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Abstract 

Fuel cell and hydrogen technologies are re-gaining momentum in a number of sectors including industrial, 

tertiary and residential ones. Integrated biogas fuel cell plants in wastewater treatment plants and other 

bioenergy recovery plants are nowadays on the verge of becoming a clear opportunity for the market entry of 

high-temperature fuel cells in distributed generation (power production from a few kW to the MW scale).  

High-temperature fuel cell technologies like molten carbonate fuel cells (MCFCs) and solid oxide fuel 

cells (SOFCs) are especially fit to operate with carbon fuels due to their (direct or indirect) internal reforming 

capability. Especially, systems based on SOFC technology show the highest conversion efficiency of gaseous 

carbon fuels (e.g., natural gas, digester gas, and biomass-derived syngas) into electricity when compared to 

engines or gas turbines. Also, lower CO2 emissions and ultra-low emissions of atmospheric contaminants 

(SOX, CO, VOC, especially NOX) are generated per unit of electricity output. Nonetheless, stringent 

requirements apply regarding fuel purity. The presence of contaminants within the anode fuel stream, even at 

trace levels (sometimes ppb levels) can reduce the lifetime of key components like the fuel cell stack and 

reformer. In this work, we review the complex matrix (typology and amount) of different contaminants that is 

found in different biogas types (anaerobic digestion gas and landfill gas). We analyze the impact of 

contaminants on the fuel reformer and the SOFC stack to identify the threshold limits of the fuel cell system 

towards specific contaminants. Finally, technological solutions and related adsorbent materials to remove 

contaminants in a dedicated clean-up unit upstream of the fuel cell plant are also reviewed.   

Keywords: biogas, fuel contaminants, SOFC, Ni-anode, reformer, siloxanes.  
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Overview of this work 

Scope and Motivation 

Integrated biogas fuel cell systems in wastewater treatment plants and other bioenergy recovery plants are 

now on the verge of becoming a clear opportunity for the entry of high-temperature fuel cells in the stationary 

market. In this work, the focus is restricted to SOFC technology. MCFC technology shares much of the same 

auxiliary infrastructures (regarding the Balance-of-Plant) and protocols of operation with the SOFC; hence, 

degradation issues are similar to those of the SOFC when it comes to anode contamination from fuel impurities. 

Also, threshold limits for contaminants in fuel cell quality feeds and clean-up design recommendations 

reported in this work are equally useful and extendable to natural gas, and syngas from biomass gasification. 

One of the barriers for the deployment of CHP fuel cell systems comes from the degradation of the fuel 

cell stack. This technical barrier has direct economic consequences. Higher degradation rates translate in the 

lower lifetime of the stack, which is a large cost item of the whole plant installation. Fuel cell performance 

degradation from fuel contaminants is detrimental for the whole plant availability, as altered stack performance 

limits the operability of the system.   

This paper attempts to summarize, analyze and discuss in detail recent findings and advances in the field 

of SOFCs running on gaseous bio-fuels. Especially, the focus is on an SOFC fed by anaerobic digestion or 

landfill biogas. There is a great potential to further increase biogas energy recovery, and SOFC technology 

seems a perfect match to maximize the efficiency of this use. Dealing with biogas fuel, on the other hand, 

might add complexity and further degradation to the SOFC and related BoP components (e.g., the fuel 

reformer). Therefore, in this study, we analyze the pathway from raw biogas to the use of clean biogas in the 

SOFC to understand the risks due to the contaminants, and how to manage and eventually minimize them.  

Structure of this work 

Briefly, the work is articulated into five main sections: 

- the first one provides an overview of current trends and issues for biogas use in advanced fuel cell 

systems as well as the biogas production potential from different organic substrates; 

- the second one deals with the origin, type and amount of contaminants expected in typical biogases; 

- the third section investigates the impact of fuel contaminants on the Ni-based reformer catalyst; 

- the fourth reports on the impact of fuel contaminants on the SOFC Ni-anode; 

- the last section describes biogas purification techniques; methods and materials for the removal of 

harmful contaminants down to ppb-levels, as sometimes required by the fuel cell, are discussed in 

detail. 

In more detail, the paper is organized as follows. First, we provide an overview of the biogas use and 

potential in Europe. The focus is limited to Europe since several installations are located in this macro-region 

and several data were freely available especially for this area. In fact, most of the biogas potential is roughly 
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proportional to the number of inhabitants living in a given area. Therefore, results obtained from Europe could 

be extrapolated to some extent to different geographic regions that share similar features in terms of economic 

development, diet patterns, and waste management.  

The detrimental impact of biogas contaminants on the end-user device, i.e., the fuel cell, then follows in 

the paper. Some fuel contaminants can lead to a fast and irreversible degradation of catalytic and electro-

catalytic active surfaces. The effect of biogas contaminants on the fuel cell Ni-based reformer and Ni-anode 

are thus assessed.  

The study is limited to the Ni-based reformer and the Ni-anode SOFC as they represent state-of-the-art 

materials of pre-commercial systems and are expected to remain the dominant design solution for the coming 

years. The focus is mostly on the impact of H2S and siloxanes for both the reformer catalyst and the fuel cell 

anode since they are known to be the most dangerous compounds, as will be corroborated in this study. The 

effect of heavier hydrocarbons is also reviewed since enhanced carbon formation rates are observed when co-

feeding methane with other hydrocarbons (C2, C3 compounds). The fuel cell anode is also tested against HCl 

(which is not present in high concentration in biogases, expect for landfill biogas; however, HCl, along with 

H2S, is abundant in coal syngas [1,2] and we deemed useful to extend the study to this chemical species as 

well).  

Finally, we provide an in-depth overview of both scientific and some engineering aspects connected to 

the removal of biogas contaminants. Given the harmful effects of most of the biogas contaminants on the 

reformer and fuel cell performance, biogas purification is required. After reviewing various techniques for the 

contaminants removal, the focus is on solid sorbents since they can provide a deep clean-up of the incoming 

fuel that complies with SOFC fuel quality requirements. We will show how impregnated activated carbons are 

effective for the removal of H2S and siloxanes. 
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Chapter 1 – Biogas potential and its use in Solid Oxide Fuel Cells (SOFCs) 

Biogas potential 

The global biogas potential is estimated to lie around 36,000 PJ [3], 6.5% of the world total primary 

energy supply in 2012. Energy crops would cover more than one-third of the overall potential thus taking the 

largest share. The second largest contributor would be manure collected from animal farming – covering about 

one fourth of the overall potential.  In Table 1, different biogas sources are listed. 

Table 1. Organic feedstocks for biogas production 

Organic feedstocks for biogas 

Agriculture Waste Streams 

Livestock manure Landfill 

Energy crops, catch crops 
Sewage sludge (urban and 

industrial 

Landscape management  Municipal solid waste 

Grass 
Food waste, dairy industry 

waste 

Other agricultural 

residues/by-products 
Other waste 

In 2007, the European production of biogas was 248 PJ [4], with the following provenance: 49% from 

landfill, 15% from sewage and 36% from other biogases (including among others manure, agricultural 

residues, and food waste digesters). Seven years later, with an annual growth of 15%, the biogas primary 

energy production increased to 560 PJ [4], more than doubling the 2007 value. In 2013, the overall production 

was achieved with 13,800 digesters and around 7.4 GW of electricity generating capacity [5]. 

 In 2013, the scene remained unchanged in absolute numbers concerning landfill biogas production*, 

while sewage biogas production from industrial and urban sludge increased by 40% (see Table 2). A much 

higher increase occurred for biogas from other sources (including decentralized agricultural plants, municipal 

solid waste methanization plants, and centralized co-digestion plants), the overall contribution of which rose 

from 2.1 Mtoe (89 PJ) in 2007 to 9.2 Mtoe (388 PJ) in 2013. This increase was the result of heavily subsidized 

biogas production especially in countries like Germany and Italy, which favored the conditions for the 

widespread diffusion of anaerobic digesters treating manure, agricultural residues, dedicated crops, and the 

organic fraction of municipal solid waste [4,5]. 

In Table 3, a full account of biogas production in the European zone is given for the period 2006-2013 for 

the three main sources mentioned above (landfill, sewage, and other biogas). The comparison between data 

taken from the Eur’Observer database and Eurostat database is also reported regarding overall biogas 

                                                      
* According to EU legislation (see Directive 1999/31/EC) landfilling is the least preferable option and should be 

limited to the necessary minimum. 
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production (in fact, Eurostat data only gives overall biogas production). Significant discrepancies are observed 

only for the years 2009 and 2010. 

The trend of biogas production in Europe is also depicted in Figure 1. Landfill production remained almost 

unchanged during the past years, while sewage biogas production slightly increased. Biogas from the other 

sources (agricultural residues, MSW and co-digestion plants where food waste is also processed) was instead 

responsible for almost all of the increase in biogas production. Unfortunately, available statistics do not report 

a further level of disaggregation for the item ‘other biogas’. 

 

Figure 1. Primary energy production from biogas in Europe during the period 2006-2013 with 

disaggregated data for main biogas sources (source: Eur’ObservER). 

 

Table 2. Biogas production in Europe in 2007 and 2013 

 Biogas production (ktoe) 

Area; year Landfill gas Sewage sludge gas Other biogas Total 

EU-25; 2007 2 905    887 2 108   5 900 

EU-28; 2013 2 892 1 254 9 233 13 379 
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Table 3. Biogas production in Europe from 2006 to 2013. Data taken from Eur’Observer database are 

compared to Eurostat data. 

Data in PJ      

Year Landfill Sewage sludge Other biogas Total (Eur'ObservER) Total (Eurostat) 

2006 84 36 56 177 184 

2007 122 37 89 248 242 

2008 121 40 175 336 277 

2009 126 42 182 351 310 

2010 118 45 294 457 356 

2011 133 51 240 424 434 

2012 121 50 339 510 505 

2013 121 53 388 562 566 

 

Finally, we have also analyzed historical trends of biogas production starting from 1990. Notably, there 

was a more than twenty-fold increase in biogas production over the last 25 years (see Figure 2).  

 
Figure 2. Primary energy production in Europe during the period 1990-2014 (Source: Eurostat database 

[6]). 

 

Biogas could account for nearly 7% of the overall renewable primary energy production in Europe, but most 

of the potential remains unexploited. According to the European Biomass Association (AEBIOM), the biogas 

potential in Europe for 2020 is about 40 Mtoe (~1700 PJ) [7]. However, it is worth mentioning that much of 

this potential comes from energy crops, which accounts for 80% of the total (the assumption is that 5% of 

arable land is dedicated to energy crops). Many anaerobic digesters have a mixed diet of organic waste (e.g., 

manure) and forage (e.g., maize or sweet sorghum silage) so that it is difficult to have detailed statistics on the 

current organic substrates used for biogas production.  
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One way to grasp the intrinsic potential of biogas resources is to look at per head (humans or animals) 

biogas potential. For instance, the average citizen in developed countries uses almost 300 liters/day of water 

that end up in the sewer [8]. With the total suspended solid in sewage water of 220 mg/l, roughly 60 

g/person/day of putrescible organic matter (or sludge) are thus collected in the wastewater plant connected to 

the sewage system. A realistic methane yield from sludge is about 200 L of CH4 per kg of dry sludge, resulting 

in about 12 L CH4/person/day, or 20 L/person/day of biogas when assuming that 60 vol% of biogas is CH4. 

This biogas production corresponds to an LHV power of 5 W/person. A municipality of 100’000 inhabitants 

with an equivalent sewage plant would thus entail a biogas production rate of 500 kW. A 50% electrical 

efficient SOFC plant that consumes this available sewage biogas would then produce 250 kW of continuous 

electric power. 

 A similar calculus can be applied to animal farms. Manure is indeed a good substrate for anaerobic 

digestion. The typical biogas yields from different animal waste sources are summarized in Table 4.  The 

specific biogas potential is much higher compared to sewage sludge as farming animals have often higher 

living weight (this is the case of cattle, for instance) and higher metabolic rates. Values in Table 4 are only 

approximate estimates. For instance, the exact methane (or biogas) yield from manure depends on many 

factors, e.g., the barn type (and related systems for manure and other slurry effluents management), on the 

country, on the age of the cow, and on the digester (e.g., mesophilic, thermophilic). For slurry-type waste in 

farms, a sensible range for biogas production rate is 0.56-1.5 m3/LLU/day (average value is 1.11, in Germany), 

for manure it is 1.5-2.9 m3/LLU/day (average value is 2.0 in Germany) [9]. Both average values are thus higher 

than the value given by Smil [10]. For chicken farms, the typical range is 3.5-4 m3/LLU/day (the average value 

is 3.75 in Germany) [9]. Since one chicken corresponds to 0.003 LLU, the resulting CH4 production rate is 

0.010-0.012 m3/chicken/day, which is a value very close to that reported by Smil. For pigs, for slurry waste, 

the range is 0.6-1.25 m3/LLU/day (the average value is 0.88 in Germany) [9]. Since one pig corresponds to 

0.33 LLU, the resulting CH4 production rate is 0.2-0.41 m3/pig/day, which is again a value quite consistent 

with the typical value given by Smil.  
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Table 4. Typical biogas yields from animal manure (adapted from Smil[10]) 

Domestic 

animal 

Total dry solid waste 

(kg solid/head/day) 

Biogas production 

rate (m3 

biogas/day/head) 

Power rate 

(W/head) 

Buffaloe 2.74 0.73 54 

Camel 4.11 1.37 244 

Cattle 3.15 0.84 158 

Chicken 0.03 0.01 2 

Goat 0.27 0.09 19 

Horse 4.11 1.37 244 

Mule 4.11 1.37 244 

Pig 0.68 0.35 75 

Sheep 0.41 0.14 26 

The biogas yield of different organic waste is given by the amount of methane (or biogas) produced from 

1 kg of volatile matter. It is useful to refer to the volatile matter (VS) content since organic waste is mostly wet 

and not all the solid or suspended organic content is convertible to a gas.  

In Table 5 the methane yields of manure and food waste are given. Interestingly, co-digestion of the two 

feedstock results in a higher overall yield [11]. According to the authors, compared with the digestion of food 

waste alone, co-digestion of manure and food waste might reduce the accumulation of intermediates during 

the initial period of digestion. The biogas yield of several organic solid substrates is also reviewed in the work 

of Raposo et al. [12]. 

Table 5. Biogas yields from animal manure and food waste[11] 

Organic substrate 

Volatile 

Solid (g/kg, 

wet basis) 

Biogas yield 

(L/kgVS) 

Methane 

yield 

(L/kgVS) 

CH4 

content of 

biogas (%) 

CH4 production rate 

(L/kg, wet basis) 

Unscreened manure 110 331 218 66% 24 

Food waste 241 520 255 49% 61 

Mixed (48% of food 

waste + 52% manure) 172.9 504 292 58% 51 

As we did for mixed urban and industrial wastewater and animal waste, it is possible to calculate an 

intrinsic biogas potential production rate for food waste. On average, the US inhabitant generates about 2 kg 

of municipal solid waste (MSW) per day, which corresponds to more than 700 kg/yr [13]. Of this amount, 

roughly 15% is food waste. (In Europe, food waste is comparable – even if slightly lower – to that in North 

America; FAO estimates give for these regions a per capita waste by consumers between 95-115 kg a year 

[14].) Using the biogas yield given in Table 5, the resulting per capita methane production rate is about 18 L 

CH4/person/day, which corresponds to a (chemical) power rate of 7.4 W (LHV basis). This value is quite 

comparable to the sewage biogas potential.  
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Table 6. Biogas potential from food waste 

Per capita MSW generation (kg/person/day) 2.0 

Share of food waste 14.6% 

Per capita food waste generation (kg/person/day) 0.292 

Methane production rate (L/person/day) 17.9 

Methane production rate (W/person) 7.4 

 

Biogas final use 

Biogas is renewable energy that can be used for different services, most commonly electricity and heat 

through cogeneration. Biogas is also burnt in boilers to recover thermal energy only.  

In 2013, the EU-28 biogas electricity output stood at about 52.3 TWh, which corresponds to almost 4.5 

Mtoe. Of this amount, about two-thirds were produced in CHP mode. Heat provided to district heating 

networks or industrial units accounted for less than 0.5 Mtoe. Self-use of thermal energy (for the digester and 

other thermal needs of the plant) accounted for another 2.0 Mtoe [5]. By diving the overall electricity 

production by the overall biogas production in 2013 (13.38 Mtoe, see Table 2), we calculate an average electric 

conversion efficiency of around 33.6%.  

A great impetus is now being given to biogas upgrading to methane fuel (also called ‘biomethane’). 

Different technologies can be applied to remove CO2 and other minor impurities/gases from the biogas stream 

(e.g., water or solvent scrubbing, membrane technology, PSA) in order to obtain a purified stream containing 

a high concentration of CH4 (i.e., >95 vol.), which is compatible with the gas grid or for gas vehicles. Hence, 

biomethane can be either injected into the grid or used as local transportation fuel [15].   

Overview on the status of fuel cell technology in various sectors 

Fuel cell technology is approaching maturity status in the mobility sector with first commercial 

deployments having started in 2015-2016 [16]. Due to the fast dynamics operation required in this sector, low-

temperature technology like proton exchange membrane (PEM) fuel cells dominate the scene. 

The residential sector with combined heat and power (CHP) devices installed in single houses or multi-

family buildings is less developed compared to the mobility sector. Field trials have been successfully 

completed or are ongoing. Both PEM and SOFC technologies are currently deployed in this sector. In the 

framework of the ENE-FARM program, in Japan, about 120,000 fuel cell micro-CHP units had been already 

installed by 2015 [17]. In Europe, through the Callux program first – launched across Germany– and then with 

the Ene.field program across several EU countries [18], the overall number of micro-CHP devices installed 

will exceed 1,000 units by 2016.  
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The use of fuel cells as stationary CHP generators is one of the most important long-term objectives for 

the deployment of high-temperature fuel cells. Both MCFC and SOFC technologies have the potential to 

compete with engines and micro-turbines in the range spanning from kW to a few MW, offering both higher 

energy efficiency and environmental benefits. The intrinsic modularity and excellent part-load performance 

make fuel cells particularly competitive on this scale with variable fuel input supply. Variable fuel supply is 

the situation often found when the FC is combined with anaerobic digestion biogas or other bio-syngas fuels 

(e.g., from the gasification of residual lingo-cellulosic biomass fuel). In the multi-MW range, fuel cell hybrid 

concepts can be applied to compete with engines and turbines, with also here the potential for higher electrical 

efficiency and lower pollutant emissions [19–22]. 

High-efficiency electricity production from biogas 

Biogas is conventionally exploited in Internal Combustion Engines (ICEs). The electrical efficiency of 

ICEs can exceed 40% for units with an installed capacity of several hundreds of kW (> 500 kWel) installations 

and is maximally about 43% for MW installations up to few MW (< 4 MW). However, the efficiency is lower 

for plants with a capacity below roughly 200 kW electric [23]. The electrical efficiency of the SOFC lies in 

the range 50-60%. The building block is a 50-100 kW unit that can be replicated several times to reach even 

multi-MW plants [24]. The efficiency of ICE’s is size-dependent, as already mentioned. Figure 3 compares 

the SOFC with data from commercially available ICEs manufactured and/or commercialized by General 

Electric [25] and AB Group [26]. It is worth noting how the SOFC takes the highest advantage at small-scale 

(below 200 kW) in terms of conversion efficiency of biogas into electricity.  Regarding emissions, the SOFC 

is always outperforming ICEs since virtually no NOx, SOx and particulate matter are emitted.  

 

Figure 3. Performance comparison between ICE and SOFC for different plant capacities (ICE: black dot 

markers and red dot markers indicate machines with NOx emissions below 500 and 250 mg/Nm3, 

respectively). 
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The electrical efficiency of ICEs is surpassed by high-temperature fuel cell generators like molten 

carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC), in particular in the lower power scale (< 50 

kWe). Especially, the SOFC technology is the most promising one because the highest electrical efficiency 

can be realized [27]. 

The exploitation of biogas fuel in SOFC generators has been studied since several years [28–33]. Practical 

and operational experience has been gained through pilot plants. Industrial installations are also gaining 

momentum. In California, a capital support is offered to fuel cell installations with an additional bonus in case 

of biogas feeding. The capital bonus is provided under the Self-Generation Incentive Program (SGIP) [34] and 

the overall support is 2,800 US$/kW installed (1,490 $/kW for fuel cell generation, plus an adder of 1,310 for 

biogas fuel use; 100% of the support is awarded only to installations below 1 MW electric). 

Several plant configurations are potentially available for the high-efficiency electrical generation in 

biogas-fed SOFC systems. Large integrated biogas SOFC plants with either atmospheric or pressurized SOFC 

operation, SOFC-GT hybrid power generation with a gas turbine as bottoming cycle and carbon capture via 

anode-exhaust oxycombustion, were analyzed recently [35]. The overall electrical efficiency of the analyzed 

plant configurations ranged in the interval between 50-70%. Hybridization of the SOFC with a gas turbine 

bottoming cycle effectively boosts the electrical efficiency to 70% when fuel utilization (FU) is 90%.  

There are additional advantages related to the use of biogas in SOFC (or MCFC).  We envision future 

energy plants with an enhanced exhaust recovery [36,37] (e.g., hydrogen recovery) and carbon management 

(i.e., CO2 recovery and possibly further re-use). In the framework of the EU-funded project SOFCOM [38], a 

2 kWe SOFC stack was operated with sewage biogas (Figure 4). The integrated biogas SOFC plant consisted 

of an innovative treatment of the anode exhaust gas via oxy-combustion and subsequent water vapor 

condensation that allowed for the recovery of a high-purity CO2 exit stream [39]. The CO2 was recycled to a 

photobioreactor in which micro-algae biomass is harvested. In this way, a closed carbon cycle was obtained in 

which organic carbon from sewage sludge is eventually recycled into another fuel (algae biomass). In the 

photobioreactor, micronutrients (nitrates and phosphates) are taken from wastewater that is circulated in a 

semi-closed loop. Hence, a further biological water treatment process is achieved while growing biomass.  
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Figure 4. The ‘carbon re-cycle’ concept in the SOFCOM plant [40]. 

The issue of contaminants 

Biogas fuel contains on average 50-65% vol. CH4 and 35-50% vol. CO2. A range of concentrations of the 

main biogas constituents is provided in Table 7. Only landfill biogas might result in a composition that goes 

beyond ranges indicated in Table 7. Landfill biogas (LGF) is produced from municipal solid waste that is 

stored in anaerobic underground or undercover waste cells. The biogas quality varies significantly during the 

landfill lifetime. On average, a peak production is reached 5 to 7 years after the waste has been dumped in the 

landfill, after which a decreasing trend over time is observed for the CH4 content in the extracted gas. Thus, 

the CH4 volume fraction in landfill biogas can decrease below 50%. In landfills, almost all gas is generally 

produced within a 20-year time frame; however, small quantities of gas may continue to be produced for 50 or 

more years. Therefore low-methane yield, low-CH4 content scenarios are also possible [41].  

In anaerobic digesters, fluctuations in biogas production are directly linked to the amount of organic 

matter treated. Especially, there are daily and seasonal fluctuations in biogas production in digesters using 

sludge from wastewater treatment plants (WWTPs) or livestock manure.  

Nonetheless, apart from CH4 content and production variations – that are quite predictable and substrate 

dependent – the main issue with biogas is dealing with contaminants. The amount and type of contaminants 

are widely varying depending not only on the organic substrate that undergoes anaerobic digestion (AD) but 

also on the digester operating conditions (temperature, hydraulic retention time) and effluent pre-treatments 

prior to AD.  
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Table 7. Main biogas constituents 

Compounds vol. % 

Methane, CH4 50 - 70 

Carbon dioxide, CO2 30 - 50 

Water vapor, H2O 1 - 2 

Carbon monoxide, CO 0 - 0.3 

Hydrogen, H2 0 - 1 

Nitrogen, N2 1 - 5 

Oxygen, O2 From traces up to 2-3% 

Hydrogen sulfide, H2S 
From tens to hundreds of 

ppm 

Specific contaminants present in AD biogas are hydrogen sulfide (H2S), organic sulfur compounds such 

as mercaptans, COS, CS2, halides (e.g., HCl), siloxanes, aromatic compounds (e.g., toluene) and terpenes (e.g., 

limonene) [42]. In LFG halocarbon compounds are also quite abundant [43]. When biogas is used as a fuel for 

electricity generation, trace compounds may damage the combustion engines, necessitating additional 

maintenance costs for repairs and reducing availability due to service interruptions. During the combustion 

process, hydrogen sulfide is transformed to sulfur oxides – SOx (e.g., SO2) – that have adverse impacts on 

both human health (with an increase of respiratory diseases) and the environment (acid rain). SOx can also 

form acid gas like sulfuric acid (H2SO4) which can damage the engine’s components. Other corrosive acids 

like HCl and HF are also formed to a lesser extent. Siloxanes are particularly detrimental since they are 

thermally decomposed into silicates and micro-crystalline quartz, which contribute to abrasion of the inner 

surfaces of the combustion engine [44].  

Economic feasibility of integrated biogas fuel cell plants 

High-temperature fuel cell systems based either on molten carbonate fuel cell (MCFC) or solid oxide fuel 

cell (SOFC) technology are being deployed in stationary applications for the generation of electricity and heat. 

MCFC systems can achieve an electrical efficiency up to 47% (LHV, NG or biogas fuel) [45]. SOFC systems 

can easily exceed values above 50%, with the aim to reach net AC system efficiency up to 60%. 

The uninstalled system cost of MCFC is in the range 2,500 – 4,500 US$/kW (ref. year 2012) [46]. The 

mentioned range refers to systems from the few MW scale to the sub-MW scale with an already established 

market of approx. 70 MW installed in 2014 [47]. SOFC modules are currently more expensive than MCFC 

with a unit price cost above 10,000 US$/kW for a 50 kW electric module[24]. However, a market price equal 

to that of MCFC is expected to be feasible as manufacturing capacity increases [48].  

The clean-up capital cost is currently estimated to 500 – 1,000 $/kW (installed cost, ref. year 2015) [49]. 

A capital cost <500 US$/kW is considered a near-term target, while the long-term target sets the clean-up cost 

below 200 US$/kW [49].  
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Chapter 2 – The origin of contaminants in anaerobic digestion biogas: type and amounts of 

contaminants depending on the organic substrate and in-situ abatement measures 

Biogas contains a large variety of trace impurities. Besides the main gas constituents (CH4, CO2, and N2), 

different types and amounts of contaminants are found in biogas depending on the organic substrate and 

possible in-situ abatement measures (these are mostly employed for H2S removal). 

Several factors affect the concentration of these impurities, e.g., temperature, pressure, type/origin of 

waste, the age of waste (LFG). Table 8 shows typical untreated biogas impurities concentrations for landfill 

and anaerobic digestion gas. It is worth noting that halogens are very low in concentration in ADG (often 

below 1 ppm), while higher amounts are found in LFG.  

Table 8. Typical untreated biogas contaminants concentrations (ppm) for ADG and LFG. 

Biogas 

type 

Sulfur compounds Siloxanes Halogens Halocarbons Hydrocarbons Ref. 

H2S 
Other S-

compounds 

D5, D4, 

etc. 
HCl 

HF, HBr, 

and 

others 

Benzene, 

Toluene, etc. 

ADG 121 0.5 0.24 - 2.3 0.2 - 1.4 1 0.16 1.6 [50] 

ADG 24 - 63 n.a. 0.1- 0.7 0.2 - 0.8 n.a. n.a. 0.7 - 3 [51] 

ADG 1.8 - 104 0.15 - 0.66 0.6 - 1 n.a n.a < 0.1 0.4 - 1.7 [52] 

ADG 80 - 130 n.a. Up to 2.9 n.a. n.a. ~1 n.a. [53] 

LFG 77 - 3400 n.a. ~ 2 n.d. n.a. 6 - 14 100 - 300 [54] 

LFG 63 - 5400 7.5 - 19 Up to 0.7 n.a. n.a. ~7 n.a. [53] 

LFG 150 - 280 n.a. 0.5 - 0.7 11- 20 ~10 86 - 150 [55] 

ADG: Anaerobic digester gas, LFG: Landfill gas, n.a. = not available, n.d. = not detected. 

 

In Table 9, the measured amount of halogens concentration in the biogas from different landfill and 

WWTP sites is given [56]. Once again, very low levels are observed in WWTP derived biogas compared to 

landfill gas. 

Table 9. Halogens in landfill and WWTP biogas [56]. 

Plant Type 
Halogens (F, Cl, Br, I) 

(mg/Nm3) 

Landfill A 79.5 

Landfill B 12.2 

Landfill C 36.6 

Landfill D 11.2 

WWTP A 0.9 

WWTP B 1 

WWTP C 0.9 

WWTP D 0.9 
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Halogens are contained within waste in the form of kitchen salts and polymers (polytetrafluoroethylene: 

PTFE, polyvinylchloride: PVC). As such, these compounds are mostly found in biogas stemming from 

landfills [57,58]. Figure 5 compares organic chlorine compounds (halocarbons) measured in landfill gas and 

biogas produced from anaerobic digestion of sewage sludge. It is visible that average concentrations in landfill 

gas are higher than maximum values detected in gas stemming from sewage sludge. In fact, the halogen content 

in biogas from WWTPs lies in the same range as that in biogas produced on farms, and values are very low (< 

1 ppm, on average). 

 

Figure 5. Organic chlorine compounds (halocarbons) in landfill gas and biogas of sewage sludge (reprinted 

with permission from Papadias et al. [46]) 

H2S is generally the most abundant contaminant and is largely found in digester gas coming from manure 

(hundreds or thousands of ppm) and dairy streams, where it can range from 300 to 6,000 ppm [59]. The Gas 

Technology Institute (GTI) reported an average H2S content of about 3,000 ppm in raw biogas from diary 

streams. Definitely lower amounts of other sulfur compounds are also present (SO2 7.73 ppm , COS 4.09 ppm, 

CS2 0.17 ppm, methyl mercaptans 6.12 ppm) [60]. Biogas from organic substrates derived from animal waste 

products is also characterized by small amounts of siloxanes (below 0.5 ppm) and halocarbons. Hydrocarbons 

are instead found at the single digit ppm(v) range.  

Sewage biogas also contains H2S, but often to a lesser extent (e.g., below 100 ppm) because of the use of 

iron salts in the water line. Iron salts are used in WWTPs to precipitate phosphorus (P) – whose concentration 

in treated water must not exceed limits regulated by law in order to avoid eutrophication on land and aquatic 

vegetation –, but they are also able to precipitate sulfur thus reducing the overall H2S content in the as-produced 
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AD biogas from sludge. Fe2+ removes sulfide by precipitating it as ferrous sulfide (FeS), while Fe3+ oxidizes 

sulfide chemically to elemental sulfur, with itself being reduced to Fe2+, which subsequently precipitates 

sulfide forming FeS [61].  

Volatile organic silicon compounds (VOSiC), also known as volatile methyl siloxanes (VMS) or simply 

siloxanes, are recognized as the most undesirable compounds in the AD biogas and LFG. Siloxanes originate 

from silicone based compounds which are often found in consumer products thus ending up in sewers (e.g., 

cosmetics, personal care products, adhesives and coatings, sealants, etc.) [62,63]. Siloxanes are indeed the 

building blocks of silicones. According to literature, the most frequent compounds in sewage biogas are cyclic 

volatile polydimethylsiloxanes (D4, D5), with D5 concentration being several times higher than D4. 

Especially, D4 and D5 often make up 90% of the overall silicon content of biogas. Biogas from municipal 

sludge digestion usually has a higher siloxane concentration than landfill gas. Landfill gas may contain 

significant quantities of other siloxanes, such as D3 and D6, as well as L2–L5 (see Table 10 for the 

nomenclature). The amount of siloxanes in old and closed landfills is generally lower than in new ones, where 

silicon-containing waste is continuously disposed of [58]. 

The main difference between landfill and AD gas in the amount and type of siloxanes contained in it 

depends on the water solubility of the organic silicon compounds. Water-soluble siloxanes will tend to remain 

in the water phase, thus being discharged back into the water system together with purified water, whereas 

insoluble siloxanes will adsorb into the activated sludge and be partly transferred to the gas phase within the 

digester [58]. Due to their high hydrophobicity and volatility, cyclic volatile methylsiloxanes (cVMS) largely 

tend to adsorb on activated sludge flocks in aeration tanks within the WWTP [64]. Within the anaerobic 

digester, where the sludge can reach a temperature around and above 40 °C, siloxanes can significantly 

volatilize and end up in the biogas. Among the various contaminants, siloxanes are certainly the most 

detrimental for end-use devices for biogas valorisation into electricity. In the combustion chamber of internal 

combustion engines, siloxanes are oxidized to silicates (e.g., SiO2) [42]. The accumulation of abrasive 

microcrystalline silica (SiO2) and silicates deposits on an engine’s mechanical parts (pistons, cylinder heads, 

and valves) and leads to an early failure of the engine, requiring earlier repairing and maintenance services[65]. 

Recently it has been shown that siloxanes in digester biogas are highly detrimental also for solid oxide fuel 

cells, even when present at the ppb(v) levels in the anode feed, causing a rapid and irreversible degradation of 

the fuel cell performance [66]. 

Biogas produced from manure digestion does not contain siloxanes, although the H2S and organic sulfur 

concentration are generally much higher than for WWTP biogas or LFG. Additionally, siloxanes are not found 

in biogas from pure food waste and dairy streams. 

The average siloxanes concentration in German WWTPs (308 plants were reviewed) is 14.9 mg/m³ (with 

values ranging in the interval 0–317 mg/m³) [58]. The silicon concentration in German landfill gas varies 

between 1 and 8 mg/m³, which corresponds to approximately 3 and 25 mg/m³ total siloxane [58].  
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Table 10 and Table 11 provide an overview of the type and amount of siloxanes found in WWTPs. The 

amount of total siloxanes (or total Si) is quite scattered among the various plants. Expect for a few cases, the 

total Si concentration is consistently around or below 6 mg Si / m3 for WWTPs located in Europe.  

In Table 12, an overview of the type and amount of siloxanes measured in landfill sites is also provided. 

As for WWTPs, the situation is also quite scattered. However, on average, a lower silicon content is found in 

LFG compared to sewage biogas.   

Finally, it is worth noting how, compared to the H2S concentration, the siloxanes concentrations are 

strongly fluctuating even on a daily basis (Figure 6). Often, the non-continuous sludge feeding to the digester 

is responsible for the observed fluctuations.   

 

Figure 6. Daily fluctuation of siloxanes concentration in biogas produced from the digestion of 

sewage sludge and bio-waste. A drop in the siloxane concentration was noticed 

during the weekend (4–5.11) during which no sludge was fed to the reactor (reprinted with permission from 

Arnold and Kajolinna [67]) 
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Table 10. Siloxanes amount in different WWTPs (the location of each plant is also provided together with Reference for original source data) – Part I (to be 

continued on the next page) 

Compound 

Chemical 

formula 

M.W. 

(g/mol)   

Finland 

[67] 

Finland 

[67] (note 

1) 

Finland 

[67] (note 

2) 

Germany 

[68] 

Germany 

[68] 

US [69] 

(note 3) 

Italy  

(note 4) 

Italy 

 (note 4) 

Italy 

 (note 4) 

Total siloxanes   
[mg/m3] 29.6 2.4 5.5 16.5 6.0 107.4 14.4 10.8 6.2 

(D6) Dodecamethylcyclohexasiloxane C12H36O6Si6 444.92 [mg/m3] n.a. n.a. n.a. n.a. n.d. 6.99 0.7 n.d. n.d. 

(D5) Decamethylcyclopentasiloxane C10H30O5Si5 370.77 [mg/m3] 27.05 0.90 4.46 9.31 2.78 56.61 11.0 5.50 3.63 

(D4) Octamethylcyclotetrasiloxane C8H24O4Si4 296.62 [mg/m3] 1.21 0.10 0.13 6.69 2.95 32.50 2.5 1.29 0.87 

(D3) Hexamethylcyclotrisiloxane C6H18O3Si3 222.46 [mg/m3] 0.00 0.03 0.06 0.17 0.19 3.27 0.0 0.26 0.36 

(L4) Decamethyltetrasiloxane C10H30O3Si4 310.69 [mg/m3] 1.29 1.29 0.51 0.14 0.02 n.a. n.d. 3.36 1.34 

(L3) Octamethyltrisiloxane C8H24O2Si3 236.53 [mg/m3] 0.03 n.d. 0.2 0.03 0.02 1.93 0.2 0.33 n.d. 

(L2) Hexamethyldisiloxane C6H18OSi2 162.38 [mg/m3] 0 0.04 0.09 0.05 0.01 6.14 n.d. 0.07 0.02 

(TMS) Trimethylsilanol C3H10OSi 90.20 [mg/m3] n.d. n.d. n.d. 0.14 0.07 n.d. n.d. n.d. n.d. 

Si tot (calculated) - - [mg Si /m3] 11.0 0.8 2.0 6.2 2.3 40.3 5.4 3.7 2.2 

n.d. = not detected / under detectability limit.       

n.a. = not available / not measured.      

Note 1: Sewage sludge + municipal and industrial bio-waste 70–30%.   

Note 2: Sewage sludge + food waste/industrial sludge 70–30%.    

Note 3: an average of 50 different municipal anaerobic digesters was analyzed.  
Note 4: unpublished data from field measurements on two different WWTPs in the area of Torino, IT. 
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Table 11. Siloxanes amount in different WWTPs (the location of each plant is also provided together with Reference for original source data) – Part II 

Compound 

Chemical 

formula 

M.W. 

(g/mol)   

Spain [52] Spain [57] 
Austria 

[70] 

Finland 

[70] (note 

5) 

Spain [56] Spain [56] Spain [56] Spain [56] 

Total siloxanes   
[mg/m3] 13.4 132.7 7.0 2.5 7.5 361.6 15.8 52.0 

(D6) Dodecamethylcyclohexasiloxane C12H36O6Si6 444.92 [mg/m3] n.a. n.d. n.a. n.a. 0.1 8.7 0.2 2.5 

(D5) Decamethylcyclopentasiloxane C10H30O5Si5 370.77 [mg/m3] 7.75 87.01 6.03 1.28 5.3 340.7 11.9 48.4 

(D4) Octamethylcyclotetrasiloxane C8H24O4Si4 296.62 [mg/m3] 5.25 43.80 0.93 0.87 0.5 8.1 0.9 1 

(D3) Hexamethylcyclotrisiloxane C6H18O3Si3 222.46 [mg/m3] 0.4 0.26 0.04 0.04 1.6 n.d. 2.8 0.1 

(L4) Decamethyltetrasiloxane C10H30O3Si4 310.69 [mg/m3] n.d. 0.69 n.d. 0.04 n.d. 0.7 n.d. n.d. 

(L3) Octamethyltrisiloxane C8H24O2Si3 236.53 [mg/m3] n.d. 0.53 0.02 0.2 n.d.  n.d. n.d. 

(L2) Hexamethyldisiloxane C6H18OSi2 162.38 [mg/m3] n.d. 0.36 0.02 0.08 n.d. 3.4 n.d. n.d. 

(TMS) Trimethylsilanol C3H10OSi 90.20 [mg/m3] n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

Si tot (calculated) - - [mg Si /m3] 5.1 50.0 2.7 0.9 2.8 136.4 6.0 19.6 

n.d. = not detected / under detectability limit. 

n.a. = not available / not measured.  

Note 5: max. value of each range was taken (average of 4 WWTPs in Finland). 
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Table 12. Siloxanes amount in different landfill sites 

Compound 

Chemical 

formula 

M.W. 

(g/mol)   

Spain 

[56] 

Spain 

[56] 

Spain 

[56] 

Spain  

[56] 

Finland 

[70] 

Finland 

[67] 

Finland 

[67] 

Finland 

[67] 

Germany 

[68] 
US [69]  

Total siloxanes   
[mg/m3] 84.3 20.7 25.6 20.5 2.3 9.8 6.7 1.4 17.5 13.5 

(D6) Dodecamethylcyclohexasiloxane C12H36O6Si6 444.92 [mg/m3] 1.5 0.4 0.5 n.d. n.a. n.a. n.a. n.a. n.d. n.d. 

(D5) Decamethylcyclopentasiloxane C10H30O5Si5 370.77 [mg/m3] 11.8 6.4 6 0.9 0.3 0.60 1.31 0.13 0.80 0.47 

(D4) Octamethylcyclotetrasiloxane C8H24O4Si4 296.62 [mg/m3] 29.1 3.6 11.8 5 0.67 4.30 0.93 0.21 8.41 9.27 

(D3) Hexamethylcyclotrisiloxane C6H18O3Si3 222.46 [mg/m3] 2.8 0.1 0.5 0.4 0.10 0.60 2.29 0.85 0.01 0.38 

(L4) Decamethyltetrasiloxane C10H30O3Si4 310.69 [mg/m3] n.d. n.d. n.d. n.d. n.d. 2.30 1.29 n.d. n.d. n.d. 

(L3) Octamethyltrisiloxane C8H24O2Si3 236.53 [mg/m3] n.d. n.d. n.d. n.d. 0.01 n.d. 0.05 n.d. 0.04 0.04 

(L2) Hexamethyldisiloxane C6H18OSi2 162.38 [mg/m3] 3.4 0.1 0.1 1.5 0.63 n.d. 0.22 0.19 1.18 0.58 

(TMS) Trimethylsilanol C3H10OSi 90.20 [mg/m3] 35.7 10.1 6.7 12.7 0.56 2 0.60 0.01 7.03 2.81 

Si tot (calculated) - - [mg Si /m3] 29.32 7.13 9.21 6.84 0.80 3.32 2.34 0.52 6.08 4.90 
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Chapter 3 – Impact of biogas contaminants on Ni reforming catalyst  

Introduction  

Biogas essentially consists of a mixture of methane, carbon dioxide, nitrogen (to a lesser extent) and a 

wide range of trace compounds (mostly H2S, siloxanes, hydrocarbons and other volatile organic compounds), 

which might be tricky to remove below ppm levels unless a deep clean-up stage is carried out [71]. In this 

context, the utilization of a biogas fuel-processing unit instead of a direct biogas feeding to the SOFC stack, is 

often the adopted design to protect the fuel cell stack from the risk of carbon deposition and/or sintering at the 

SOFC anode [72–74]. Janardhanan et al. [75] have shown how the direct internal reforming of methane can 

significantly reduce the gas temperature at the anode inlet section (see Figure 7), which is due to the high 

catalytic activity of the Ni-anode towards reforming reactions. The sudden anode gas cooling might be 

detrimental in terms of both a higher risk of carbon deposition and an enhanced thermal gradient across the 

SOFC cell. 

 

 

Figure 7. Gas cooling effect at different inlet gas velocities due to the internal reforming of methane 

inside the Ni-SOFC electrode (reprinted with permission from Janardhanan et al. [75])  

In principle, biogas could be converted into a hydrogen-rich synthesis gas simply by dry reforming 

reaction in presence of a suitable catalyst. However, since the inlet molar ratio CH4/CO2 is about 1.5, dry 

reforming alone can lead to significant carbon deposition within the reactor [76–78]. Therefore, it is desirable 

to add another oxidant species to the biogas feed such as steam. The addition of steam to the inlet gas stream 

promotes the methane steam reforming reaction.  

Dry and steam-reforming reactions are summarized below:  

CH4 + CO2 ⇌ 2 H2 + 2CO (dry reforming : H298= 59 kcal/mol)                                                                     (1) 
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CH4 + H2O ⇌ 3 H2 + CO (steam methane reforming : H298= 49 kcal/mol)                                                    (2) 

In addition to reactions (1) and (2), other relevant reactions are:  

CO + H2O ⇌ H2 + CO2 (water gas shift : H298= - 10 kcal/mol)                                                                      (3) 

CH4 ⇌2 H2 + C (methane pyrolysis : H298= 18 kcal/mol)                                                                     (4) 

2 CO ⇌ CO2 + C (Boudouard reaction : H298= - 41 kcal/mol)                                                                        (5) 

From a thermodynamic point of view, both dry and steam methane reforming reactions are highly 

endothermic and thus external heat must be provided to maintain a good activity on the catalyst. Instead, the 

water gas shift reaction is mildly exothermic and heat addition promotes the selectivity towards CO and steam. 

High temperature (> 600°C) reforming with a steam-to-carbon ratio equal or higher than 2 is required to 

provide a good feed conversion without coke formation [78–80]. Nickel-based catalysts have been already 

investigated for biogas steam reforming [81–83]. Nickel is widely used for reforming applications because it 

is less costly compared to noble metal-based catalysts [84,85]. Ahmed et al. [85] tested the performance of a 

rhodium-based catalyst for the steam-reforming of biogas, while varying the inlet feed gas concentrations, the 

gas hourly space velocity, the reactor temperature and the steam-to-carbon ratio. 

It is worthwhile mentioning how the majority of the available literature on biogas reforming deals with 

catalytic experiments that have been carried out with clean gas. The impact of fuel impurities other than H2S 

has been overlooked. In fact – in the most of the experimental setups – a synthetic biogas stream is obtained 

by mixing pure CH4 and CO2 gases that are supplied in pressurized gas cylinders. Nonetheless, the presence 

of fuel contaminants cannot be excluded in real applications. More importantly, the effect of fuel contamination 

can be substantial on both the performance and the long-term durability of the fuel processor.  

The issue of carbon deposition on Ni-based catalysts is instead quite covered and will also be reviewed 

in this work. Light hydrocarbons (CnHm such as ethylene, ethane, propane etc.) can significantly affect the 

formation of carbon species and thus the effectiveness of the catalyst. The formation of carbon on the catalyst 

layer under steam reforming conditions may take place mostly through cracking of hydrocarbons as well as 

through the Boudouard reaction. Trimm [86,87] determined the coking tendency for steam reforming of 

methane in the presence of C2- and C3-hydrocarbons over a Ni catalyst. The coke formation increases with 

the carbon number, especially in the presence of olefin species. D’Angeli et al. [88] have also shown how coke 

formation increases with the molecular weight of the feed and that deactivation rates during steam reforming 

of ethane and propane over Ni/MgO were higher compared to methane. 

Besides carbon deposition degradation issues, the most studied contaminant for deactivation of the 

catalytic steam reforming on Ni is sulfur, in the form of H2S. This contaminant leads to an almost total 

deactivation of the catalyst. Catalyst poisoning occurs due to the strong adsorption of sulfur on active sites. 
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Adsorbed sulfur thus blocks or alters the adsorptivity of the other species by an electronic effect [89]. Overall, 

the saturation coverage of sulfur and other species (e.g., HCl) depends on the operating temperature, metal 

loading, and the partial pressure of reacting gases. Catalysts with lower metal loading will lose their activity 

at a faster rate compared to catalysts with higher metal loading [87,90]. This chapter will review the impact of 

different biogas poisoning species on the reforming capability of Ni catalysts, including recent findings on 

impurities other than H2S. 

Effect of H2S poisoning   

The presence of H2S in the biogas adversely affects the activity of the nickel-based catalysts [91–93]. 

Although desulphurization technologies will reduce the amount of hydrogen sulfide present in the biogas, 

residual post-cleaning concentrations (few ppm, or even sub-ppm, concentrations) might be not be tolerated 

by the nickel-based catalyst even in the case the fuel processor is operated at higher temperatures (>700 °C) 

[83,94]. Indeed, the presence of sulfur was found to enhance nickel sintering as well as carbon deposition [95] 

(see Table 13). 

The poisoning effect of H2S on the catalytic surface during the reforming of hydrocarbons is even more 

complex due to the competition among various molecules and radicals for the active sites. For instance, the 

saturation coverage of H atoms on a catalytic surface is significantly affected by the partial pressure of CO in 

the gas mixture. The deactivation of the reforming catalyst was found to be exponential in time and 

deactivation times range from 5 to 20 hours [83,94]. As expected, the deactivation trend is faster as the H2S 

concentration is higher. A fast drop in the activity of the Ni catalyst on exposure to H2S (20, 50 and 100 ppm) 

at high temperatures (700 °C and 800 °C) has been reported by Appari et al using simulated biogas on a Ni-

based catalyst [77]. Especially, for H2S concentrations above 20 ppm in the biogas stream, an almost complete 

deactivation (98%) of the catalyst was observed. All the investigated H2S concentrations led to saturation 

coverage at 700 °C, whereas at 800 °C the mechanisms of H2S adsorption and recombination reactions 

involving sulfur lead to different saturation coverages of sulfur for different H2S concentrations. Appari et al 

have also developed a detailed kinetic model for simultaneous dry and steam reforming of biogas on Ni based 

catalyst, which highlighted how both CH4 and CO2 conversion was blocked as soon as H2S was introduced 

[96].  

Appari et al. [77] have also investigated regeneration techniques after sulfur poisoning. Key findings were 

that contamination at lower temperature (700 °C) is not fully reversible upon removal of H2S from the feed 

stream. However, full performance recovery is achieved at higher temperature (800 °C). 

In fact, CO2 was found to participate to the reforming reactions at 750 °C only for S/C ratios below 2.5 

mol/mol [96]. However, along the length of the reactor, the poisoning is not uniform. At 973 K and 1073 K 

the poisoning occurs from the inlet towards the exit of the reactor as time proceeds. In fact as the poisoning 

proceeds, the location of the methane reforming reaction moves downstream through the reactor length.  
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Chattanathan et al. [97] investigated the effect of temperature (650 °C, 750 °C and 800 °C) and H2S 

concentration (0.5 mole%, 1 mole% and 1.5 mole%) on dry biogas reforming using a commercial Ni-catalyst. 

Results showed how both CH4 and CO2 conversion decreased drastically even at the lowest H2S concentration 

(0.5 mol. %). Post-mortem analysis revealed that the coking presence was mainly dominant in the absence of 

H2S, while it became less pronounced with the introduction of H2S. However, no sulfur presence was observed, 

as expected. The meaning of these findings is that catalyst sulfur poisoning prevails over coke formation.  

Chiodo et al. investigated the boundary sulfur concentration on the commercial Ni-catalyst tested under steam 

reforming conditions. Biogas steam reforming measurements were carried out adding different H2S 

concentrations (0.4–2 ppm) in the inlet gas stream. Results showed how with 0.4 ppm of H2S the catalyst 

activity remained stable for 100 h of test. However, the Ni-catalyst resulted completely deactivated when the 

H2S concentration was increased to 1 and 2 ppm, respectively, even if different deactivation rates were 

recorded. The rapid observed deactivation clearly indicates that the amount of sulfur in the biogas had little 

impact on methane conversion in the first hours of the catalytic tests. This implies that the activity is affected 

by the cumulated amount of sulfur poisoning, rather than by the inlet sulfur concentration in the inlet gas 

stream. According to Chattanathan et al. [97], the amount of carbon deposition resulted unaffected by the 

amount of sulfur originally present in the fuel. In fact, the elementary analysis carried out on spent Ni-catalysts 

revealed carbon formation rates ≤ 0.1 mgCgcat
-1h-1, which is very close to carbon deposition rates observed on 

Ni-samples working with a clean biogas stream composed of solely methane and carbon dioxide. 

A way to achieve sulfur-resistant Ni-catalysts for the steam reforming process is doping Ni with other 

elements [95]. Wang et al increased the sulfur tolerance by supporting nickel on ZSM-5 zeolite and by 

preparing bi-metallic Ni-Re, Ni-Co and Ni-Mo catalysts [98]. The use of a ceria ion-exchanged ZSM-5 catalyst 

with 5 wt. % nickel content showed high activity in steam reforming of kerosene and displayed little sensitivity 

to 20 ppm of sulfur. The activity of a traditional Ni-catalyst was also improved by adding second metals in 

the form of Re, Co and Mo, with Re displaying the most promising results with both high activity and 

promising sulfur tolerance. 

In a series of papers, Xie et al. investigated the influence of sulfur on the steam reforming of liquid 

hydrocarbons on ceria-alumina Ni, Rh and Ni-Rh catalysts [99,100]. Neither of the catalysts containing nickel 

was stable in a sulfur-laden environment, even though the Ni-Rh catalyst was deactivated less quickly. Results 

also showed how carbon deposition was increased in the presence of sulfur in the gas stream, and this effect 

was more pronounced with respect to nickel. The deactivation by sulfur poisoning and carbon deposition on 

Rh-Ni supported on alumina was also investigated by Lakhapatri and Abraham [101]. 
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Table 13. Review of selected literature studies on the H2S poisoning of the Ni catalyst in steam reforming 

applications. 

References Catalyst 
H2S 

concentration 
T (°C) 

Test 

duration 

Appari et al. [77] Ni/-Al2O3 20-108 ppm 
700-

900 
20 h 

Chattanathan et al. [97] Reformax 250 (SudChemie, USA) 0.5-1.0-1.5% 

650, 

750, 

850 

5 h 

Chiodo et al. [102] 
Ni/Al2O3 (15 wt% Ni, 73 wt% -

Al2O3, 8 wt% CaO) 

0.4-1.0-1.6-

2.0 ppm 
800 100 h 

Wang et al. [98] 

Monometallic: Ni, Co, Mo, Re, Ru 

and Rh on ZSM-5 (5wt% Ni, Ru and 

Rh; 2wt% Co, Mo and Re) 

20 ppm 580 300 h 

Xie et al. [99] 

Monometallic: Ni, Rh (10wt% Ni, 

2wt% Rh) on CeO2-Al2O3; 

Bimetallic: Ni, Rh (10wt% Ni, 2wt% 

Rh) on CeO2-Al2O3; 

350 ppm 
550, 

800 
30- 55 h 

Xie et al. [100] 

Monometallic: Ni, Rh (10wt% Ni, 

2wt% Rh) on CeO2-Al2O3 (20wt% 

CeO2); 

 

350 ppm 800 55 h 

Lakhapatri et al. [101] 

Monometallic: Ni, Rh (10wt% Ni, 

2.5wt% Rh) on Al2O3; 

Bimetallic: Ni, Rh (10wt% Ni, 

0.5wt% Rh) and Ni, Rh (10wt% Ni, 

2.5wt% Rh) on Al2O3; 

100 ppm 800 10 h 

Albertazzi et al. [103] Ni/MgAl(O) (CATATOR AB) 10-50 ppm 800 140 h 

Sehested et al. [104] 

Ni/-Al2O3 (19.4wt% Ni) 

Ni/-Al2O3 (19.4wt% Ni; 1.48 K) 

Ni/MgAl2O4 (22wt% Ni) 

Ni/MgAl2O4 (22wt% Ni; 2.7wt% K) 

Ni/MgAl2O4 (22wt% Ni; 3090ppm 

Sulfur) 

890-4000 ppm 

550, 

650, 

750 

50 h 

Laosisipojana et al.[105] 

CeO2 

Gd,Y,Nb,La,Sm on CeO2 

Ni/Al2O3 (5 wt% Ni) 

Rh/Al2O3 (5 wt% Rh) 

10-100-500-

1000 ppm 
900 3 h 

 

Effect of light hydrocarbons  

Steam reforming of light hydrocarbons (CnHm) with n>1 (i.e., a carbon number higher than methane) 

involves irreversible reactions (Eq. 6), and a high risk of carbon formation and catalyst deactivation is expected 

[87]. Coke formation takes place via cracking reactions (Eqs. (7) and (8)) as well as the Boudouard reaction 

(5). 

CnHm + n H2O  n CO + (n+m/2) H2  (- H298 < 0) (6) 

CH4 ⇌ C + 2H2                                                                                                                                                   (7) 
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CnHm  nC + m/2 H2 (8) 

 

Few studies have been reported in literature about coke formation by hydrocarbons that might be found 

in biogas [106]. However, several experiments were carried out with a methane feed mixed with C2- and C3- 

compounds. Among the previous studies on the topic, it was recently shown how a high carbon formation rate 

(about 0.5 mgC/gcat
-1h-1 after only 25 h of test) is promoted on Ni supported on Al2O3 catalyst by co-feeding 

800 ppm of a mixture of C2- and C3- compounds  (i.e., both alkanes and alkenes) with a simulated biogas 

stream (CH4/CO2=55/45 % vol.) [102]. When the total inlet hydrocarbons concentration was ≤ 200 ppm, a 

stable methane conversion rate was observed instead, with only a little amount of carbon deposition (Figure 

8).   

 

Figure 8. Carbon formation rate on spent Ni catalysts (800 °C, 1 bar, S/C=2, CH4/CO2=55/45 % vol.) 

(Adapted from Chiodo et al. [107] with permission) 

 

The abovementioned findings are in agreement with results from Sperle et al. [108], who determined the 

coking tendency of Ni/MgAl2O4 catalyst in methane steam reforming in presence of C2 (ethane and ethene) 

and C3 (propane and propene). It was found that at 500 °C and S/C= 1, the tendency to coking increased having 

compounds with a carbon number higher than one mixed with methane. Especially, a dramatic increase was 

observed for alkenes (from about 1 to 150 mggcat
-1h-1 for the methane only and the methane/propane/propene 

mixture, respectively). Hence, it is clear that the catalyst support plays an important role in terms of coke 

deposition and catalyst deactivation. Sidjabat and Trimm [87] elucidated the benefits of magnesia as a support 

for nickel catalyst. They found that coke formation increased with the molecular weight of the feed and that 

the deactivation rates during steam reforming of ethane and propane over Ni/MgO were higher compared to 

methane only. The rate of carbon formation passed through a maximum at 625 °C, with a value of 0.25 mggcat
-

1h-1 for Ni/MgO H2O and 4.66 mggcat
-1h-1 for Ni/Al2O3. These results strongly suggest that magnesia is 

catalyzing the gasification of carbonaceous intermediates leading to coke, thereby ensuring an active metal 
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surface for steam reforming. Furthermore, Didenko et al. [109] showed how Ni catalysts in presence of 2.7 

mol % of ethene in methane steam reforming at 750°C highlighted that the high value of the ratio of the 

catalytic surface area to the free reaction volume (S/V) reduces the negative effect of ethylene in terms of 

carbon formation. It was supposed that the positive influence of this factor is due to an increase in the 

contribution of the heterogeneous component of steam reforming and the corresponding increase in the rate of 

interaction of coke with water vapor. 

On the basis of all the above reported results, the addition of different oxides to the Ni reforming catalyst 

can help improving the catalytic stability with time. Especially, ceria-based oxides promote the gasification of 

surface carbon species [88]. Laosiripojana et al. [110] found that ceria-doped Ni/Al2O3 improves the coke 

resistance for the steam reforming of an ethane/propane mixture at 900 °C compared to Ni/Al2O3 (see Figure 

9). 

 

Figure 9. Carbon formation rate on Ce-doped Ni catalysts under steam reforming of an ethane/propane 

mixture at 900 °C, 1 bar and S/C=3) (The graph summarizes data taken from the work of Laosiripojana et 

al. [110]) 

 

Effect of minor contaminants (siloxanes) 

Catalyst deactivation might also occur due to masking or pore blockage phenomena from carbon 

deposition. The presence of poisonous substances in the feed other than sulfur might be also highly detrimental 

for the performance of Ni catalyst. The deactivation (often irreversible) might occur due to the physical 

deposition of foreign substances on the external surface of the catalyst. When dealing with certain biogases, 

the risk of deposition of foreign particles is especially high in the presence of siloxanes. Very few works are 

reported in literature on the poisoning of Ni surfaces from organic silicon compounds (siloxanes), and they 

refer on Ni electrodes of solid oxide fuel cells (see for instance the work of Madi et al., which is also further 

discussed later in this paper [66]). 
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Recently, Chiodo et al. [107] performed steam reforming experiments with simulated biogas 

contaminated with decamethyl-cyclopenta-siloxane (D5). Results showed that the concentration of 1 ppm of 

D5-siloxane promoted a fast catalytic deactivation, whereas a stable performance was observed with a 

concentration of D5 = 0.5 ppm (Figure 10).  

Post-mortem analysis (SEM-EDX elemental mapping) on spent Ni-catalysts revealed a large amount of 

micro-silica (SiO2) deposits on the Ni-surface, the amount of which was quite remarkable, i.e., 4.5 wt. % for 

the experiment with 1 ppm of D5 and 2.2 wt. % for the experiment with 0.5 ppm of D5. Notably, the 

degradation effect is cumulative. The gradual accumulation of micro-silica deposits on the catalysts surface 

gradually inactivates the available catalytic area.     

 

 

Figure 10. The impact of D5-siloxane on the conversion rate of CH4 within a biogas feed. Operating 

conditions: biogas steam reforming on Ni/Al2O3 catalyst; CH4/CO2 = 55/45 vol. %; H2O/CH4 = 2 mol/mol; 

D5 = 0.5 ÷ 1.0 ppm; GHSV = 50,000 h−1; T = 1073 K; P = 1 bar. (Reprinted with permission from Chiodo 

et al. [107]) 
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Chapter 4 – SOFC Ni-anode poisoning by biogas impurities  

The adsorption or deposits of contaminants at the three-phase boundary (TPB) of the SOFC anode can 

drastically reduce the lifetime of cells and stacks. Contaminants can also affect stack components (namely 

interconnects and sealant); however, the region which seems the most sensitive to contamination and related 

degradation is the electrode interface with the electrolyte, where the electrochemical reactions occur. Hence, 

the durable performance of an SOFC is strongly tied to the characteristics and evolution of electrodes’ 

interfaces during operation [111]. Irvine et al. [112] have recently reviewed the key phenomena affecting the 

dynamic evolution of electrode interfaces and the three-phase, or two-phase, boundary for both air and fuel 

electrodes of the SOFC. The accumulation of impurities is one of the main sources of degradation, and can be 

reversible or irreversible.  

In this section, we review the effect of sulfur, silicon and chlorine compounds on the performance of Ni-

SOFC anodes. External (or exogenous) impurities as contained in the anode fuel stream are the considered 

sources of contamination.  

There are concerns in the utilization of biogas feed in an SOFC towards carbon deposition and the effect 

of contaminants [113–116] that cause degradation in the cell/stack performance. Degradation can be defined 

as the withdrawal of a functional SOFC structure from its designed state [117]. Degradation is often expressed 

as an increase of area specific resistance (ASR), which are measured by I-V curves and electrochemical 

impedance spectroscopy (EIS). The ASR can be calculated using the following equation:  

𝐴𝑆𝑅 =  
𝑉0 − 𝑉𝑖

𝐼
 (9) 

where V0 is the open circuit voltage (OCV), I is the  electrical current, and Vi is the operating voltage at 

the given current I.  

Various poisoning mechanisms have been proposed, and they depend on the nature of the impurity. Sulfur 

at low and high concentrations cause adsorption-type and reaction-type degradation, respectively [118]. Other 

chemical degradation mechanisms are sublimation-, deposition-, grain growth- and eutectic-types. In this 

section, we focus on the chemical durability of SOFC cells and stacks caused by exogenous species such as 

sulfur, chlorine, and siloxanes at operating temperature. 

Sulfur poisoning 

The interaction between sulfur-containing molecules and Ni-based anode materials is an important 

research topic in SOFCs. There are several studies concerning the loss in SOFC performance upon sulfur 

poisoning as a function of temperature, H2S concentration, time, current load and anode material [116,119–

124]. Ni-YSZ anode-supported SOFCs have limited tolerance towards sulfur compounds [113,125,126]. Table 

14 summarizes studies on the characterization of different anode materials upon exposure to H2S-containing 

fuels. The performance degradation is a result of an increase in the internal resistance of the SOFC. The 
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poisoning is reported as a two-step process; a rapid initial drop in the performance followed by a slower 

prolonged degradation. However, performance stabilization after the initial fast drop is also observed.  

The initial performance drop is due to dissociative chemisorption of hydrogen sulfide on nickel active 

sites and blocking of the three-phase boundary for hydrogen oxidation. The reaction is the following: 

 H2S + Ni ⇌ Ni − S + H2(g) (10) 

H2S has unshared e- pairs, which can lead to very strong chemisorption on the metal surface. The cell 

performance can be reversible, depending on exposure concentration and duration. Reversibility has been 

observed in the case of exposure to concentrations below 50 ppm(v) and short duration[123]. Zha et al. [127] 

evaluated the recovery of the fuel cell performance after exposure to 2 and 50 ppm H2S at 800 °C and observed 

a recovery of 99% and 96% respectively, 50 h after stopping the H2S exposure. Y. Shiratori et al. [113,114] 

showed that 1 ppm H2S contamination in biogas caused about 9% voltage drop and about 40% decrease in the 

reaction rate of internal dry reforming (at 1000 °C, under 200 mA/cm2, CH4/CO2 = 1.5): in fact, H2S, even in 

small amounts (ppb-level), deactivates the steam-reforming and water gas shift reactions. This degradation 

was reversible and the performance stable after stopping the sulfur supply. Hagen et al. [116] observed a 

significant irreversible degradation in performance when the cell was poisoned with 2 ppm H2S over 500 h 

under a high current load of 1 A/cm2. At higher H2S concentrations (>100 ppmv), sulfur will react with nickel 

and bulk sulfidation (NiS, Ni3Sx) occurs, causing irreversible damage to the anode catalyst.  The initial drop 

in voltage upon exposure to H2S has been the focus of most studies in the literature [128–130]. Papurello et al. 

[121] quantified and correlated the surface coverage of sulfur on nickel-based anodes to sulfur concentration 

in the fuel with experiments performed both on a single cell and a stack. A Temkin-like adsorption isotherm 

[131] was used which describes well the time-to-coverage, and which is essential in order to determine the 

first degradation time. Results showed that, in anode-supported cells, sulfur contamination affects the entire 

available Ni surface and not just the TPB. Therefore, a wide deactivation of the Ni anode is expected also 

involving sites for heterogeneous catalysis (i.e., those sites involved in the chemical reactions of internal 

reforming and water gas shift). In Figure 11, the mechanism of S chemisorption on Ni surface is shown. 

Adsorbed atoms of S form a c(2x2) structure on the Ni(100) surface at high coverage (>0.7). The S/Ni atomic 

ratio is 0.5. The corresponding atomic density is 8 ×1014 S atoms per Ni cm2. 
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Figure 11. Sulfur coverage on Ni anode with the S monolayer having a c(2x2) structure on the Ni(1,0,0) face 

(own representation of the sulfur coverage mechanism).  

The mechanism of H2 oxidation and the nature of the rate-determining step remain controversial. 

Adsorption/desorption, surface diffusion, and charge-transfer reactions having all been suggested as plausible 

mechanisms[132]. In the conventional Ni-YSZ anode, the more likely mechanism is H2 adsorption on the Ni 

surface. Adsorbed hydrogen ions are formed, which migrate to the site of steam formation along the Ni surface 

(or through bulk Ni and electrolyte). The involved reactions are: 

 H2(g) ⇌ 2H+ + 2e− (11) 

 2H+ + O−− ⇌ H2O(g) (12) 

Therefore, adsorbed S on the Ni surface thus prevents the charge transfer process causing the observed 

sudden increase in cell polarization.  

Nonetheless, the electrolyte type should also be accounted for in the attempt to understand S-deactivation 

of the Ni-anode. A Ni-SSZ (scandia-stabilized zirconia) cermet resulted in higher tolerance towards sulfur 

poisoning compared to a conventional Ni-YSZ (yttria-stabilized zirconia)[124,133]. This evidence comes in 

support of the H2 oxidation mechanism under which steam formation takes place at the stabilized zirconia 

surface, in proximity of the three-phase boundary, and electron transport occurs through both Ni and the 

electrolyte surface, summarized by the following reaction: 

 H2(g) + O−− ⇌ H2O(g) + 2e− (13) 

Oxygen ions are transported through the electrolyte at the anode interface; here the charge transfer step is 

accomplished. Sasaki et al.[133], comparing the poisoning of both Ni-YSZ and Ni-ScSZ anodes, concluded  

that the higher ionic conductivity of SSZ, compared to YSZ, might be responsible for the different sulfur 

sensitivity of the two cermets. A higher ionic conductivity of electrolyte materials would lead to an extended 

three-phase boundary. Finally, Hagen et al.[116] have shown that the steam reforming activity (i.e., CH4 
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conversion) seems not to be affected by the electrolyte type (YSZ vs. ScSZ). However, again Ni-ScSZ showed 

more resistance towards sulfur poisoning.  

The reversible adsorption of sulfur on nickel surfaces was first reported by Perdereau and Oudar[134] in 

1970, followed in 1971 by Rostrup-Nielsen[91]. Sulfur chemisorption isotherms with sulfur concentration at 

a level of a few ppm and elevated temperatures were measured. Results have shown how chemisorbed sulfur 

possesses a more negative heat of formation than the most stable bulk sulfide Ni3S2. According to McCarty 

and Wise[135], chemisorbed S is 93 kJ kmol-1 energetically more stable than bulk sulfide (Ni2S3) at 800 K. 

They studied the thermodynamics of sulfur chemisorption on metals, including an alumina-supported Ni 

catalyst. Several sulfur chemisorption isosteres were evaluated varying the temperature in the range 477 – 863 

K and for different initial concentrations of H2S, measuring for each condition the sulfur coverage (i.e., the 

ratio of adsorbed sulfur compared to the available Ni surface, the latter previously measured by CO adsorption 

experiments). Results showed how the enthalpy of reaction decreases with higher coverage fractions.  

The reversible adsorption of S on Ni is well-described by the equilibrium sulfur coverage function[92], 

from which the coverage fraction, 𝜃𝑠, can be calculated as a function of both temperature and the H2S 

concentration in the gas phase. The equilibrium coverage is thus expressed by the following equation: 

𝑝𝐻2𝑆

𝑝𝐻2

= 𝑒
[
∆𝐻0(1−𝑎𝜃𝑠)

𝑅𝑇
 − 

∆𝑆0

𝑅
]
 (14) 

Experiments[135] have shown how the enthalpy term is affected by coverages above ~0.70, showing a 

decrease of the heat of adsorption as the sulfur coverage approaches saturation. By fitting experimental data, 

the entropy term resulted instead as independent from the coverage within the same range. The physical 

interpretation is that the adsorbed S film gets more instable because of repulsive forces exerted between 

adjacent chemisorbed sulfur atoms. The fact that the entropy term does not depend on coverage is connected 

to subsurface chemisorption[92]. More details on the sulfur chemisorption on nickel active sites can be found 

in ref[136]. Equation 14 has been used recently to correlate data on sulfur coverage on nickel surfaces in H2 

environment[131]. The following values have been determined by means of a nonlinear least-square fit on 

experimental data[92]: =-289 kJ mol-1, =-19 J mol-1 K-1 and a = 0.69, thus resulting in Eq. 15: 

𝜃𝑆 = 1.45 − 9.53 ∙ 10−5𝑇 + 4.17 ∙ 10−5𝑇𝑙𝑛 (
𝑝𝐻2𝑆

𝑝𝐻2,𝑒𝑞
⁄ ) (15) 

Figure 12 shows the dependency of the sulfur coverage on the H2S concentration and temperature. As the 

operating temperature of the SOFC is reduced, the coverage of active sites by sulfur grows, thus making the 

proper management (removal) of the clean-up unit more critical towards sulfur compounds.  

Eventually, the performance drop of the fuel cell performance due to H2S poisoning is linearly depending 

on sulfur coverage as shown in the work of Papurello et al. [121] (see Figure 13). 

0

0H
0S
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Figure 12. Sulfur coverage on Ni anode as a function of temperature and H2S concentration (atmospheric 

pressure operation is assumed) (own calculation based on Eq. 15) 

 

Figure 13. Performance drop vs. sulfur coverage in anode supported cell and stack environments (reprinted 

with permission from Papurello et al. [121]) 

Concerning long-term degradation by sulfur poisoning, the idea is that Ni surface reconstruction might 

occur, enhanced by adsorbed S or S-species. Ni mobility is always present at the relevant SOFC operating 

temperature range, causing Ni coarsening or agglomeration [137,138]. However, different from simple 

agglomeration, a change in the Ni surface morphology can be observed in the case of prolonged exposure of 

Ni anodes to H2S [139]. For instance, Ivey et al observed a terracing phenomenon. The extent of terracing was 

shown to be increasing with increasing H2S levels and exposure time. Every change of the original as-reduced 
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Ni morphology can, but need not, lead to a reduction of Ni- phase connectivity and TPB. Therefore, long-term 

degradation connected to S-poisoning is not as easily explained as the fast degradation type linked to S-

coverage of Ni sites.   

Chlorine poisoning 

The effect of HCl and other chlorine compounds like CH3Cl and Cl2 on SOFC performance has been 

addressed in several studies [43,126,140,141].  

 

 

Table 15 summarizes these studies on the characterization of different anode materials upon exposure to 

Cl-containing fuels.  

Li et al. [140] compared the performance degradation due to the exposure to chlorine compounds HCl, 

Cl2 and CH3Cl. No performance degradation was observed up to 8 ppm of these compounds. At higher 

concentrations, the degradation was more severe in the case of Cl2 and CH3Cl compared to HCl. Trembly et 

al.[1] observed an excessive degradation rate in cell performance due to exposure to HCl at 160 ppm, and 

believed this degradation to be due to the formation of nickel chloride. The results also implied that this 

chloride phase was not stable, because of the observed reversibility of the poisoning caused by HCl. Adsorption 

of chlorine onto Ni to reduce the triple phase boundary (TPB) was postulated as another explanation. 

Chemisorption of HCl on Ni and the chlorination of the Ni surface as possible mechanisms were proposed by 

Xu et al. [142]. They also mentioned that the formation of solid nickel chloride is energetically unfavorable.  

Madi et al. [2] evaluated the poisoning effect of hydrogen chloride (HCl) on state-of-the-art Ni anode-

supported SOFCs at 750 °C using either hydrogen or syngas fuel. Experiments were performed on single cells 

and short stacks. HCl concentration in the fuel gas was increased from 10 ppm(v) up to 500 ppm(v) at different 

current densities, Figure 14. Single cell experiment results showed that the poisoning is more severe when 

feeding with hydrogen than with syngas. Further experiments indicated higher degradation rates at higher 

current densities. These results are close to the findings of Xu et al. [142], who explain this behavior by 

chemisorption of HCl on Ni and blockage of active sites by these species. As current increases, the impact of 

having a reduced TPB gets more pronounced and so the HCl-poisoning effect is enhanced.  

Interestingly, the stack performance was not affected by HCl up to 500 ppm in an anode feed simulating 

a biogas reformate[2]; actually the performance was slightly improved over the test. Even if degradation of the 

Ni-anode has sometimes been observed, a consistent trend of degradation when feeding HCl to the SOFC is 

not observed throughout the literature. Madi et al. [2] have recently reviewed and elucidated the potential Ni-

anode degradation mechanism in the presence of HCl. They suggest that Ni changes are expected to take place 

leading to a redistribution of Ni particles that can enhance the TPB rather than reducing it. This redistribution 

phenomenon is confirmed by findings from other researchers [43,142].  
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Figure 14. A) SOFC single cell operation with H2 fuel gas at 0.25 A/cm2, HCl contamination from 10 to 100 

ppm – the recovery phase was carried out at the end of the whole test (reprinted with permission from Madi 

et al. [2]). B) Short stack operation at 750 °C and 60% FU and various concentrations of HCl (reprinted 

with permission from Madi et al. [2]) 

 

Further, Madi et al. [2] performed SEM-EDX on the exposed samples. Traces of Cl at the edges of Ni 

grains were observed (Figure 15). XPS analysis of Xu et al. [142] also showed traces of Cl at the anode cross-

section and the anode surface. According to Trembly et al. [1], the formation of a secondary nickel phase, 

NiCl2(s), is not feasible. Therefore, Cl is present in the form of adsorbed species, rather than as a chlorine 

nickel compound. 
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Figure 15.   SEM-EDX analysis of anode cross section. Cl species are deposited on the Ni grains (reprinted 

with permission from Madi et al. [2]).  

 

Siloxane poisoning  

K. Haga et al. [143] investigated the effect of D5-siloxane at different temperatures on the cell 

performance and observed a marked degradation. Their post-mortem analysis revealed the plugging of the 

anode structure with SiO2(s) deposits. They concluded that the presence of siloxane can cause deposition-type 

degradation, associated with the formation of SiO2(s) according to the following reactions: 

 [(CH3)2SiO]5(g) + 25H2O ⇌ 5Si(OH)4(g) + 10CO + 30H2 (16) 

 Si(OH)4 ⇌ SiO2(s) + 2H2O (17) 

Madi et al. [66,144] evaluated the degradation of anode supported Ni-YSZ SOFC single cells and short 

stacks by siloxane D4, as a common biogas impurity, by electrochemical characterization, thermodynamic 

equilibrium calculations and micro-structural analysis. Experimental results showed a marked performance 

degradation with this impurity as shown in Figure 16 and Figure 17. 

 
Figure 16. Degradation due to exposure to siloxane D4 (adapted from Madi et al. [66,144] with permission). 

The cells were operated at 0.25 A/cm2, 750 or 800 °C and fueled with either biogas reformate or hydrogen. 

Single cells were provided from SOLIDpower and TOFC companies. 



39 

 

 
Figure 17. Durability test for TOFC SOFC stack up to 1 ppm(v) of D4 with biogas reformate fuel (reprinted 

with permission from Madi et al. [66]). The FU is 60% with a current of 20 A (corresponding to a current 

density of ~0.22 A/cm2). The stack temperature is around 700 °C  

EDX analysis of an exposed sample proved that Si condenses and deposits everywhere: on the current 

collector (Figure 18- right), the anode support (Figure 18- left), and down to the electrolyte interface at the 

three-phase boundary, which is responsible for the observed loss in electrochemical performance. A larger 

amount of Si was deposited at the anode surface with a gradient towards the electrolyte as shown in Figure 19. 

For the short stack experiment, a gradient in the deposition of Si between inlet and outlet fuel sections was 

evidenced, with more Si deposited at the fuel inlet regions both within and on the cell as well as on the 

interconnect plate.  

 

 

 

Figure 18. SEM images of the anode cross section (left, reprinted with permission from Madi et al.  [144]) 

and Ni-felt current collector (right, reprinted with permission from Madi et al.  [145]). 
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Figure 19. Si distribution through the anode cross-section: a higher amount of Si is deposited towards the 

anode surface than in areas close to the electrolyte (reprinted with permission from Madi et al. [144]). 

The deposition of Si-compounds takes place due to the fast decomposition of the siloxane to SiO2 as it 

reaches the fuel cell anode chamber, thus depositing silica both on the interconnect and anode current collector. 

Some Si also remains in the vapor phase as Si(OH)4, according to Eq. 8, that further diffuses to the TPB region 

where it eventually precipitates too. In conclusion, siloxanes have to be removed completely from the biogas 

feeding the SOFC. Even trace contamination of the fuel feed at ppb level can affect the SOFC Ni anode, leading 

to fast degradation.  
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Table 14.Summary of studies involving short and long-term sulfur poisoning tests. 

References Anode Fuel gas T (°C) p(H2S)/pH2 

(ppm) 

Test duration Observations 

A. Ishikura et al. [146] Ni-YSZ 54% H2, 23% H2O, 

23% N2 

900 20 800 h The first step degradation was recovered completely, but the 

second-step recovered only partially due to nickel sulfide 

formation. 

C. Grgicak et al. [147] Ni-YSZ, Co-YSZ H2 and CH4 850 100 140 h Ni- and Co- based anodes were compared. Dense metal sulfide 

surrounded by YSZ formed, stable performance achieved.  

I. Zhang et al. [148] Ni-YSZ, Ni-GDC H2 800 5 – 700 2 h Ni- GDC is more tolerable towards sulfur. Significant morphology 

change on Ni as well as GDC but not on YSZ. 

E. Brightman et al. 

[149] 

Ni-CGO 49% H2, 49 % N2, 2% 

H2O 

700, 750 0.5 – 3 5- 8 h Full recovery of sample observed for 0.5 ppm but at higher 

concentration, a secondary phase formed accompanied by a change 

in microstructure.  

Shaowu Zha et al. 

[127] 

Ni-YSZ 50 H2 %, 1.5% H2O, 

48.5% N2 

900 2 and 50 220 h Higher degradation at lower temperatures. Higher cell operating 

temperature and larger cell current density accelerated the recovery 

process. 

K. Sasaki et al. [126] Ni-YSZ 50% pre-reformed 

CH2 

800 5 3000 h Cell degradation rate with 5 ppm H2S was 0.68%, slightly higher 

than the value without H2S of 0.3% per 1000 h 

Trembly et al. [150] Ni-GDC Coal syngas 750 200- 240 580 h No major degradation for long-term test. Change in morphology 

was observed. 

 

 

 

Table 15.Summary of studies involving exposure to HCl. 

References Anode Fuel gas T (°C) p(HCl  or Cl2) /pH2 

(ppm) 

Test 

duration 

Observations 

J.P. Trembly et al. [1] Ni-YSZ,  Coal syngas 800, 900 20, 160  HCl 100 h Degradation is associated with increase in charge transfer 

resistance. Adsorption of chlorine on Ni surface is the 

possible degradation mechanism. 

K. Haga et al. [151] Ni- ScSz 3% humidified H2 800 5, 50, 1000 Cl2 150 h Microstructural change due to formation of Ni 

nanoparticles, probably via NiCl2(g) sublimation. 

C. Xu et al. [142] Ni-YSZ Coal syngas 800, 850 100  HCl 500 h Chemisorption of HCl on Ni and chlorination of the Ni 

surface as possible mechanisms 
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Li et al. [140] Ni-YSZ H2 750, 850 8 HCl, Cl2, CH3Cl 10 h No performance degradation up to 8 ppm. Degradation is 

more severe in the case of Cl2 and CH3Cl. 

Bao et al. [152] Ni-YSZ Coal syngas 750, 800 40 120 h No significant degradation was observed during 100 h 

testing 



43 

 

 

Chapter 5 – Processes and materials for biogas contaminants removal 

Biogas purification processes 

This section is dedicated to the removal of biogas contaminants. Since both reformer and fuel cell 

electrode can suffer significantly by the presence of contaminants, it urges their removal. 

The variety of trace contaminants depends on the used organic substrate (e.g., urban solid waste in a 

landfill, sludge from wastewater treatment plants, food waste, manure, etc.) [52]. Papadias and Ahmed [46] 

recently compiled an extensive database of contaminants found in biogas from WWTPs and landfilling; the 

database collects information on impurities such as sulfur compounds, organic silicon compounds (siloxanes), 

halogens, paraffines, cyclic hydrocarbons, and aromatics. One of the main drawbacks for SOFCs fed by biogas 

is indeed the impact of trace compounds on the anode electrode. The low or very low tolerance towards certain 

fuel impurities – mostly sulfur, chlorine and siloxane compounds – that can adversely affect the fuel cell 

efficiency and reduce the lifetime due to rapid degradation of the anode [121,126,153–156]. For this reason, a 

gas clean-up section is required to remove harmful contaminants and thus meet the SOFC gas purity 

requirements [46].  

Biogas purification methods can be divided into two broad categories [157]:  

 those involving physicochemical phenomena (adsorption and chemisorption on solid sorbents and 

absorption processes in either aqueous solutions or scrubbing in solvents or other liquid phases); 

 those involving biological processes (e.g., bio-trickling). 

Methods for the removal of H2S and siloxanes are reviewed in detail in the following paragraphs since 

these compounds are often found in biogases in relatively large amounts.  

The removal of tars (e.g., toluene, naphthalene) is not reviewed in this work. This is because there is a 

very negligible amount of tars and heavier hydrocarbons in biogases [46]. Nonetheless, the issue of tars is 

central for bio-syngas from biomass gasification [158]. Also, tars can be detrimental to the SOFC performance 

at elevated concentrations as they cannot be longer internally reformed thus leading to carbon deposition and 

catalyst deactivation [159]. Aravind and de Jong have extensively reviewed gas cleaning methods and 

processes for hot product gas from biomass gasifiers [158].   

After describing methods and materials for biogas clean-up, the main equations used to model adsorption-

based systems are presented in this section. Different kinetic formulations are reviewed as well as the other 

transport equations that are required to model full-scale adsorption vessels. 
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The typical experimental set-up to test solid sorbent materials, and some examples of adsorption curves 

on activated carbons until breakthrough of the contaminant is reached, are presented in the final part of this 

section. Some engineering aspects of clean-up systems are also discussed. The different reactor configurations 

for adsorption-based systems are briefly reviewed.  

H2S removal 

In-situ abatement techniques are viable for H2S (partial) removal either directly in the sludge or in the 

anaerobic digester. Having air (2-6 vol. %) in the digester headspace, or adding iron salts in the sludge feed or 

directly in the digester, are often employed techniques for a partial H2S abatement.  

The effect of adding iron salts was previously described in this work. Thus, we focus the discussion here 

on the aerobic removal of H2S. Aerobic conditions within the digester can promote the activity of sulfide-

oxidizing bacteria (SOB) which are present in the sludge and proliferate in the digester. Even the injection of 

a small amount of pure oxygen is efficient for H2S removal in sewage sludge digesters. The presence of air (or 

oxygen) leads to chemical and biological oxidation of H2S to S0. Díaz et al. [160] have recently compared the 

techno-economic performance of micro-aerobic removal of H2S with O2 injection in full-scale digesters against 

more conventional methods of in-situ sulfur abatements, which are air injection into the digester, addition of 

FeCl3 (iron salts) to the raw sludge and addition of an iron-sponge-bed filter inoculated with thiobacteria in 

the digester. According to their results, the microaerobic treatment consisting in supplying concentrated O2 to 

the reactors was proved the most profitable alternative to FeCl3 addition in the WWTP. 

We describe next methods for H2S removal from the biogas stream. The chemical affinity of H2S for 

metallic cations drives processes employing chemical absorption. Chemical absorption of sulfur in aqueous 

solutions involves either the oxidation of S2- to S0 or the capture of S2- through precipitation of its metallic salts 

[157]. For example, to the first method belongs the oxidative absorption of H2S and O2 by iron-chelated 

solutions. The H2S is removed by means of chemical absorption in an iron-chelated solution catalyzed by 

Fe/EDTA, which converts H2S into elemental sulfur (S0) [161]. The formation of S occurs by means of sulfide 

oxidation by the chelated iron according to the reaction described by Eq. 18. 

 S2− + 2Fe3+ ⟺ S0 + 2Fe2+ (18) 

A possible alternative is to use alkaline solutions (e.g., NaOH or CaO based solutions) to react with H2S. 

A detailed review of the absorption methods is provided by Abatzoglou and Boivin [157].  

Dry processes are based instead on the selective adsorption of trace compounds on solid adsorbents. 

Adsorption is the only technique which can reduce the concentration of contaminants to the extent of fuel cell 

specifications [157]. Often, these processes are adopted in semi-batch configuration. This is due to the gradual 

saturation of sorbent material and problems related to the regeneration of the same. However, continuous 

operation is also possible depending on the choice of the gas clean-up reactors’ configuration. System layouts 
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with redundant reactors (in either parallel configuration or lead-and-lag configuration) allow indeed for 

continuous operation.  

Iron oxide adsorbents are mainly adopted for sulfur removal [157]. Often, iron oxides are used for bulk 

sulfur removal. The best-known iron oxide adsorbent is iron sponge, which consists of an H2S adsorption 

media, typically iron oxide or hydroxide, coated onto a supporting material traditionally comprised of wood 

chips or wood shavings [162]. 

The chemical reactions involved in sulfur removal are given below: 

 

Fe2O3 + 3H2S → Fe2S3 + 3H2O     (sulfur removal) 

Fe2S3 + 3/2O2 → Fe2O3 + 3S     (regeneration) 

(19) 

(20) 

According to the stoichiometry of the first reaction, the theoretical removal efficiency is 0.64 kg H2S/kg 

Fe2O3. 

Either operation in batch mode with regeneration or continuous operation with a small amount of air in 

the feed stream is possible for this type of H2S-removal process. However, according to Abatzoglou and Boivin 

[157], iron-sponge activity is reduced by one-third after each regeneration cycle. Hence, regeneration can be 

carried out only once or twice before replacing the entire batch.  

Nonetheless, the preferred operating mode is continuous regeneration by co-feeding some air (oxygen) 

with biogas. In this case, removal rates are as high as 2.5 kg H2S/kg Fe2O3. The unit cost of iron sponge is 

~0.25 $/kg [163].  

Several commercial iron oxide media are also available such as SulfaTreat®, Sulfur-Rite®, and Media-

G2®. As also for iron sponge, the main drawback of this type of material is the cost associated with the disposal 

of the spent catalyst (that can be classified as hazardous waste). Sulfatreat is currently one of the most used 

scavengers for H2S removal. Sulfatreat consists of iron oxides (Fe2O3, Fe3O4) mixed with an activator oxide 

that are deposited on a calcined montmorillonite carrier matrix; the latter is thought to be enhancing 

catalytically the reactive adsorption phenomenon [164]. According to the manufacturer, the activator is made 

of one or more oxides of a group of metals consisting of platinum, gold, silver, copper, cadmium, nickel, 

palladium, lead, mercury, tin and cobalt. The amount of activator is 0.125–5%w/w of the adsorbent [164].  

Sulfatreat adsorbent requires 100% water-saturated gas according to the vendor’s website (Schlumberger, 

US); the role of water might be either that of catalyst or reactant [164]. Truong and Abatzoglou [164] derived 

a kinetic model from their experiments on Sulfatreat suggesting that the reaction is close to first order with 

respect to the H2S concentration and zero order with respect to the media (i.e., the number of active sites per 

cm3 of adsorbent). The role of water was not clearly identified.  
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Experiments from Truong and Abatzoglou [164] have shown  that 1 g of Sulfatreat adsorbent can adsorb 

up to 0.11 g of H2S (sulfur capacity of 11 wt. %). The saturation was defined experimentally as the point at 

which the concentrations of the inlet and outlet gas in H2S were identical. Papadias et al. [46] developed a 

model of H2S adsorption on Sulfatreat and calculated a sulfur capacity up to 6.7 wt. % with an inlet 

concentration of 150 ppm(v) of H2S, and a breakthrough concentration set at 10 ppm(v). 

Activated carbons (AC) are widely employed for both air purification (odor control) as well as biogas 

clean up. The main distinction is between impregnated AC and non-impregnated ones [165]. Impregnated AC 

is treated with a solid or liquid chemical in order to improve the chemical sorption of H2S. The main 

impregnating compounds are sodium bicarbonate (NaHCO3), sodium carbonate (Na2CO3), sodium hydroxide 

(NaOH), potassium hydroxide (KOH), potassium iodide (KI) and potassium permanganate (KMnO4) [157]. 

Impregnated AC has a sulfur capacity as high as 30 wt. % (i.e., 300 g H2S/kg of adsorbent) under aerobic 

conditions. In the absence of oxygen, the sulfur capacity is dramatically decreased to values only slightly above 

those of non-impregnated activated carbons [166]. The presence of water is a crucial factor enhancing 

hydrogen sulfide adsorption. In fact, it enables the dissociation of H2S to HS- ions when the pH allows [167] 

(a basic pH is needed to promote the formation of HS- ions). The surface pH of the AC is also a relevant 

parameter. Yan et al. have demonstrated how surface pH values of the exhausted carbons show a clear trend 

of pH drop along the reaction extent, while a pH around 2 was observed for the bottom of the bed indicating 

sulfuric acid (H2SO4) as the predominant product [168]. Having a large micro-pore volume is also important 

to store the S[169] (either in the form of elemental sulfur or as sulfate, e.g., K2SO4 or Na2SO4). More details 

on the mechanisms of S-removal in impregnated activated carbons in the presence of oxygen can be found in 

the work of Bagreev and Bandosz [167]. Xiao et al. studied the breakthrough capacity of both impregnated 

and non-impregnated AC with and without oxygen addition to the simulated biogas feed [165,166]. The results 

are summarized in Table 16. The results clearly show that H2S is removed by both adsorption and catalytic 

oxidation over the AC and IAC at nearly ambient temperature. Catalytic oxidation accounts for the most part 

of the sulfur capacity in impregnated carbon, increasing the sulfur capacity dramatically. Gutiérrez Ortiz et al. 

[170] have also investigated the adsorption capacity of AC (with or without impregnation) as well as in-house 

adsorbents for which sewage sludge was used as a precursor. The sludge was thermally treated with either 

N2/air or air only, in order to activate it. Experiments were carried out at 20 °C, using a simulated biogas 

mixture and an inlet H2S concentration of 2,000 ppm(v) (the breakthrough was set to an outlet concentration 

of 200 ppm(v) of H2S). The adsorption capacity of fresh AC and NaOH-impregnated AC were measured as 

4.4 and 12.7 mg g-1, respectively. Under aerobic conditions (5% vol. O2), the sulfur capacity of AC and IAC 

increased to 7.3 and 77.4, mg g-1 respectively. The highest adsorption capacity of sludge-derived adsorbent 

was measured as 8.6 mg g-1 under anaerobic conditions, and 17.3 mg g-1 under aerobic conditions. No further 

improvement was observed by impregnation of the sludge-derived adsorbent.  
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Table 16. Adsorption capacity of activated carbon with and without impregnations under either anaerobic or 

aerobic conditions 

Adsorbent type AC IAC 

Temperature (°C) 30 30 

Equilibrium adsorption capacity 

under anaerobic conditions (mg g-1) 
2.7 [165] - 6.8 [166] 9.4 [165] - 11.2 [166] 

Equilibrium adsorption capacity 

under aerobic conditions (mg g-1) 
140 [166] 407 [166] 

Activated carbons are often adopted as the guard bed (or polisher) for the SOFC [171,172]. The main 

properties of activated carbon filters for the effective removal of VOCs are high porosity, high superficial area 

(1500 m2 g-1), high volume, pore distribution [173] and treatment with metal ions.  

To summarize, impregnated activated carbons, mainly impregnated with caustic bases (NaOH, Na2CO3, 

NaHCO3, KI), show typical H2S loading capacities in the range of a few hundreds of mg per g of activated 

carbon. Especially, the presence of oxygen is key to achieve high sulfur capacity. The non-impregnated AC 

achieves H2S removal capacities one order of magnitude lower than IAC on average. Again, the presence of 

oxygen is enhancing the sulfur capacity.  

Digester gas typically contains from 0.1 to 2-3 vol. % of O2, so employing IAC should be beneficial as 

their removal capacity can be exploited thus justifying the higher cost (typically, the adsorbent unit cost for 

IAC is 3-4 times higher than virgin AC). According to Seredych and Bandosz [169], the degree of 

humidification has an impact on the removal capacity of AC. The best performance is obtained with pre-

humidified (saturated) AC then fed with moisture-free biogas. In fact, in the presence of moist gas, H2S is first 

oxidized to SO2 and then to sulfurous acid (H2SO3). The acid reacts with alkali or alkaline earth metals to form 

sulfites thus rapidly depleting active sites. With a pre-saturated bed, H2S instead interacts with the water film 

formed on the carbon surface to form HS- that are eventually converted to elemental sulfur (and/or sulfates) 

that is stored in the micropore volume. 

Concerning the layout of the clean-up unit in order to ensure the SOFC fuel quality requirements, the 

recommended configuration is to have first a bulk removal stage of harmful compounds, which should be 

followed by one or more adsorption beds able to either simultaneously or selectively capture the remainder of 

the contaminants down to ppb(v) levels. Bulk sulfur removal could be accomplished by an absorption process 

or by an iron oxides bed, while the ultra-filtration process is most effectively carried out by using solid 

adsorbents, such as activated carbons.  
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Finally, the determination of the breakthrough time of the sorbent material is important to determine when 

the sorbent material must be changed, thus minimizing operating costs of the plant.  

Whenever reporting sulfur (or any other contaminant) removal capacity for a given adsorbent material, it 

is important to state the breakthrough concentration used to calculate the integral of the adsorption curve. 

Especially, the threshold (breakthrough) concentration is set quite arbitrarily in scientific works reviewed in 

this work. The formula to calculate the breakthrough time 𝑡𝑠 (s) is the following: 

 
𝑥

𝑀
=

�̇�𝑀𝑤

𝑤𝑉𝑚
(𝐶0𝑡𝑠 − ∫ 𝐶(𝑡)𝑑𝑡

𝑡𝑠

0

) (21) 

The adsorption capacity (
𝑥

𝑀
, mg of contaminant g-1 of AC) is thus calculated based on the inlet volumetric 

flow rate of biogas, �̇� (Nm3 s-1), the adsorbent weight, 𝑤 (g), the contaminant molecular weight, 𝑀𝑤 (g mol-

1), the inlet concentration of contaminant in the feed stream, 𝐶0 (ppm(v) by volume) and the (breakthrough) 

contaminant concentration at the reactor outlet at a given time, 𝐶(𝑡). 

The breakthrough capacity thus expresses the threshold capacity above which the catalyst load must be 

replaced with a fresh sorbent, or regenerated. As mentioned earlier, in some works the sulfur capacity is 

calculated taking as breakthrough capacity the initial concentration of contaminant in the gas feed (i.e., when  

𝐶(𝑡) equals 𝐶0. Under this assumption, the calculated capacity of the sorbent is the highest. However, it is also 

quite common to have the breakthrough concentration set as a fraction of the inlet concentration (e.g., 10% or 

1% of 𝐶0). Lower removal adsorbent capacities are thus calculated depending on the choice made.  

The (right) definition of the breakthrough capacity depends on the downstream process and the reactor 

configuration. In the lead-and-lag configuration, the first adsorption vessel (lead reactor) is followed by a 

second one (lag reactor). In this way, the lifetime of the catalyst can be extended while assuring a stringent 

removal. For fuel cell applications, very high fuel quality is required with sub-ppm(v) levels of H2S. Therefore, 

the overall breakthrough concentration should be set as low as 1% of the inlet concentration (or even lower, 

depending on the minimum detection limit of the gas analyzer). Using a single reactor configuration would 

not be ideal as the breakthrough concentration shall be achieved relatively fast. With a lead-and-lag 

configuration instead (described in detail later), the breakthrough concentration in the first reactor (lead) can 

be exceeded, as long as the breakthrough limit is not reached after the lag reactor.  

Siloxanes removal 

Siloxanes can also be effectively removed by solid sorbents through adsorption. The concentration of 

siloxanes in biogas is such that cooling processes usually employed to remove moisture are scarcely affecting 

the vapor concentration of siloxanes in the gas phase as condensation is almost negligible even for the heavier 

organic silicon compounds (e.g., D5) [42].  
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Activated carbons are very effective for the removal of siloxanes. Cabrera et al.[174] have studied 12 

commercial AC against D4-siloxane. The best performance was achieved by a wood-based chemically 

activated carbon, which achieved an adsorption capacity of 1732 ± 93 mg g−1 using 1000 ppm(v) (v/v) of D4 

with dry N2 as a carrier gas. The D4 adsorption capacities were strongly related to the textural features of the 

ACs with a positive correlation between adsorption capacity and the total pore volume. For each adsorption 

experiment, the adsorption column was operated until the D4 outlet concentration matched the inlet 

concentration (i.e., full bed saturation). 

Silica gel is also quite effective in removing siloxanes, with an observed adsorption capacity exceeding 

100 mg g-1 and possibility of regeneration (a great advantage over AC which cannot be effectively 

regenerated)[42]. 

According to experiments carried out by Matsui and Imamura [175], the adsorption capacity is 5.6-19.2 

mg g-1 for the activated carbons, 4-77 mg g-1 for the molecular sieve and 104 mg g-1 for the silica gel. All tests 

were conducted using D4 as model siloxane compound and using N2 gas as a carrier gas.  

Since biogas contains a variety of harmful compounds (vapors), having concentrations spanning several 

orders of magnitude, competitive adsorption occurs in the solid sorbent. This is especially true for siloxanes. 

In fact, the presence of relatively non-volatile, organic sulfur or halogenated compounds, can greatly reduce 

the adsorption capacity towards siloxanes [176]. Other factors influencing the silicon capacity of activated 

carbon are the relative concentrations of the siloxane species to one another (e.g., L2 breaks through sooner 

than D5), temperature and relative humidity [177]. According to Wheless and Pierce [177], who monitored the 

removal of siloxane in landfill biogas, not only L2 was the quickest compound to break through, but it could 

be found at a higher concentration than in the inlet gas since accumulated siloxanes were then released. This 

phenomenon is known as ‘roll-up’ and it involves the desorption of the weaker adsorbates in downstream 

zones which are replaced by more strongly adsorbed compounds [52]. This phenomenon can lead to 

concentration peaks at the outlet of the vessel that is even larger than the inlet concentration, or it can explain 

the early breakthrough of the weaker compound. For instance, in the biogas clean-up plant analyzed by de 

Arespacochaga et al. [52], D4 was the first silicon compound to break through despite the higher amount of 

D5 in the inlet feed. In the same work, the measured siloxanes adsorption capacity was 5 mg g-1 on extruded 

activated carbons. The low removal capacity might be due to the low inlet concentration of siloxanes (which 

can strongly reduce the equilibrium adsorption capacity according to a Langmuir-type adsorption process or 

Freundlich adsorption isotherm) and competitive adsorption phenomena.  

Ricaurte Ortega and Subrenat [178] tested different porous materials to measure their adsorption capacity 

toward L2 and D4 siloxanes. The materials tested were activated carbon cloths, granular activated carbon, 

zeolite, and silica gel. Activated carbons reached a L2 removal capacity around 300-350 mg g-1, while zeolite 

and silica reached values around 100-150 mg g-1 (the lower performance of zeolite and silica is linked to their 
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lower surface area compared to AC). All tests were performed in air. Similar but slightly higher removal 

capacity holds for D4. Reducing temperature is confirmed to enhance the adsorption process according to 

experiments. It is worth noting the trend of the adsorption isotherm with varying inlet siloxane concentration 

in the experiments [178]; as the inlet concentration of siloxane in the feed gas gets lower, a much-reduced 

removal capacity is observed. Experimental isotherm curves were well fitted by a Freundlich isotherm model. 

This consideration is important because, in realistic applications, the overall siloxane concentration is often 

quite low (< than 50 mg/Nm3). Therefore the adsorption capacity of the adsorbent medium reduces several 

times compared to values that are reached when high inlet siloxane concentrations are tested. Hence, in order 

to avoid an over-estimation of the adsorption capacity of a given sorbent, it is recommendable to test the 

siloxane removal of an adsorbent at concentrations close to those of real biogases [176]. 

Other VOCs removal 

The most relevant volatile contaminants contained in biogenous fuels are sulfur, aromatic, carbonyl and 

chloro-compounds [179] and siloxanes; these groups are derived from the starting biomass loaded into the 

digester [179]. Studies on the effective removal of all VOCs in order to produce highly pure, fuel cell-grade 

biogas are rare, as the main focus is on H2S or sulfur compound removal only [180,181]. Typically the effect 

that different VOCs have on each other's removal rate is overlooked. Part of the problem is related to the 

detection of VOCs, as a fast method with a low limit of detection has to be used. An electrochemical gas sensor 

is usually adopted to monitor online and real-time H2S [182]. A GC-MS instrument is instead used to detect 

the other compounds [52,182], however, acquisition time is much prolonged in this case. Hence, for the 

monitoring of biogas trace compounds – especially for real biogases that have a rather complex matrix of 

contaminants –there is a need for more sensitive and robust methods for real-time online analysis. In this 

context, Direct Injection Mass Spectrometry (DIMS) was proven to have good performances in term of 

rapidity, sensitivity, and absence of pre-treatments [183]. One of the most promising DIMS techniques is the 

Proton Transfer Reaction-Mass Spectrometry (PTR-MS) [183]. This method is based on an efficient 

implementation of chemical ionization based on proton transfer from hydronium ions and allows the rapid and 

on-line monitoring of most volatile compounds. It has been applied in many situations ranging from breath 

analysis to environmental monitoring and, recently, also to issues related to waste management and odorant 

emission control [172,184].  

As reported by Papurello et al. [171], the breakthrough time is affected, among other factors, by (in order 

of importance): 

- the type of sulfur compounds that must be removed; 

- the GHSV of the mixture gas across the adsorbent bed; 

- the presence of co-vapors of organic compounds besides sulfur compounds.  
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It was demonstrated that even only 1 ppm(v) of aromatic, carbonyl and chloro-compounds could reduce 

the removal efficiency performance by 70% in case of sulfur compounds only [185]. Therefore, real-biogas 

experiments should follow lab-experiments to verify fully the adsorbent performance in the context of a more 

complex matrix of contaminants, which also contains several VOCs at either ppm or ppb levels besides the 

main contaminant types (e.g., H2S and s D4-D5 siloxanes for sewage biogas). 

Experimental methods for adsorption experiments 

The typical experimental apparatus to test activated carbons for the removal of biogas contaminants is 

described in this paragraph. The set-up consists of a few centimeters long cartridge made either of Teflon tube 

(PTFE) or quartz (for high temperature experiments) in which the sorbent material is placed. A sterile gauze, 

or other inert filling body, is used to avoid dragging phenomena by the gas stream. The main factors affecting 

the removal efficiency of the sorbent material are the moisture in the gas feed, the operating temperature, and 

the gas hourly space velocity (GHSV). The sorbent materials are usually tested with inert gas or simulated 

biogas (CH4 and CO2) while varying the inlet contaminant concentration. Known concentrations of pollutants 

are fed using certified gas cylinders [182,185,186] or permeation tubes [187,188]. A liquid mass flow 

controller and a controlled evaporator mixer generally control the flow rate of demineralized water (which is 

then vaporized) to deliver a controlled level of moisture in the gas stream. Figure 20 shows a typical 

experimental set-up for testing the adsorption capacity of a solid sorbent: the red color represents the heated 

lines with heater strings controlled via a PID regulator. A PolyDiMethylSiloxane (20 m) membrane filter is 

inserted between the filter line and the detection instrument in order to avoid obstructions from particles 

dragging. In order to maintain a given ratio between the particle diameter of the sorbent material and the actual 

reactor diameter, the sorbent materials are grounded and then with a vibratory sieve shaker sieved to a certain 

particle range. 
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Figure 20. Typical experimental set-up for measuring the adsorption capacity of solid sorbents towards 

selected contaminants (Courtesy of: Hiden Analytical GmbH, Ionicon Analytik GmbH, Shimadzu GmbH; 

reprinted with permission from Papurello et al. [189]). 

Equilibrium adsorption isotherms 

Equilibrium adsorption isotherms describe the adsorption process of the contaminant on the solid sorbent 

surface. In this section, we review the main adsorption isotherm equations usually employed in the literature. 

Adsorption is described through a function that connects the amount of adsorbate taken up by the 

adsorbent to the adsorbate concentration in the gas phase. Such a function is called isotherm under specific 

conditions. These conditions are isothermal and atmospheric pressure under steady state conditions. The 

general expression of an adsorption isotherm is the following: 

  (22) 

When the contaminants concentration typically does not exceed a few parts per billion even a linear 

correlation between qmax and C* can be adopted [190]. qmax is the maximum adsorption capacity function of a 

given couple sorbent material - contaminant (mg g-1) – when it reaches C*=C(x,t); C* (measured in ppm) is 

the gas concentration at the equilibrium within the pores. When the concentration is in the range of a few to 

hundreds (or thousands) of ppm(v), the correlation is not linear.  In Table 17, the most used adsorption 

isotherms are reported: 

 

 

Table 17. Equations of different adsorption isotherms  

Isotherm type Equation Notes / Assumptions 

Henry  (23) [191] Linear isotherm 

Langmuir  (24) [192] 
Monolayer adsorption 

model 

Freundlich  (25) [193] 

Model valid only within 

a limited range of 

concentrations 

Dubinin-Radushkevich (D-

R)  (26) [194] 
Semi-empirical equation 

Brunauer, Emmett, and 

Teller (BET) 

 

(27) [195] 

Valid for multiple 

adsorption layers 
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- Css, amount of sorbent (capacity) that is required to form a monolayer of the adsorbate,  

- D, diffusion coefficient 

- kf, Freundlich isotherm constants, 

- kl, Langmuir constant (it is a function of sorbent material, contaminant, and temperature) (m3 mg-1), 

- kp, partition or distribution coefficient or Henry’s constant, 

- MW, molecular weight (g mol-1), 

- qe, equilibrium adsorption capacity, 

- ΔH1, enthalpy of adsorption for mono layer, 

- ΔHL, enthalpy of adsorption for subsequent layers. 

 

Monolayer molecular adsorption occurs in micropores of solids, which has pore sizes not much greater 

than the adsorbate molecule size. Thus, the adsorption maximum capacity of a given sorbent is governed by 

the accessible micropore volume. 

Adsorption reactor model 

The following section describes the assumptions and equations used to evaluate the adsorption of selected 

contaminants on an activated carbon trap (reactor). A porous particle diffusion model is used, which involves 

the material balance equations in both the gas-phase and the pore phase [173]. The model adopted is composed 

by the mass balance equation for the bulk phase in a packed bed, the mass balance equation within the particle, 

the isotherm equation to describe adsorption capacity of material and the ideal adsorption solution theory to 

consider the competitive adsorption. Several assumptions were made to build the model:  

1. the adsorption process is isothermal; 

2. the axial dispersion is considered only longitudinally and not radially; 

3. the adsorbent particles are spherical and homogeneous in size and density; 

4. the external transfer coefficient depicts the mass transfer across the boundary layer; 

5. the intra-particle mass transport is characterized by the effective pore diffusion coefficient; 

6. the linear velocity of the gas phase is independent by the concentration; 

7. a local equilibrium condition is established between the gas concentration adsorbed and the solid particle.  

The equation of the model is a partial differential equation in space and time, which was also proposed 

by Rosen [196] and Rasmuson [197].  
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The axial dispersion term becomes negligible under certain fluid flow conditions. In fact, the contribution 

of this term can be neglected when the Peclet number is below 500, which is generally attained by the gas flow 

across the adsorbent media. By neglecting the diffusion term from the axial dispersion, the solution of the 

equation is strongly simplified.  

The accumulation term, , takes into account the mass transfer of the contaminant from bulk gas 

phase to solid phase. It represents the rate of adsorption, and it contains the transport kinetics of the 

contaminants. These conditions are related to the type of isotherm chosen and related coefficients. The 

necessity to know the porous media characteristics are crucial to developing a mass balance within the particle. 

This term can be written as follows:  

  (29) 

The boundary layer mass transfer coefficient, kfk, for packed bed can be calculated using the empirical 

formulation by Wakao-Funazkri [198] (see also Xiao et al. [165] for a recent application of this correlation). 

To obtain the rate of adsorption and to complete the equation, it is also necessary to evaluate the term C*. This 

term expresses the gas concentration that is obtained once the equilibrium capacity, qmax has been reached. The 

evaluation of this parameter is obtained using the Langmuir isotherm [199] or one of the other isotherm 

equations provided in Table 17.  

Multicomponent competitive adsorption 

In most practical adsorption processes, a mixture of vapors composes the adsorbed gas and therefore a 

multi-component adsorption phenomenon must be dealt with. As previously described, the species in the 

mixture having the higher adsorption capacity with regard to a specific adsorbent material may displace from 

the micro-pore volume the weakly adsorbed adsorbates thus modifying the breakthrough time of the system. 

This is the so-called roll-up phenomenon. Measurements of the adsorption capacities of multiple-component 

mixtures are therefore much more complex than for a single adsorbate, and the possibility of predicting 

multicomponent adsorption equilibria from pure component adsorption isotherms has been under investigation 

for many years in applied adsorption research. Therefore, extensions of several common single component 

isotherms were studied to model and approximate the entire phenomenon. Among them, the most known and 

used in the literature is the Extended Langmuir Isotherm Equation.  

The Extended Langmuir Isotherm (ELI) was first proposed by Markham and Benton [200]. This was the 

first attempt to develop a multicomponent adsorption model. According to this model, the equilibrium 

adsorption capacity of the i-vapor within the multi-component mixture also depends on all the Langmuir 

coefficients and concentrations of the other vapor species present in the mixture.  
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 𝑞𝑖(𝐶𝑖) =
𝑞𝑚,𝑖𝑘𝑖𝐶𝑖

1 + ∑ 𝑘𝑗𝐶𝑗
𝑁
𝑗=1

 (30) 

where the terms 𝑞𝑚,𝑖 and 𝑘𝑖 correspond to the pure gas Langmuir isotherm constants for component i. It 

is worth mentioning that the ELI model is not thermodynamically consistent, unless the values of 𝑞𝑚 are the 

same for all components in a gas mixture [201,202].  

A thermodynamically consistent approach was later proposed by Myers and Prausnitz [203], who 

developed the Ideal Adsorbed Solution (IAS) theory to evaluate the isothermal adsorption capacity for a multi-

component gas mixture. The IAS theory assumes that the Gibbs free energy definition also applies to the 

adsorbed phase. The IAS approach comes as an analogy of Raoult’s law for vapor-liquid equilibria applied to 

the multi-phase ‘gas-adsorbate’ phase’ system. The fundamental relation of the IAS model is: 

 𝑃𝑦𝑖 = 𝑃𝑖
°(𝜋)𝑥𝑖 (31) 

where 𝑃 is the total pressure in the gas mixture, 𝑦𝑖 is the gas molar fraction, 𝑃𝑖
°(𝜋) is the equilibrium gas-

phase pressure at the given solution temperature corresponding to the solution spreading pressure 𝜋 for the 

adsorption of the pure component i (the spreading pressure is the same concept as pressure simply transposed 

into a two-dimensional environment). 

Recently, Simon et al. [204] developed a computer program that solves the system of non-linear equations 

that derives from the application of the IAS theory to a multicomponent gas mixture.  

For the competitive adsorption between two vapors, the IAS equilibrium condition is given by the LeVan 

and Vermeulen equation [205]: 

 (32) 

The Langmuir equation of two compounds is: 

 
(33) 

where i = 1,2; and 1,2 is given by the following equation: 
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Typical gas clean-up configurations 

There are essentially three different gas clean-up configurations that are plausible for the gas treatment 

for SOFC applications: series, parallel and lead-and-lag configuration. For each configuration it is assumed 

that two identical columns of the same size are available.  

Series configuration 

For the series configuration, at least two columns are adopted. These columns increase the redundancy of 

the systems. The spent media is replaced simultaneously in both vessels once the effluent reaches the target 

breakthrough concentration. This configuration causes a plant stoppage that generates management issues.  

 
Figure 21. Biogas clean-up section: series configuration 

Parallel configuration 

Two columns of the same size with staggered replacement were used to represent parallel configuration. 

While in the “series” scheme, all columns are replaced simultaneously, for parallel arrangement the 

replacement is staggered to allow blending of the effluent from a newly replaced column and an old column. 

This approach was shown to reduce the adsorbent usage rate in many cases [206,207]. This configuration does 

not cause any plant stoppage, and it has no guarantee of trace compounds slipover.  
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Figure 22. Biogas clean-up section: parallel configuration 

Lead-and-lag configuration 

For the lead-and-lag configuration, two columns of the same size are also used. One column is placed in 

a “lead” position, while the other one serves as a “lag” or “guard” column. A sample breakthrough curve for 

two columns placed in a lead-lag is shown in Figure 24. The system continues operation until the effluent from 

the lag column reaches the target concentration. Then, the saturated Column 1 (left) is taken out of operation, 

and Column 2 (right) is put online as the new “lead”. The replaced, fresh Column 1 is installed in a “lag” 

position, providing polishing for the effluent from Column 2. The lead-and-lag configuration allows for 

continuous plant operation while also providing the extra adsorbent capacity to account for variations in 

operating conditions (such as temperature and the inlet concentration of the contaminant). 
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Figure 23. Biogas clean-up section: lead-and-lag configuration 

 

Examples of adsorption curves on activated carbons 

Adsorption curves for typically encountered commercial activated carbons for the removal of H2S are 

reviewed in this section. 

The pass through ratio (C/C0) is generally used to describe the pollutant removal with sorbent materials, 

where C is the gas bulk concentration and C0 the initial concentration, both in ppm(v). For fuel cell 

applications, this value was fixed at 1% and 10% in order to identify two reference concentration levels [208]. 

These two concentration levels were adopted to describe the nominal concentration and a maximum 

concentration level suitable for SOFC application, considering a biogas coming from WWTPs were generally 

the H2S level ranged from 60 to 200 ppm(v). These values represent the reversible pollutant concentration for 

SOFC applications, as reported elsewhere [121,154,209]. In the meantime, the pass through ratio at 10% can 

only generate irreversible issues for SOFCs.  

Papurello et al. studied the performance of the Airdep Carbox AC for fuel cell applications [210]. This 

material is an extruded activated carbon, activated with steam and impregnated with several metal (hydr)oxides 

(mainly MgO, KOH, and CaOH). A breakthrough time tb of 107 min for C/C0=1% was observed (Figure 24). 
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At the 10% level of C/C0, the tb was 111 min. Looking at the curve in Figure 24, we observe how the saturation 

level is reached soon after the initial breakthrough at C/C0 = 1%.  

 
Figure 24. Single compound removal – breakthrough time 

Papurello et al. [211] showed how the breakthrough time decreased when the initial concentration of the 

contaminant increases. By reducing the operating temperature from 45 °C to 5 °C, the removal performance 

of commercial carbons was improved [211]. Water vapor contained in the biogas was pre-adsorbed on the 

carbon that enters in competition with the organic vapor that has to be removed. This might result in a loss of 

adsorption capacity as well as a decreasing rate of adsorption. In fact, an RH value around 20% at 30 °C is still 

tolerable; here the adsorption capacity for two different commercial carbons was around 5 mg g-1 [211]. On 

the contrary, when the relative humidity value was above 50%, the adsorption capacity was close to zero [211].  

Generally, sorbent materials face the contemporary presence of more than one pollutant[185]. The 

phenomenon that might occur during the removal of more than one trace compound is called roll-up [212,213]. 

Figure 25 provides an example of the roll-up phenomenon; the graph shows the breakthrough for two different 

pollutants, namely C1 (H2S) and C2 (HCl) that are both present in the inlet biogas stream. The simultaneous 

presence of two (or more) vapors reduces the breakthrough time that each contaminant would reach if present 

alone in the feed. The reduced breakthrough time (tb) is because each vapor wave front moves faster (compared 

to the case with only one contaminant) through the bed as the two vapors compete for the same adsorption 

volume. Hence, the less strongly and previously adsorbed vapor will be partially displaced by the other, which 

might even result in a concentration at the exit gas of the previously adsorbed contaminant higher than the inlet 

value. In Figure 25, we observe how C2 first eluted after 64 min of continuous gas feeding, while C1 kept 

occupying free sites of the carbon for a longer time. This was due to the higher adsorption capacity at saturation 

of C1 (391 mg g-1) compared to C2 (238 mg g-1) (these values were measured in single-contaminant 
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experiments). At 169 min, C2 reached its maximum pass-through ratio value (105%); an outlet concentration 

higher than the inlet is possible since C1 vapor displaces part of the previously adsorbed C2 vapor. Gradually, 

C1 reaches the saturation condition of the carbon filter bed (i.e., the pass-through ratio is 100%). By the time 

C1 reaches saturation, C2 also approaches 100% of bed saturation.  

 
Figure 25. C1 and C2 co-removal in a Carbox activated carbon filter (reprinted with permissions from 

Balachia [214])  

Considering a more realistic case, in which the biogas from an anaerobic digester is filtered by either 

commercial or innovative materials, the adsorption capacities for H2S at 1 % were measured respectively as 

1.8 mg g-1 for activated carbons [186], 0.068 mg g-1 for ashes [215] and 1.05 mg g-1 for biochar [214]. 

Sisani et al.[182] studied the efficiency of H2S removal of H2S under simulated biogas flow conditions 

for different solid sorbents. They tested several commercial types of sorbents including steam activated 

carbons, either without impregnation, or with KOH, or Cu and Cr salts impregnation, activated alumina and 

zeolite. These materials are all good candidates, in principle, to reduce the sulfur level to ultra-low levels as 

required by the fuel cell.  

Results are summarized in Table 18. It is worth noting how natural sorbents show extremely poor 

performances, mostly related to their almost negligible micropore volume compared to activated materials. 

Finally, impregnation is confirmed to be a notable boost for the removal of H2S. This is true not only for AC, 

but also when alumina is used as support (see Table 18).  
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Table 18. The removal efficiency of different solid sorbents tested with H2S (results adapted from the work of 

Sisani et al.[182]). The adsorption capacity was expressed using a breakthrough concentration equal to 1 

ppm(v) and dry nitrogen as reference carrier gas. 

Sorbent material 
Micropore volume 

Vm (cm3/g) 

Adsorption capacity 

Cads (mg/g) 

Normalized adsorption 

capacity Cads/Vm (mg/cm3) 

Norit RGM1 (AC impregnated 

with Cu and Cr salts) 0.66 27.15 41.14 

Norit RB1 (non-impregnated AC) 0.44 1.71 3.89 

Desotec Airpel Ultra DS (KOH-

KI impregnated AC) 0.42 6.6 15.71 

Norit RBAA1 (KOH impregnated 

AC) 0.36 20.43 56.75 

Sepiolite (natural clay) 0.06 <0.1 - 

Zeolite ATZ (natural zeolite) 0.04 <0.1 - 

Alumina Galipur S (activated and 

KMnO4 impregnated)  0.01 1.56 156.0 

 

The adsorption curves for the different solid sorbents tested by Sisani et al. [182] are shown in Figure 26. 

It is worth noting how the curve becomes quite steep at breakthrough. In fact, as soon as the H2S is detected 

in the outlet gas, its concentration increases fast over time. 

 

Figure 26. Breakthrough curves of H2S on AC impregnated (Norit RGM1) with Cu and Cr salts; tests were 

performed using three different carrier gases (N2, CO2, and CH4) and an inlet H2S concentration of 1,000 

ppm (reprinted with permission from Sisani et al. [182]).  
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Experiments on sorbent materials are often conducted in dry anaerobic conditions. However, it was 

previously stated how gas humidity and the presence of oxygen in the biogas stream could drastically affect 

the removal efficiency of the tested material. Sitthikhankaew et al. [216] studied systematically the effect of 

humidity, O2, and CO2 on the adsorption of H2S on both AC and IAC. Results are summarized in Table 19. As 

expected, the presence of O2 comes with a marked increase in the adsorption capacity of the AC. The presence 

of CO2 in dry inert gas further reduces the removal capacity compared to inert gas only; this is due to the 

competitive adsorption of CO2 on the active carbon sites. Finally, the gas humidity is strongly enhancing the 

overall adsorption capacity of the sorbent. However, looking at breakthrough curves in Figure 27, we observe 

how the moisturized gas is not able to remove H2S entirely as in the case of oxygen presence. On the one hand, 

the overall sulfur capacity of the sorbent is augmented by the presence of moisture; on the other hand, sulfur 

is not completely removed. Hence, for fuel cell applications – for which ultra-low levels of H2S must be 

detected at the exit gas – the presence of moisture might be detrimental since a full removal of H2S is required. 

In a two- or multiple-reactor configuration and for biogas with a high H2S concentration, the presence of 

moisture in the first reactor(s) might be favorable for an initial H2S abatement. However, the following stages 

should foresee a dry gas for a complete sulfur removal. Finally, the simultaneous presence of humidity and 

oxygen provides the best performance (Figure 27). In the presence of moisture, sulfur removal is enhanced as 

the adsorbed H2S dissolves in the water film forming HS− and H+.  

Table 19. The removal efficiency of different solid sorbents tested with H2S (results adapted from the work of 

Sitthikhankaew et al. [216]). The adsorption capacity was expressed using a breakthrough concentration 

equal to 3,000 ppm(v), i.e., the inlet H2S concentration).  

Sorbent material 

Micropore 

volume Vm 

(cm3/g) 

Adsorption capacity Cads (mg/g) 

Dry gas 2% O2 40% CO2 70% RH 

AC (commercial) 0.45 1.1 4.00 0.7 28.4 

AC + steam activation 0.59 2.6 6.30 0.9 77.6 

AC + KOH 

impregnation 0.34 4.3 8.50 0.8 47.4 

AC + steam activation 

+ KOH impregnation 0.45 3.0 21.90 0.9 90.9 
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Figure 27. Breakthrough curves of H2S on AC impregnated (Norit RGM1) with Cu and Cr salts; tests were 

performed using three different carrier gases (N2, CO2 and CH4) and an inlet H2S concentration of 1,000 

ppm (reprinted with permission from Sitthikhankaew et al. [216]). 

 

 

The reaction mechanism proposed by Sitthikhankaew et al. [216] is the following (H2S adsorption and 

dissociation): 

H2S(ads) → H2S(ads − liq) (35) 

H2S(ads − liq) → HS−(ads) + H+ (36) 

H+ + OH− → H2O (37) 

 

The reactions involving oxygen are listed below: 

 

O2(g) → O2(ads) (38) 
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O2(ads) → O2(ads − liq) (39) 

O2(ads − liq) → 2O ∗ (ads) (40) 

The adsorbed oxygen is dissociated and thus can react with HS− ions to form one of the following sulfur 

species: S, SO2 or H2SO4. 

 

O ∗ (ads) + HS−(ads) → S(ads) + OH− (41) 

3O ∗ (ads) + HS−(ads) → SO2(ads) + OH− (42) 

O ∗ (ads) + SO2(ads) + H2O(ads) → H2SO4(ads) (43) 

 

The more compact reaction mechanism for H2S removal proposed by Bagreev and Bandosz [167], which 

is consistent with the previous set of reactions, is the following: 

Cf + 1 2⁄ O2 → C(O) (44) 

C(O) + H2S → Cf + S + H2O (45) 

S + xS → 𝑆𝑥+1 (46) 

S + O2 → 𝑆𝑂2 (47) 

  

Cf is an active site of the AC that is able to store atomic oxygen. It is worth noting that S might further 

react with O2 to form SO2 (which is an undesired emission). 

The mechanism of H2S removal on activated carbon in the presence of caustic impregnation is described 

further by Bagreev and Bandosz [167] as follows: 

KOH + H2S → KHS + H2O (48) 

2KOH + H2S → K2S + 2H2O (49) 

KHS + 1 2⁄ O2 → S + KOH (50) 

K2S + 1 2⁄ O2 + H2O → S + 2KOH (51) 
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Hydrogen sulfide is oxidized on basic centers of alkali earth metal oxides and sulfur is formed [169]. The 

last two reactions show how KOH is regenerated with O2 thus leaving elemental sulfur behind. Oxygen is thus 

fundamental to restore the catalytic activity of the impregnated AC. KOH can also react with H2S to form 

potassium sulfate (see reaction below).  

2KOH + H2S + 2O2 → K2SO4 + 2H2O (52) 

This is an undesired reaction as the catalytic site is consumed. 
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Discussion: guidelines for dealing with fuel contaminants 

The presence of contaminants in the fuel feed, even at ppm or sub-ppm levels, can drastically reduce the 

performance and lifetime of the catalytic and electro-catalytic active surfaces encountered in solid oxide fuel 

cells. Alternative fuels different from natural gas, such as landfill and anaerobic digestion biogases, contain a 

wide variety of micro-contaminants found in different amounts depending on the specific biomass or biowaste 

from which the biogas has been produced.  

Sulfur compounds (H2S and organic sulfur compounds) and organic silicon compounds (siloxanes) are 

the most relevant and critical contaminants when dealing with biogas. Therefore, we have extensively reviewed 

the origin, typology and the amount of these contaminants in different biogases in this work. Sulfur is mostly 

present as H2S in biogas and, despite high concentrations (i.e., thousands of ppm) can be found mainly in 

biogas from manure, food waste or diary waste effluents; the average concentration is often limited to a few 

tens of ppm in most of the cases (this is true especially for WWTP) thanks to in-situ abatement techniques that 

prevent the sulfur from reaching the gas phase.  

Siloxanes are instead found almost exclusively in landfill and sewage biogas. Often D4 and D5 

compounds make most of the overall silicon amount in biogas. Siloxanes derive from human-made products 

(such as detergents and cosmetics) that are discharged in the sewerage. 

 The critical point of biogas contaminants is that they can affect both the reformer of the fuel cell system 

(if present) and the fuel cell anode electrode. In both cases, the effect of sulfur is a relatively fast deactivation 

of the Ni active surface due sulfur coverage. Re-activation of the Ni surface is feasible at high temperature 

(800 °C), whereas at lower temperature a permanent degradation might be established. For what concerns 

siloxanes, a gradual accumulation of micro-silica deposits is instead observed, which is a non-reversible 

degradation process. Therefore, silicon contamination in the fuel feed is very detrimental for the operation of 

the fuel cell.  

Tars and hydrocarbons (which are more abundant in bio-syngas from biomass gasification, but they can 

be also found to a lower extent into biogases) are generally dangerous since enhanced carbon deposition is 

triggered by carbon species having C > 1. Halogens are not really critical for the fuel cell electrode. 

To provide a durable fuel cell system, a deep clean-up of the incoming biogas stream is required. Solid 

oxide fuel cell systems have been shown to be very sensitive to even trace amounts (ppb levels) of selected 

contaminants. Hence, a dedicated biogas clean-up upstream from the SOFC must be accounted for.   

Adsorption processes based on impregnated activated carbons seem to be the most effective solution for 

biogas purification. Siloxanes are easily removed reaching loading rates above 10 wt. % on AC. Sulfur (H2S) 

is effectively removed in the presence of some oxygen in the gas feed, which promotes its storage in the AC 

micropore volume. For biogas feeds with a very high inlet H2S concentration, in-situ abatement techniques 
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(either biological or chemical routes) should be applied. Otherwise, iron oxide based sorbents or activated 

carbons can be also employed (however, the frequent bed replacement and its disposal might be critical from 

an economic point of view).  

Since most of the high temperature fuel cell systems employ a either partial or full reforming of the inlet 

methane feed in order to provide the fuel cell stack with an anode feed rich in H2 and CO, the reformer (which 

is often based on Ni catalyst) is the first component that will suffer from fuel contamination. Therefore, an 

early identification of the onset of deactivation of the reformer might be used as proxy to avoid a more severe 

and extended degradation of the fuel cell stacks (which are generally more delicate and expensive). By 

monitoring the online outlet composition of the reformer, early deactivation could be easily identified and 

correlated to a malfunctioning of the upstream clean-up system.  
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Conclusion 

Biogas is a renewable fuel current exploitation of which lies well below the maximum potential. Biogas 

is available either as digester gas from the anaerobic digestion of putrescible organic matter – this is often wet 

bio-waste (e.g., urban and/or industrial sludge from wastewater treatment plants, manure, and food waste) or 

agricultural residues – or from landfill. 

Hence, we first introduced the opportunities for biogas exploitation in advanced high-temperature fuel 

cell systems and the competitive advantages of fuel cells against conventional machines (e.g., ICEs) in terms 

of higher electrical conversion efficiency and reduced emissions of CO2 and atmospheric pollutants. The 

appraisal of current biogas production trends and the potential for further production from different sources 

followed.  

We have then extensively reviewed a range of topics connected with the use of biogas in solid oxide fuel 

cells. The focus was on the biogas contaminants, which can degrade the fuel cell reformer and state-of-the-art 

Ni anode. The origin, amount, and type of different contaminants that might be found in biogases have been 

widely reviewed showing how siloxanes are particularly relevant for sewage biogas. H2S and other organic 

sulfur compounds are found instead at very high concentration in biogases from manure and food waste, while 

halogenated compounds (as well as siloxanes) are significant in landfill biogas.  

Processes and techniques for the removal of biogas contaminants have been discussed in detail. Solid 

sorbents – especially impregnated activated carbons – seem to be the most effective and proven solution for 

the ultra-deep purification of biogas (polishing stage). Indeed, the SOFC requires a high-purity fuel stream and 

the co-removal of different contaminants entails complex physicochemical phenomena and thus an optimized 

surface chemistry of the adsorbent material. Further research work is encouraged in this area to identify cost-

effective solutions for durable and reliable biogas clean-up from harmful contaminants.  

Degradation on the fuel cell reformer and the Ni-anode showed to be extremely severe in the presence of 

siloxanes, thus remarking the crucial role of having an effective biogas clean-up system. Even trace amounts 

(tens of ppb) of siloxanes can cause a severe and irreversible damage on both the Ni-reformer and SOFC. The 

impact of H2S is mild compared to siloxanes, and it is well understood. H2S is certainly detrimental to the 

reformer and SOFC performance, however, more in the form of a temporary (catalyst or electro-catalyst) 

deactivation rather than as an irreversible degradation as in the case of siloxanes. Finally, HCl is the less critical 

contaminant of those investigated. The impact on the SOFC performance is almost negligible. 
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