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Abstract High-Utility Itemset Mining (HUIM) is a relevant data mining task. The goal is to discover recurrent
combinations of items characterized by high profit from transactional datasets. HUIM has a wide range of
applications among which market basket analysis and service profiling. Based on the observation that items
can be clustered into domain-specific categories, a parallel research issue is generalized itemset mining. It
entails generating correlations among data items at multiple abstraction levels. The extraction of multiple-level
patterns affords new insights into the analyzed data from different viewpoints. This paper aims at discovering
a novel pattern that combines the expressiveness of generalized and High-Utility itemsets. According to a user-
defined taxonomy items are first aggregated into semantically related categories. Then, a new type of pattern,
namely the Generalized High-utility Itemset (GHUI), is extracted. It represents a combinations of items at
different granularity levels characterized by high profit (utility). While profitable combinations of item categories
provide interesting high-level information, GHUIs at lower abstraction levels represent more specific correlations
among profitable items. A single-phase algorithm is proposed to efficiently discover utility itemsets at multiple
abstraction levels. The experiments, which were performed on both real and synthetic data, demonstrate the
effectiveness and usefulness of the proposed approach.
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1 Introduction

Frequent itemset mining is an exploratory data mining technique which focuses on discovering recurrent combin-
ations of items (of arbitrary size) that occur in potentially large transactional data [1]. Frequent itemsets have
been used in many research contexts, among which market basket analysis [1], service profiling [3], to discover
correlations between multiple data items. For example, in the context of market basket analysis, each row of
the dataset (transaction) represents a different market basket. Transactions contain the subsets of purchased
items. Frequent itemsets represent sets of items that customers frequently purchased together. For instance,
itemset {Coke, bread} indicates that customers who purchased coke frequently purchased bread as well. Since
generating all the possible combinations of items in a transactional dataset is computationally intractable [1],
frequent itemset mining entails discovering only the combinations of items whose frequency of occurrence (sup-
port) is above a given threshold. However, the traditional itemset mining problem relies on three (potentially
unreliable) assumptions:
(A) Items appear at most once in each transaction (e.g., we disregard the amounts of purchased items within
each basket).
(B) Items have all the same importance in the analyzed data (e.g., the unit profit is assumed to be the same
for all the items in the market).
(C) The semantic relationships between items are ignored (e.g., the co-occurrences of items belonging to the
same product group within the same basket are considered as uncorrelated with each other).
To overcome limitations (A) and (B), the concept of High-Utility Itemset (HUI) has been proposed [10]. HUIs
represent sets of frequently co-occurring items that are characterized by averagely high utility within the ana-
lyzed data. To mine HUIs, items in the transactional dataset are enriched with both per-transaction weights
(hereafter denoted as internal utilities) and global weights (denoted as external utility). For example, in the
context of market basket analysis internal utilities represent per-item amounts (e.g. the customer purchased 3
bottles of coke), while external utilities indicate unit profits (bottles of coke cost 5 USD each). Utility itemsets
represent sets of items whose total yield is above a given (user-specified) threshold. This knowledge may be
exploited to perform cross-selling, to plan promotions, or to effectively arrange items on the shelves.

To overcome limitation (C), correlations between items at higher abstraction levels can be analyzed [11].
Based on a taxonomy built on top of the analyzed data, items are aggregated into semantically related groups
(e.g. items Coke and Water into group Beverage). Then, generalized itemsets , which represent correlations
among data items at different abstraction levels (e.g., not only {Coke, bread} but also {Beverage, Food}), can
be extracted.

Many algorithms have been proposed to efficiently extract HUIs [8, 7, 9, 12] and to select compact subsets of
HUIs, e.g., the closed HUIs [5] and the top-k HUIs [13]. Existing solutions are efficient in term of temporal and
spatial scalability, but, to the best of our knowledge, they are unable to cope with multiple-level data (limitation
(C)). On the other hand, parallel works addressed the generalized itemset mining problem by performing bottom-
up [2, 3, 11] or top-down [6] taxonomy visits during candidate itemset generation. However, since they do not
consider item utilities, they still suffer from limitations (A) and (B).

This paper aims at bridging the gap between HUI mining and generalized itemset mining. To this purpose, it
proposes a new type of pattern, namely the Generalized High-utility Itemsets (GHUIs). The proposed approach
allows both multiple appearances of the same item within each transaction and different per-item profits. Unlike
traditional HUIs, GHUIs are extracted from a transactional dataset enriched with a taxonomy, which describes
the semantic is-a relationships between data items. These relationships are exploited to drive the process of
knowledge generalization thus generating profitable combinations of items at multiple abstraction levels. To
extract GHUIs we proposed ML-HUI Miner, which extends a state-of-the-art HUI mining algorithm to cope
with data enriched with taxonomies. The newly proposed algorithm integrates taxonomy information into the
utility itemset mining process to mine GHUIs in a single-phase mining session.

Preliminary experiments performed on both real retail data and benchmark datasets show the efficiency and
effectiveness of the proposed approach.

The paper is organized as follows. Sections 2 and 3 introduce preliminary concepts and formalizes the
newly proposed pattern, respectively. Section 4 presents the mining algorithm used to discover the newly
proposed pattern. In Section 5 we summarized the experiments performed on real datasets, while Section 6
draws conclusions and discusses future works.

2 Preliminaries

A transactional dataset is a set of transactions [1], where each transactions is a set of data items (i.e., objects
identified by literals). Herafter, let us denote as I the set of all possible items and as tj ∈ I the j-th transaction
of a transactional dataset D. Items are characterized by (i) Internal Utility, denoted as iu(i,tj) which indicates
the relative importance of item i ∈ I in transaction tj , and (ii) External Utility, denoted as eu(i), which indicates
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Table 1: Transactional dataset
Transaction id Items and internal utility

TId1 (Coke, 2), (Bread, 2), (Steak, 1)
TId2 (Water, 3), (Pasta, 2), (Steak, 1)
TId3 (Water, 2), (Bread, 2)
TId4 (Coke, 1), (Bread, 2)

Table 2: External utilities of items in
dataset

Item External utility

Water 1
Coke 5
Bread 1
Pasta 2
Steak 10

Coke Water

Beverage

Bread Pasta

Food

Steak

Figure 1: Taxonomy on items in the dataset

the relative importance of item i in D with respect to all the other items in the dataset.
Table 1 reports an example of market basket dataset consisting of 4 transactions (identified by Tids 1-4)).

Table 3: High-Utility Itemsets. minutil (itemsets) = 17

Itemset Utility

{ Steak} 20
{ Steak, Coke} 20
{ Coke, Bread} 19

{ Steak, Coke, Bread} 22

Table 4: Generalized High-Utility Itemsets. minutil
(generalized itemsets) = 30

Generalized Itemset Utility

{ Food} 30
{ Food, Beverage} 50

The utility of item i in transaction tj , hereafter denoted as u(i,tj), is computed as eu(i)· iu(i,tj). In the
running example, it indicates the total income related to an item appearing in the market basket (e.g., the price
of all the bottles of coke in a given market basket).

Itemsets are sets of items of arbitrary size. We will denote as k-itemset a set of k items. The utility of
itemset I in transaction tj is the sum of the utilities of all the corresponding items, i.e., u(I,tj)=

∑
i∈I u(i, tj).

The utility of itemset I in the transactional dataset D is obtained by summing the utilities of the itemset in all
the dataset transactions, i.e., u(I,D)=

∑
tj∈D u(I, tj), where we assume that u(I,tj)=0 if I /∈ tj .

A notable type of itemset is the High-Utility Itemset. Given user-specified minimum utility threshold
minutil, an itemset mined from dataset D is an High-Utility Itemset (HUI) if and only if u(I,D)>minutil.
Given a transactional dataset D and a minimum utility threshold minutil, the High-Utility Itemset Mining
(HUIM) problem entails discovering all the HUIs in D.

The HUIs extracted from the dataset in Table 1 by enforcing a minimum utility threshold minutil=20 are
enumerated in Table 3, where the corresponding utility value is given too.

Example. {Coke, Bread} is HUI because the utility values of the 2-itemset for each transaction are: 12
(5x2+1x2) in TId1, 0 in TId2 and TId3 (no matches), and 7 (5x1+1x2) in TId4.

To efficiently extract HUIs, the Transaction-Weighted Utilization (TWU) has been introduced [12]. It is an
over-estimate of the utility of the itemset, which can be exploited to prune the search space because it satifies
the following downward closure property: given two itemsets I1 and I2 such that I1 ⊂ I2, if the TWU of I1 is
below the utility threshold minutil even the TWU of I2 does. The TWU of an itemset I, denoted as twu(I), is
defined as the sum of the transaction utilities of all the transactions containing I, where the transaction utility
of a transaction is the sum of the utility values of all its items. A formal definition of the TWU measure of
itemset I follows: twu(I)=

∑
tj∈D|I⊆tj

∑
i∈tj u(i, tj).

3 Generalized High-Utility Itemsets

Our goal is to discover HUIs that incorporate knowledge at multiple granularity levels. To this aim, we generalize
items at different abstraction levels.

Let T be a taxonomy (i.e., a is-a hierarchy), which aggregates items in I into higher-level concepts, hereafter
denoted as generalized items. Generalized items represent higher-level categories which group individual items
based on their semantic meaning. Let G be the set of generalized items in T . For the sake of simplicity, hereafter
we will assume that in the given taxonomy T each item i ∈ I is aggregated into exactly one generalized item
g ∈ G (i.e., each item belongs to a specific higher-level category). Generalized items can be further generalized
as other generalized items at higher granularity levels.
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For each generalized item g ∈ G, Desc(g,T ) ∈ I denote the subset of descendant items of g according to
the given taxonomy. For our purposes, we formalize the concept of level of a generalized item g ∈ G in the
taxonomy, hereafter denoted as l(g,T ), as the length of the shortest path between g and any leaf node in the
taxonomy. Note that, by construction, the level of non-generalized itemsets is zero, while the maximum level of
an item corresponds to the taxonomy height (i.e., the length of the longest path from any node in T to a leaf
node).
Example. Figure 1 depicts an example of taxonomy built on items occurring in the running example dataset
(see Table 1). For instance, items Coke and Water are aggregated into the generalized item Beverage. The level
of Beverage and is one, whereas the level of Coke, and Water is zero.

A generalized itemset is a set of generalized items in G. Similar to [3, 6, 11] we focus our analyses on the
combinations of generalized items having the same level, because they compactly represent information at a
given abstraction level. Herafter we will denote as level of a generalized itemset the level of its items.

For our purposes, we extend the concept of utility to generalized items and itemsets. Specifically, the utility
of a generalized item g in a transaction tj , hereafter denoted as u(g,tj), is the sum of the utility values of all the
descendant items, while the utility of g in a transactional dataset is the sum of all the per-transaction utilities.
More formal definitions follow.

Definition (Utility of a generalized item). Let g be a generalized item, D a transactional dataset, and
T be a taxonomy. The utility of g in a transaction tj ∈ D is defined as u(g,tj)=

∑
i∈Desc(g,T )eu(i)· iu(i,tj). The

utility of generalized item g in D is calculated as u(g,D)=
∑
i∈Desc(g,T ) u(i,D). �

Similar definitions hold on itemsets (i.e., sets of items). The utility of a generalized itemset in a transactional
dataset indicates the overall profit of a combination of item categories.

Definition (Utility of a generalized itemset). Let GI be a generalized itemset and let D a transac-
tional dataset, and T be a taxonomy. The utility of a generalized itemset GI in transaction tj is defined as
u(GI,tj)=

∑
g∈GI u(g, tj). The utility of a generalized itemset GI is in the transactional dataset D is defined as

u(GI,D)=
∑
tj∈D u(GI, tj), where we assume u(GI,tj)=0 if GI /∈ tj . �

Example. Let us consider again the market basket dataset reported in Table 1 and the taxonomy in Figure 1.
The per-transaction utility of generalized item Beverage is 10 in transaction with TId1, 3 in transaction with
TId2, 2 in transaction with TId3, and 5 in transaction with TId4. Hence, the utility of Beverage in the dataset
is 20 (10+3+2+5).

In this work we address the extraction of a selection of generalized itemsets, called Generalized High-Utility
Itemsets (GHUIs).

Definition (Generalized High-Utility Itemset). Let minutil be a (user-specified) minimum utility
threshold, let D be a transactional dataset, let T be a taxonomy, and let GI be a generalized itemset. A
generalized itemset GI is a Generalized High-Utility Itemset (GHUI) in D if and only if u(GI,D)>minutil. �

Example. The GHUIs mined from the dataset in Table 1 by enforcing a minimum utility threshold for
generalized itemsets equal to 30 for GHUIs are enumerated in Table 4.

Given a transactional dataset D, a taxonomy T , and a minimum utility threshold minutil, the Generalized
High-Utility Itemset Mining (GHUIM) problem addressed by this work entails discovering all the HUIs and
GHUIs.
Per-level utility thresholds. The utility of a generalized itemset incorporates those of all of its descendant
itemsets. Hence, itemsets at higher abstraction levels are more likely to satisfy a fixed minimum utility threshold
than lower-level ones. To overcome this issue, we adapt the utility threshold to the level of generalization of
the considered itemsets. The key idea is to set higher utility thresholds for itemsets including items at higher
abstraction levels. We set the same utility threshold for all itemsets having the same level. Specifically, given
a user-specified least minimum utility threshold minutil associated with non-generalized itemsets (level=0),
the minimum utility threshold thr(l) associated with level-l generalized itemsets is minutil if l = 0, thr(l) =
α(l) · minutil otherwise, where α(l): N→ [1,+∞) is a monotonically increasing (user-specified) function.

4 The ML-HUI Miner algorithm

To extract Generalized High-Utility Itemsets we propose a new algorithm, namely Multiple-Level High-Utility
Itemset Miner (ML-HUI Miner). The main features of GHUI-Miner are summarized below.

(a) Taxonomy-driven HUI mining. ML-HUI Miner supports transactional data enriched with taxonomy
information. This allows us to extract patterns at different abstraction levels.

(b) Single-step extraction of generalized and non-generalized HUIs. The proposed algorithms explores the
dataset and the taxonomy to generate multiple-level patterns in a single phase (i.e., without the need for
multiple runs).
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Algorithm 1 The ML-HUI Miner algorithm
Require: transactional dataset D, taxonomy T , minimum utility threshold minutil, function α(l)
Ensure: O, the set of High-Utility Itemsets and Generalized High-Utility Itemsets satisfying the per-level utility thresholds
{Initializations}

1: I← set of items in D
2: GI← set of generalized items in T
{Preparation}

3: scan D and T to compute Transaction-Weighted-Utility (TWU) of items in I
4: Compute Transaction-Weighted-Utility of items in GI
5: I∗← set of items in D such that TWU is above minutil(level=0)
6: GI∗← set of generalized items g in T such that TWU is above α·minutil(l(g,T ))
7: Build utility list and Estimated Utility Co-occurrence Structure of (generalized) items in I∗ ∪ GI∗ {Recursive depth-first search}
8: O ←Recursive generation of the combinations of (generalized) items in I∗ and GI∗ whose items share the same level and selection of

all combinations satisfying the utility threshold α(l)·minutil

(c) Prevent the generation of uninteresting combinations of items. Similar to [6, 11], we focus on extracting
itemsets including only items with the same level. Thus, GHUI-Miner prevents the generation of itemsets
consisting of items with different levels in the taxonomy.

A high-level pseudo-code of the ML-HUI Miner algorithm is given in Algorithm 1. First, ML-HUI Miner scans
the dataset and the taxonomy to identify the single non-generalized and generalized items whose Transaction-
Weighted-Utility (TWU) is above the per-level utility threshold (Lines 3-6 in Algorithm 1). To this aim, the
taxonomy is explored in a bottom-up fashion. The dataset and the accessory structures are properly adapted to
prevent the generation of combinations of mixed-level items (according to Point (c). To compute the per-level
utility thresholds, the user-specified threshold minutil is adjusted using function α according to the level of
each generalized item. Then, we compute the utility list associated with all non-generalized and generalized
items whose TWU satisfies the per-level utility threshold (Line 7 in Algorithm 1). The utility list is a compact
data structure that contains for each (generalized) item i (i) the list of transactions tj such that i ∈ tj , (ii)
the utility values of the (generalized) item in each transaction u(i,tj), and (iii) the sum of the utilities of the
remaining items with the same taxonomy level within each transaction, i.e.,

∑
q∈tj∧ q 6=i∧l(q,T )=l(i,T) U(q, tj).

For our purposes, we extended the utility list proposed in [8] to integrate information about the generalized
items at the same taxonomy level appearing in the taxonomy. The utility list is provided as input to the
depth-first recursive procedure (Line 8 in Algorithm 1), which does not need to access neither the dataset nor
the taxonomy. Specifically, starting from single items (generalized and not) the recursive procedure computes
their exact utility value and then explores all their extensions using a depth-first strategy based on the utility
list. To avoid generating itemsets consisting of items with different level, extensions are selectively generated.
The recursive procedure is similar to the one adopted by FHM [8].

5 Experiments

To evaluate the performance of the ML-HUI Miner algorithm, we conducted experiments on four benchmark
UCI datasets comng from different domains (Connect, Mushroom, Chess, Retail [4]), which have already been
used to evaluate the performance of recently proposed High-Utility Itemset mining algorithms (e.g., FHM [8]).
The number of transactions per dataset varies from 3,196 (Chess) to 67,557 (Retail). The analyzed datasets
show different characteristics (e.g., number of distinct items Connect 129, Mushroom 119, Chess 75, Retail
2,741). The external utilities in the datasets range from 1 to 1,000. They were synthetically generated by using a
log-normal distribution. Internal utilities are uniformly distributed between 1 and 5. To set the per-level utility
threshold values (thr(l)), we defined α(l)=γ · f(l), where f(l) is the average number of level-0 descendants per
level-l item. To generalize items at higher abstraction levels, we generated taxonomies on top of data items.
Specifically, on the Retail dataset, which stores real sales of an online store, we generated a 2-level taxonomy by
aggregating products into the corresponding group provided by the online store. The 2,741 available products
are clustered into 38 produt groups (e.g., Kitchen, Toy). Products are evenly distributed across product groups.
For instance, Kitchen clusters 1,513 products, while Toy 236. On the other datasets we generated a synthetic
taxonomy where each generalized item aggregates, on average, 10 randomly selected products. The experiments
were performed on a 2.67 GHz Intel Xeon workstation with 32 GB of RAM, running Ubuntu 12.04.

5.1 Performance analysis

Figure 2 shows the number of mined (non-generalized) HUIs and GHUIs by varying the values of minutil and γ
on a representative dataset (i.e., Chess). For both types of patterns, the number of mined itemsets is inversely
proportional to the minutil value. By decreasing the values of minutil and γ the total number of mined patterns
super-linearly increases. The number of GHUIs is two orders of magnitude lower than those of HUIs due to
the significantly lower number of possible item combinations at higher taxonomy levels. The increase in the
number of candidate itemsets due to taxonomy integration implies also a time complexity increase. Figure 3

5



 0

 20000

 40000

 60000

 80000

 100000

 120000

 440  480  520  560  600

N
u
m

b
e
r 

o
f 
H

U
Is

minutil (x1000)

(a) non-generalized HUIs

 400

 500

 600

 700

 800

 900

 1000

 440  480  520  560  600

N
u
m

b
e
r 

o
f 
G

H
U

Is

minutil (x1000)

γ=0.15
γ=0.2

γ=0.25

(b) GHUIs

Figure 2: Chess: number of mined patterns
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Figure 3: Execution time (γ=0.2)

shows the time spent by the ML-HUI Miner algorithm on the analyzed datasets with decreasing minutil values.
Since the value of γ affects only the extraction of HGUIs, whose number is orders of magnitude lower than the
number of HUIs, varying γ value slightly affects the execution time. For this reason, we report the execution
time only for the representative value γ=0.2 on all datasets. Despite a larger number of combinations were
explored, the extraction times remain acceptable (few ms) on all the analyzed datasets. We compared also the
execution times of the newly proposed ML-HUI Miner with those of the FHM algorithm [8], which extracts only
non-generalized HUIs. ML-HUI Miner execution time approximately doubles that of FHM, even when more
than two aggregation levels are integrated in the taxonomy.

5.2 Knowledge discovery

We present some example GHUIs mined from the Retail dataset(minutil=10000, γ=0.2). The GHUIs with
length 1 reveal the most profitable product groups. For example, Kitchen is the category with maximal utility.
Toy ranked second (utility gap from Kitchen to Toy 87%), Home is the third (92%), Office product ranked 4th
(96%) and Law & Patio 5th (96%). For all the remaining categories the utility gap with respect to Kitchen was
above 97%. The GHUIs with length greater than 1 point out combinations of groups that yielded high profits
when the respective products were sold together. Let us consider, for instance, GHUI {Musical-Instruments,
Home}. It indicates that the jointly sale of products in these categories provided a high income. Among GHUIs
including group Musical-Instruments, GHUIi={Musical-Instruments, Kitchen} is the one with highest utility.
The other GHUIs in order of decreasing utility are: {Musical-Instruments, Toy} (utility -75% w.r.t. GHUIi),
{Musical Instruments, Home} (utility -91% w.r.t. GHUIi), and {Musical-Instruments, Office-Product} (utility
-94% w.r.t. GHUIi). These patterns can can be exploited to figure out which categories of products should
be promoted in the same advertising campaign, e.g., while planning a campaign on products belonging to
Musical Instrument, products of Kitchen, Toy, Home or Office-Product category should be advertised as well.
The utility value provided us a ranking of the most appealing groups of products to advertise together with
products of Musical Instrument. GHUIs provide high-level knowledge related to single products that do not
satisfy the utility threshold. Let us consider again group Musical Instrument. Only two non-generalized HUIs
were extracted, i.e., {Red-Harmonica} (utility 26,205) and {Blue-Harmonica} (utility 10,271). However, the
utility of the GHUI {Musical-Instruments} is 40,741. Hence, the utility value of {Musical-Instruments} is not
only due to the {Red-Harmonica} and {Blue-Harmonica} products, but even to other products of the same
group that do not satisfy the utility threshold. Considering GHUI {Musical-Instruments} allows us to consider
also the contribution of the other products, even if their single profits are averagely low. Moreover, GHUIs
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represent correlations among products that can not be easily infered while considering only HUIs. For instance,
even if correlations between products of group {Musical-Instruments} and products of other groups have not
been extracted, the high-lever correlations between Musical Instrument and other groups were extracted and
can be analyzed.

6 Conclusions and future work

We proposed a new pattern, called GHUI, which represents sets of items groups, each one characterized by a
high total profit. The significance of the proposed pattern and the performance of the proposed GHUI mining
algorithm have been evaluated on retail data, with the goal of planning advertising campaigns of retail products.
Future extensions of the work will address the efficient extraction of significant subsets of GHUIs (e.g., closed
or minimal GHUIs).
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