Turbulent anisotropic transport in a model cloud interface

Original
Turbulent anisotropic transport in a model cloud interface / Carbone, Maurizio; Iovieno, Michele; Gallana, Luca; Tordella, Daniela. - ELETTRONICO. - (2016). ((Intervento presentato al convegno 11th European Fluid Mechanic Conference tenutosi a Siviglia (Spagna) nel 12-16 Settembre.

Availability:
This version is available at: 11583/2681657 since: 2017-09-22T16:02:28Z

Publisher:
European Mechanics Society

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Turbulent Anisotropic Transport in a Model Cloud Interface

Luca Gallana1, Michele Iovieno1, Francesca De Santi3, Maurizio Carbone1, Renzo Richiardone2, Daniela Tordella1

1Politecnico di Torino, DIMEAS
areeweb.polito.it/ricerca/philofluid/

2Università di Torino, Dip.di Fisica

3ISAC–CNR Cagliari

11th EFMC - Sevilla
September 14, 2016
Flow configuration – motivation

Mean Temperature Gradient
\(-G_0 = 0.0065\) K/m

Computational domain

Top interface

Bottom interface
Flow configuration

DNS – NS with Boussinesq approximation

- domain: $L_z \approx 12$ m
- grid: $1024^2 \times 2048$
- initial interface thickness $\Delta \approx 0.3$ m
- energy ratio ≈ 6.7
- $Re_\lambda \approx 250$.

L. Gallana, M. Iovieno, F. De Santi, M. Carbone, R. Richiardone, D. Tordella

EFMC11-2016 – Sevilla
Objective

<table>
<thead>
<tr>
<th>Small scale</th>
<th>Focus on last part of inertial range and dissipative range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermittency</td>
<td>Presence of intermittent layers deeply influence small-scale dynamics. Different effects of stable and unstable layer</td>
</tr>
<tr>
<td>Shearless</td>
<td>Shearless mixing between two turbulent flows</td>
</tr>
<tr>
<td>Stratification</td>
<td>Effect of stratification on the turbulent mixing and droplet motion</td>
</tr>
<tr>
<td>Entrainment</td>
<td>Influence of the stratification on clear air entrainment</td>
</tr>
<tr>
<td>Instability</td>
<td>Short term instability simulation and growth factor evaluation</td>
</tr>
<tr>
<td>Droplet motion</td>
<td>Influence of flow inhomogeneity and stratification on the collision rate and growth of droplets</td>
</tr>
</tbody>
</table>
Context

Turbulent mixings

- A kinetic energy gradient creates an intermittent region (shearless mixing layer)
- It creates an additional compression of fluid elements in the direction of ∇E and a stretching in the other directions

Cloud droplet collisions

- Warm cloud have more turbulent kinetic energy than the surrounding clear air ($\Rightarrow \nabla E$ at the interface)
- Above 30-40 μm droplet growth is mainly determined by collisions
- Droplets accumulate in regions with high strain
- Can a shearless mixing layer change the collision rate of droplets?
Working hypothesis

- Top/bottom cloud-clear air interfaces can be seen as turbulent shearless mixing regions
- The compression of fluid elements at small scale, typically met across a shearless mixing layer, may increase the collision rate and particle numerical density
- Considering the bottom interface, gravity favours droplet exit from the cloud. Large droplets may become rain.
The role of the integral scale inhomogeneity

Uniform kinetic energy, inhomogeneous scale

Physica D, 2012.

Movie: Turbulent kinetic energy
Energy and Passive scalar transport

Movie: Turbulent kinetic energy

Movie: Scalar transport
Velocity derivative skewness

General behaviour

\[\xi = \frac{\partial u_i}{\partial x_i}, \quad i = x, y_1 \text{ and } y_2 \]

\((Re\lambda = 150, \ t/\tau = 3.5) \)

Increase of fluid filaments compression in the energy gradient direction, reduction of fluid filaments compression in the other directions

\[S_{\partial u/\partial x} \]

\[S_{\partial u/\partial y} \]

\[\Delta S_{\partial u/\partial x} \]

\[\Delta S_{\partial u/\partial y} \]

\(\text{direction normal to the mixing} \)

\(\text{mixing direction} \)
Fluid flow

Droplets

The cloud-clear air interface

Small-scale intermittency

Turbulence data (reference altitude 1000 m s.l.)

High energy region E_1: $u_{rms} = 0.2 \, m/s$, $\ell = 0.3 \, m$, $Re_\lambda \approx 250$

$E_1/E_2 \approx 6.7$, $Pr = 0.72$, $Sc = 0.61$

Initial Perturbation Stratification

<table>
<thead>
<tr>
<th>$\nabla \theta ,[K/m]$</th>
<th>$\Delta \theta ,[K]$</th>
<th>$N_{ic} ,[s^{-1}]$</th>
<th>Fr_T^2</th>
<th>Re_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.013</td>
<td>0.004</td>
<td>0.021</td>
<td>970</td>
<td>7</td>
</tr>
<tr>
<td>0.20</td>
<td>0.06</td>
<td>0.052</td>
<td>160</td>
<td>112</td>
</tr>
<tr>
<td>0.65</td>
<td>0.2</td>
<td>0.150</td>
<td>19</td>
<td>273</td>
</tr>
<tr>
<td>3.0</td>
<td>1.0</td>
<td>0.335</td>
<td>3</td>
<td>833</td>
</tr>
<tr>
<td>30.0</td>
<td>10.0</td>
<td>1.060</td>
<td>0.4</td>
<td>2635</td>
</tr>
<tr>
<td>-6.5</td>
<td>-0.2</td>
<td>/</td>
<td>-19</td>
<td>-273</td>
</tr>
<tr>
<td>-3.0</td>
<td>-1.0</td>
<td>/</td>
<td>-3</td>
<td>-833</td>
</tr>
</tbody>
</table>

$N_{ic} = \sqrt{\alpha g \frac{d\theta}{dx}}$ is the Brunt-Väisälä frequency

$Fr_T^2 = \frac{u_{rms}^2}{N_{ic}^2 \ell^2}$ is the ratio between kinematic and buoyancy forces

$Re_b = \frac{\varepsilon N_{ic}}{\nu}$ is the ratio between diffusivity and buoyancy
Velocity and temperature variance \(- t/\tau = 6\)

Stable stratification
- Formation of a pit of kinetic energy (strong strat)
- Reduction of scalar fluctuation

Unstable stratification
- Increases kinetic energy
- Enhances scalar fluctuation
Flow Structure

(a) Stable strat. \(- Fr^2 = 4.2\)

(b) Unstable strat. \(- Fr^2 = -4.2\)
Higher order moments $- t/\tau = 6$

Stable stratification
- General reduction of intermittency
- Strong stratification produces two velocity intermittent sublayers

Unstable stratification
- Increase of velocity intermittency
- Negligible effects on scalar
- No qualit. changes in behaviour
Stable stratification – kinetic energy pit

Creation of a pit of energy in the centre of the mixing:

- Presence of two opposite mean turbulent kinetic energy gradients
- Very low energy inside the pit (reduced transport)
- Pit onset and intensity are a function of the stratification level
Stable stratification – kinetic energy pit

Creation of a pit of energy in the centre of the mixing:
- Presence of two opposite mean turbulent kinetic energy gradients
- Very low energy inside the pit (reduced transport)
- Pit onset and intensity are a function of the stratification level
Instability growth factor

$$Fr^2 = -19$$

- Computed values
- Exponential fit $\zeta = 0.7(t/\tau)^{1.532}$

Growth factor

- Growth given by the ratio respect to no stratification
- $\zeta = \frac{E_{Fr^2=-3}}{E_{Fr=31}} - 1$
- Instability effects becomes relevant after $t = 2\tau$
- Growth rate exponent up to 1.8 (function of Fr^2)
Velocity spectra

energy spectra in the mixing layer, $Fr^2 = 4.2$
Velocity spectra

Stable

\[\| \hat{u}_3^{F=4} - \hat{u}_3^{F=60} \| / (\| \hat{u}_3^{F=4} + \hat{u}_3^{F=60} \|) \]

\[\| \hat{u}_3^{F=4} - \hat{u}_3^{F=60} \| / (\| \hat{u}_3^{F=4} + \hat{u}_3^{F=60} \|) \]

\[\| \hat{u}_{1,2}^{F=4} - \hat{u}_{1,2}^{F=60} \| / (\| \hat{u}_{1,2}^{F=4} + \hat{u}_{1,2}^{F=60} \|) \]

\[\| \hat{u}_{1,2}^{F=4} - \hat{u}_{1,2}^{F=60} \| / (\| \hat{u}_{1,2}^{F=4} + \hat{u}_{1,2}^{F=60} \|) \]

Unstable

\[\| \hat{u}_3^{F=4} - \hat{u}_3^{F=60} \| / (\| \hat{u}_3^{F=4} + \hat{u}_3^{F=60} \|) \]

\[\| \hat{u}_3^{F=4} - \hat{u}_3^{F=60} \| / (\| \hat{u}_3^{F=4} + \hat{u}_3^{F=60} \|) \]

\[\| \hat{u}_{1,2}^{F=4} - \hat{u}_{1,2}^{F=60} \| / (\| \hat{u}_{1,2}^{F=4} + \hat{u}_{1,2}^{F=60} \|) \]

\[\| \hat{u}_{1,2}^{F=4} - \hat{u}_{1,2}^{F=60} \| / (\| \hat{u}_{1,2}^{F=4} + \hat{u}_{1,2}^{F=60} \|) \]

vertical velocity

horizontal velocity
Dissipation

$Fr = 1.8$

Dissipation rate

- ε turbulence dissipation rate
 \[C_\varepsilon = \varepsilon \ell / u'^{3/2} \]
- In the energy pit the dissipation is higher than its isotropic value $u'^{3/2} / \ell$ (about 30%)
- Self-similarity in PDFs regardless of vertical position

Movie: Dissipation
Dissipation

\[F \tau^2 = -4.2 \]

Dissipation rate

- \(\varepsilon \) turbulence dissipation rate
 \[C_\varepsilon = \varepsilon \ell / u'^{3/2} \]
- Dissipation remains almost constant inside and outside the mixing region
- Self-similarity in PDFs regardless of vertical position
Derivative statistics

(a) \(\text{Re} \lambda = 45, [5] \)

(b) \(\text{Re} \lambda = 150, [5] \)

(c) Normalized third moment of longitudinal derivatives normal to the interface

(d) Normalized third moment of longitudinal derivatives parallel to the interface

any stratification highly enhances anisotropy
Turbulent mixings

- A kinetic energy gradient creates an intermittent region (shearless mixing layer)
- It creates an additional compression of fluid elements in the direction of ∇E and a stretching in the other directions
- Stratification increases anisotropy, can create a barrier of kinetic energy

Cloud droplet collisions

- Warm cloud have more turbulent kinetic energy than the surrounding clear air ($\Rightarrow \nabla E$ at the interface)
- Above 30-40 μm droplet growth is mainly determined by collisions
- Droplets accumulate in regions with high strain
- Can a shearless mixing layer change the collision rate of droplets?
Droplet dynamics model - small scale DNS

Droplet motion: Stokes drag & gravity

\[
\frac{dx_k}{dt} = v_k \\
\frac{dv_k}{dt} = \frac{u(x_k, t) - v_k}{\tau_{p,k}} + g
\]

where \(\tau_{p,k} = \frac{(2 \rho_w R_k^2)}{(9 \mu)} \) is the droplet relaxation time.

Evaporation-Condensation \((R_k = \text{radius})\)

Each droplet can change its mass by condensation and evaporation:

\[
\frac{dR_k}{dt} = c \frac{\varphi(x_k, t) - 1}{R_k}
\]

where \(\varphi \) is the relative humidity, \(\varphi = \rho_v/\rho_{sat} \) (Mason, 1971)

Collisions

Droplets are assumed to coalesce when \(|x_i - x_j| \leq R_i + R_j\):

\[
m_i + m_j = m^*, \quad m_i v_i + m_j v_j = m^* v^*
\]

L. Gallana, M. Iovieno, F. De Santi, M. Carbone, R. Richiardone, D. Tordella
EFMC11-2016 – Sevilla
Droplet model

Condensation/evaporation model coefficient (e.g. Kumar et al. 2013)

\[c = \left[\rho_w \left(\frac{R_v T}{D p_{sat}(T)} + \frac{L^2}{\kappa R_v T} \right) \right]^{-1} \]

- \(L \) = latent heat of evaporation condensation
- \(\kappa \) = thermal diffusivity in the air (\(Pr \approx 0.7 \))
- \(D \) = diffusivity of vapour in air (\(Sc \approx 0.5 \))
- \(\rho_w \) = density of water
- \(T \) = temperature
- \(p_{sat}(T) \) = saturation pressure

Saturation pressure (Clausius-Clapeyron)

\[\log \frac{p_{sat}}{p_R} = \frac{L}{R_v} \left(\frac{1}{T_R} - \frac{1}{T} \right) \]

\(p_R = 1103 \text{ Pa} \) is the saturation pressure at temperature \(T_R = 281.65 \text{ K} \).
Flow model

Navier-Stokes, Boussinesq approximation, plus vapour transport

\[\nabla \cdot \mathbf{u} = 0 \]
\[\frac{D\mathbf{u}}{Dt} = -\nabla \tilde{p} + \nu \nabla^2 \mathbf{u} + Bg + f_p \]
\[\frac{D\rho_v}{Dt} = \kappa_v \nabla^2 \rho_v - C_v \]
\[\frac{DT}{Dt} = \kappa \nabla^2 T + \frac{L}{c_p} C_v \]

\(L \) is the latent heat of evaporation, \(C_v \) the condensation rate per unit volume, \(f_p \) the particle force per unit mass on the flow

Coupling terms: droplets/flow interaction

\[f_p = -\frac{1}{\rho_0 V(x,\delta)} \sum_{x_k \in V(x,\delta)} m_k \frac{d\mathbf{v}_k}{dt} = -\frac{1}{\rho_0 V(x,\delta)} \sum_k m_k \frac{\mathbf{u}(x_k, t) - \mathbf{v}_k}{\tau_{p,k}} \]
\[C_v = \frac{1}{V(x,\delta)} \sum_{x_k \in V(x,\delta)} \frac{dm_k}{dt} = -\frac{4\pi \rho_w}{3V(x,\delta)} \sum_k c(\varphi(x_k, t) - 1) R_k \]
Particle movement

Flow

\[Re_\lambda \approx 50 \]
\[E_1/E_2 = 6.7 \]

Particles

\[N_p = 10^6, \quad St = 2 \] (30 \(\mu \)m droplets), collisions and coalescence
Particle density – effect of kinetic energy gradient

- Shearless mixing, $E_1/E_2 = 6.7$
- DNS $Re_\lambda \approx 50$
- $N_p = 10^6$ particles
- collisions and coalescence
- $St = 2$
Particle density – effect of statification

Unstable stratification

- Flow
 - DNS $Re_\lambda \approx 50$
 - $Fr^2 = 4$

- Particles
 - $N_p = 10^6$ particles
 - $St = 2$

Stable stratification

- Flow
 - DNS $Re_\lambda \approx 50$
 - $Fr^2 = 4$

- Particles
 - $N_p = 10^6$ particles
 - $St = 2$
Particle density – effect of statification

Unstable stratification

Stable stratification

\[\langle n \rangle \]

\[\frac{t}{\tau} = 1 \]

\[\frac{t}{\tau} = 5 \]

\[\langle n \rangle \]

\[\frac{x_3}{L} \]

\[\langle u_2^3 \rangle \]

\[\frac{x_3}{L} \]

L. Gallana, M. Iovieno, F. De Santi, M. Carbone, R. Richiardone, D. Tordella

EFMC11-2016 – Sevilla
Probability density function of the droplet vertical velocity in the mixing layer
Particle collisions

\[P_{\geq k}(t) = \text{fraction of droplets which underwent at least } k \text{ collisions at } t \]

An unstable stratified mixing layer increases the collision/coalescence rate
Conclusions

stable stratification

- Horizontally layered structure characterized by a low kinetic energy sublayer in case of local, stable, intense stratification (pit of energy)
- It acts as a barrier and reduces entrainment
- Generates two intermittent regions with opposite kinetic energy gradient

unstable stratification

- Exponential growth of the energy in the mixing region respect to the external region.
- Greater intermittency in the mixing layer
- Faster thickening of the mixing layer
- No relevant differences in dissipation respect to unstratified cases

Droplets

- Droplets accumulate in the mixing layer
- An unstable stratification increases the collision rate