −m, i.e.,630 ∫
S2B

ψ(m) = 1, (79a)

ψ(−m) = ψ(m). (79b)
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For any function f defined on the unit sphere S2B and valued in a tensor space of any order631

(including order zero, i.e., scalar functions), we denote by8
632

〈〈f〉〉 =

∫
S2B

ψ(m) f(m) (80)

its directional average. Note that we do not explicitly indicate the area element (more precisely,633

the area two-form; see Epstein, 2010; Segev, 2013) in the integral. If the function f to be averaged634

enjoys the same symmetry as ψ, i.e., f(−m) = f(m), it is possible to restrict the integral to the635

north hemisphere, defined by636

S2+B = {m ∈ S2B : m.m0 ≥ 0}, (81)

where m0 ∈ S2B is the chosen polar direction. Naturally, since the integral is performed on half637

the domain (the north hemisphere S2+B is half of the sphere S2B), one has to take twice the value638

of the integral (alternatively, one could re-normalise the probability density).639

When the sum in Equation (70) becomes an integral, we need to transform the variables640

according to641

φr 7→ φ1 ψ(m), (82a)

Lr 7→ L1(m), (82b)

Ar 7→ A1(m), (82c)

i.e., we can call the collection of all inclusions “phase 1”, and identify all orientations in S2B by642

means of the probability density ψ. Equation (70) then becomes643

L = [φ0 L0 + φ1〈〈L1 : A1〉〉] :
[
φ0 IT + φ1〈〈A1〉〉

]−1
, (83)

where the terms relative to the matrix account for the fact that the strain concentration tensor A0644

reduces to the transpose IT of the symmetric identity (Equation (72)), and we used the definition645

(80) of directional average in646

〈〈L1 : A1〉〉 =

∫
S2B

ψ(m)L1(m) : A1(m), (84)

〈〈A1〉〉 =

∫
S2B

ψ(m)A1(m). (85)

In the most general case, the composite is comprised of matrix (subscript 0), Na inclusion647

phases, all aligned in a definite direction (subscript r ∈ {1, ...Na}), and Np inclusion phases with648

statistical orientation (subscript r ∈ {1, ...Np}). Thus, the overall elasticity tensor reads649

L =

[
φ0 L0 +

∑Na

r=1
φr Lr : Ar +

∑Np

s=1
φs〈〈Ls : As〉〉

]
:

[
φ0 IT +

∑Na

r=1
φr Ar +

∑Np

s=1
φs〈〈As〉〉

]−1
, (86)

8Note that, in some previous works (Federico et al., 2004; Federico, 2010a), we used the symbol 〈f〉 for the integral
in Equation (80) in the case of isotropic probability ψ(m) = 1/4π, and called 〈f〉 the “average of f” . We do not
adopt this meaning of “average” here and, much more generally, we use “directional average” for the integral in
Equation (80) with any probability density ψ.
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where, for each phase s,650

〈〈Ls : As〉〉 =

∫
S2B

ψs(m)Ls(m) : As(m), (87)

〈〈As〉〉 =

∫
S2B

ψs(m)As(m) (88)

are the directional averages of the product Ls : As and of the strain concentration tensor As,651

respectively, and ψs is the probability density describing the orientation.652

In both the case of Equation (83) with one phase of statistically oriented inclusions and653

the general case of Equation (86), it is important to remark that all inclusions in the same phase s654

have identical geometry and mechanical properties, which means that, for every pair of directions655

mα and mβ, there are suitable rotation tensors Q and R (which coincide if the axes of geometrical656

symmetry coincide with the axes of material symmetry) such that657

Ls(mα) = (Q⊗Q) : Ls(mβ) : (QT ⊗QT ), (89a)

As(mα) = (R−T ⊗R−T ) : As(mβ) : (RT ⊗RT ). (89b)

4.2 Transversely Isotropic Case: Preliminaries658

In the general system with statistically oriented inclusions described by Equation (86), transverse659

isotropy in direction m0 is obtained with weaker conditions than those of the aligned case seen in660

Section 3.3. Specifically, while condition (S1) below is identical to condition (A1), condition (S2)661

below echoes (A2) but is valid only for the aligned phases r ∈ {1, ..., Na}, and a new condition (S3)662

must be stated for the statistically oriented phases s ∈ {1, ..., Np}663

(S1) The matrix is either isotropic or transversely isotropic with respect to m0;664

(S2) All inclusions in all aligned families r ∈ {1, ..., Na} have their axis of symmetry oriented665

in direction m0, are spheroidal (i.e., are revolution ellipsoids), and are either isotropic or666

transversely isotropic with respect to m0.667

(S3) All inclusions in all statistically oriented families s ∈ {1, ..., Np} are spheroidal, are either668

isotropic or transversely isotropic with respect to their axis of geometrical symmetry, and669

the probability densities ψs are all transversely isotropic with respect to direction m0, i.e.,670

ψs(Qm) = ψs(m), where Q is an orthogonal tensor such that Qm0 = ±m0.671

Indeed, under the hypotheses (S1), (S2) and (S3), all elasticity tensors L0 and Lr, the transpose672

IT of the symmetric identity, all strain concentration tensors Ar, and all directional averages 〈〈Ls :673

As〉〉 and 〈〈As〉〉 in Equation (86) are transversely isotropic with respect to m0, which implies the674

transverse isotropy of the overall elasticity tensor L. Thus, all tensors in Equation (86) can be675

decomposed in Walpole’s transversely isotropic basis of Equation (32) relative to direction m0,676

i.e., {Uαβ(m0),Vγ(m0)}2α,β,γ=1, so that all tensor contractions and inversions can be performed677

conveniently exploiting Walpole’s array formalism, in which Equation (86) takes the form678

L =

[
φ0 L0 +

∑Na

r=1
φr Lr : Ar +

∑Np

s=1
φs〈〈Ls : As〉〉

]
[
φ0 IT +

∑Na

r=1
φr Ar +

∑Np

s=1
φs〈〈As〉〉

]−1
, (90)
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where the Walpole array IT is equal to I, identically.679

The decomposition in the transversely isotropic basis {Uαβ(m0),Vγ(m0)}2α,β,γ=1 is680

straightforward for L0, IT , Lr and Ar, which are all transversely isotropic in direction m0 by681

hypothesis, but requires some additional work for the directional averages 〈〈Ls : As〉〉 and 〈〈As〉〉.682

Even though Equation (90) requires the determination of the Walpole components of 〈〈As〉〉 in683

[TB]2
2, we shall decompose its “contravariant” counterpart 〈〈A]s〉〉 in [TB]40, for which the formulae684

(34) are applied. This can be done because, as seen in Section 4.3, 〈〈A]s〉〉 and 〈〈As〉〉 have the same685

Walpole array (see Section 2.7). We recall that 〈〈A]s〉〉 is obtained from 〈〈As〉〉 by raising the first pair686

of indices of As through I] (the “contravariant” symmetric identity defined in Equation (24a)), i.e.,687

by computing A]s = I] : As, and averaging the resulting expression: 〈〈A]s〉〉 = 〈〈I] : As〉〉 = I] : 〈〈As〉〉 =688

〈〈As〉〉]. Note that the equality 〈〈A]s〉〉 = 〈〈As〉〉] stems from the fact that directional averaging and689

raising of indices commute with each other.690

The whole problem of inclusions oriented according to a given transversely isotropic691

probability density reduces to the evaluation of the Walpole array of the directional average of692

the 2 s tensors 〈〈Ls : As〉〉 and 〈〈As〉〉. This latter problem is solved once we are able to evaluate the693

Walpole array of the directional average of a generic tensor T, which is the topic of Section 4.3. We694

conclude this section by noting that isotropy is retrieved if the inclusions in the “aligned” phases695

are spherical and isotropic, and if the probability density is imposed to be isotropic, which means696

that the inclusions of the statistical phases are oriented randomly. Under this latter hypothesis,697

the inclusions of the statistically oriented phases are allowed to be of spheroidal shape and either698

isotropic or transversely isotropic with respect to the direction of their axis of geometrical symmetry.699

4.3 Transversely Isotropic Case: Average of a Function of the Direction700

Let701

T : S2B → [TB]40 : m 7→ Ts(m) ∈ ([TB]40,m), (91)

be a ([TB]40,m)-valued function, m0 a direction in S2B and ψ a probability density with transverse702

isotropy with respect to m0. Our purpose is to study the directional average703

〈〈T〉〉 =

∫
S2B

ψ(m)T(m). (92)

First, we note that, since the probability density ψ is transversely isotropic with respect to m0,704

then 〈〈T〉〉 belongs to ([TB]40,m0) and we have the identity705

〈〈T〉〉 = 〈〈T〉〉αβ Uαβ(m0) + 〈〈T〉〉γ Vγ(m0), (93)

where {Uαβ(m0),Vγ(m0)}2α,β,γ=1 is the basis of ([TB]40,m0), and706

〈〈T〉〉αβ = 〈〈〈T〉〉,Uαβ(m0)〉, 〈〈T〉〉γ = 1
2〈〈〈T〉〉,Vγ(m0)〉, (94)

according to Equation (34). Second, if we decompose T(m) in the basis {Uµν(m),Vπ(m)}2µ,ν,π=1707

of the space ([TB]40,m) of transversely isotropic tensors with respect to m, the directional average708

25



in Equation (92) becomes709

〈〈T〉〉 =

∫
S2B

ψ(m)
[
Tµν Uµν(m) + Tπ Vπ(m)

]
= Tµν

∫
S2B

ψ(m)Uµν(m) + Tπ
∫
S2B

ψ(m)Vπ(m)

= Tµν 〈〈Uµν〉〉+ Tπ 〈〈Vπ〉〉, (95)

where the Walpole components Tµν and Tπ do not depend on the direction m and can be therefore710

factorised out of the integral.711

Now, we note that the directional averages 〈〈Uµν〉〉 and 〈〈Vπ〉〉 are of the same type as the712

average 〈〈T〉〉 in Equation (92), and thus are transversely isotropic in direction m0. Therefore, we713

can use Equation (93) to write 〈〈Uµν〉〉 and 〈〈Vπ〉〉 as714

〈〈Uµν〉〉= 〈〈Uµν〉〉αβ Uαβ(m0) + 〈〈Uµν〉〉γ Vγ(m0), (96a)

〈〈Vπ〉〉 = 〈〈Vπ〉〉αβ Uαβ(m0) + 〈〈Vπ〉〉γ Vγ(m0), (96b)

In this way, the problem of evaluating the directional average 〈〈T〉〉 of the tensor-valued function715

T(m) is reduced to finding the averages 〈〈Uµν〉〉 and 〈〈Vπ〉〉 of Uµν(m) and Vπ(m). Since the scalar716

product by a tensor that is independent of the direction m and integration over all directions m717

commute, we have718

〈〈Uµν〉〉αβ =

〈(∫
S2B

ψ(m)Uµν(m)

)
, Uαβ(m0)

〉
=

∫
S2B

ψ(m) 〈Uµν(m) , Uαβ(m0)〉, (97a)

〈〈Uµν〉〉γ =
1

2

〈(∫
S2B

ψ(m)Uµν(m)

)
, Vγ(m0)

〉
=

1

2

∫
S2B

ψ(m) 〈Uµν(m) , Vγ(m0)〉, (97b)

〈〈Vπ〉〉αβ =

〈(∫
S2B

ψ(m)Vπ(m)

)
, Uαβ(m0)

〉
=

∫
S2B

ψ(m) 〈Vπ(m) , Uαβ(m0)〉, (97c)

〈〈Vπ〉〉γ =
1

2

〈(∫
S2B

ψ(m)Vπ(m)

)
, Vγ(m0)

〉
=

1

2

∫
S2B

ψ(m) 〈Vπ(m) , Vγ(m0)〉. (97d)

This procedure reduces the number of integrals to be evaluated from 6×81 = 486 (indeed, each of the719

6 tensors 〈〈Uµν〉〉, 〈〈Vπ〉〉, with µ, ν, π ∈ {1, 2}, has 81 components) to 6×6 = 36 (or 16+8+8+4 = 36,720

if one looks at the four Equations (97)), i.e., 6 independent components for each of the 6 averages721

{〈〈Uµν〉〉, 〈〈Vπ〉〉}2µνπ=1. Moreover, this procedure eliminates many integrals, which vanish because of722

the transverse isotropy of the system with respect tom0, and could give numerical problems as they723

could be highly oscillatory (Federico et al., 2004). As we shall show in Section 4.4, these integrals724

can be expressed in spherical coordinates as a function of the co-latitude and longitude angles taken725

from a reference frame in which the polar axis is the overall direction of symmetry m0.726

Using Equations (93), (95) and (96), we obtain the expression of the directional average727

〈〈T〉〉 in the basis {Uαβ(m0),Vγ(m0)}2α,β,γ=1 as728

〈〈T〉〉=Tµν
(
〈〈Uµν〉〉αβ Uαβ(m0) + 〈〈Uµν〉〉γ Vγ(m0)

)
+Tπ

(
〈〈Vπ〉〉αβ Uαβ(m0) + 〈〈Vπ〉〉γ Vγ(m0)

)
, (98)

which can be rearranged into the final expression729

〈〈T〉〉=
(
Tµν〈〈Uµν〉〉αβ + Tπ〈〈Vπ〉〉αβ

)
Uαβ(m0) +

(
Tµν〈〈Uµν〉〉γ + Tπ〈〈Vπ〉〉γ

)
Vγ(m0). (99)
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The Walpole array form of Equation (99) is730

〈〈T〉〉 =
{[

Tµν〈〈Uµν〉〉αβ + Tπ〈〈Vπ〉〉αβ
]
,Tµν〈〈Uµν〉〉γ + Tπ〈〈Vπ〉〉γ

}
. (100)

4.4 Transversely Isotropic Case: Solution in the Polar Parametrisation731

Assuming that the symmetry axis m0 of the transverse isotropy coincides with vector e1 of an732

orthonormal basis {ei}3i=1, the generic direction m can be expressed as a function733

m(θ, ϕ) = cos θ e1 + sin θ cosϕ e2 + sin θ sinϕ e3, (101)

where θ is the co-latitude, measured from the polar direction m0 ≡ e1, and ϕ is the longitude,734

measured from the plane spanned by e1 and e2 (see Figure 2). Using the polar parametrisation of735

the sphere, the probability density ψ can be written as736

%(θ) = ψ(m(θ, ϕ)), (102)

where the new function % does not depend on the latitude angle ϕ because of the transverse isotropy737

of ψ. In the polar parametrisation, the directional average (80) of a generic function f becomes738

〈〈f〉〉 =

∫ 2π

0

[∫ π

0
%(θ) f(m(θ, ϕ)) sin θ dθ

]
dϕ. (103)

We recall the symmetry of ψ for reflections m 7→ −m, and note that it is inherited by % as a739

symmetry in θ about the value π/2, i.e., %(θ) = %(π − θ). Thus, for functions f invariant under740

reflections m 7→ −m (such as all our fourth-order tensors, which depend on m via the structure741

tensor a = m⊗m), we can also write742

〈〈f〉〉 = 2

∫ 2π

0

[∫ π/2

0
%(θ) f(m(θ, ϕ)) sin θ dθ

]
dϕ, (104)

which is equivalent to integrating ψ over the north hemisphere S2+B as in Equation (81). For our743

purposes, the generic function f has to be replaced by the integrands in Equation (97).744

4.5 Some Relevant Particular Cases745

The most “classical” particular cases of transversely isotropic probability density ψ are the case of746

probability density converging to the Dirac-delta, describing orientation in one direction, the case747

of in-plane random orientation, in which all directions within the same plane are equally probable,748

and the case of random orientation, yielding an isotropic solution. In the solutions that we report749

below, in order to minimise the possibility of making mistakes with the tedious integrals (97), we750

employed Wolfram Mathematica.751

The case of alignment in one definite direction can be tackled by means of a parametric752

probability density peaked at θ = 0, which can be made to converge, in the sense of distributions753

(see, e.g., Kolmogorov and Fomin, 1999) to a Dirac delta, which is the approach we used in the754

past (Federico et al., 2004). However, quite trivially, one can directly say that, if all inclusions are755

oriented in the same direction, Equation (86) reduces to the Walpole solution (70) which Weng756
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Figure 2: Representation of the generic direction e′1 ≡ m of the axis of symmetry of a spheroidal inclusion
in terms of the colatitude angle θ and the longitude angle ϕ. The colatitude θ is calculated from the global
direction of symmetry e1 ≡m0, and the longitude ϕ is calculated from the plane spanned by e1 and e2.

(1990) and Qiu and Weng (1990) used for aligned inclusions (and which we reported in the form757

of a Walpole array in Equation (74)).758

The case of random orientation in a plane can also be solved with a parametric probability759

density peaked at θ = π/2 that converges, in the sense of distributions, to a Dirac delta (Federico760

et al., 2004). However, we can follow a simpler method. Rather than averaging the function761

f(m( · , · )) with values f(m(θ, ϕ)) of Equation (103) on the whole unit sphere S2B, we average the762

function f(m(π/2, · )) with values f(m(π/2, ϕ)) on the equatorial unit circumference (S1B,m0),763

i.e., the circumference laying on the plane orthogonal to the direction of overall symmetry m0764

(which is the plane spanned by e2 and e3 in Figure 2). This boils down to transforming the integral765

in Equation (103) into766

〈〈f〉〉 =

∫ 2π

0

1

2π
f(m(π/2, ϕ)) sin(π/2) dϕ =

1

2π

∫ 2π

0
f(m(π/2, ϕ)) dϕ, (105)

where 1/2π is the constant value of the probability density on the equatorial unit circumference767

(S1B,m0), and equals the reciprocal of the amplitude of the interval [0, 2π] within which the768

longitude ϕ varies. Considering Equation (105), the components of the directional averages 〈〈Uµν〉〉769

and 〈〈Vπ〉〉 in Equation (97) can be obtained and represented via the Walpole arrays770

〈〈U11〉〉=
1

8

{[
0 0
0 4

]
, 2, 0

}
, 〈〈U12〉〉=

1

8

{[
0 0

4 2
√

2

]
,−
√

2, 0

}
, (106a)

〈〈U21〉〉=
1

8

{[
0 4

0 2
√

2

]
,−
√

2, 0

}
, 〈〈U22〉〉=

1

8

{[
4 2

√
2

2
√

2 2

]
, 1, 0

}
, (106b)

〈〈V1〉〉 =
1

8

{[
4 −2

√
2

−2
√

2 2

]
, 1, 4

}
, 〈〈V2〉〉 =

1

8

{[
0 0
0 0

]
, 4, 4

}
. (106c)

For the case of random orientation, we follow the approach we used in the past (Federico771

et al., 2004), with some minor notational and procedural differences. When the probability density772
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is given by ψ(m(θ, ϕ)) = %(θ, ϕ) = 1/4π (random orientation), the integral in Equation (92) must773

coincide with its isotropic projection (see Equation (28)), i.e., must necessarily be isotropic. Thus,774

we have the identity775

〈〈T〉〉 =

∫
S2B

ψ(m)T(m) ≡
[∫

S2B
ψ(m)T(m)

]
iso

= 〈〈T〉〉iso. (107)

Since the operation of isotropic projection (28) and the averaging integral commute, we can also776

write777

〈〈T〉〉 =

∫
S2B

ψ(m)T(m) ≡
∫
S2B

ψ(m) [T(m)]iso = 〈〈Tiso〉〉. (108)

Moreover, the dependence on m in [T(m)]iso must disappear, as [T(m)]iso is isotropic. Thus, we778

can replace [T(m)]iso by [T(m0)]iso, where m0 is an arbitrary direction, and factorise [T(m0)]iso779

outside of the integral sign, to obtain the final expression780

〈〈T〉〉 = [T(m0)]iso , (109)

where we used the normalisation to one of the probability density. Since T(m0) = Tαβ Uαβ(m0) +781

Tγ Vγ(m0), we can use linearity and write782

〈〈T〉〉 = Tαβ [Uαβ(m0)]iso + Tγ [Vγ(m0)]iso . (110)

The isotropic projections [Uαβ(m0)]iso and [Vγ(m0)]iso can be written either in the isotropic basis783

{K],M]} or in Walpole’s transversely isotropic representation as seen in Equation (42). In the784

former case, we have785

[U11]iso =
1

3
K] +

2

15
M], [U12]iso =

√
2

3
K]−

√
2

15
M], (111a)

[U21]iso =

√
2

3
K]−

√
2

15
M], [U22]iso =

2

3
K] +

1

15
M], (111b)

[V1]iso = 0K] +
2

5
M], [V2]iso = 0K] +

2

5
M], (111c)

and, in the latter, we have786

[U11]iso =
1

15

{[
3
√

2√
2 4

]
, 2, 2

}
, [U12]iso =

1

15

{[√
2 4

4 3
√

2

]
,−
√

2, −
√

2

}
, (112a)

[U21]iso =
1

15

{[√
2 4

4 3
√

2

]
,−
√

2, −
√

2

}
, [U22]iso =

1

15

{[
4 3

√
2

3
√

2 7

]
, 1, 1

}
, (112b)

[V1]iso =
1

15

{[
4 −2

√
2

−2
√

2 2

]
, 6, 6

}
, [V2]iso =

1

15

{[
4 −2

√
2

−2
√

2 2

]
, 6, 6

}
. (112c)

5 Discussion787

In this chapter, we summarised and discussed in detail some selected results from previous studies788

of ours, with the purpose of rephrasing in a more efficient, consequent, and formally correct way the789

linear elastic formulation of our picture of composite materials with statistically oriented spheroidal790

inclusions.791
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After presenting the covariant formulation of the linear algebra of isotropic and transversely792

isotropic second- and fourth-order tensors, we addressed some fundamental aspects of composite793

materials with aligned inclusions, which required to review Eshelby’s inclusion problem, Eshelby’s794

fourth-order tensor S, and the strain concentration tensor A. Within this framework, we discussed795

the conditions, pertaining the geometry of the inclusions and their orientation as well as the material796

symmetries of the matrix, which lead to a globally transversely isotropic (or, in some special cases,797

isotropic) composite. Then, we considered composite materials with statistically oriented inclusions.798

To this end, we introduced the probability density describing the probability that the symmetry axis799

of an inclusion is in a given direction, and generalised Walpole’s formula (70) (Walpole, 1966a,b,800

1969; Weng, 1990) to the case of transversely isotropic materials with respect to a symmetry axis801

m0 (cf. Equation (99)). In order to achieve this and to minimise the number of integrals to be802

performed, we translated the directional averaging of tensor functions depending on the direction803

into Walpole’s formalism, and obtained Equation (100), which determines the Walpole array of the804

directional average of a given fourth-order tensor T. Finally, we showed some explicit calculations805

for the relevant cases of isotropy and transverse isotropy.806

It is important to emphasise the difference in terms of conditions necessary to obtain807

transverse isotropy between Walpole’s original formula and the generalised one. Walpole’s original808

formula (70) necessitates only the two conditions (A1) and (A2) seen in Section 3.3 to be applicable809

to transversely isotropic materials, in the Walpole array form of Equation (74). In contrast, the810

generalised Walpole’s formula (86) considers Na families of aligned inclusions and Np families of811

statistically oriented fibres, and the three conditions (S1), (S2) and (S3) of Section 4.2 are needed.812

While condition (S1) is identical to the “old” condition (A1), and (S2) echoes condition (A2), but813

only for the Na aligned phases, a new condition (S3) needs to be stated for the Np statistically814

oriented families (i.e., the Np probability densities ψs must be transversely isotropic with respect815

to m0).816

The theory of composite materials with statistical orientation of the inclusions is a rich817

research field in which very diverse scientific interests converge. The trigger of our studies has818

been the mechanical characterisation of soft biological tissues. These are highly organised media,819

endowed with a complex internal structure, whose mechanical properties are vastly influenced by the820

presence and orientation of collagen fibres. Tendons and ligaments are typical examples of tissues821

in which the collagen fibres are aligned, and blood vessels and articular cartilage are examples822

of tissues in which the collagen fibres have statistical orientation. Collagen fibres can indeed be823

viewed as inclusions that provide structural reinforcement to the non-fibrous extracellular matrix,824

and modulate several important bio-chemo-mechanical processes, which involve, for instance, the825

flow of interstitial fluids as well as the diffusive-reactive dynamics of the chemical species populating826

the tissues (nutrients and outputs of chemical reactions). These processes are associated with827

both second- and fourth-order tensor quantities that, depending on the (either statistical or not)828

arrangement of the fibres, can be represented by using the methods outlined in Sections 3 and829

4. In the case of statistical orientation, the directional average defined in Equation (92) takes a830

tensor describing how a given quantity is associated with the spatial direction m of local fibre831

alignment, and returns the overall tensor quantity defined in one point of the tissue. This allows832

for obtaining microstructurally based constitutive laws and puts in evidence how the evolution of833

the tissue’s internal structure yields an evolution of the averaged tensor quantity 〈〈T〉〉 associated834

with the considered material property.835

In two previous papers of ours (Grillo et al., 2012, 2015), we proposed a theory of remodelling836

in fibre-reinforced materials, where by “remodelling” we mean here the structural reorganisation837

of a body, be it a tissue or a non-biological material. In this theory, the evolution of the internal838
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structure of a given medium was described by the time change of the probability density ψ featuring839

in the averaging integral (92). Under the hypothesis that the evolution of ψ does not modify the840

transverse isotropy of the material with respect to the direction m0 (in fact, this requires ψ to841

evolve by maintaining itself transversely isotropic, i.e., by maintaining itself independent of the842

longitude angle, in the spherical coordinate setting of Section 4.4), the use of Walpole’s notation in843

Equation (100) makes it possible to isolate the effect of remodelling on the averaged tensor quantity844

〈〈T〉〉, expressed in terms of the array 〈〈T〉〉. Indeed, while the averaged tensors of the Walpole’s basis845

for transverse isotropy with respect to the generic direction m, i.e., 〈〈Uµν〉〉 and 〈〈Vπ〉〉, evolve in time846

as they are driven by the time change of ψ, the components Tµν and Tπ do not. In turn, since the847

direction m0 is assumed to be preserved by the considered remodelling process, only the arrays848

{[〈〈Uµν〉〉αβ], 〈〈Uµν〉〉γ}, {[〈〈Vπ〉〉αβ], 〈〈Vπ〉〉γ} vary in time. In conclusion, by adopting Walpole’s arrays,849

it is possible to study the influence of remodelling on a global property, expressed by the averaged850

fourth-order tensor 〈〈T〉〉 (for example, the fourth-order elasticity tensor of the considered medium),851

by looking at the evolution of the components of the averages of the Walpole’s basis tensors Uµν852

and Vπ. This subject is among the topics of our current investigations.853
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