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Abstract—This paper presents a sensorless control technique 

based on direct flux vector control (DFVC) method for 
synchronous reluctance (SyR) motor drives fed by a three-phase 
to three-phase matrix converter (MC). Rotor position is estimated 
based on active flux (AF) concept down to 50 [rpm]. Furthermore, 
the effect of nonlinear voltage errors of the MC is compensated, 
and a self-commissioning method capable of identifying the 
voltage error before compensation is presented and tested. The 
proposed drive combines the advantages of matrix converters and 
SyR motors in sensorless fashion, for application into a number of 
fields, spanning from compact drives for aviation to line-supplied 
drives for industry applications. Experimental results are 
provided to prove the feasibility of the proposed technique. 

Keywords—Active flux; Matrix converter; self-commissioning; 
sensorless; synchronous reluctance. 

I.  INTRODUCTION 

Synchronous reluctance motors feature high power density, 
high efficiency, and low manufacturing cost [1]. Furthermore, 
since SyR motors are inherently salient, they are good 
candidates for saliency tracking based sensorless control 
methods [2-3]. 

Conventionally, at standstill and low speed, rotor position 
estimation is achieved by high frequency signal injection and 
tracking of machine special saliencies, while at higher speed, 
rotor position estimation relies on model based techniques. At 
low speed, the rotor or flux position estimation based on 
fundamental model techniques becomes crucial, since the stator 
voltage is low at such speed level. Nonetheless, sensorless 
control techniques based on fundamental models are targeting 
lower speeds. However, an additional burdensome issue at low 
speed is converter nonlinear voltage error which is comparable 
with machine back-electromotive force (EMF). Therefore, this 
voltage error should be compensated appropriately. 

Matrix converters have emerged in the past two decades to 
become an alternative to traditional two level voltage source 
inverters (VSIs). Adjustable input power factor, bidirectional 
power flow, and high-quality power output waveforms are 
prominent features of MCs [5]. Furthermore, due to the absence 
of bulky dc-link capacitors, these converters are employed in 
applications where compactness and high reliability are 
demanded. The application of MCs is extended from variable 
speed AC drives to aerospace applications [6-7].  

Dealing with SyR motors, various sensorless techniques 
proliferate in the literature for a wide speed range from standstill 
to flux weakening [2-4], [8]. However, despite the advantages of 
MCs and SyR motor drives, the combination of these converters 
and motors has not been studied extensively, hitherto [9-10]. 

In this paper, a sensorless control technique is presented for 
MC-fed SyR motor drives based on DFVC method. The stator 
flux amplitude and torque producing current which is quadrature 
to stator flux linkage are regulated at a constant switching 
frequency. Rotor position and speed are estimated based on AF 
method. In addition, MC nonlinear voltage error is studied and 
a self-commissioning algorithm is applied to identify this 
voltage error before compensation. The presented experimental 
results show that the proposed sensorless method is feasible.  

II. DIRECT FLUX VECTOR CONTROL 

A. SyR Motor equations in stator flux frame 

Fig.1 illustrates the special coordinates adopted in this work, 
where, ሺߙ, ,ሻ, ሺ݀ߚ ,ሻ, and ሺ݀௦ݍ  ,௦ሻ represent stationary frameݍ
rotor flux frame, and stator flux frame, respectively. Motor 
model in stator flux frame is expressed as (1) where, ߣ is the 
stator flux amplitude and ߜ stands for load angle [2], [4].  

 ቐݒௗ௦ = ܴ௦ ∙ ݅ௗ௦ + ௗఒௗ௧																			ݒ௤௦ = ܴ௦ ∙ ݅௤௦ + ߣ ∙ ቀ߱ + ௗఋௗ௧ቁ (1) 
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Fig. 1. Explanation of adopted frames: Stationary (ߙ,  rotor flux (d,q), and ,(ߚ

stator flux (݀௦,  .௦) reference framesݍ

Also, torque equation is obtained as (2) with cross product 
of flux linkage and current vectors in ݀௦ݍ௦ frame, considering 
that flux component in ݍ௦ axis is zero as defined in Fig.1. ݌ is 
the number of pole pairs. 

 ܶ = ଷଶ ∙ ݌ ∙ λ ∙ ݅௤௦ (2) 
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Fig. 2. Block diagram of sensorless DFVC of MC-fed SyR motor.

Equation (2) is the core of DFVC method where torque is 
regulated via ߣ and ݅௤௦ [2]. Block diagram of DFVC of MC-fed 
SyR motor is depicted in Fig.2. The amplitude of stator flux 
linkage is observed using flux observer which is explained in the 
following section. ఈܸఉ,௧௛ᇱ  in Fig.2 is the nonlinear voltage error 
in MC which will be explained in section IV. 

III. PROPOSED SENSORLESS CONTROL  

A. Sensorless Active Flux Observer 

Fig.3 shows the stator flux observer augmented with active 
flux concept suitable for rotor position estimation at medium and 
high speed levels. The flux observer is the combination of back-
EMF integration (voltage model) and flux maps ߣመఈఉ,௜  output 
(current model). The subscript i denotes for current model. The 
gain g[rad/s] in the observer is the cross over speed between 
voltage model and current model. If |߱| > ݃, voltage model 
prevails, while if |߱| < ݃, current model is dominant. The flux 
maps block for the motor under test is reported in Fig.4. 

Using AF concept [11], salient pole ac machines are 
considered to fictitious non-salient pole ones. Fig.5 reports the 
concept of AF method, where ߣ and ݅௦ are the stator flux and 
stator current vectors, respectively. The dq components of AF 
vector are expressed as (3), where ܮௗ and ܮ௤ are apparent 
inductances. As can be seen from (3), the active flux vector 
direction is rotor d-axis direction since the q component of AF 
vector is zero. Therefore, if the angle of AF vector is obtained, 
rotor position can be estimated directly. It should be commented 
that  ܮ௤ block in Fig.3 is calculated as an offline table using flux 
maps block shown in Fig.4. To estimate the rotor position 
accurately, saturation and cross-saturation should be considered 
in ܮ௤ block. 

 ቊߣௗ,஺ி = ௗߣ − ௤ܮ ∙ ݅ௗ = ൫ܮௗ − ௤൯ܮ ∙ ݅ௗߣ௤,஺ிୀ଴																																																																														  (3) 

B. Position and Speed Observer 

As said, since the active flux vector lies in rotor d-axis, the 
estimated rotor speed is active flux speed. To estimate the rotor 
position and speed, a phase-locked loop (PLL) observer can be  
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Fig. 3. Stator flux and active flux observer.  

applied. Alternatively, the orientation of AF vector can be 
calculated as (4). Accordingly, rotor speed is computed in 
discreet from as (5), where ௦݂ is the switching frequency. 
Subscript k-1 denotes for variables which are one sample 
delayed from current sample time ݐ௞. Fig.6 illustrates the 
position and speed observer based on AF method. 

It should be noted that, since there is no magnet in pure SyR 
motors, back-EMF value around zero torque region is too small 
to be tracked. Therefore, a constant flux amplitude (1 [Vs]) is 
injected to the motor in all operating points. For the flux 
amplitude larger than 1 [Vs], DFVC method works based on 
MTPA. 

۔ۖەۖ 
෠஺ி൯ߠsin൫ۓ = ఒ෡ഁ,ಲಷටቀఒ෡ഀ,ಲಷమ ାఒ෡ഁ,ಲಷమ ቁ = ఒ෡ഁ,ಲಷఒ෡ೌ೘೛,ಲಷcos൫ߠ෠஺ி൯ = ఒ෡ഀ,ಲಷටቀఒ෡ഀ,ಲಷమ ାఒ෡ഁ,ಲಷమ ቁ = ఒ෡ഀ,ಲಷఒ෡ೌ೘೛,ಲಷ

 (4) 

 ෝ߱௞ = ௦݂ ∙ ൫sin ෠஺ி,௞ߠ cos ෠஺ி,௞ିଵߠ − cos ෠஺ி,௞ߠ sin  ෠஺ி,௞ିଵ൯ (5)ߠ

 
Fig. 4. Flux maps block for the 2.2 kW motor under test. 
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Fig. 5. Active flux vector. 
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Fig. 6. Rotor position and speed observer. 

IV. MATRIX CONVERTER NONLINEAR VOLTAGE ERROR 

Conventionally, two kinds of voltage errors exist in matrix 
converters. The first error is due to commutation dead time 
called edge uncertainty (EU) effect and the second one comes 
from the voltage drop (VD) of the power devices [12]. 

In this work double side switching pattern [12] is used for 
indirect space vector modulation (ISVM) of MC. In addition, to 
conduct the current from one output phase to another one, a four-
step current based commutation is adopted. When a 
commutation is done, a voltage error is introduced due to EU 
effect which is expressed as (6), where ݒ௜∗ is the reference 
voltage used for ISVM and ݒ௜ is the output voltage of the MC. ݅ = ሼܽ, ܾ, ܿሽ represents the output phases whereas ݆ = ሼܣ, ,ܤ  ሽܥ
denotes for input phases of MC. ݐ௖ is commutation time, and ݐ௥ 
and ݐ௙ are IGBT rising and falling time, respectively. ௉ܶௐெ 
stands for switching time. 

∗௜ݒ  − ௜ݒ = ா௎ݒ− = ௝ݒ3− ௧೎ା௧೑ି௧ೝ்ುೈಾ  ௜ሻ (6)ܫሺ݊݃݅ݏ

As can be seen, EU voltage is dependent to input phase 
voltage ൫ݒ௝൯ and the sign of output phase current ሺܫ௜ሻ. Fig.7 
illustrates the input phase voltage path and its corresponding 
input sectors. 

 
Fig. 7. The path of input phase voltages and input sectors. 

The voltage drop ሺݒ஽ሻ on IGBT in MCs can be modeled as 
(7), where ௧ܸ௛ is the forward voltage of power device and ܴௗ 
accounts for IGBT resistance. 

∗௜ݒ  − ௜ݒ = ஽௜ݒ = 2 ௧ܸ௛݊݃݅ݏሺܫ௜ሻ + ܴௗܫ௜  (7) 

Considering (6) and (7), the overall voltage error in MC is 
expressed as (8). 

 ௘ܸ௥௥௢௥ = ௧ܸ௛ᇱ ௜ሻܫሺ݊݃݅ݏ + ܴௗܫ௜  (8) 

Where, 

 ௧ܸ௛ᇱ = 2 ௧ܸ௛ − ௝ݒ3 ௧೎ା௧೑ି௧ೝ்ುೈಾ  (9) 

From (9), it is concluded that when EU effect is dominant, ௧ܸ௛ᇱ  is negative, while on the contrary, if VD prevails, ௧ܸ௛ᇱ  
becomes positive. 

A. Self-commissioning algorithm for MC nonlinear voltage 
error identification 

When a dc current is imposed to the motor at standstill, 
motor back-EMF is zero and the only load from converter side 
is a resistive load which is the summation of stator and MC 
resistances (ܴ௦ + ܴௗ). In this self-commissioning algorithm, 
two successive dc currents are injected into motor ߙ-axis (i.e. 
phase-a) via a dq current controller at standstill.  

If the first dc current ܫఈଵ is closed loop controlled at 
standstill, the voltage reference in ߙ-axis (ݒఈଵ∗ ) with considering 
the MC voltage error is expressed as (10).  

∗ఈଵݒ  = ௧ܸ௛ᇱ + ሺܴௌ + ܴௗሻܫఈଵ (10) 

Analogously, with injecting the second dc current ܫఈଶ, it is 
obtained that: 

∗ఈଶݒ  = ௧ܸ௛ᇱ + ሺܴௌ + ܴௗሻܫఈଶ (11) ݒఈଵ∗  and ݒఈଶ∗  are time averaged and then the total resistance 
is obtained using (12). 

 ܴ௦ + ܴௗ = ௩ഀమ,ೌೡ೒∗ ି௩ഀభ,ೌೡ೒∗ூഀమିூഀభ  (12) 

Finally, using (12) and one of the equations  (10) or (11), the 
pole error voltage ௧ܸ௛ᇱ  can be explicitly obtained: 

 ௧ܸ௛,௔௩௚ᇱ = ఈଵ,௔௩௚ݒ − ሺܴ௦ + ܴௗሻܫఈଵ (13) 

The obtained nonlinear voltage error ൫ ௧ܸ௛,௔௩௚ᇱ ൯ is feed 
forward compensated in this work as depicted in Fig.8. 
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Fig. 8. Feed-forward compensation of MC nonlinear voltage error. 

V. EXPERIMENTAL RESULTS 

In this part the experimental results for proposed sensorless 
technique are presented and investigated. SyR motor and matrix 
converter specifications are reported in Table I. A quadrature 
encoder with 512 cycles per revolution is adopted to measure the 
rotor position and speed for monitoring purposes. In addition, an 
induction motor is used as variable speed load drive to impose 
load torque in experiments. Matrix converter is controlled by a 



floating point microcontroller (TMS320C6713). The 
experimental test bench are shown in Fig.9 and Fig.10.  

TABLE I - SyRM and matrix converter data 
SyRM under test 

Number of poles/ Rated power 4/2.2 kW  
Rated Torque/ Nominal Speed 14 Nm /1500 r/min  

Phase resistance 3.6 Ω 
Moment of inertia 0.005 ݇݃. ݉ଶ 

Matrix Converter: SK 60GM123 module 
Input phase voltage 325 V ݐ௖ 0.9 ݏߤ 

Switching frequency ( ௦݂) 12.5 kHz 

 

 
Fig. 9. Controller board and MC. 

 
Fig. 10. SyR motor coupled with an induction machine. 

A. Self-commissioning Algorithm Results 

First, self-commissioning algorithm for identification of MC 
nonlinear voltage error is investigated. Two dc pulses are ܫௗ௖ଵ ௗ௖ଶܫ and [ܣ]5= =  The first dc current is injected in the  .[ܣ]9
period of (0-3) [s] and the second one is injected in (3-6) [s]. For 
the first dc level, ݒఈଵ∗  is sampled from ݐ = ݐ to [ݏ]0.2 =  .[ݏ]3
The average of ݒఈଵ∗ ∗ఈଵ,௔௩௚ݒ)  ) is ready at ݐ =  Likewise, for .[ݏ]3
the second dc level, ݒఈଶ∗  is sampled in the period of (3.2-6) [s] 
and the average value (ݒఈଶ,௔௩௚∗ ) is ready at ݐ =  This .[ݏ]6
procedure is depicted in Fig.11. Then, using (12), the value of ሺܴ௦ + ܴௗሻ is obtained, and after that the threshold voltage ܸ ௧௛ᇱ  is 
calculated as depicted in Fig.12. As can be seen, the value of ሺܴ௦ + ܴௗሻ is around 4.1 Ω and ௧ܸ௛ᇱ  is obtained as -7.3 [V]. As 
seen, ௧ܸ௛ᇱ  in this test is negative, showing that the effect of EU 
prevails the VD effect. 

 
Fig. 11. Injected dc currents, and ݒఈଵ∗ ∗ఈଶݒ ,  values during injection. 

 
Fig. 12. Identified resistance and threshold voltage error. 

B. Sensorless Control Results 

The response of the proposed control technique in speed 
control test is illustrated in Fig.13, where the motor speed 
reaches to 1000 [rpm] from -1000 [rpm] at ݐ =  and again [ݏ]	0.9
decelerates to -1000 [rpm] at ݐ =  Actual and estimated .[ݏ]	4.5
speed, ݅௤௦ current, estimated torque, observed flux linkage 
amplitude and position estimation error ሺ∆ߠሻ are reported in this 
figure. As seen, ∆ߠ is around zero in steady state and under 
control in transients. 

 
Fig. 13. Speed reversal test at no load from -1000→1000→ −1000 [rpm]. 

Third subfigure: blue: ෠ܶ (5 Nm/div); red: ߣመ (0.625 Vs/div). 

Fig.14 reports the test results at 50 [rpm] where 14 [Nm] 
(full-load) is imposed to the motor and released subsequently. 
As can be seen the position estimation error is close to zero. It 
should be commented that fluctuations in position estimation 
error come from mechanical defects. 

The same test has been done at 200 [rpm] where 16 [Nm] 
load (114.3 % overload) is applied to the motor and released as 
shown in Fig.15. It is evident that ∆ߠ is approximately zero in 
steady states and under control during transients. 



 

Fig. 14. 14 [Nm] loading at 50 [rpm]. Third subfigure: blue: ෠ܶ (6 Nm/div); 
red: ߣመ (1 Vs/div). 

 

Fig. 15. 16 [Nm] loading at 200 [rpm]. Third subfigure: blue: ෠ܶ (10 Nm/div); 
red: ߣመ (1 Vs/div). 

VI. CONCLUSION 

A sensorless direct flux vector control technique has been 
proposed in this paper for MC-fed synchronous reluctance motor 
drives. The rotor position and speed estimation is based on active 
flux method which works appropriately at low speed and high 
speed. Furthermore, the effect of matrix converter voltage error 
has been investigated and a self-commissioning technique has 
been applied to identify the nonlinear voltage errors before 
compensation. The proposed control was successfully validated 
through various experimental tests and the presented results 
show the effectiveness of the proposed sensorless control 
method. 
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