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Abstract

Mechanical factors play a major role in tumor development and response to treat-

ment. This is more evident for tumors grown in vivo, where cancer cells interact with

the different components of the host tissue. Mathematical models are able to charac-

terize the mechanical response of the tumor and can provide a better understanding

of these interactions. In this work, we present a biphasic model for tumor growth

based on the mechanics of fluid-saturated porous media. In our model, the porous

medium is identified with the tumor cells and the extracellular matrix, and repre-

sents the system’s solid phase, whereas the interstitial fluid constitutes the liquid

∗Electronic address: bernhard.schrefler@dicea.unipd.it; Corresponding author

1



phase. A nutrient is transported by the fluid phase, thereby supporting the growth

of the tumor. The internal reorganization of the tissue in response to mechanical and

chemical stimuli is described by enforcing the multiplicative decomposition of the

deformation gradient tensor associated with the solid phase motion. In this way, we

are able to distinguish the contributions of growth, rearrangement of cellular bonds,

and elastic distortion, which occur during tumor evolution. Results are shown for

three cases of biological interest, addressing the growth of a tumor spheroid in the

culture medium (i), and the evolution of an avascular tumor growing first in a soft

host tissue (ii), and then in a three-dimensional heterogeneous region (iii). We an-

alyze the dependence of tumor development on the mechanical environment, with

particular focus on cell reorganization and its role in stress relaxation.

Keywords

Biphasic systems, Porous media, Tumor growth, Remodeling, Cell reorganization,

Stress relaxation, Nutrient transport

1 Introduction

At the present time, a unifying description of cancer is lacking. This happens be-

cause there exist many tumors characterized by different origins and features, and

the determinants of tumor progression are still partially unclear [1]. Cells in solid tu-

mors live in a rich environment, filled with water and macromolecules [2, 3]. Among

the latter there are nutrients, used by the cells to survive and duplicate, and several

2



chemical factors. In particular, growth promoting factors, growth inhibitory factors

and chemotactic factors are able to trigger subcellular pathways, which result in

different cell behaviors. The extracellular space is also filled by a network of cross-

linked proteins, known as the extracellular matrix (ECM). This matrix constitutes a

biological scaffold that provides structural and biochemical support to the surround-

ing cells. By exerting forces on the proteins of the network, cells can migrate towards

different regions of the tissue, or proliferate, once they have formed stable bonds.

The ECM is also subjected to continuous remodeling by cells, as some of them pro-

duce matrix degrading enzymes while others secrete new filaments. Remarkably, all

these phenomena are influenced by the mechanical stress to which the tissue is sub-

jected, through mechanisms that are still an active area of research [4, 5, 6, 7]. Cell

duplication depends on the balance between biochemical and mechanical inputs,

too. While the dependence of cell growth on certain nutrients and growth factors

is well documented (see for example [8, 9]), several new studies have been focused

on determining the influence of mechanical stress on cell behavior [10, 11]. In one

of the first works about this subject, Helmlinger and coworkers [12] showed that a

compressive stress was able to inhibit the proliferation of cells in tumor spheroids.

These findings were confirmed and extended by later works from the same group

[13] and by other researches that used different experimental methodologies [14, 15].

All these phenomena constitute a complex framework, which is continuously en-

riched by new discoveries and increasingly large data sets. Recently, Hanahan and

Weinberg [16, 17] published two landmark papers where they summarize the char-

acteristics shared by malignant tumors. In general, these common traits are related

3



to the occurrence of a failure in cell control mechanisms, and lead to uncontrolled

cell proliferation and avoidance of self-death signaling.

Given all these premises, the problem of describing cancer through mathematical

models seems thus very complex, even though such models may give some insight

into the understanding of the illness. Several models in the literature focus on the

biochemical events occurring during the growth of a tumor. These are generally

formulated in terms of balance laws along with advection-diffusion-reaction equa-

tions for modeling the evolution of nutrients and suitable closure conditions for the

cell velocity field [18]. More recently, mathematical models have considered the

mechanical aspects of tumor growth, including the dependence of cell growth and

death on compression, the effect of mechanical stresses on the tissues surrounding

the tumor, and the constitutive laws connecting stresses and deformations in the

tumor tissue [19]. Several models describe the tumor mass as a fluid, which in some

cases might be a strong simplification. However, significant theoretical difficulties

may arise when modeling tumors as solids. In fact, tumor cells duplicate and die,

the ECM remodels continuously, and the ensemble of cells is subjected to internal

reorganization and change in adhesion properties. It is difficult to define a refer-

ence configuration from which deformations can be calculated, since the material

is continuously changing. A possible solution to this problem is found by applying

the theory of evolving natural configurations. As the basic concept had its roots in

the works of Skalak and Rodriguez [20, 21] (taking in turn inspiration from classical

theories in elastoplasticity [22, 23, 24]), Rajagopal and Humphrey [25] applied this

theory to describe the growth and remodeling of different tissues. They split the evo-
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lution of the system in growth, plastic remodeling, and elastic distortions through a

multiplicative decomposition of the deformation gradient tensor. Starting from the

early works of Ambrosi and Mollica [26, 27], considering a purely elastic monophasic

model to evaluate residual stresses in tumor spheroids, Ambrosi and Preziosi in [28]

developed a multiphase framework where internal cell reorganization was also taken

into account. In a following work [29], these authors employed the latter model to

describe the mechanical properties of concentrated cell suspensions. Model predic-

tions were compared with five experimental tests, providing good agreement with

the data. The flow rule for cell bond reorganization was further employed by Giverso

and Preziosi [30, 31] to describe experiments of cell aggregate compression. Giverso

and coworkers have then summarized the previous findings in a recent work [32], in

which a linear approximation was enforced for the elastic distortions in the tumor.

In addition, a dimensional analysis of the governing equations was carried out, al-

lowing to decouple the equations describing growth from those related to interstitial

fluid flow.

In this work, we extend this modeling framework by including the effect of a

nutrient on the tumor growth dynamics. Two cell populations are also taken into

account, describing proliferating and necrotic tumor cells. Moreover, we test the

influence of external healthy tissues with different mechanical properties on tumor

development. These new features are studied for three cases of biological interest,

namely the growth of a tumor spheroid in the culture medium, in a soft host tissue

and in a three-dimensional heterogeneous environment. The dependence of tumor

development on the external mechanical environment is analyzed, with particular
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attention on cell reorganization and its impact on stress relaxation.

The paper is then organized as follows: In section 2, we introduce the mathemat-

ical model, with a focus on the decomposition of the deformation gradient tensor.

In section 3, we describe in detail the simulated benchmark tests. In section 4, we

present the numerical results for the three considered growth conditions. Finally,

we draw our conclusions and propose further research in section 5.

2 Mathematical model

In our model, a tumor mass is described as a biphasic system comprising a solid

and a fluid phase. The solid phase (s) is assumed to consist of cells and ECM.

These constitute a scaffold that will be described as a solid medium in the sequel.

The fluid phase (f) is identified with the tumor’s interstitial fluid. We hypothesize

that only two types of cells are relevant for our purposes: the proliferating cells (p)

and the necrotic cells (n). In the following, we assume that cells and ECM move

with the same velocity. Moreover, we consider only the mass exchange processes

involving the fluid phase and the cell populations mentioned above. This leads to

another simplifying assumption: In fact, we do not account for ECM explicitly in

our model. Rather, from here on, when we speak of “proliferating cells” or “necrotic

cells”, we actually mean a mixture constituted by the considered type of cells and by

the ECM, which, thus, does not take part explicitly to the dynamics of the system

under study. The fluid phase comprises a nutrient (N) and another constituent,

which we call “water” (W). Clearly, many other chemicals are present in this fluid

constituent, even though they are not explicitly accounted for here. In some tests
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studied in this work, we shall also consider the presence of a soft host tissue and of

a stiff host tissue (e.g., bone), which surround the growing tumor. In our model, we

shall assume that these tissues occupy three different subdomains of the same region

of space, and that both the soft and the stiff host tissue comprise a solid and a fluid

phase, which, in analogy with the notation used for the tumor, are associated with

the apices (s) and (f). Again, we use (N) and (W) for identifying the nutrient and

the water constituents of the fluid in the soft and stiff host tissue.

2.1 Balance equations

We indicate by Kt the region of space occupied by the system at time t, and we

assume that Kt is partitioned into three disjoint sets, i.e., Kt = Tt tHt t Bt. Here,

Tt represents the tumor tissue, Ht is a soft host tissue, and Bt denotes a stiff host

tissue, e.g., the bone. Since the majority of the processes, such as growth and mass

exchange among the system’s constituents, take place in the tumor we start our

discussion by considering only the balance laws holding in the interior of Tt.

Within Tt, we assume that the pore space of the cellular scaffold, which represents

the solid phase, is completely filled with the fluid. The system is thus constrained

by the saturation condition

ϕf + ϕs = 1, (1)

where ϕα is the volume fraction of the αth phase (α = f, s). The different con-

stituents (or species) in the phases are described through their mass fraction ωβ,

with β = p, n in the solid phase, and β = N,W in the fluid phase. The mass balance

laws for the constituents of the solid phase (i.e., the proliferating and necrotic cells)
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are given by

∂t (ϕsρsωp) + div (ϕsρsωpvs) = Γp
p→n + Γp

f→p, (2)

∂t (ϕsρsωn) + div (ϕsρsωnvs) = Γn
p→n + Γn

n→f . (3)

Here, ρs and vs denote the mass density and the velocity of the solid phase, re-

spectively. The terms Γp
p→n, Γp

f→p, Γn
p→n, and Γn

n→f are sources and sinks of mass

that account for the mass exchange processes among the constituents of the system

under study. More specifically, Γp
p→n is the rate at which proliferating cells become

necrotic, and Γp
f→p is the mass uptake of the proliferating cells due to the exchange

of mass with the fluid phase. Analogously, Γn
p→n is the increase of mass of the

necrotic cells at the expenses of the proliferating ones, and Γn
n→f denotes the rate at

which necrotic cells dissolve in the fluid phase. Summing together (2) and (3), and

recalling the constraint on the mass fractions, ωp + ωn = 1, we determine the mass

balance law for the solid phase as a whole, i.e.,

∂t (ϕsρs) + div (ϕsρsvs) = Γs, (4)

where Γs is given by

Γs = Γp
p→n + Γp

f→p + Γn
p→n + Γn

n→f . (5)
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In particular, we choose Γp
p→n and Γn

p→n such that they balance each other, i.e.,

Γp
p→n + Γn

p→n = 0 ⇒ Γp
p→n = −Γn

p→n, (6)

which implies the equality

Γs = Γp
f→p + Γn

n→f . (7)

In addition to (2) and (3) we consider also the mass balance law of the fluid phase

as a whole and of the nutrient, i.e.,

∂t
(
ϕfρf

)
+ div

(
ϕfρfvf

)
= Γf , (8)

∂t
(
ϕfρfωN

)
+ div

(
ϕfρfωNvf

)
+ divJN = ΓN

N→p (9)

where ρf and vf are the mass density and the velocity of the fluid phase, respectively,

ωN is the mass fraction of the nutrient, and JN is the mass flux vector of the

nutrient, which is generated by the difference between its own velocity and vf . In

this work, we assume that JN obeys standard Fick’s law, which yields the expression

JN = −ϕfρfDNgradωN, where DN is the diffusion tensor. Finally, Γf is the rate at

which the fluid phase exchanges mass with the solid phase, and ΓN
N→p is the term

describing the uptake of nutrients from the interstitial fluid to the proliferating cells.

Since the biphasic system under study is assumed to be closed with respect to mass,

Γs and Γf must satisfy the condition

Γf + Γs = 0, ⇒ Γs = −Γf . (10)
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In addition to the mass balance laws (2), (3), (8), and (9), we also consider the mo-

mentum balance laws associated with the solid and the fluid phase. By neglecting all

external body forces, such as gravity, and accounting for the fact that inertial forces

are not relevant in the phenomena considered in this work (indeed, the velocities of

both the fluid and the solid phase are very small and vary of a quite slow time scale)

the local form of these balance laws can be written as

divσs +ms = 0, (11)

divσf +mf = 0. (12)

Moreover, we assume that the system is closed with respect to momentum and, by

neglecting the momentum exchange rates related to the mass transfer between the

fluid and the solid phase, we express the closure condition as

ms +mf = 0. (13)

Finally, adding together (11) and (12) leads to the balance law of momentum for

the system as a whole, i.e.,

div(σs + σf) = 0. (14)

Equations (1)–(14) must be studied in conjunction with the balance laws pertaining

to the subdomains Ht and Bt.

The saturation constraint applies also in each of the subdomains Ht and Bt, i.e.,
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it holds that

ϕs + ϕf = 1, in Ht t Bt. (15)

Moreover, since in this work it is assumed that in Ht and Bt cells do not proliferate

or die, it is sufficient to consider only one mass balance law for the solid phase as a

whole, in which neither mass sources nor mass sinks appear. Thus, the mass balance

law (4) becomes

∂t (ϕsρs) + div (ϕsρsvs) = 0, in Ht t Bt. (16)

In addition, the mass balance law for the fluid phase as a whole and for the nutrient

read

∂t
(
ϕfρf

)
+ div

(
ϕfρfvf

)
= 0, in Ht t Bt, (17)

∂t
(
ϕfρfωN

)
+ div

(
ϕfρfωNvf

)
+ divJN = 0, in Ht t Bt. (18)

Finally, similarly to (11)–(14), also in this case the linear momentum balance laws

and the closure condition ms +mf = 0 must apply, i.e.,

div(σs + σf) = 0, in Ht t Bt (19)

divσf +mf = 0, in Ht t Bt. (20)

If the fluid phase can be regarded as macroscopically inviscid and the constituents

are assumed to be incompressible, the stress tensors of the solid and the fluid phase
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can be chosen constitutively as [33, 34]

σs = −ϕspfI + σs
eff , in Tt tHt t Bt, (21)

σf = −ϕfpfI, in Tt tHt t Bt, (22)

in which I is the identity tensor, pf represents the fluid pressure, and σs
eff is referred

to as the effective Cauchy stress tensor of the solid phase.

To complete the mathematical model, we recall that the sets of equations (1)-

(14) and (15)-(20) must be accompanied by the following interface conditions, which

apply at the internal boundaries separating the three subdomains Tt, Ht, and Bt:

vs · n|
Iαβ

= vs · n|
Iβα

,

ϕfρfvf · n|
Iαβ

= ϕfρfvf · n|
Iβα

,(
ϕfρfωNvf + JN

)
· n|

Iαβ
=
(
ϕfρfωNvf + JN

)
· n|

Iβα
,(

σs + σf
)
· n|

Iαβ
=
(
σs + σf

)
· n|

Iβα
,

ωN|
Iαβ

= ωN|
Iβα

,

pf |
Iαβ

= pf |
Iβα

,

(23)

where Iαβ is the interface between the αth and the βth subdomain, with α, β =

Tt,Ht,Bt, and n is the unit vector normal to Iαβ. We emphasize that the conditions

on vs · n, ωN, and pf require these quantities to be continuous across the interface,

whereas all other conditions are interface balance laws.
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2.2 Stress tensor and mechanical response

To assess the mechanical response of the system considered in this work, it is crucial

to remark that, similarly to Kt, also an undeformed (reference) configuration of the

whole system, K0, can be determined. The latter can be written as the disjoint

union K0 = T0tH0tB0. Here, T0, H0, and B0 denote, respectively, the subdomains

occupied by the tumor tissue, the soft host tissue, and the bone, each in its unde-

formed (sub)configuration. By introducing the solid motion as the one-parameter

of mappings

χs( · , t) : K0 → R3, X 7→ x = χs(X, t) ∈ Kt ⊂ R3, (24)

where R3 denotes here the three-dimensional Euclidean space, it is possible to map

the global reference configuration K0 into Kt = χs(K0, t). More specifically, the

mappings χs( · , t) are continuous throughout K0, which means that the subdomains

T0, H0, and B0 are mapped into Tt = χs(T0, t), Ht = χs(H0, t), and Bt = χs(B0, t),

respectively. Moreover, vectors attached to the points X of the subdomains T0, H0,

and B0 are mapped into vectors attached to the points x = χs(X, t) of Tt, Ht, and

Bt through the deformation gradient tensor F , whose components are expressed by

FiI = ∂χs
i/∂XI , i, I = 1, 2, 3, in appropriate coordinate systems. However, since

χs( · , t) is generally not differentiable over all K0 (see the interface condition (23)),

but only piecewise differentiable (i.e., differentiable in each subdomain), the tensor

F is piecewise continuous in K0 and, consequently, it has to be defined separately

for each subdomain.
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Because of the growth and remodeling occurring in the system, which lead to

variations of mass and shape as well as to a reorganization of its internal structure,

the global undeformed configuration K0 is generally not stress-free. To achieve a

stress-free state (also referred to as natural state in the literature), Kt (or K0) should

be torn up in small stress-free pieces. However, since the particles constituting the

subdomains of Kt have different material properties (indeed, neither Kt nor K0

represent a uniform body), each of its subdomains must be brought to a natural state

that is in general different from the other ones. To this end, we denote by Tν , Hν ,

and Bν the collections of stress-free body elements of Tt, Ht, and Bt, respectively1. In

particular, we notice that, since the bone is assumed to undergo neither growth nor

remodeling, the collection Bν may be identified with the undeformed configuration

B0.

A fundamental hypothesis of our model is that both the tumor and the soft

host tissue exhibit hyperelastic behavior from the relaxed states Tν and Hν , respec-

tively. To account for this constitutive prescription in conjunction with growth and

structural evolution, we invoke the theory of evolving natural “configurations” [25].

We use the quotation marks to emphasize that the relaxed states Tν and Hν are

conglomerates of stress-free body pieces and, as such, they generally do not form a

configuration in the proper sense of the word. We start with the description of the

mechanical response of the tumor. As anticipated above, we consider the mechanical

evolution of this tissue as dictated by three phenomena: growth, plastic reorganiza-

tion, and elastic distortion. Hence, we introduce the multiplicative decomposition

1Note that, in general, these collections of relaxed body elements do not make a configuration.
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of the deformation gradient tensor F [22, 23, 35, 24, 36], as:

F = FeFa = FeFpFg, in T0. (25)

In (25), F is related to the global change of shape of the body, Fa represents the

total anelastic distortions responsible for the evolution of the internal structure of

the body, and Fe describes the total elastic distortion. Note that Fa maps vectors

attached to T0 into vectors attached to Tν , and Fe map vectors of Tν into vectors

of Tt. To sketch the conceptual meaning of (25), we follow the explanation given in

[37]. Hence, we consider a body that is brought from T0 to its current configuration

Tt by the action of external loads. These, in general, are responsible for varying both

the shape and the internal structure of the body in T0. If structural changes occur,

it is not possible to bring back the body to T0 by simply removing the external

loads. Rather, if all the external loads were switched off, the body would occupy

a configuration, different from both Tt and T0, in which residual stresses may be

present. To eliminate these, one should ideally tear the body into small disjoint

pieces, and let each of them individually attain Tν . Note that, as the body elements

in Tν may turn out to be geometrically incompatible, Tν cannot be generally regarded

as a configuration in Euclidean space. According to Figure 1, we can then split the

map from T0 to Tν in two parts: the first, described by Fg, is related to growth

and death processes, leading to possible changes in the mass of the volume element;

the second, given by Fp, is due to internal reorganization of the body, in terms of

rearranging of the adhesion bonds between the cells.
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reference configuration current configuration

conglomerate of natural states

F

growth remodeling

gF
eF

pF

0

g 

t

Figure 1: Schematic representation of the multiplicative decomposition of the de-
formation gradient tensor.

The determinant J of the deformation gradient F can be written as:

J = JeJa = JeJpJg, (26)

where Ji = det (Fi) and i = e, p, g. We assume Fg to be purely volumetric, i.e.

Fg = gI, and Fp to be purely isochoric. It follows that Jg = g3, whereas Jp = 1.

In the sequel, we assume that the soft host tissue experiences remodeling (i.e., a

plastic reorganization of its internal structure). Thus, we specialize the decomposi-

tion (25) to the case of no growth by setting

F = FeFa = FeFp, in H0, (27)

with Fa = Fp. Again, the determinant of the deformation gradient will be given by:
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J = JeJa = JeJp, (28)

with Ja = Jp = 1. Note that the deformation gradient tensor is decomposed in the

same manner both for the tumor and for the soft host tissue. However, in the latter

we assume that no growth is present, leading to the identities Fg = I and g = 1.

The strain energy density of the system per unit volume of the undeformed

configuration K0 is denoted by

W0 =


JaWt

ν = JpJgWt
ν , in T0,

JaWh
ν = JpWh

ν , in H0,

Wb
0 , in B0,

(29)

where Wt
ν and Wh

ν are the energy densities per unit volume of the natural state of

the tumor and of the soft host tissue, respectively, and Wb
0 is the energy density

of the bone per unit volume of the undeformed configuration B0. We start with

the description of the mechanical response of the tumor and of the soft host tissue.

Since the materials are assumed to be isotropic, the strain energy densities can be

written as a function of the first three invariants of the elastic right Cauchy-Green

deformation tensor Ce = F T
e Fe. In particular, we have

W i
ν(Ce) = W̃ i

ν(I1, I2, I3), i=t,h, (30)

17



where

I1 = tr (Ce) , (31)

I2 =
1

2

[
I2

1 − tr
(
C2

e

)]
, (32)

I3 = det (Ce) , (33)

and Ce is expressed piecewise as

Ce = F−Ta CF−1
a =


g−2F−Tp CF−1

p , in T0,

F−Tp CF−1
p , in H0,

(34)

tr (Ce) = tr (CBa) =


g−2tr (CBp) , in T0,

tr (CBp) , in H0,

(35)

Ba = F−1
a F−Ta =


g−2Bp, in T0,

Bp, in H0.

(36)

From the expression of the energy we can calculate the solid phase second Piola-

Kirchhoff stress tensor associated with the natural state of the subdomains T0 and

H0:

Si
ν,eff = 2

∂W i
ν

∂Ce

=
3∑
j=1

2
∂W i

ν

∂Ij

∂Ij
∂Ce

=
3∑
j=1

2bi
j

∂Ij
∂Ce

=
(
2bi

1 + 2bi
2I1

)
I − 2bi

2Ce + 2bi
3I3C

−1
e . (37)

18



with bi
j=

∂W i
ν

∂Ij
, and i = t, h. Note that the second Piola-Kirchhoff stress tensor asso-

ciated with the reference configuration can be obtained as the Piola transformation

Si
eff = JaF

−1
a Si

ν,effF
−T
a .

When the material response of the tumor is considered, for i = t, the effective

second Piola-Kirchhoff stress tensor is a constitutive function of F , g, and Bp, i.e.,

St
eff = St

eff (F , g,Bp). Moreover, recalling that the plastic distortions are isochoric,

i.e., Jp = 1, we finally obtain

St
eff = 2gbt

1Bp + 2bt
2

1

g
[tr (CBp)Bp −BpCBp] + 2bt

3

J2

g3
C−1. (38)

It is worth to remark that, by virtue of the hypothesis of isotropy, the plastic behavior

of the system can be formulated in terms of Bp, rather than Fp. Although, on the

one hand, this leads to a loss of information, on the other hand, it brings about

important simplifications. In this work, we assume the Holmes and Mow form [38] for

the strain energy densities of the tumor and of the soft host tissue. This constitutive

behavior is able to capture the mechanical characteristics of soft hydrated tissues

and is expressed by the formula:

W i
ν = ai

0 [exp (Ψ)− 1] , Ψ = ai
1 (I1 − 3) + ai

2 (I2 − 3)− βiln (I3) , (39)

where i=t,h, and ai
0, a

i
1, a

i
2, β

i are coefficients related to material properties, i.e.,

ai
0 =

2µi + λi

4
, ai

1 =
2µi − λi

2µi + λi
, ai

2 =
λi

2µi + λi
, βi = ai

1 + 2ai
2, (40)
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Here, λi and µi are the Lamé constants of the solid scaffold, and βi is usually assumed

to be one. In equation (38), bi
j, j = 1, 2, 3, can be calculated from (37) as

bi
1 = ai

1

(
W i

ν + ai
0

)
, (41)

bi
2 = ai

2

(
W i

ν + ai
0

)
, (42)

bi
3 = −β

i

I3

(
W i

ν + ai
0

)
. (43)

The relations in (41)-(43) can be substituted into the expression (38) for the solid

stress in the reference configuration.

Concerning the effective stress of the bone tissue, we choose an energy density

function of the Saint Venant-Kirchhoff type as

Wb
0 (E) = µb tr(E2) +

λb

2
[tr(E)]2, (44)

where µb and λb are the shear modulus and the first Lamé parameter of the bone,

respectively, and E= 1
2
(C − I) is the Green-Lagrange strain tensor. Consequently,

the constitutive part of the stress associated to the bone is given by

Sb
eff = 2µbE + λb tr(E)I. (45)

The momentum equation (14) of the whole biphasic system rephrases, in the

material configuration, as

Div
(
P s

eff − JpfF−T
)

= 0, (46)
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where Div(·) denotes the material divergence operator, and P s
eff = FSs

eff . Since the

system is subdivided into different tissue compartments, the stress can be evaluated

as

Ss
eff =


St

eff , in T0,

Sh
eff , in H0,

Sb
eff , in B0.

(47)

where the three Si
eff have been defined in (38) and (45), respectively.

The last equation in the model is the one governing the plastic distortions. This

can be expressed in terms of the time derivative of Bp as [28, 30, 32, 37, 39]:

Ḃp = − 2λp

‖dev (σs
eff)‖

〈
‖dev (σs

eff)‖ −
√

2/3σy

〉
+
Bp dev (Σs

eff) , (48)

where we denote by dev(·) the deviatoric part of the tensor to which it is applied

(i = t, h). Note that the use of Bp, rather than Fp, as a measure of plastic deforma-

tions is allowed by the hypothesis of material isotropy [40, 41, 37]. In (48), σs
eff is the

effective Cauchy stress in the solid phase, obtained from the second Piola-Kirchhoff

tensor by the Piola transformation:

σs
eff =

1

J
FSs

effF
T . (49)

Then, σy is the yield stress, above which the plastic flow starts (as indicated by

the Macaulay brackets 〈·〉+ such that 〈f〉+ = f if f > 0 and 〈f〉+ = 0 otherwise).
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Finally, Σs
eff is the material Mandel stress tensor in the solid phase, given by Σs

eff =

F TP s
eff . This remodeling activates in the tumor and in the soft host tissue, with a

different value of the yield stress for each tissue (σt
y and σh

y , respectively).

Notice that the equation for the plastic flow constitutes a phenomenological

description of phenomena occurring at the cell scale: If we consider a cluster of cells

subjected to a sufficiently high tension, some of their adhesive bonds may break and

reform in other places. The mechanical energy required by the system for breaking

the bonds and reforming them in other places is not stored, being dissipated during

the process. Moreover, a cell aggregate subjected to a given load after reorganization

will respond elastically for small loads, as long as the bonds are not broken again

[28]. The law in (48) is thus stating the following: if the stress in the material is

below a given threshold, denoted here by σy, then the derivative of Bp is zero and no

plastic flow occurs. When the stress exceeds the threshold, the material evolves to

release the stress in excess, until the yield stress is reached or exceeded again. The

parameter λp gives an indication of the characteristic time for cell reorganization

and the following stress relaxation.

2.3 Constitutive relations for the mass exchange terms

The exchange term Γs appearing in equation (4) is related to tumor cell proliferation

and death. Recalling equation (7), it is given by the sum of Γp
f→p and Γn

n→f . The

first quantity describes tumor growth and reads

Γp
f→p = γp

fp

〈
ωN − ωN

cr

ωN
env − ωN

cr

〉
+

(
1−

δ1〈σ̄s
eff〉+

〈σ̄s
eff〉+ + δ2

)
ϕf

ϕf
0

ωpϕs, (50)
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where the coefficient γp
fp ≥ 0 accounts for the nutrient uptake and for the mass of

the interstitial fluid that becomes tumor due to cell growth, ωN
cr is the critical level of

oxygen below which cell proliferation is inhibited, ωN
env is the mass fraction of oxygen

in the environment, σ̄s
eff is the spherical part of the effective Cauchy stress tensor

associated with the solid phase, i.e., σ̄s
eff = −tr(σs

eff)/3, and the positive constants δ1

and δ2 (with δ1 < 1) account for the action of mechanical stress on cell proliferation.

Due to its form, the term in parentheses in (50) describes growth inhibition due to

tumor compression. Finally, ϕf
0 is the initial volume fraction of the fluid phase. The

second part of Γs, namely Γn
n→f , takes the form:

Γn
n→f = −γn

nfω
nϕs. (51)

This term is related to cell death from lysis in the necrotic population of the tumor.

The coefficient γn
nf takes into account the degradation of cellular membranes and

the mass conversion into interstitial fluid. Then, the rate of tumor cell death in

equation (2) is described by the relation

Γp
p→n = −γp

pno

〈
1− ωN

ωN
cr

〉
+

ωpϕs, (52)

where the parameter γp
pno is related to the rate of cell necrosis. In this way, we assume

cell death to occur solely by nutrient deprivation. Finally, nutrient consumption by

tumor cells is described by:

ΓN
N→p = −γN

Np1

ωN

ωN + γN
Np2

ωpϕs. (53)
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Here, γN
Np1 and γN

Np2 are two coefficients regulating nutrient uptake by the cells. Note

that the mathematical expressions adopted for the mass exchange terms are similar

to the ones reported in [42], validated with data from tumor spheroid experiments.

3 Benchmark Tests

3.1 Summary of the model equations

In this Section, we summarize the final form of the equations of the model. A

thorough derivation is available in Appendix A. Granted that ϕs can be expressed

as

ϕs =
g3ϕs

ν

J
, (54)

where ϕs
ν is the solid volume fraction in the natural state, the final system of equa-

tions to be solved is given by

ġ

g
=

1

3

Γs

ϕsρ
, (55)

ω̇p =
J

ρϕs
νg

3

(
Γp

p→n + Γp
f→p − ω

pΓs
)
, (56)

Jϕfρω̇N + ρQ ·GradωN + Div
(
ΨN
)

= J
(
ΓN

N→p + ωNΓs
)
, (57)

Div (Q) + J̇ = 0, (58)

Div
(
P s

eff − JpfF−T
)

= 0, (59)

Ḃp = − 2λp

‖dev (σs
eff)‖

〈
‖dev (σs

eff)‖ −
√

2/3σy

〉
+
Bp dev (Σs

eff) , (60)
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where we introduced the Piola transformations of Darcy’s filtration velocity and

Fick’s mass flux

Q = JF−1ϕf
(
vf − vs

)
= −JF−1kF−TGrad pf , (61)

ΨN = −JϕfρF−1DNF−TGrad ωN. (62)

The system in (55)-(60) is to be solved for the free unknowns

U = {g, ωp, ωN, pf , χs,Bp}. (63)

Note that the system is closed, since it features 13 scalar unknowns and (55)-(60)

constitute a set of 13 scalar equations. In (61) and (62), k and DN are two isotropic

tensors describing nutrient diffusivity and tissue hydraulic conductivity. They are

given by the expressions k = kI and DN = DNI, respectively. The equations (55)-

(62) are obtained under the hypotheses that the mass densities of the fluid and solid

phases are constant and equal (ρs = ρf = ρ). In the following, we consider only one

nutrient species, namely oxygen.

3.2 Description of the benchmarks

Hereafter, three benchmark tests are discussed. In the first case, we consider a tumor

spheroid growing in the culture medium. In the second benchmark, the spheroid

grows in a soft host tissue having spherical structure. Finally, in a third benchmark,

we present the results of a tumor growing in a three-dimensional heterogeneous

domain, in which the host tissue comprises both a soft material and a stiffer one,
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identified with a bone tissue.

In the first case, the model consists of a sphere segment in axisymmetric con-

ditions. The spheroid has an initial radius of 100 µm and the initial solid volume

fraction ϕs is fixed at 0.8 over the domain. We assume the following initial condi-

tions:

g = 1, ωp = 1, ωN = ωN
env, pf = 0, Bp = I, in T0. (64)

Moreover, the boundary conditions for the problem are summarized in Figure 2.

100 µm

TCs

zero normal fluxes
zero normal displacements

axial 
symmetry

zero fluid pressure
imposed oxygen value

Figure 2: Geometry of the problem and boundary conditions for a tumor spheroid.

On the outer boundary of the spheroid, we assume a fixed value (ωN
env) for the

nutrient mass fraction and zero interstitial fluid pressure. Due to the symmetry, no-

flux boundary conditions are imposed normal to the radius of the sphere segment.

The parameters used for this first benchmark test come from different sources,

and are reported in Table 1.

Regarding the values used for the plastic flow rule, we have referred to the work

of Iordan et al. [51] for an estimate of the yield stress in the tumor tissue. In
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Table 1: Parameters used in the model for the tumor spheroid.

Symbol Parameter Unit Value Reference

ϕs
ν Solid volume fraction in the natural state (−) 8.0× 10−1 [30]

ρ Density of the phases kg/m3 1.0× 103 [43]
k Tumor hydraulic conductivity m2/(Pa · s) 4.875× 10−13 [44]
DN Nutrient diffusion coefficient m2/s 3.2× 10−9 [43]
ωN
cr Critical level of nutrient (−) 2.0× 10−6 [42]
ωN
env Environmental level of nutrient (−) 7.0× 10−6 [45, 46]
γNNp1 Coefficient related to nutrient consumption kg/(m3 · s) 3.0× 10−4 [47, 48]

γNNp2 Coefficient related to nutrient consumption (−) 1.48× 10−7 [47, 48]

γpfp Coefficient related to growth kg/(m3 · s) 5.348× 10−3 [49]

γppno Coefficient related to necrosis kg/(m3 · s) 1.5× 10−1 [42]
γnnf Coefficient related to lysis kg/(m3 · s) 1.15× 10−2 [42]
λp Coefficient related to cell reorganization time 1/(Pa · s) 8.334× 10−7 [50]
σt
y Yield stress Pa 1.0× 101 [51]
λt Lamé’s first parameter for the tumor Pa 1.333× 104 [44]
µt Shear modulus for the tumor Pa 1.999× 104 [44]
δ1 Coefficient related to growth inhibition (−) 7.138× 10−1 [42]
δ2 Coefficient related to growth inhibition Pa 1.541× 103 [42]

addition, the value for the coefficient λp is derived from the cell reorganization time

τp by the expression:

τp '
1

µtλp

,

where we have considered a value for τp of the order of one minute, consistently with

the observations of Forgacs and colleagues [50]. The equations in the model were

solved using the finite element software COMSOL Multiphysics R© (COMSOL AB,

Sweden).

In the second case, we consider the growth of an avascular tumor within a healthy

tissue. As mentioned in the previous section, the soft host tissue is modeled as an

elasto-visco-plastic solid where the elastic strain energy and the plastic flow rule

are characterized by the same constitutive relations of the tumor. However, an
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independent set of parameters is used for the healthy tissue, providing a different

mechanical response. At the interfaces between the different domains, COMSOL

applies automatically the conditions in (23). The geometry and boundary conditions

of the problem are shown in Figure 3.

400 µm

HCs

zero normal fluxes
zero normal displacements

axial 
symmetry

zero fluid pressure
imposed oxygen value

TCs

30 µm

Figure 3: Geometry of the problem and boundary conditions for a tumor growing
in a soft host tissue.

Similar to the numerical experiments in [43], the tumor and the host tissue are

modeled as a sphere segment imposing cylindrical symmetry. The tumor occupies

the region that is closer to the sphere center, with an initial radius of 30 µm. From

there, the host tissue extends until the outer boundary of the computational domain,

with an external radius of 400 µm. We consider an initial solid volume fraction equal

to 0.7 throughout the domain. The initial conditions for the problem read:

g = 1, ωp = 1, in T0, (65)

ωN = ωN
env, pf = 0, Bp = I in T0 tH0. (66)
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Regarding the boundary conditions, the nutrient mass fraction and the interstitial

fluid pressure on the outer boundary are set equal to ωN
env and zero, respectively.

To take into account the presence of a host tissue, we select a value for ωN
env that

corresponds to the average dissolved oxygen in the plasma of a healthy individual

[43]. Moreover, in this second case the growth coefficient γp
fp and the critical value

of oxygen ωN
cr take different values from before. On the other boundaries, zero flux is

imposed for the nutrient and the fluid due to the presence of the symmetry boundary.

The parameters pertaining to the healthy tissue are given in Table 2, whereas all

the other parameters are the same as in Table 1.

Table 2: Parameters used for the case of a tumor growing in a soft host tissue.

Symbol Parameter Unit Value Reference

λh Lamé’s first parameter for the soft host tissue Pa 3.336× 103 [52]
µh Shear modulus for the soft host tissue Pa 5.0× 103 [52]
σh
y Yield stress for the soft host tissuea Pa 1.0× 103 -
λp Coefficient related to cell reorganization time 1/(Pa · s) 8.334× 10−8 -
γpfp Coefficient related to growth kg/(m3 · s) 8.022× 10−3 [53]

ωN
cr Critical level of nutrient (−) 1.0× 10−6 -
ωN
env Environmental level of nutrient (−) 4.2× 10−6 [43]

a Value assumed when plastic rearrangement in the soft host tissue is taken into account.

We assume that cellular bonds are more stable for a tumor grown in a host tissue

than as a spheroid, and impose a larger time for cell rearrangement and a higher

value for the healthy tissue yield stress.

As a last case, we analyze the growth of a tumor in proximity to a blood capillary

and two different host tissues. The blood vessel constitutes the only source of

nutrient that influences the development of the spatial pattern of the tumor. A

tissue with the mechanical properties of a bone occupies a portion of the domain,

whereas a soft host tissue fills the rest of the geometry. We consider the ideal
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geometry of Figure 4.a, where the capillary lies next to a spherical tumor.

soft tissue

bone
tumor

250µm

150µm

150µm

50µm

40µm86µm

B1 zero normal displacements
zero normal fluxes

B2 zero normal fluxes
zero fluid pressure

B3 zero normal displacements
zero normal fluxes
imposed oxygen mass fraction

B4 zero normal fluxes
zero fluid pressure
zero normal displacements

(a) (b)

30µm B1

B2

B4

B1

B3

Figure 4: Geometry of the problem and boundary conditions for a tumor growing
in a heterogeneous environment.

The capillary has a diameter of 8 µm and the tumor starts with an initial diame-

ter of 40 µm. This geometry has two planes of symmetry, allowing to discretize only

one quarter of the actual domain. Figure 4.a shows the size of the other compart-

ments of the problem. We enable plastic deformations to develop in the soft host

tissue, as well as in the tumor, and fix the value of the yield stress of the soft host

tissue as σh
y = 103 Pa. We assume a higher value for the cell reorganization time

than in the previous case, leading to a lower value for λp. The initial conditions of
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the problem are stated below:

g = 1, ωp = 1, in T0, (67)

Bp = I, in T0 tH0, (68)

ωN = ωN
cap, pf = 0, in Kt. (69)

Here ωN
cap is the mass fraction of the nutrient supplied by the capillary. The boundary

conditions for the problem are reported in Figure 4.b. In particular, the oxygen mass

fraction is fixed on the cylindrical surfaces of the capillary, where we set it equal

to ωN
cap. On the remaining lateral surfaces we impose zero oxygen flux. Because of

symmetry properties of the problem, our simulations consider only one quarter of

the overall geometry, and we need to impose symmetry boundary conditions for the

pressure and for the displacements on the surface B1 ∩K0 of Fig. 4.

The additional parameters for this case, including the mechanical response of

the bone tissue, are summarized in Table 3.

Table 3: Additional parameters for the three-dimensional tumor model.

Symbol Parameter Unit Value Reference

λb Lamé’s first parameter for the bone tissue Pa 5.769× 109 [54, 55]
µb Shear modulus for the bone tissue Pa 3.846× 109 [54, 55]
ϕb Bone porosity (−) 6.0× 10−1 [54, 55]
kb Bone hydraulic conductivity m2/(Pa · s) 3.0× 10−15 [54, 55]
R0 Tumor initial diameter µm 40 -
ωN
cap Capillary oxygen mass fraction (−) 4.2× 10−6 [43]
ωN
cr Critical oxygen mass fraction (−) 3.0× 10−6 -
γpfp Coefficient related to growth kg/(m3 · s) 1.0× 10−2 -

λp Coefficient related to cell reorganization time 1/(Pa · s) 1.389× 10−8 -

For the latter, we assume a pure hyperelastic behavior with a strain energy
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density of the Saint Venant-Kirchhoff type. The remaining values of the parameter

are taken equal to those in Table 1 and Table 2.

4 Results

4.1 Growth of a tumor spheroid in vitro

In this section we report the results for a tumor spheroid growing suspended in the

culture medium. The radius of the spheroid as a function of time is plotted in Figure

5.a.

Here, the solid line is the result of a numerical simulation where we employed the

parameters in Table 1, whereas the dotted markers are experimental data taken from

[42]. There is a good agreement with the experimental data, for each of the growth

stages of the spheroid. In Figures 7b–7d, we report the evolution of a quantity over

the radius of the spheroid for different times during the simulation. In particular,

Figure 5.b refers to the mass fraction of oxygen inside the spheroid. Note, at later

times, the formation of a nutrient gradient from the spheroid boundary towards its

interior. The mass fraction of proliferating tumor cells is shown in Figure 5.c. As

the spheroid grows, cell death by necrosis appears at the tumor center, evidenced by

zero value of the mass fraction. After 20 days from the beginning of the simulation,

a necrotic core is clearly visible. Figure 5.d shows the evolution of the interstitial

fluid pressure inside the spheroid. During the first days the tumor increases its

radius and, to satisfy the closure relation in (10), the interstitial fluid flows towards

the center of the spheroid. As a consequence, the interstitial fluid pressure decreases
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Figure 5: Model results for a tumor spheroid (I). a Growth curve of a tumor spheroid
(solid line). The dots represent experimental data from [42]. Evolution of the
nutrient mass fraction (b), the proliferating cell mass fraction (c) and the interstitial
fluid pressure (d) over the radial coordinate and for different times.
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within the spheroid center. At later times the interstitial fluid pressure rises inside

the tumor, following cell death by lysis. Figure 6 shows a second set of results.

In Figure 6.a, the growth stretch ratio g is plotted at different times. This quan-

tity represents the spherical growth term in the multiplicative decomposition of the

deformation gradient. As the tumor mass grows, g increases over the spheroid ra-

dius, assuming larger values at the spheroid boundary (where the nutrient level is

higher). Note that, after a few days, the value of g decreases within the spheroid

center. This is due to a reduction of tumor volume by cell death, and is included

in the lysis term of Γs in equation (7). The evolution of the trace of Bp is reported

in Figure 6.b. This quantity measures the plastic distortions occurring in the tu-

mor, which in our framework translate into cell rearrangement. We note that cell

rearrangement occurs over the whole spheroid domain, with a peak in the spheroid

interior that will be clarified in Figure 7. Then, Figure 6.c shows the variation of

the trace of Cauchy stress inside the tumor. As the tumor grows, the portion at the

boundary experiences compressive stresses, since tr(σs
eff) is negative. The situation

changes at the tumor interior, where the tissue is subjected to traction and tr(σs
eff)

is positive. Finally, Figure 6.d shows the effective stress of von Mises in the domain.

As shown in equation (60), we used this measure of stress to mark the onset of plastic

flow. From the graph it is possible to observe that the von Mises stress is constant

for the most part of the simulation, maintaining the threshold level imposed by the

yield stress. However, after 10 days from the beginning of the simulation, the stress

exhibits a peak that is gradually relaxed at later times. This stress peak occurs

at the same time as the formation of a necrotic population inside the spheroid, as
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Figure 7: Proliferating cell mass fraction and von Mises stress in the tumor spheroid
at different times.

displayed in Figure 7.

Here, the mass fraction of proliferating cells and the von Mises stress are dis-

played over the radius of the spheroid at day 5 (Figure 7.a), 10 (Figure 7.b) and 15

(Figure 7.c). At day 5, the spheroid is still entirely composed of proliferating cells,

and the von Mises stress is relaxing to the yield value. At day 10, however, the

oxygen threshold level falls below the critical threshold and a necrotic population

is formed at the spheroid core. Interestingly, the peak in von Mises stress is at the

36



same radial position as the transition between proliferating and necrotic cells. The

last snapshot, at day 15, shows an almost completely relaxed state of stress, even

if the transition between proliferating and necrotic cells is still present. A possible

explanation of the von Mises peak at day 10 could reside in the growth term Γs of

equation (55). The growth stretch ratio decreases in the necrotic region, whereas it

increases in the portion of the spheroid in which the cells proliferate. Indeed, in the

necrotic region, the mass fraction of the oxygen is lower than the threshold value

ωN
cr, thereby yielding the vanishing of Γp

f→p. Consequently, Equation (55) reduces to

ġ

g
=

Γn
n→f

3ϕsρ
= −γ

n
nfω

n

3ρ
, (70)

and, since all quantities on the right-hand-side of (70) are positive, the time deriva-

tive of g is negative. On the other hand, in the proliferating region we have

ġ

g
=

Γp
f→p

3ϕsρ
= −

γp
fp

3ρ

〈
ωN − ωN

cr

ωN
env − ωN

cr

〉
+

(
1−

δ1〈σ̄s
eff〉+

〈σ̄s
eff〉+ + δ2

)
ϕf

ϕf
0

ωp, (71)

yielding, since the oxygen level is above the critical threshold, a positive value for

the time derivative of g. This means that the growth stretch ratio is a decreasing

or an increasing function of time depending on whether cells are in the necrotic or

proliferating region of the spheroid, respectively. According to the picture portrayed

by the multiplicative decomposition of the deformation gradient, the elastic distor-

tions evolve to accommodate the growth-induced stresses, and result in the peak

occurring in the von Mises stress. Afterwards, this peak is relaxed due to the cell

rearrangement, showing the local increase in Bp, as visible in Figure 6.b. In the
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authors’ opinion this result is worth of notice because it is believed to arise from

the presence of two species of cells (i.e., the proliferating and the necrotic ones)

within a mechanical framework based on the multiplicative decomposition (25),

whereas only one cellular species is usually taken into account in this type of mod-

els [21, 26, 28, 56]. Further investigations are required to analyze this mechanical

response and the possible links to the underlying biology.

4.2 Growth of a tumor in a healthy tissue

To begin our analysis, we first test the model for the case in which plastic rear-

rangement is turned off in the soft host tissue. These results are shown in Figure

8.

In particular, Figure 8.a represents the evolution of the tumor radius when the

tumor is embedded into host tissues of different stiffness. The line marked with “ref.”

refers to the reference case of a soft host tissue with the mechanical parameters of

Table 2. The other lines represent a variation of the parameters µh and λh of

the -75, -50, -25, +25, +50 and +75% with respect to the reference value. As the

stiffness of the healthy tissue increases, the final radius of the tumor is reduced. This

behavior is similar to the experimental observations of Helmlinger and coworkers

[12], where tumor spheroids are grown in gels of different compliances. The other

panels of Figure 8 show the evolution of other quantities over the radius of the

domain at different times during the simulation. The parameters of Table 2 were

used for the healthy tissue, considering the case of no remodeling in the latter.

The radial component of the displacement is shown in Figure 8.b. The point of
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Figure 8: Results for a tumor growing in a soft host tissue (I). a Evolution of
the tumor radius over time. The different lines range from case of low (-75%)
to high (+75%) host tissue stiffness. Variation of the solid displacement (b), the
growth stretch radius (c), the radial stress (d), the circumferential stress (e) and
the nutrient mass fraction (f) over the domain radius and for different times.

maximum displacement is at the tumor-host boundary, with a value increasing with

time. In accordance to this, the growth stretch ratio (displayed in Figure 8.c) is

greater towards the tumor boundary, where a higher concentration of nutrient is

available for growth. Then, Figures 8.d and 8.e report the variations in the radial

and circumferential stresses, respectively. Note that the two stress components are

both compressive and almost uniform in the tumor interior, while at the interface
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with the healthy tissue radial stress diminishes and circumferential stress turns to

tensile. This result agrees with previous mathematical models investigating the

evolution of stress during tumor growth [44, 57, 58]. From the plots it is possible to

observe that, even if the yield stress in the tumor is of 10 Pa, the absolute magnitudes

of radial and compressive stresses are around a few kPa. This is due to the type

of mechanical loading applied on the tumor, which is mainly hydrostatic. Since

the flow rule depends on the deviatoric components of the stress, only small plastic

deformations are detectable within the tumor domain. Note that the compressive

stress applied on the tumor boundary influences also the evolution of the growth

stretch ratio in the tumor. In fact, Je decreases within the tumor as the tissue is

compressed. From equation (54), the solid volume fraction in the tumor increases

and the porosity decreases accordingly. Since the growth stretch ratio depends on

Γs and this latter term is linear with respect to porosity (see equation (50)), this

results in a reduction of tumor growth. Finally, the evolution of the oxygen mass

fraction is shown in Figure 8.f. As the tumor grows, oxygen gradients develop from

the periphery to the tumor center. At later times, not reached by the simulation, the

oxygen level is expected to fall under the critical threshold, giving rise to a necrotic

cell population. The effect of plastic remodeling in the soft host tissue is analyzed

in Figure 9.

Dashed lines represent the case where plastic deformation is enabled in the

healthy tissue, whereas solid lines refer to the reference case of Figure 8, where

remodeling is neglected. For this analysis, we fixed the yield stress in the soft host

tissue to be equal to 103 Pa and used for the parameters the values in Table 2.
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Figure 9: Results for a tumor growing in a soft host tissue (II). Solid or dashed
lines represent the cases in which plastic remodeling in the host tissue is neglected
or considered, respectively. a Evolution of the tumor radius over time. Variation of
the radial (b) and the circumferential (c) stresses over the domain radius and for
different times.

The effects of plastic remodeling on the evolution of the tumor radius are shown

in Figure 9.a. When compared to the reference case, the tumor grows faster and

to a larger extent, reaching a final radius of about 90 µm. This behavior may be

explained by considering the effect of stress relaxation induced by plasticity. Indeed,

the magnitude of the stresses in the soft host tissue is significantly reduced when

compared to the reference case. This is shown in Figure 9.b and Figure 9.c, where

the radial and circumferential stresses are plotted over the radius of the domain at

the last time-step of the simulation. The steep transitions in the stress between the

tumor and soft host tissue are considerably smoothed out and the absolute value

of the stress is greatly reduced. Lower mechanical stresses on the tumor boundary

constitute a weaker mechanical barrier that may be less able to constrain tumor
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growth, leading to larger tumor sizes and host tissue displacements. In addition,

as mechanical stress influences cell proliferation through the term in equation (50),

smaller compressive stresses provide a minor degree of growth inhibition.

4.3 Tumor growing in the presence of a microvessel and

different adjacent tissues

In this section, we investigate the growth of an avascular tumor in a heterogeneous

environment. Figure 10.a shows the total displacements at day 7 from the beginning

of the simulation.

As the mechanical environment around the tumor is not the same everywhere,

the growth of the latter results to be asymmetric. Due to its larger stiffness, the

presence of the bone tissue limits the growth of the tumor mass along one direction.

Figure 10.b displays the value of the growth stretch ratio over the tumor domain at

day 7. Note that the higher values are obtained along the tumor side closer to the

capillary surfaces, where there is the maximum value for the nutrient mass fraction.

In addition, lower values are displayed over the tumor side that is close to the bone

tissue, consistently with Figure 10.a. The nutrient mass fraction at day 7 is shown

if Figure 10.c. The lowest values are attained at the tumor center, where nutrient

consumption is more pronounced. Finally, Figure 10.d shows the trace of Bp at

day 7 over the tissue external to the tumor. The area close to the tumor boundary

is subjected to the higher plastic remodeling. As the tumor expands, the healthy

tissue is displaced from its original position and the host cells need to rearrange

their relative bonds to accommodate the new configuration. The asymmetric tumor
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Figure 10: Results for an avascular tumor growing in a heterogeneous environment.
The solid displacements (a), the growth stretch ratio (b), the nutrient mass fraction
(c) and the trace of Bp (d) are plotted over the three-dimensional domain at the
end of the simulation.

growth pattern is highlighted in Figure 11, where we display the lateral displacement

of the tumor points shown in the inset. The two curves gradually diverge, showing

a different evolution over time of the growth rate for the points.
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5 Conclusions

In the present study, a mathematical model for avascular tumor growth is presented.

The modeling framework is based on porous media mechanics and the concept of

evolving natural configurations, extending previous works in the literature. We start

by considering the growth of a tumor spheroid, where proliferating tumor cells un-

dergo necrosis if subjected to low levels of nutrient. We analyze the evolution of

different quantities, such as the growth stretch ratio, oxygen mass fraction and me-

chanical stresses, over the spheroid radius for different times. Then, we evaluate the

effect of stress relaxation induced by cell reorganization in the spheroid. Interest-

ingly, when proliferating cells become necrotic, we observe a peak in the von Mises

equivalent stress, followed by a progressive relaxation induced by the plastic contri-

bution to the deformation gradient. After that, we study the growth of a spherical

tumor embedded into a healthy tissue. We consider the effects of different mechan-
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ical properties of the latter on the tumor. In particular, we vary the external tissue

stiffness and we consider both the case of no remodeling and active remodeling in the

soft host tissue. We analyze the effect of these features on the tumor radius and on

the radial and circumferential stresses inside the domain. We observe the influence

of plastic reorganization on the soft host tissue, and we note that the tumor grows

larger in a soft host tissue where remodeling is enabled. Finally, we consider the case

of a tumor grown in a host tissue made of two distinct compartments, i.e. a healthy

soft tissue and a bone. The different mechanical properties of the two tissues affect

significantly the growth of the tumor mass, which, starting from a spherical form,

assumes an asymmetric shape at the end of the simulation. Since one of the two

domains is stiffer than the other, and since the cancer cells proliferate more towards

the region of least mechanical resistance, the tumor extends more in the softer host

tissue.

Several simplifying assumptions are considered in the study, and the work is

certainly open to further improvements. The modeling framework is simplified with

respect to the more general model of [59], in which tumor cells and host cells are

treated as fluids. In fact, the present model does not allow to take into account

migration of cells through the ECM [60]; possible detachment of the cells from the

ECM and from other cell populations; different stiffness of the cell population with

respect to the ECM (with which they are here lumped); build-up of cortical ten-

sion between healthy and tumor tissues; and possible invasion of the tumor tissue

by the healthy tissue or vice versa, mediated by these cortical tensions. It allows,

however, for displacement of the host tissue by the tumor and also investigation of
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possible fingering. For the future, we are planning to develop the model proposed

here by taking into account different phenomena. In particular, the adhesion mech-

anisms between the cells and the ECM should be investigated in more detail. This

will probably lead to a modification of the plastic flow rule, including the effect of

different adhesion molecules, such as catherins and integrins. Moreover, cells belong-

ing to distinct cellular populations should display different adhesive characteristics,

leading to a modified expression for the yield stress. Model development requires

experiments that are able to provide better estimates for the model parameters.

Furthermore, new sets of data in terms of quantities that can be compared to the

output of the model equations are needed. Part of the future experimental work

should also be devoted to supply measures of the yield stress, with experiments like

those in [51, 50, 61]. To this regard, it would be extremely interesting to investigate

the mechanical response of tumor spheroids subjected to both compressive and shear

stresses, also interfering with the adhesion molecules by using different drugs.

Describing more thoroughly the interactions between the tumor and its external

microenvironment (both biochemical and mechanical) should offer valuable insight

into the understanding of the disease progression, with the final aim of helping the

design of new therapeutic treatments.
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Appendix A

We derive the material form of the equations (55)-(58).

Starting from (4), for the mass balance equation of the solid phase we write:

Ds (ϕsρs) + ϕsρsdiv (vs) = Γs, (72)

where Ds (·) = ∂t (·) + vs · grad (·) denotes the material derivative of the argument.

From the identity J̇ = Jdiv (vs) we can write in the reference configuration:

˙ϕsρs + ϕsρs J̇

J
= Γs, (73)

˙Jϕsρs = ˙JeϕsρsJg + Jeϕ
sρsJ̇g = ˙JeϕsρsJg + 3Jϕsρs ġ

g
= JΓs, (74)

with J̇g = Jgtr
(
ḞgF

−1
g

)
= 3Jg ġ/g. If we impose that the rate of change of mass
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contributes entirely to the growth term, then we have:

ϕsρsJe = ρs
0 = const. (75)

and equation (74) gives:

ġ

g
=

1

3

Γs

ϕsρs
, (76)

whereas equation (75) gives an expression for ϕs:

ϕs =
ρs

0

ρsJe

=
g3ρs

0

ρsJ
, (77)

and we also have that:

ϕs
ν = ϕsJe =

ρs
0

ρs
. (78)

Note that, in general, ρs can depend on the mass fraction of the constituents, i.e.

ρs = ρs (ωp, ωn).

The mass balance equation for the proliferating cells reads

Ds (ϕsρsωp) + ϕsρsωpdiv (vs) = Γp
p→n + Γp

f→p, (79)

˙ϕsρsωpJ = JΓsωp + Jϕsρsω̇p = J
(
Γp

p→n + Γp
f→p

)
, (80)

ω̇p =
J

ρs
0g

3

(
Γp

p→n + Γp
f→p − ω

pΓs
)

=
1

ϕsρs

(
Γp

p→n + Γp
f→p − ω

pΓs
)
, (81)

in which equations (75) and (76) are used. Similarly, for the necrotic portion of the

cells we can write:

ω̇n =
J

ρs
0g

3

(
Γn

n→f + Γn
p→n − ωnΓs

)
. (82)
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The mass balance equation for the whole solid-fluid system is obtained by summing

up the two mass balance equations for the solid and the fluid phase, which read

∂tϕ
s + div (ϕsvs) +

ϕs

ρs
Dsρs =

Γs

ρs
, (83)

∂tϕ
f + div

(
ϕfvf

)
+
ϕf

ρf
Dfρf = −Γs

ρf
, (84)

respectively. Summing equation (83) and (84) gives:

div (q) + div (vs) + ϕfβf + ϕsβs =

(
1

ρs
− 1

ρf

)
Γs, (85)

in which βj = Djρj/ρj, j = f, s represent the compressibility of the j-th phase, and

q = ϕf
(
vf − vs

)
. Note that

ϕfβf =
ϕf

ρf

[
Dsρf +

(
vf − vs

)
· grad ρf

]
= ϕfDsρf

ρf
+

grad ρf · q
ρf

. (86)

By employing (86) and applying a Piola Transformation of equation (85) we obtain

Div (Q) + J̇ + J (1− ϕs)
ρ̇f

ρf
+

1

ρf
Q ·Grad ρf + Jϕs ρ̇

s

ρs
= J

(
1

ρs
− 1

ρf

)
Γs, (87)

where we defined Q = JF−1q. Note that if the densities of the phases are assumed

to be constant and equal to each other the expression above can be simplified into:

Div (Q) + J̇ = 0, (88)
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with Q given as:

Q = −JF−1kF−TGrad pf . (89)

Here k is the hydraulic conductivity tensor of the solid.

For the nutrient species we rewrite the mass balance equation as:

Ds
(
ϕfρfωN

)
+ ϕfρfωNdiv (vs) + div

[
ϕfρfωN

(
vf − vs

)
+ JN

]
= ΓN

N→p, (90)

where JN = −ϕfρfDNgradωN. The term DN is the diffusivity tensor of the nutrient

dissolved into the interstitial fluid. This equation can be rewritten in the material

frame as:

˙
JϕfρfωN + Div

(
ρfωNQ+ ΨN

)
= JΓN

N→p, (91)

where the material diffusive flux is written as ΨN = −JϕfρfF−1DNF−TGradωN.

By manipulating this equation, and knowing that

Df
(
ϕfρf

)
+ ϕfρfdiv

(
vf
)

= Γf , (92)

Ds
(
ϕfρf

)
+ div

(
ρfϕfq

)
+ ϕfρfdiv (vs) = −Γs, (93)

˙
Jϕfρf + Div

(
ρfQ

)
= −JΓs, (94)

we arrive at the final form of the nutrient mass balance equation, which reads

Jϕfρf ω̇N + ρfQ ·GradωN + Div
(
ΨN
)

= J
(
ΓN

N→p + ωNΓs
)
. (95)
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