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Using a data sample of 448 x 10° +(3686) events collected with the BESIII detector operating at the BEPCII
storage ring, the decays 1(3686) — 1 and t)(3686) — ~m are observed with a statistical significance of
7.30 and 6.70, respectively. The branching fractions are measured to be B(1(3686) — 1) = (0.85 £0.18 +
0.05) x 1075 and B(+(3686) — y7°) = (0.9540.1640.05) x 10~°. In addition, we measure the branching
fraction of 1(3686) — v’ to be B((3686) — vn') = (125.1 £2.246.2) x 1075, with improved precision

compared to previous results.

PACS numbers: 13.20.Gd

I. INTRODUCTION

Radiative decays to light hadrons comprise a substantial
fraction of the decays of vector charmonium states, e.g.,
6% for J/v and 1% for ¢ (3686) (1] with respect to their
total width. In previous experiments, only about 10% of
the expected J/v¢ and v (3686) radiative decays have been
observed exclusively [E]. Within the framework of Quantum
Chromodynamics (QCD), radiative decays of the vector
charmonium states proceed predominantly via the emission
of a real photon from the ¢ or ¢ quark, followed by the cc
annihilation into two gluons.

Various phenomenological mechanisms, such as 7.- “)
mixing [E, ], final-state radiation by light quarks [@, 7{3],
and the vector-meson dominance model in association with
ne-n"") mixing l6], are proposed to explain the properties of
charmonium state radiative decays to a pseudoscalar meson.
Measurements of these charmonium radiative decays provide
important tests for the different theoretical predictions.

The ratio Ry, = % has been predicted based

on the first-order perturbative QCD calculation, and

B . .
Ry (3686) = % is expected to be approximately

equal to Ry (3686) = Ry [Ij]. The decay rates of J/« and
1(3686) — ¥ are expected to be smaller than those of .J /1)
and 1 (3686) — ~n or yn’ as a consequence of suppressed
gluon coupling to isovector currents. By assuming that the
partial widths of J/i¢» — ~n and ~7 are saturated by the
1.-1 mixing, the predicted branching fractions of .J/¢ —
and yn’ were accounted for to the correct orders of magnitude
in Ref. [9].

The CLEO experiment [10] measured the branching
fractions of J/v and (3686) decays to 7%, ~n, and vn’
using a data sample of 27 x 10° +(3686) events, and found
a large value for the ratio R;/, = (21.1 & 0.9)% while
Ry (s6s6) < Ry with Ry 3636y < 1.8%. The most recent
experimental results from the BESII Collaboration ]
confirmed the small value of Ry (36s6) and made a first
measurement of the branching fraction B(1)(3686) — ~7°)
to be (1.58 + 0.4(stat.) + 0.13(syst.)) x 1076 based on
a data sample of 106 x 10° 1)(3686) events. These results
suggest a deviation from the saturation assumption (9] and
imply that some other mechanisms may be important in
1(3686) radiative decays to a pseudoscalar meson (P).
Reference [Ia] discusses decay mechanisms in the framework
of the vector-meson dominance model associated with 7.-n(")
mixing in order to interpret the difference between J/1)

and 1(3686) radiative decays to a pseudoscalar meson and
predicts B(1(3686) — ~7Y) = (0.07 ~ 0.12) x 107°.
Reference [[12] predicts B(1)(3686) — y7°) ~ 2.19 x 1077
in the framework of the vector-meson dominance model.

The BESIII detector [[13] has accumulated (106.9 4 7.5) x
105 and (341.1 + 2.1) x 10 decays in 2009 and 2012,
respectively, adding up to a total of 448 x 10 ¢)(3686) events,
corresponding to an integrated luminosity of 509.4 pb~1.
The number of (3686) decays was determined by counting
inclusive hadronic events [d@] The results reported in
this paper are based on the complete 1/(3686) data sample
collected with BESIII and thereby supersede the previous
measurements [[L1].

II. BESHI DETECTOR AND MONTE CARLO
SIMULATION

The BESIII detector is described in detail in Ref. [@].
The detector is cylindrically symmetric and covers 93% of
the solid angle around the interaction point (IP). The detector
consists of four main components: (a) a 43-layer main
drift chamber (MDC) provides momentum measurements for
charged tracks with a resolution of 0.5% at 1 GeV/c in
a 1 T magnetic field. (b) a time-of-flight system (TOF)
composed of plastic scintillators has a time resolution of
80 ps (110 ps) in the barrel (endcaps). (c) a 6240-cell
CsI(Tl)-crystal electromagnetic calorimeter (EMC) provides
an energy resolution for photons at 1 GeV of 2.5% (5%) in the
barrel (endcaps). (d) a muon counter consisting of 9 (8) layers
of resistive plate chambers in the barrel (endcaps) within the
return yoke of the magnet provides a position resolution of
2 cm. The electron and positron beams collide with an angle
of 22 mrad at the IP in order to separate the e™ and e~ beams
after the collision.

Monte Carlo (MC) simulations are used to study
backgrounds and to determine the detection efficiencies.
The GEANT4-based [IE] simulation software, BESIII
Object Oriented Simulation Tool (BOOST) [17], contains a
description of the detector geometry and material as well as
records of the detector running conditions and performance.
An ’inclusive’ MC sample consists of 506 x 10° generic
1(3686) events, where the (3686) is produced by the
KKMC ] generator and its measured decay modes are
simulated by BESEVTGEN (19 by setting the branching
fractions of known decays according to the Particle Data



Group (PDG) (8], while the remaining unknown decay
modes are simulated by LUNDCHARM[20]. The signal
events 1 (3686) — ~P are generated according to the
helicity amplitude model HELAMP with the options
(1,0,—1,0) [19], where the options indicate the amplitudes
for different partial waves. In the analysis of 1) (3686) — 1,
the prominent decay mode n — <7 is not selected, since
it suffers from the huge Quantum Electrodynamics (QED)
background ete™ — v~ and, as a consequence, from poor
statistical significance. The other two prominent decay modes
n — w70 and 707070 are selected. In the analysis of
1¥(3686) — 1/, the 1’ is reconstructed in its decay modes
n' — 777 n and 7°7%) with n — ~+, which have identical
final states as those in the analysis of ¥ (3686) — ~7. Many
of the systematic uncertainties on the detection efficiency
are correlated in the two analyses and will cancel in the
measurement of 12 (36s6)- In the MC simulation, the decays
of ¥ — wmn and n — 7wrw are generated according to the
measured Dalitz plot distributions (21, 22]. In the analysis
of 1(3686) — 70, the 7¥ signal is reconstructed with its
dominant decay mode 7 — ~, and the corresponding decay
is described in the MC simulation with a uniform distribution
in phase space.

III. ANALYSIS OF 1(3686) — vn’/n/mw°

Charged tracks are reconstructed from hits in the MDC. The
polar angle of each track must satisfy |cos 6] < 0.93. Tracks
are required to originate from the IP within =10 cm along the
beam direction and within 1 cm in the plane perpendicular to
the beam. All selected charged tracks are assumed to be pions.

Photon candidates are reconstructed from isolated clusters
in the EMC. The deposited energy is required to be larger than
25 MeV in the barrel region (Jcosf| < 0.80) or 50 MeV
in the endcap regions (0.86 < |[cosf| < 0.92). The
energy deposited in the nearby TOF counter is included to
improve the reconstruction efficiency and energy resolution.
To eliminate clusters associated with charged tracks, the angle
extended from the IP between the extrapolated impact point of
any charged track in the EMC and a photon candidate has to
be larger than 10 degrees. For the decays including charged
particles in the final states, the timing of EMC clusters with
respect to the event start time is used to suppress electronics
noise and photon candidates unrelated to the event. For the
decay with only neutral particles in the final states, the timing
requirements are not applied because of the poorly defined
start time.

Candidate 7° and 7 mesons that do not originate from
the v(3686) radiative decay are reconstructed from pairs of
photons. The invariant mass M () is required to be within
[0.120,0.150] and [0.522,0.572] GeV/c? for these 7 and 7
candidates, respectively.

A. Decay 1(3686) — vn’

Candidate ' mesons are reconstructed in theire decays to
atm~n and 7%7%). We require that there are no additional
charged tracks and the number of photon candidates is less
than 9. The photon with the largest energy is regarded as the
radiative photon. Events in the range 0.80 < M (7w7n) <
1.10 GeV/c? are kept for further analysis, and the 7’ signal
region is defined as 0.92 < M (mmn) < 0.98 GeV/c?. To
reduce the backgrounds and to improve the mass resolution, a
four-constraint (4C) kinematic fit is applied to the final state
particle candidates, constraining the total four-momentum
to the initial values of the colliding beams. The Y3 is
required to be less than 80. If more than one possible
combination is found in an event, the one with the smallest
Xjc is retained. For ' — 77%, we define a variable
Xir,, = (M(7172)=My0)? 0% +(M (y374) = Mro)? /020 +
(M (v56) —M,)? /o2, where M (i) is the invariant masses
of the photon pair 7;7;, Mo and M, are the nominal mass of
the 7° and 7 taken from the PDG [[], and 0,0 = 4.8 MeV/c?
and o,) = 8.7 MeV/c? are the corresponding mass resolutions.
If there are multiple photon combinations in 7% and 7, the one
with the least x7, s retained.

To check the contribution from the continuum process
ete™ — 1/, we use 44 pb~! of data collected at a center-
of-mass energy /s = 3.65GeV [14). No event within
the 7 signal region passes the / — 797 and ¥ —
w71 selection criteria. Therefore the background from
non-resonant production is negligible. For the charged decay
mode ' — w71, we use the events in the 1 sideband
region, [M,, — 90, M,)—60] and [M,,+ 60, M, +90], to check
the contribution of non-7 backgrounds. The investigation
shows that this kind of background distributes uniformly in
the region of interest in the 77~ 7 invariant mass spectrum.
A study of the inclusive 1)(3686) MC sample reveals that
the channels 1(3686) — w7~ J/¢ with J/¢ — ~n and
1(3686) — ynmT 7~ are the dominant backgrounds with an
7 in the final state. The channels 1/(3686) — 7°7".J /¢ with
J/p — ~n and ¥(3686) — nJ/¢ with J/¢p — ~n and
n — 707%70 are the main backgrounds in the neutral mode,
n' — 7%7%. The contribution from v(3686) — ynm 7Y is
negligible because of the small branching fraction. All of the
above backgrounds distribute smoothly and do not produce
peaks in the vicinity of the 7’ signal in the 777 invariant mass
spectrum, M (77n).

Figure [I shows the M (wmn) distributions for selected
atm~n (left) and 7%7% (right) candidates. Prominent 7’
signals are observed in both decay modes. To determine the
signal yield, a simultaneous unbinned maximum likelihood fit
is performed to the mass spectra of both decay modes. The
ratio of the number of 7+ 7~ signal events to that of 7077

Eﬂ+ﬂ7n~B(77l*>Tr+7T7’l7)
€200, B(n'=m070n)-B2(x0—~7)’
where B(n' — 7/%7=/%)) and B(n® — ~v) are the
branching fractions taken from the PDG (8], and €xtm—n =

signal events is fixed to be




30.8% and €00, = 9.0% are the respective reconstruction
efficiencies determined from signal MC simulations. In
the fit, the signals are described by the MC-determined
shapes convolved with a Gaussian function representing the
remaining discrepancy between the data and MC simulation,
where the parameters of the Gaussian function are left free in
the fit. The backgrounds are described with an ARGUS ]
function with the threshold parameter fixed slightly below the
kinematical limit to take into account the finite experimental
resolution on the 7 and 7¥ masses. The fit results are shown
in Fig.[Il and the goodness-of-fitis x?/d.o.f = 74.7/48. The
signal yield of ¢ (3686) — ~n' corrected for reconstruction
efficiency and the subsequent decay branching fractions is
56053.5 £ 980.8, where the error is statistical only.

B. Decay ¢(3686) — vn

The 7 candidates in the decay ¢(3686) — ~n are
reconstructed using the prominent decay modes w7 7°
and m797Y. The event selection is similar to that of the
1¥(3686) — ~yn' analysis, since they have the same final
states, except that we do not apply the requirement of the
angle between charged tracks and isolated photons because of
the higher momentum of the n candidates. As a consequence,
the photons from the 7° decay can be close to the charged

pions.

For 9(3686) — ~n with n — 777~ 7, the main
backgrounds come from the tail of continuum process
ete”™ — ~vrsrw, which is studied using the data taken
at /s = 3.65 GeV. The 77~ 7" mass spectrum for the
continuum process is flat and the expected number of events
is 251.6 & 58.8. The backgrounds from )(3686) decays are
examined with the 506 M inclusive MC sample. Only one
such event survives, and this class of background is therefore
ignored. For 1)(3686) — ~vn with n — 707%7°, the possible
peaking background is from the decays 1(3686) — ~yxcs
with xe7 — n(7°707°)n(v7), which is expected to produce
0.6 £ 0.1 events in the signal region according to the MC
simulation. Therefore, this source of background can be
ignored. The background from the continuum process,
studied with the data taken at /s = 3.65 GeV, is expected to
contribute less than one event, and is also ignored.

The M (mw7rm) invariant mass is used to determine the signal
yield of ¢(3686) — ~mn. Figure [2] shows the distribution
of M(nTn=70) (left) and M (77 %) (right) for selected
ata~ 70 and 707070 candidates, respectively. A clear peak
for the 7 signal is seen in both M (7wwm) distributions. The
signal region is defined as [0.522, 0.572] GeV/c? and the fit
range is [0.380, 0.700] GeV/c®. A simultaneous unbinned
maximum likelihood fit is applied to the M (7T 7~ 7") and
M (7°7°7%) spectra. The ratio of the number of 77~ 7

signal events to that of 77070 signal events is fixed at
eﬂ+ﬂ,ﬂovl§(n—>7r+7r77r0)
€.0,0,.0 B(n=a>m0n070).B2(70—~v)"

wVrln

where B(n — nwrw) and

B(7® — ) are the branching fractions quoted from the
PDG [E]; €rtn-n0 = 29.0% and € 00,0 = 12.1% are the
reconstruction efficiencies determined from the signal MC
simulations. In the fit, the signal is described with the MC-
determined shape convolved with a Gaussian function, where
the parameters of the Gaussian function are fixed to those
obtained in the simultaneous fit for ¢)(3686) — ~n’, which
has the same final state and higher statistics. The background
is described with an ARGUS function, where the threshold
parameter is fixed to the sum of the mass of the three pion.
The fit results are shown in Fig. 2] as solid curves. The signal
yield of 1(3686) — ~yn after correcting for efficiency and
the subsequent decay branching fractions is 382.5 £ 78.9,
where the uncertainty is statistical only. The goodness-of-fit
is x?/d.o.f = 16.6/11, using only bins with at least seven
events. The statistical significance of (3686) — ~n is
7.30 by comparing the likelihood values of the fits with or
without the 7 signal included (A(InL) = 27.0) and taking
into account the change in the number of degrees of freedom
(A(d.o.f) =1).

C. Decay 1)(3686) — y°

To select candidate events for the decay (3686) — y7’,
the events are required to have exactly three reconstructed
showers and no good charged tracks. To suppress the QED
background ete™ — yv(y15r), only photons in the barrel
region (Jcosf| < 0.8) are accepted. A 4C kinematic fit
is performed, and the X% is required to be less than 40.
The most energetic photon is regarded as the radiative one.
To further suppress the QED background, the cosine of the
helicity angle of the 7°, which is defined as the angle between
the momentum direction of the more energetic photon in the
70 rest frame and the 7° momentum in the v(3686) rest
frame, is required to be less than 0.7.

Based on a study of the continuum data at /s = 3.65
GeV and the inclusive MC sample, we find that the eTe™ —
vv(v1sr) processes contaminate the signal. One of the
photons converts into an eTe™ pair, which are misidentified
as two photons if the track finding algorithm fails. To remove
this kind of background, we require fewer than eight hits in
the MDC in the region between the two radial lines connecting
the IP and the two shower positions in the EMC. According
to MC studies, almost all of peaking background caused by
the gamma conversion process in the ete™ — v+ events
can be rejected with only a 2.7% loss in the signal efficiency.
The other backgrounds are the decays ¢ (3686) — yxcs
(J = 0,2), with x.; — 7°7°, which produce a peak in the
signal region in the two-photon invariant mass. According
to MC simulations and using the well-measured branching
fractions quoted in the PDG [{8], the background is expected
to be 36.7 £ 1.7 events.

Figure [ shows the M (yy) spectrum for selected
1(3686) — 7V candidates. A clear peak from the 7° signal
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is observed. An unbinned maximum likelihood fit to the
M (~y) distribution is performed to detemine the signal yield.
The fit function consists of three components representing
the signal, a smooth background from ete™ — yy(yrsR)
events, and a contribution from (3686) — ~x.s decays
with x.7 — 7070, The signal is modeled by a MC simulated
shape convoluted with a Gaussian function representing
the resolution difference between the MC simulation and
the data. The parameters of the Gaussian function are
left free in the fit. The shape parameters of the smooth
background are determined from the MC simulation and
the magnitude is determined by the fit to data. The size
and shape of the contribution from (3686) — ~xcs
decays with y.; — @7% are fixed according to the
expectation from MC studies. The results of the maximum
likelihood fit are shown in Fig. (] and the goodness-of-fit
is x2/d.o.f = 40.6/46. The signal yield after correcting
for the efficiency, which is 36.8% according to the MC
simulation, and the subsequent decay branching fraction is

423.4 4 71.4, and the statistical significance of the 7° signal
is 6.70 (A(InL) = 26.1, A(d.o.f) = 3).

In the above three analyses, the branching fractions are
obtained using the signal yields NG, corrected for the
detection efficiency and the subsequent branching fraction,

and the total number of 1)(3686) events N;ﬁg%%) according

N(‘Ol"
to B = e - The results are summarized in Table[ll

tot

IV. SYSTEMATIC UNCERTAINTIES

The main sources of systematic uncertainty in the
branching fraction measurements stem from the data-
simulation differences in the track reconstruction efficiency,
the photon detection efficiency, the 7 and 7° reconstruction
efficiency, and the kinematic fit, and the uncertainties from



TABLE I. A comparison of our results with previously published BESIII measurements. NV,

cor

sig 18 the signal yield, corrected for efficiency and

subsequent branching fractions, as obtained from the fits. The statistical significances are presented as well.

Decay mode |Significance

sig. B(1(3686) — vn'/n/7")

Previous results from BESIII [11]

¥(3686) — yn'| > 100
1(3686) — v 7.30
$(3686) — yr°|  6.70

382.5 £78.9
4234+ 714

56053.5 £ 980.8 (125.1 £2.2+6.2) x 10 °
(0.85 +£0.18 £ 0.04) x 107°
(0.95 +0.16 £ 0.05) x 10~°

(126£3+8) x 10°°
(1.38 +0.48 £0.09) x 107°
(1.58 +0.40 £ 0.13) x 107°
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FIG. 3. (color online) Unbinned maximum likelihood fit to the

M () spectrum for the decay (3686) — ~x°. Dots with error
bars show data. The red solid curve shows the result of the fit, the
blue dashed line represents the contribution of the QED background,
and the green shaded histogram depicts the peaking background from
Xes — m0nY decays.

the related branching fraction in the cascade decays, the
number of hits in the MDC and the number of photons
required in (3686) — ~7, the fit procedure, and the decay
models of the 7’ and 7 in the MC simulation, as well as the
total number of ) (3686) events.

The uncertainty due to the charged track reconstruction
is studied with the control sample 1(3686) —
rta=J/, J/ip  — 0T, and is 1% per track [24].
The uncertainty for the photon detection efficiency is 1% for
each photon on average, obtained by studying the control
sample J/1) — p7% [29]. In studying the 1)(3686) — 7
mode, only the photons within the barrel EMC region are
used, which significantly improves the systematic uncertainty,
estimated to be 0.5% per photon. For the reconstruction of
the n and 7° mesons from their two-photon decay mode, the
systematic uncertainty is 1.0% per meson 124].

The uncertainty associated with the kinematic fit arises
from the inconsistency of the track helix parameter and
photon between the data and the MC simulation. For the
decay processes including charged tracks in the final state,
we correct the three helix parameters (¢, and tanl\)
of the charged tracks in the signal MC samples to reduce
this deviation, where the correction factors are obtained by

comparing their pull distributions in a control sample of
¥ (3686) — KT K ntm~ between data and MC simulation,
as described in Ref. [IE]. We also estimate the detection
efficiency without the helix parameter corrections, and the
resulting change in the detection efficiency, 1%, is taken as
the systematic uncertainty. For the decay processes with
purely neutral particles in the final states, the uncertainty
associated with the kinematic fit is studied using the decay
ete™ — ~v7y1sr as the control sample. The ratios of the
number of events with and without the kinematic fit are
obtained. The difference in the ratios between the data
and MC simulations, 2.0%, is considered as the systematic
uncertainty due to the kinematic fit.

In the analysis of 1(3686) — ~x°, the additional
requirement on the number of hits in the MDC is applied to
suppress the dominant background ete™ — yv(y7sr). The
corresponding efficiency is studied with the control sample
¥(3686) — vXe2 With xe.2 — <7, which has same final
state as the signal process of interest. The plane region used
to count the MDC hits in the control sample is larger than
that in the v(3686) — 7" decay due to the smaller Lorentz
boost of the vy system, and as a consequence more MDC
hits from noise will be counted in the control sample. To
minimize this effect, we normalize the MDC hits according
to area by assuming the noise is distributed uniformly over
the MDC. The difference in the efficiency between the data
and MC simulation is 1%, which is taken as a systematic
uncertainty. Analogously, the selection efficiency for the
photon multiplicity requirement, N., = 3, is studied with the
same control samples. The resulting difference between the
data and MC simulation, 3.1%, is regarded as the systematic
uncertainty.

The sources of systematic uncertainty in the fit procedures
include the fit range and the background. The uncertainty
associated with the fit range is estimated by varying the
fit range by 4-0.01GeV/c?; the largest resulting change in
the signal yields with respect to the nominal values are
taken as the uncertainties. In the analysis of 1 (3686) —
~n’ and 7, the uncertainties related to the background
shape are estimated by replacing the ARGUS functions with
polynomials functions in the fit. The resulting changes in the
signal yields with respect to the nominal values are considered
as the systematic uncertainties. In the analysis of ¢ (3686) —
ymY, the peaking backgrounds from the ¥ (3686) — vxc0.2
decay are included in the fit and the corresponding strengths
are fixed to the values estimated from the MC simulation,
incorporating the branching fraction from the PDG (8]. To
evaluate the systematic uncertainty, we change the strength of



the peaking background by +1 times the standard deviations
of the background strength, and repeat the fits. The larger
change of the signal yield, 2.1%, is taken as the systematic
uncertainty.

In the MC simulation, we generate the ' — 77~ 7 and
n — wta~nY signals according to Ref. ,22]. we vary
the parameters within +1 times the standard deviation in the
generator. The changes in the reconstruction efficiency, 0.6%
for the 7’ mode and 0.4% for the n mode, are taken as the
systematic uncertainties.

The uncertainty in the total number of ¢)(3686) decays is
estimated to be 0.6% [@, @]. The uncertainties related to the
branching fractions in the cascade decays are quoted from the
PDG [8].

Table [l summarizes the various systematic uncertainties
for the decays of interest. The overall systematic uncertainties
are obtained by adding the individual uncertainties in
quadrature, taking into account the correlation between the
different decay modes. Compared to the previous BESIII
measurements [11], improved systematical uncertainties
are obtained due to the improved measurement of the total
number of 1/(3686) events and better fits to the corresponding
invariant mass to determine the signal yields.

V. SUMMARY

By analyzing the data sample of 448 x 10° v/(3686) events
collected at /s = 3.686 GeV with the BESIII detector, we
observe clear signals of ¢)(3686) decays to v, yn, and y7°.
The statistical significance of 1/(3686) — ~n and 7 are
7.30 and 6.70, respectively, and the decay branching fractions
are measured with much improved precision, superseding the
previous BESIIT measurement ). A comparison of these
results to those in Ref. [11] is shown in Table[ll The branching
fraction of ¢ (3686) — ~n’ is consistent with the previous
measurement but with improved precision, while those of
1(3686) — ~yn and y7° are lower than the previous results,
but are consistent within 1o.

The ratio of branching fractions for (3686) radiative

decays to 7 and 7’ is calculated to be Ry (36s6) = (0.66 =
0.13 + 0.02)%. This is about 30 times smaller than the
corresponding ratio from J/¢ radiative decays, Rj/, =
(21.440.9)%. The large difference in the ratios of branching
fractions between J/1 and 1(3686) radiative decays can be
explained by the approach proposed in Ref. [6]. However, the
predicted branching fraction of ¥ (3686) — ~v7° in Ref. [6],
B((3686) — y7¥) = (0.66 ~ 1.15) x 10~7, turns out to
be one order smaller than that in this measurement. Further
investigations are necessary to understand the discrepancy.
The results presented in this paper provide an ideal benchmark
for testing various theoretical models of radiative decays of cc
bound states.
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