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Abstract

The constraint of energy consumption is a serious problem in wireless sensor networks (WSNs).

In this regard, many solutions for this problem have been proposed in recent years. In one line of

research, scholars suggest data driven approaches to help conserve energy by reducing the amount

of required communication in the network. This paper is an attempt in this area and proposes that

sensors be powered on intermittently. A neural network will then simulate sensors’ data during their

idle periods. The success of this method relies heavily on a high correlation between the points mak-

ing a time series of sensed data. To demonstrate the effectiveness of the idea, we conduct a number

of experiments. In doing so, we train a NAR network against various datasets of sensed humidity

and temperature in different environments. By testing on actual data, it is shown that the predictions

by the device greatly obviate the need for sensed data during sensors’ idle periods and save over 65

percent of energy.

Keywords: Wireless sensor networks, Neural networks, Data prediction, Power Consumption

1 Introduction

Wireless sensor networks are based on multilayered structure of interactive sensor nodes. Cooperation of

the nodes enables performing numerous operations such as event detection, target tracking, environment

sensing, security and elder people monitoring [1–8]. Scholars are currently struggling to increase short

lifetime of wireless sensor networks [4, 5, 9–14].

The problem, in fact, is rooted in limited energy resources available to sensors. Thus, energy con-

sumption should be efficient at all layers of sensors’ operation. To this end, it is advisable to reduce

power consumption at each and every level of system routines, network protocols, data processing, and

even hardware modules. In particular, there exist data driven approaches that propose data compression,

data prediction, and in-network processing [15–17].

Today, time series analysis is applied to a wide range of sciences including biology, physics, economy

and technology. Technically, time series is represented as an ordered set of vectors which are determined

as per the formula given below [18]:

y(t), t = 0,1,2, ... (1)

Practical aspects of time series forecasting can be found in a variety of related scientific articles and

publications. Any time Series forecast requires preliminary choice of the prediction strategy. This choice

should be made with due regard to the end objectives of the time series prediction, i.e. facilitating produc-

tion and activities. So far, time series method has proven useful for many areas. Specifically, time series
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forecasts are often required to solve problems in medical, econometric and engineering field. Accuracy

of predictions are often impeded by the chaotic behavior of time series. Hence the need to determine

the exact state of the analyzed domain in the beginning of experiment. Time series forecasts are mainly

conducted relying on Autoregressive (AR), Autoregressive Moving Average (ARMA) and Moving Av-

erage (MA) models. Nonetheless, neither of these linear models are suitable for application to non-linear

signals. Assuming that, the scientists found an alternative to linear module predictions. It was estab-

lished that Artificial Neural Networks (ANN) could assist predicting time series with better accuracy. As

a computational structure, ANN incorporates models which are based on biological patterns. Another

option is NN which exploits its non-linear constituent elements in order to select the most accurate data

hypothesis. These integral elements are joint by links with weights containing all data formulated in the

course of forecasting. NN’s exceptional capacity for aggravation and approximation operations gives it

an advantage over other networks in terms of predictions’ accuracy. Consequently, manufacturers have

already devised a number of neural network-based tools for generating statistics and modeling. Owing

to the properties of NN referred to above, neural network approaches have recently become highly ap-

plicable for time series forecasting. Accordingly, there are two major points which should be taken into

consideration while performing neural network based data readings [18]: a) intervals of data sampling

and b) sequence of points where sample data will be collected.

It is supposed these matters demand empirical solution. For the aims of this paper, we facilitated se-

lecting appropriate intervals and data sampling points by creating a new algorithm. The aforementioned

algorithm was developed upon comparison and analysis of data collected from a number of sources and

in variable circumstances. The optimized algorithm proposed by us was devised with regard to the prin-

ciple of lowering power consumption. This goal was achieved on account of reducing the volumes of

data involved in the sampling process.

In this paper, we concentrate on data prediction to conserve energy in wireless sensor networks. To

do so, sensed data is thought of as making a time series [19] where there may be a correlation between

the points. This fact serves as the rationale behind our method and implies that sensors could be powered

down in judiciously chosen time intervals. The correlation among the points would then allow predicting

of sensed data during sensors’ idle periods. To bring functionality to this idea, we make use of neural

networks from NAR model [20].

In accordance with the proposed method, prediction of data was performed via non-linear autore-

gressive network. Further on, this method was affirmed by conducting a series of empirical experiments

conducted within the frame of the research at hand. Sets of data collected specially for the experimental

part of the research included humidity and temperature parameters from real sources. Performance of

neural networks in differentiated circumstances was observed and assessed by us. In order to meet the

objectives of the study the neural network was fed by two delayed targets. As a result, the size of the

network’s hidden layer was gradually altered. The best prediction outcome was achieved upon feeding

the network 20 hidden layers’ neurons. In the parallel series of experiments the quantity of data inputs

was varied. Notwithstanding the increase in the input, the error rate had no sufficient decrease. There-

fore, it has been proven experimentally that the method tested during this study allows decreasing energy

costs in WSNs. The results show that the proposed method is very effective and saves over 65 percent of

the energy while preserving the qualitative characteristics of the test data. Further on, our method was

empirically through the experiments conducted within the frame of this research. The datasets employed

contain actual sensed humidity and temperature in different environments.

In our experiments, we do not employ a round robin scheduler to schedule sample acquisition in

sensors. Instead, a central control unit schedules sample acquisition in a nondeterministic manner. Thus,

it is not required to perform any supportive transmissions within the interval between any two sample

acquisitions in a sensor. It is also shown that there is no need for extensive knowledge of the deployment

domain so that optimizing the neural network’s parameters can merely be accomplished on the basis of

75



Conserving Energy Through Neural Prediction of Sensed Data Aram, Khosa, and Pasero

residual power volumes and sleep state periods. This approach is elaborated on in Section 3. Experi-

mental results are explained in Section 4. Section 5 discusses the method and the results obtained from

experiments. Section 6 concludes the paper.

2 Data Prediction approaches

Data readings in WSNs are often impeded by insufficient energy supply of the network. However, the

actual data which could be acquired from the nodes may be substituted by the predicted data, which is the

aggregate of the readings from one or several sensors. In [15] and [21] the authors analyzed three basic

approaches to data prediction, namely algorithmic, stochastic and time series forecasting methods. For

the purpose of our study, these three methods have been summarized in Figure 1 and discussion pertinent

to it.

Figure 1: A detailed taxonomy of Data Prediction schemes

The goal of data forecasting method is to substitute any real data with a model which applies pre-

dictions to respond to a set of relevant queries. For the purposes of testing the validity of a model, the

data is first subjected to regular sampling by sensor nodes and then compared against the forecast. Con-

sequently, validity is considered to be affirmed when the data prediction falls within the extent of set

thresholds and/or tolerances. In the contrary case, the sensor node will update the model in question

or use actual data sampled before. The structure of the model and its working principles usually define

which forecasting method would be compatible with it.

2.1 Stochastic Approaches

For the first time, the description of method for data forecasting applicable for WSNs was described

in [22] . The aforementioned technique involved a so-called ”probabilistic model”. In greater details, the

framework developed by the authors allowed wireless systems to exploit correlation-aware probabilistic

models while processing the queries. Upon incorporation of the model, it was no longer needed for the

system to make any direct connection to the network itself. Accordingly, the quantity of data transmis-

sions was sufficiently reduced. Though, the aim of the work referred to above was not confined merely

to reducing the data transfers but to find a means to cut down the quantity of required data samplings.
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Probabilistic model relies on the forms which apply stochastic characterization methods to statistical

properties and probabilities of the system. Basic techniques applied in this respect are as follows:

1) State space representation 2) Random processing.

Firstly, in the course of performing state space representation non-predictable components (noises)

are eliminated, which, in turn, enables predicting further coming samples. It is possible to randomize

the data, thus fitting it into the probability density function (herein - ”pdf”). PDFs generated this way

may serve as base for data prediction [23]. However, preliminary combining of PDFs with the sam-

ples acquired earlier is obligatory in such case. Secondly, labeling noises as unpredictable components

and excluding them from the transmission helps obtaining state space representation for the chosen phe-

nomenon. The approach addressed above may be illustrated by the Ken solution cited in [23]. This

solution is targeted at reconsideration of the technique used to process basic tasks on data collection,

such as, for example, ”SELECT” queries for collecting data and detection of anomalies. Following the

contemporary practices (such as BBQ [22]), Ken achieves desirable accuracy by relying on probabilistic

models. The key asset of Ken’s solution is its capability to ensure compliance of the predicted data with

the real value determined by sampling. At the same time, Ken helps shrinking the volumes of data sub-

jected to transferring. During the prediction each model involved in the data transfer is duplicated two

times: first time when it leaves the source, second time when it enters the sink. Following this scheme,

it becomes possible to acquire PDFs which correlates with specified attributes. Should the probabilistic

base model lose its validity, it will be automatically upgraded by the corresponding node. As soon as the

upgrade of the model is effected, the sink will receive new samples required for further updates. It should

be emphasized that models built with regard to temporal and special correlations may be used during the

training of Ken’s method with the same result as in case of using the ordinary models. This also refers

to the models devised to deal with the peculiarities of particular phenomena.

2.2 Time Series forecasting

Time series prediction is the second data prediction method which will be considered within the frame

of the research at hand. During the time series prediction most credible values of future transactions are

generated by analyzing values acquired from previous data samplings. In contrast both to probabilistic

and statistical methods, within duration of time series prediction only the internal data structuring is being

processed. The forecasting involves the following successive steps: 1) An error is randomly selected

and compared against the established pattern 2) The pattern is defined as regards its inherent features,

i.e. fluctuation, periodicity etc. 3) Generating prediction model is generated based on accomplished

characterization of the pattern.

Then it becomes possible to predict future values by analyzing the generated model. So far, time

series forecasting proves to be most compatible with non-complex basic models, such as, for exam-

ple, auto-regressive, moving average or combined techniques. In theory, the aforementioned models

may be substituted by more contemporary and more complicated solutions, for example, GARCH and

ARIMA [24]. However, in the case with WSNs more lightweight technique is preferred, since high intri-

cacy of the models threatens the stability of entire systems. [25] refers to PAQ which makes predictions

of future values dependent on the in-built autoregressive models, attributable to every sensor. During the

transmission, any immediate communication of the models with sensors is set aside. Instead, models

are processed by a sink node and predicted values are formulated. The sink is regularly updated to keep

up with any new developments on the models or acquisition of data on external readings. Upon imple-

menting this method the monitoring of sensors becomes more straightforward on account of dropping

mostly unnecessary communications. Also, error-bound rate of forecasted data remains within control

of WSN’s users. The prediction itself starts at the learning phase when values acquired previously are

used for generating appropriate model. Meanwhile, the sampled data is queued with the aid of the corre-
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sponding nodes. As soon as the queue is completed the model can be generated and transferred further

to the sink. In order for the model to be regarded as feasible the values obtained via it should not exceed

the acceptable rate of errors. In the opposite case, the system may follow the scenarios: a) Defining

outliers among the data sets and excluding them from the reading (marking the samples), b) Singling

out invalid models and forwarding the latter for recalculation (marking model). It should be mentioned

that the model is no longer valid when a sufficiently high quantity of readings performed within a series

overlaps the error threshold. Therefore, as soon as the update is completed, the model is directed back to

the sink.

Further on, in [26] the author overview another type of time series models known as Similarity-based

Adaptive Framework (SAF). SAF represents the combination of AR and a time-varying function. SAF

encompasses benefits that would be enlisted below: 1) It is efficient in performing value predictions for

the sensors which evaluate environmental parameters like humidity, temperature and others, 2) It has

low operational cost, 3) It is compatible with contemporary WSNs. Unlike PAQ, SAF is not devised

for performing repeated readings for the purposes of increasing precision of the prediction. Instead,

SAF seeks to prevent the involvement of highly noisy data and outliers in the readings. Moreover,

implementation of SAF allows forecasting the values disregarding abnormalities of their variations. This

is accomplished by way of including the trend component into the volume of data under sampling. This

feature of SAF contributes in the accuracy of performed prediction and extends the scope of detections

to discrepant data. There is a risk for the data to become inconsistent should any complications impede

the sensors’ calculation of models. Assuming that data degrade actually happens, the node will be

commanded to initiate the scenario for restoring the stability of the model.

2.3 Algorithmic Approaches

The following chapter on comparing methods for data forecasting is dedicated to heuristic models.

Heuristic models are also referred to as ”state transition models”. The task attributed to heuristic models

lies in selecting correct techniques for devising novel models or inputting updates on characterization

into currently valid models. There also exist some alternative models which can be tailored to technical

requirements of WSNs. [27] addresses one of the alternative solutions mentioned earlier. In particular,

the authors refer to Energy Efficient Data Collection (EEDC) mechanisms. It serves as an example of a

behavioral model. The role of EEDC may be described as conducting source-initiated updates. In the

course of source-initiated update, real value of sensed data is compared against the upper and lower node

bounds. The precision of performed readings is confirmed by calculating differences between these two

bounds. Later on, the sink distributes upper and lower bounds between the sensors which altogether

form the network. Further data acquisition envisages matching bounds to the acquired samples. If the

anticipated precision is not met, the sink would be immediately updated.

Besides, reduction of power consumption is also possible to achieve upon compressing the sensed

data. In [28] scientists provide overview for PREMON, which aims to observe different kinds of corre-

lations typical for the readings performed by spatially proximate sensors. Respectively, temporal, spatial

and spatial-temporal correlations may occur. PREMON method relies on the same principles as adopted

in compressing the size of videos. In other words, MPEG technique embraces on wireless sensor Net-

works’ behavior from the moment when sink receives their first readings. Here, the role of the sink is

to build a prediction model based on correlative properties. The sensors receive the model as soon as

it is devised. Similarly to other techniques discussed in this chapter, MPEG presupposes comparison

of the real values and predictions formulated by the model. If the discrepancy of the actual data and

predicted values is insignificant, there is no necessity to communicate the real value to the sink. Pursuing

the objective to increase the accuracy of predictions, model is occasionally annulled and new models are

created based on more recent data samples.
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2.4 Comparison

Among the aforementioned options, the stochastic approach is the most holistic and integrated solution.

Feasibility of the said method is widely acknowledged. Moreover, such technique offers new opportu-

nities for conducting data aggregation and other related high-level tasks. At the same time, the major

disadvantage of stochastic approach and/or similar methods is their excessive consumption of energy.

Our observations reveal that the stochastic framework is especially feasible when applied to many sen-

sors. In this respect, stochastic methods do not suit the purposes of the present study, which primarily

concentrates on low-power sensor networks. Yet, the computational cost of the stochastic framework

can be reduced with the aid of a distributed model which retains robustness of network without extra

energy losses. Referring to Algorithmic methods it should be highlighted that such methods cannot be

analyzed in the cumulate. There is no general concept of an algorithm. On the contrary, each algorithm

serves a certain purpose, the peculiarities of which should be considered in development process. Spe-

cific features of these algorithms, as said earlier, are mainly revealed during their practical application.

With regard to that, it is advisable to analyze each algorithm separately. Hence, Time series predictions

most effectively meet the particular goals of the study in question. Simple time series prediction usu-

ally runs at a moderate energy cost. In this regard, it has been proven experimentally that time series

forecasting may be performed on low power networks without compromising the accuracy of predicted

data. In the same vein, up-to-date technical solutions do not involve the whole amount of data in the

sensing processes before enabling a compatible model. As a result, sufficient computational reduction is

achieved. It should be also apparent that the extent of possible reduction is directly proportional to the

volumes of stationary data subject to sensing. Upon comparison of corresponding approaches, it appears

that Time Series predictions are most prevalent in the WSNs realm. During past ten years the scientists

who are working in this field have aptly compared the techniques designed for time series predictions

demonstrated in Table 1 and discussed in [21].

Table 1: Time series samples of data prediction

Predicting Method Samples Description

Dual Prediction Scheme(DPS)

or prediction approach based on,

Kalman Filter

[29–34] Agreement between node and sink with

threshold

Least Mean Square (LMS) [30–32] No Agreement between node and sink – No

prior knowledge

Moving Average or Autoregres-

sive based models (AR, ARMA

and ARIMA)

[21], [35],

[36]

Sink and sensors exchanging data and per-

forming prediction on both sides.

A hybrid model based on Grey-

Model-based and Kalman Filter

[37] -

Proportional Integral Derivative

(PID)

[38] -

“Send on delta” [39] Calculates the difference between the current

value and the predicted value.

Mean square error (MSE) [31], [32] Calculates the difference between the current

value and the predicted value.

Root mean square error (RMSE) [36], [40] Calculates the difference between the current

value and the predicted value. / Ratio reduc-

tion/RMSE.
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Today’s WSNs are capable of processing complex algorithms but the highly variable data should be

avoided for the sake of accuracy. In the meantime, WSN data prediction is usually performed via models

based on time series forecasting instruments, such as MA, ARMA [35] and GM(1,1) [41]. Addition-

ally, stochastic approaches have proved to be more effective in the cases when the probability density

model is tried on the data in laboratory conditions. Meanwhile, it is still impossible to disregard the risk

of computational overhead of the applied algorithms approaches. In view of the foregoing, this paper

aims to propose the time series based method of data reduction essential for decreasing energy consump-

tion during sensors’ communication. This objective is met by putting the network through meticulous

examination prior to selecting the appropriate time to commence interrogation of certain sensors.

3 Method

The efficient time series prediction of the sensor’s output is needed to achieve the goal of minimization

of power consumption by the sensor. The lower the communication, the less power will be consumed.

As discussed earlier, there are different kinds of time series prediction methods depending on the appli-

cable parameters and the practical usage. We have implemented a Nonlinear Autoregressive model for

prediction. This model is used for prediction of an output at time t by using the subsequent outputs as

shown in Figure 2.

Figure 2: Nonlinear Autoregressive model

In other words, the model provides the current target output by using target values at previous time

stamps. Practically, we used an Artificial Neural Network to make it learn from real values and then

predict for unknown input. An ANN is a network composed of large number of inter-connected units

called neurons. An ANN architecture may have one or more hidden layers, but typically one hidden layer

is sufficient to map any kind of linear as well as nonlinear approximation as shown in Figure 3 [42].
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Figure 3: A three layer artificial neural network architecture

Estimation of optimized number of neurons in the hidden layer is a vital task. Higher number of

hidden layer neurons may result as overfitting due to over parameterization. On the contrary, a small

number of hidden neurons may become insufficient to fit the data. Hence our approach employs an ANN

to learn from samples, while it is fed with inputs by following the NAR model where subsequent target

values are fed as inputs to predict the current one. The approach is used to prepare an efficient neural

network which after training may perform efficient time series prediction. Since the method makes use

of previous outputs to predict the current one, it is believed that sampling can be minimized if higher

prediction accuracy is achieved. Sampling or communication interval with the sensor can be reduced to

save power. Alternatively, the idle time is increased, and meanwhile the sensor’s reading is predicted by

the trained neural network. This idle time can be regulated according to the prediction error provided

by the neural network. More power can be saved by increasing the idle time if prediction error is lower.

Alternatively in case to higher error, frequent communication will be required, to maintain the accuracy.

3.1 Algorithm for efficient sampling

Our proposed solution’s artificial neural network architecture is shown in Figure 4; The dataset contain

sensor’s values for temperature as well as humidity. We used these sensor’s values as targets and cor-

responding time stamps as inputs. The temperature values vector [T1T2, . . . ,Tn] against n time-steps are

fed as input to the network. Initially, we employed the NAR model with two feedbacks. Hence the

network has two input neurons where two delayed feedbacks are provided for each of the target values.

Concretely, we introduced two (feedback) delays in the input layer to store the previous two values: Tj−1

and Tj−2 for the prediction of target value Tj at the jth time stamp. Therefore the network uses the

temperature values at two delayed timestamps to predict the current value (see equation 1) [42]. Learn-

ing of the neural network plays an important role in achieving optimum results. Back propagation is a

classic and widely used learning algorithm in neural networks. We used the Levenberg-Marquardt (LM)

algorithm [43] as the training algorithm of the classifier. This is a sophisticated form of gradient descent

back-propagation algorithm which performs nonlinear least square minimization. The mathematical de-
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tails of the LM algorithm are included in [44]. Parameters for network training are summarized in Table

2.

Figure 4: Block Diagram of overall Methodology

y
(

t
)

= F [y(t −1),y(t −2), ...,y(t −d)] (2)

Table 2: Network’s training parameters

Parameter Value

Minimum gradient threshold 1e−10

Initial learning rate (λ ) 0.01

Increasing ratio of λ 10

Decreasing ratio of λ 0.1

Maximum value for λ 1e8

For each set of temperature as well as humidity sensor, the data is divided as follows: 70% for

network training, 15% for cross validation, and the rest 15% for test purpose. The network is set to be

trained using the training data, and simultaneously to be optimized based on cross validation outcome.

In every iteration regularized cost for the training data is calculated as:

J(β ) = [−
1

m

m

∑
i=1

yilog(P(xi))+(1− yi)log(1− (P(xi))]+
λ

2m

n

∑
j=1

β j
2

(3)

Where xi represents the input feature vector for ith sample, yi represents target value of ith sample, λ

is the regularization parameter, set as 0.01, and β j represents the weight parameter for jth sample. P(xi)
represents the sigmoidal output for jth sample and is calculated as

P(x) =
1

1+ e−(β0+∑
n
i=1 βixi)

(4)
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During network training, the cost (equation 2) is reduced after every iteration. Weight parameters are

optimized after each iteration according to the LM algorithm. For the hidden layer, sigmoid activation

function (see Equation 3) is used whereas linear function is applied at output neuron. Training is set to

be stopped if either there are six consecutive increases in validation error or the gradient becomes less

than the selected threshold (see Table 2). After training, the trained network with optimized weights is

used to calculate the test data results.

Algorithms (1 and 2) for network training for efficient sampling are defined as follows:

Algorithm 1 Neural Network Training

Input: training data for n time stamps at input layer

Return sum

while Number of iterations = Max iterations do

Calculate cost J(β ), as in (3)

Calculate gradient of J(β ),
Compute the validation data errors,

Compute the no. of iterations c, if validation error continues

increasing

if c == 6 then

Stop training

else if gradient ¡ Min threshold defined then

Stop training

end if

end while

Test the network by using test data

Algorithm 2 Efficient sampling from sensor

Define: Max number of time stamps

while time stamps = Max time stamps do

Define no. of time stamps for sampling (opted equal to 2)

Define sampling interval (8 for Temp sensor)

if sampling interval ends then

Read data from sensor

if sampling sampling time ends then

Start prediction

end if

end if

end while

3.2 Data test bed

The algorithm was verified based on two types of data. Likewise, the proposed solution was analyzed

under different conditions of datasets, i.e. in the chamber and in the natural environment of the Neuronica

Laboratory of Politecnico di Torino.

83



Conserving Energy Through Neural Prediction of Sensed Data Aram, Khosa, and Pasero

Figure 5: The Bluetooth-based acquisition system

3.2.1 First Dataset

In [5], the choice of Texas Instruments MSP430F2132 is determined by its low power consumption. The

sensor Sensirion SHT21 was selected for the same reasons [4]. This Bluetooth-based sensor incorporates

3V lithium battery (CR2247). In the course of the experiment the environmental data was obtained via

three Bluetooth-based temperature and humidity acquisition systems and the experiment was conducted

in the controlled environment, in particular, in a climatic chamber with temperature range for climatic

test from -40◦C to +180◦C and Angelantoni Challenge 250. Initial environment of the chamber was

established as follows: a relative humidity of 50%; temperature of 25◦C. These circumstances were

maintained for the period of 10 min. Then the temperature was decreased until -20◦C. Its gradient

was set as -0.5◦C per minute. The lowered temperature was preserved within the chamber for about

10 minutes and then brought back to 25◦C. Then gradient was estimated as 0.5◦C per minute. At the

final stage of the experiment the stable temperature of 25◦C had been supported within chamber for 10

minutes. The sampling frequency of the wireless sensor network was set to a rate of one sample per

minute. The interval between two corresponding measurements was set to 60-second schedule.

3.2.2 Second Dataset

The second consequent sampling was performed to assess the temperature and humidity parameters via

Bluetooth-based tool in real conditions [11] (Figure 5). Sampling of the datasets was performed in the

laboratory, where carrier was used to move the sensors between the warm and cold sources. The data

reading at every source point lasted for about 2-3 minutes. In accordance with the scientific requirements,

the laboratory sources used in the experiment could vary their own temperature by 5C and humidity by

%10. Data readings were performed every 15s. The length of entire experiment was one-hour. The

stationary conditions of the experiment can be potentially reproduced in any ordinary environment.
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4 Result

We have 2 data sets obtained from temperature as well as humidity sensors placed in the indoor envi-

ronment covering a time span more or less of two hours with 96 samples. In addition, we have another

dataset composed of temperature values for 260 samples, recorded from the sensor placed in an environ-

mental chamber for 4.5 hours. This data can be assumed as noise free simulated data for the temperature.

We applied the sensor’s values as targets against time to the network and analyzed the time series predic-

tion response.

As we discussed earlier number of hidden layer neurons plays an important role in achieving the

optimized network accuracy. Few neurons in the hidden layer may underfit the data, while large number

of hidden neuron may lead to overfitting. Hence to estimate a good choice for hidden layer neurons, we

varied this number and analyzed the network performance. For each of the sensor’s dataset, we varied

the number of hidden neurons as 5, 10, 20 and30, and observed the performance with respect to mean

squared error (MSE). We introduced two feedback delays (two delayed values were fed to the network)

to predict the current value. The prediction response for the humidity sensor, data set 1, showing target

and the predicted outcomes for each timestamp is shown in the Figure 6. The error for each quantized

timestamp is also plotted at the bottom of each response (recorded with variable number of hidden layer

neurons). Similarly, the prediction response for humidity sensor, data set 2 is also recorded, shown in

Figure 7.

Figure 6: Time series prediction response of the neural network with the error plots for Humidity Sensor

1, Data 1 (Training data = 70%, Validation and Test = 15% each) by varying the size of hidden layer of

the network
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Figure 7: Time series prediction response of the neural network with the error plots for Humidity Sensor

1, Data 2 (Training data = 70%, Validation and Test = 15% each) by varying the size of hidden layer of

the network

It can be noticed that the samples belonging to training, validation and test data are inconsistent in

different results. This is due to random division of data before calculation of results. We recorded the

network prediction response for one sensor’s data. Then, we randomized the data and divided it again

into: training, validation and test data, and calculated the results again. The process has been repeated

five times, and an average outcome was calculated. Hence the presented results reflect the average

response of the network. We used the data sets obtained from both the sensors and recorded the network

performance. Figure 8 and Figure 9 represent the network prediction response for the temperature sensor

data: set 1 and data set 2 respectively. The response for the data acquired from temperature sensor

placed inside environment chamber is shown in Figure 10. The mean squared error (MSE) for each

of the sensor’s data is plotted against variable number of hidden layer neurons, presented in Figure

11. We recorded the network prediction response for each of the sensor’s datasets. If we consider the

network performance with a particular architecture, it can be seen that the network response is almost

similar for each of sensor’s datasets. The network shows good prediction even with fewer numbers of

hidden neurons (like in case of 5). With the increase in hidden layer size (selecting 10 hidden neurons),

the accuracy of the network is further increased. However, the maximum accuracy (corresponding to

minimum MSE) is achieved with 20 hidden layer neurons among the selected choices for hidden layer

size, for each of the datasets. Figure 11 (MSE plot) demonstrates continuous error reduction to 20 hidden

neurons. Later by selecting 30 hidden neurons, the mean squared error rate started to increase.
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Figure 8: Time series prediction response of the NN with the error plots for Temperature Sensor 1, Data

1 (Training data 70%, Validation and Test 15% each) by varying the size of hidden layer of the network

Figure 9: Time series prediction response of the NN with the error plots for the Temperature Sensor 1,

Data 2 (Training data 70%, Validation, Test 15% each) by varying the size of hidden layer of the network
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The problem of overfitting occurred here due to over-parameterization. This overfitting response

can be traced in all the sensor’s datasets with the choice of 30 hidden layer neurons.On the basis of

aforementioned results it can be concluded among the selected choices, 20 is acceptable quantity for

hidden neurons. This network architecture estimation was carried out by using two previous outcomes

in a NAR system. We wondered what could happen if we changed the number of inputs (delayed out-

comes). Thusly, we kept the hidden layer neurons equal to 20 (as estimated), and varied the number

of inputs to the network. We varied the number of inputs (subsequent output delays) as 1, 2, 3 and 4.

Further, we analyzed the network performance on the basis of variable number of input features (which

are delayed outputs, see Equation 1). We calculated the results in the same manner as in the previous

section. We recorded the network prediction responses for variable number of inputs, by keeping the

hidden neurons equal to 20. The (average) response of the network is recorded for each of the sensor’s

data and comparative results are presented by using different number of inputs to the network. Figure

12 and 13 demonstrate the comparative results for humidity sensor for data set 1 and data set 2 respec-

tively. Comparative results for temperature sensor data set 1 and 2 are presented in Figure 14 and 15

respectively. Figure 16 shows the results for temperature sensor of environmental chamber. Evidently,

network prediction response has improved for all sensor’s datasets by feeding more information to the

network. The best response is given by the network when 4 delayed targets are being used as input to the

network i.e. more information, better learning and higher accuracy. We calculated the MSE for each of

the sensor’s data against variable number of network inputs presented in Figure 17.

Figure 10: Time series prediction response of the neural network with the error plots for the Temperature

Sensor inside Environment Chamber (Training data 70%, Validation and Test 15% each) by varying the

size of hidden layer of the network
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Figure 11: Mean Squared Error plot for each of the sensor’s data against different number of hidden

layer neurons used in the network

In Figure 17, it can be observed that the error is reducing continuously with the increase in number

of inputs (by feeding more information). A large gradient in the error can be observed upon changing

the number of inputs from 1 to 2. However, there is a slight reduction in error with further increase in

number of inputs. Therefore by keeping the number of inputs more than 2 did not significantly improve

the accuracy. This typical behavior can be observed for all the datasets. Hence it can be concluded that

choice of number of inputs can be made equal to 2 since the error is not significantly reduced beyond this

number (see Figure 17). On the other hand the network showed higher error for humidity sensor’s data

due to its wider range. The temperature data range is comparatively smaller than that of humidity. Hence

for the same number of samples, the network performed better for temperature data. After estimating a

choice for number of hidden layer neurons earlier equal to 20, we are now interested in finding the best

trade off between the number of hidden layer neurons and the number of inputs to the network which

lead to an optimum solution.

Figure 12: Network prediction response with 20 hidden neurons by varying the number of inputs, Hu-

midity sensor 1, dataset 1
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Figure 13: Network prediction response with 20 hidden neurons by varying the number of inputs, Hu-

midity sensor 1, dataset 2

Figure 14: Network prediction response with 20 hidden neurons by varying the number of inputs, Tem-

perature sensor 1, dataset 1

Figure 15: Network prediction response with 20 hidden neurons by varying the number of inputs, Tem-

perature sensor 1, dataset 2
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Figure 16: Network prediction response with 20 hidden neurons by varying the number of inputs, Tem-

perature sensor kept inside environmental chamber.

Figure 17: Mean Squared Error plot for each of the sensor’s data against different number delayed

outcomes used as input to the network

To estimate the existing margin of error in the network setup, we calculated the Mean Absolute

Percentage Error (MAPE). It provides an estimate of an average unsigned percentage error exist in the

network, and is useful to estimate the error with the tolerable margin. We calculated the MAPE as;

MAPE =
1

n

n

∑
k=1

∣

∣

∣

∣

Tk −Pk

Tk

∣

∣

∣

∣

∗100 (5)

Where TK represents the target value for timestamp k, and Pk represents the corresponding predicted

value, and k = 1,2,3, . . . ,n for n number of samples.

The MAPE plot against variable number of network inputs for all data sets is presented in Figure 18.

We can see that this percentage error plot response is similar to the error plot in Figure 16. The minimum

percentage error was recorded when 4 inputs fed to the network. Once again it can be observed that

reduction in MAPE by choosing more than 2 inputs is very small. Thus, restricting the number of inputs

to 2 with 20 neurons in the hidden layer seems to be a favorable solution.
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Figure 18: MAPE plot for each of the sensor’s data against different number of network inputs

We also calculated the error margin by reducing the size of the network. Figure 19 shows MAPE

calculated by choosing different sizes of hidden layer of the network. It is noted that although the error

is higher with fewer hidden neuron (5 neurons), however the error gradient by switching from 5 to 20

remains significantly low. With this results we can make a general conclusion that in case of larger

tolerable error margin, even a network with few hidden neurons is choosable.

Figure 19: MAPE plot for each of the sensor’s data against different number of hidden layer neurons

used in the network

5 Discussion

We used the neural network for time series prediction of the sensor’s data. For this purpose, Non-linear

Auto Aggressive (NAR) network was chosen. For information, NAR network performs time series

prediction by using the target values at subsequent delayed time stamps as inputs, and predicts the value

at the current time stamp.

We recorded the actual data from the sensors for humidity and temperature and used this data with

the network for prediction. A couple of datasets with 96 samples were derived from each of the sensors

in a time span of 2 hours. In addition, we obtained 260 samples from another temperature sensor, placed

in an environmental chamber. We altered the temperature inside the chamber and recorded the sensor’s

values by communication with the sensor. Initially, we analyzed the performance (based on mean squared

error) with the aforementioned data to estimate a network architecture with optimum choice of hidden

layer neurons. The network performance was better for temperature sensor data, set 1 and set 2, which
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correspond to indoor environment readings and range between 15C and 42C (∆ = 27C). There was

no significant improvement recorded in accuracy with the increase in hidden layer size. The network

showed good performance with fewer hidden layer neurons. On the contrary, the error recorded for

humidity sensor data (ranges 20-90, ∆ = 70) was higher. The range of humidity data is quiet larger than

that of temperature with the same number of samples. Consequently for humidity sensor, the network

performed better with larger hidden layer size. The environmental chamber’s sensor data contains large

number of samples with linear change in temperature, so the network outperformed for this data even

with the smallest network size.

Later, the data was used to analyze the network performance by altering the size of input data fed to

the network. To this extent, the NAR network predicts the time series by using the target values at sub-

sequent delayed timestamps. While keeping the hidden layer size equal to 20, the network was fed with

1, 2, 3 and 4 subsequent delayed targets alternatively, and the performance was recorded. Continuous

reduction in the error was observed as a result, however it was not significantly reduced by using more

than two inputs.

With 20 hidden neurons and feeding 2 delayed target values as input, we calculated the Mean Ab-

solute Percentage Error (MAPE) to estimate the error margin projected by the network. The network

showed the MAPE up to 1.6% for the indoor temperature sensor and 2.2% for the indoor humidity sen-

sor overall. At the same time, the average error margin for the sensor in the chamber was recorded as

2.4%. It can be thus concluded that the network provides lower error disregarding its small architecture.

The reduction in percentage error by increasing the hidden layer size is less than 1% for humidity sensor,

and even lesser for temperature sensor. Hence, keeping the number of inputs equal to 2 with 20 hidden

neurons produces the optimized results. However, the network can be arranged with five hidden neu-

ron by compromising 1% of error. This can be adopted to improve computational efficiency in the case

where the large error margin is allowed.

Regarding the power saving, it is obvious that less communication with the sensor corresponds to

more power saving. By selecting the optimum network architecture with 20 hidden neurons, test set data

prediction is carried out for every sample by using two delayed feedbacks as input. Hence to predict a

target value (of temperature or humidity) with the aforementioned accuracy, the network requires target

values at previous 2 timestamps. In this way 66.6% is the communication time to get 2 samples (in

which sensor is communicating), while 33.3% is the prediction time (for which target is predicted).

Then for each next sample, target can be predicted by using last 2 values (by feedback). This time series

prediction can be continued as far as error remains within threshold. Since the gradient of temperature

in an indoor environment is small, it is possible to minimize communication time with the sensor and

maximize prediction time (by the network) to save more power. By fixing the communication period

equal to 8 time stamps (supposing tn as nth time stamp), the communication time is 25% (2/8*100)

at t1 and t2. The idle time is 75% (6/8*100) where prediction is carried out at t3-t8 by feeding back

subsequent outputs. For t3, the prediction error is the lowest (as mentioned) since sensor’s readings are

used for prediction, whereas for t8, the error will be the highest. This is due to predicted outcomes are

being used as inputs to predict. For the humidity sensor where there is a large range of observations, the

idle time can be reduced to maintain the accuracy. Therefore, we can conclude that for the temperature

sensors, up to 75% of power can be saved with an error margin of 2.6% (1.6% by network + 1% of the

sensor) for single prediction. Similarly for the humidity sensor, 66% of power can be saved for predicting

once in 6 timestamps, with an error margin of 3.2% (2.2% by network + 1% of the sensor). For the other

temperature sensor inside the environmental chamber, 75% of power can be saved within an error margin

of 3.6% (2.6% by network + 1% of the sensor).
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6 Conclusion

We devise a data driven approach to reduce power consumption in wireless sensor networks. The method

is based on the prediction of sensed data using non-linear autoregressive neural networks. Evaluation is

also performed using the actual data obtained from temperature and humidity sensors. The performance

of the network is assessed under different conditions. In fact, we feed two delayed targets to the network

and change the size of the hidden layer. The results imply that the most accurate forecast is obtained with

20 hidden layers. Another observation pertains to the number of inputs. The results show that increasing

the number of inputs does not lead to a significant decline in the error rate.

The experiments conducted in this research indicate that our method substantially reduces power

consumption in wireless sensor networks. Implementing the proposed method in real-life sensor net-

works will help prevent unnecessary sampling and, in turn, will reduce energy and costs. There is still

much to be done. More theoretical work on the proposed method is required. Likewise, characterizing

the environments for which the method leads to satisfactory results deserve future research.
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