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Abstract

At preliminary design stage, the global mechanical behavior of large marine vessels

such as container ships has previously been analyzed idealizing them as a classical

beam. These structures are complex and a classical beam idealization significantly

compromises important structural behavior associated with cross section warping or

in-plane displacements. On the other hand, 3D Finite Element (FE) models have been

utilized which are accurate in capturing these details but pose high computational

cost. In present work, structural analyses of marine vessels with realistic boundary

conditions have been presented using well-known Carrera Unified Formulation (CUF).

Using CUF, higher order theories can be implemented without the need of ad-hoc

formulations. The finite element arrays are written in terms of fundamental nuclei for

1D beam elements that are independent of problem characteristics and the approxi-

mation order. Thus, refined models can be developed in an automatic manner. In the

present work, the beam cross sections are discretized using elements with Lagrange

polynomials and the FE model is regarded as Component-Wise (CW), allowing one to

model complex 3D features, such as inclined hull walls, floors and girders in the form

of components.

The work is mainly divided in two parts: Hull in vacuo (in absence of water) and

Hull with Hydrostatic Stiffness (in presence of water). The former involves static

and dynamic structural analyses of hulls with realistic geometries without the effect

of water. The later involves static and dynamic analyses of realistic hull geometries

that are supported by buoyancy springs. The stiffness of buoyancy springs is made

part of the fundamental nuclei and the corresponding FEM matrices for hydrostatic

and hydrodynamic loads are obtained. The hydrodynamic loads have been considered

in the form of Radiation Wave loads which include damping and added mass effects.

Utilization of Component-Wise (CW) model under hydrodynamic loads has afforded

an ease in modelling the complex geometrical configurations such as realistic boat

shapes and the dynamic response analyses of aircraft carrier due to moving aircraft.

All the analyses have been validated with published literature and their computational

efficacy is established through their comparison with the results from commercial code.
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Chapter 1

Introduction

1.1 Global Structural Analysis of Ships

Today’s ships are large and structurally quite complex than the earlier designs. Many

ships such as container ships resemble like beam and it is mainly because of this

reason that their global structural response has preferably been modeled as beams at

preliminary design stage since long time. Famous classical beam models such as Euler

[31] and Timoshenko [89, 90] models have been considerably used for this purpose

with the ships’s longitudinal dimension considered as beam length. Being simple and

suitable for faster computations, these models afford results with inherent simplifying

assumptions which limits their scope to demonstrate their robustness in all general

scenarios. Such assumptions either result in increased factor of safety thereby resulting

in an inefficient and heavy design or the analyst is required to employ ad-hoc relations

to capture the detailed kinematics of the global response that classical model alone

could not capture. Owing to the particular geometrical form of a ship or a marine

vessel in general it may, for instance, exhibit coupling between the bending and torsion

and no single classical beam model can capture this behaviour without warranting ad-

hoc kinematical relationships.

Together with the ships, numerical methods such as Finite Element Method (FEM)

have witnessed considerable advancement owing to the enhanced computational capa-

bility of modern computers. Analysts employ 2D shell or 3D solid finite elements from

commercial codes that provide fairly accurate results as well as capture all realistic

warpage of geometrically complex structure. However, these 2D/3D finite elements

often require high computational time and cost which renders their use at preliminary

design stage unfeasible.
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Figure 1.1 A container ship failure under global loads

Because of the limitation of employing geometrical details at a preliminary design

stage, the analysts often rely on earlier designs with similar service profile and loading

conditions. This practice does not offer the most optimum structural configuration at

preliminary design stage. Catastrophic failures such as shown in Fig.1.1 can be avoided

if the global structural behaviour is adequately analysed for which beam models are

most suitable. Typical global deformable modes such as "sagging" or "hogging" (shown

in Fig.1.2) are satisfactorily captured through the use of classical beam models but in

reality ship may be subjected to diverse variety of loads. It may encounter waves at

an angle to its longitudinal axis resulting in distributed torsional loads (See Fig.1.3).

Since mostly ships have "U" shaped or channel cross section, they have shear center

below the keel. Such applied loads result in significant coupling in bending and torsion

and the beam cross sections and lateral faces undergo warping. Given the assumptions

in classical models, additional kinematical equations are needed to demonstrate the

said coupling or warping.

Figure 1.2 Ship under possible global bending modes
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Figure 1.3 Ship under torsional deformation [81]

1.1.1 Some Terminologies for Ships

For the subsequent discussion, various terminologies associated with a typical ship

for its geometry and to model its global structural behaviour are considered in the

following. Fig.1.4 shows a simplified illustration of important length dimensions of a

ship. The overall length is termed as LOA which is between two extreme longitudinal

ends of the ship. Length LW L refers to the length of ship measured at water-line

and LP P is length between two vertical lines called Perpendiculars. The Forward

Perpendicular (FP) can be the same as start of LW L whereas the Aft Perpendicular

(AP) is usually the rudder axis. The forward part of the ship is called Bow and the

rear as Stern. The upper horizontal surface is called Deck and the bottom mid line

parallel to ship axis is Keel. Ship moving in forward direction while looking from the

rear, the right side is called as starboard and the left side as port.

LOA

PP

WL

OS

FPAP L

L

L

Keel

Deck
BowStern

B

Mid-ship

Figure 1.4 Length dimensions in a ship

1.1.2 Ship Motions

Rigid Body Motions

Consider a ship moving in a global cartesian coordinate system as shown in Fig.1.5.

The ship length is along y-axis and the z-axis points upwards. A temporary rotation of
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ship around y−axis is called Heel which can be result of temporary external loads such

as wind, centrifugal loads or waves. If such rotation is caused by weight distribution

of cargo or structure then it is called List. Considering the rotation around x−axis,

a temporary or dynamic rotation is called Pitch whereas the one caused by weight

distribution is termed as Trim. The linear motions along the three global axes x, y

and z axes are termed as surge, sway and yaw respectively.

Heave

Sway

Serge

Heel/List

Pitch/Trim

Yaw

Waterline

x
z

y

Figure 1.5 Rigid body motions of a ship

Flexible Response

A few global deformation modes of a ship are as follows:

Hogging and sagging

In hogging, the ship bends in a vertical plane in a way that middle region is

pushed upwards and the ends are lowered. This situation can arise momentarily or

permanently depending the loading on the hull girder. The weight distribution will

always bend the structure downwards whereas the buoyancy will resort to push it

upwards. This is shown in left sketch in Fig.1.2. Most often, hogging is due to the

waves with crest in the middle of the ship. The increased submerged portion increases

the buoyancy force and resultantly the middle region is pushed upwards. Sagging is

the opposite of hogging where the middle region is pushed downward (Fig.1.2 right).

Sagging can be observed even in still water when the weight distribution alone can

cause the ship to bend downward in the middle.
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Torsion

A ship is subjected to torsion when it encounters loads that are not symmetric

about longitudinal vertical plane of symmetry. A ship travelling at an oblique angle

to the waves is subjected to such loadings. Since most ships do not have circular cross

section, they often develop warping under torsional loads. In fact, the container ships

experience high degree of warping compared to others as their "U" shaped or channel

shaped cross section offers least resistance to warping.

Racking

A particular mode of deformation occurs is when the forces on the hull tend to dis-

tort it in a transverse manner (See Fig.1.6). The transverse section appears to undergo

skewing. Racking is more pronounced in container ships owing to their open hatch

configuration. The phenomenon is felt greatest when the ship is light or under ballast

condition. The transverse bulkheads at reasonable spacing on the side walls resist

such loads in collaboration with side walls and strong knees. Ribs joining horizontal

bottom and vertical walls resist the bending moments at corner but they interfere with

the cargo space.

Distorted

ship

Water

Undistorted ship

Figure 1.6 Racking

1.2 Literature Review

1.2.1 Beam Models for Ships

Ultimate Hull Girder Strength

In most early works the ships were idealised as Hull Girder owing to their box-like thin-

walled section. This idealization often employs famous Euler-Bernouli Beam Model

(EBBM) [31]. The EBBM model assumes that in bending, plane cross sections remain
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plane as well as perpendicular to the beam axis. This assumption is valid for long

beams with simple, solid and homogeneous cross sections. The flexural stress in deck

and bottom plating have been predict using EBBM however this model cannot predict

the transverse shear stress which is important for side walls of a ship. The Timoshenko

Beam Model (TBM) [89, 90] considers the shear effect in addition to bending by

allowing beam cross section to rotate about neutral axis. The shear contribution is

more pronounced in bending of short beams. An assumption in TBM is constant shear

strain distribution over the cross section resulting in non-zero transverse shear stress

at the top and bottom beam edges whereas it should be zero. Shear correction factors

have been introduced in early works and advanced beam models have overcome this

problem.

Hull girder strength has long been considered the most important aspect in ship

building and simple beam idealization has greatly facilitated the designers. According

to Timoshenko[88], famous British scientist named Thomas Young (Young’s Modulus

named after him) considered ships as beams. In seemingly the earliest attempt of its

kind, the curves of weight and buoyancy distribution were obtained whose difference

was the load distribution curve applied over the beam length. The stresses thus

obtained were experimentally verified.

Ship designers have validated their beam models through experimenting actual or

scaled models by subjecting them to bending loads. Rutherford reported in [78] that

Sir Isamberd Brunel, in 1850s applied Beam Theory to calculate the flexural stress in

the deck and the bottom plating for his ship design which was twice the size of any

ship at that time. In a paper by John [95], he considered the ship as a beam and

obtained the plate thickness comparing normal stresses with the ultimate strength of

the material.

It was not until the failure of "HMS Cobra" in September, 1900 that compres-

sive buckling was considered more important than the tensile failure under bending

(sagging or hogging). It was reported by Kell in [67] and [68] that two destroyers

"Preston" "Bruce" were tested under sagging and hogging conditions respectively and

final collapse was initiated through the buckling of the hull girder in deck or bottom

plating. Buckling was followed by overall collapse of the hull girder. During and

after the period of World War II, many of the ship failures were investigated with

consideration of hull girder strength (See Vasta [44]). In 1949/1950, a collapse of hull

girder through buckling of bottom plating was observed while simulating hogging of a

destroyer "Albuera" as reported by Lang in [56].
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Later literature gives several methodologies to predict progressive failure of metallic

hull girders such as Caldwell [45] and Smith [28]. Use of FEM to simulate progressive

collapse was first demonstrated in 1983 by ABS group [62]. FEM codes based on

Explicit dynamic solver such as LSDYNA [2] have been used to simulate hull girder

progressive failure. Most accurate FEM results are obtained by employing 3D solid

finite elements. Wall thicknesses being much smaller than the overall ship dimensions

ultimately results in a heavy mesh. The need for large computational resources is

obvious for such FEM models to analyse complete ship models and is often not justified

in the preliminary design stage.

Cross Section Warping

Many ships such as container ships have large hatch opening resulting in mid-ship

sections to resemble "U" or channel shape. Since the centroids and shear centers of such

sections do not coincide, there exists strong coupling between their horizontal bending

and torsion behaviour. This also manifests in the form of out-of-plane warping of

cross section under torsional loads. The first solutions to the bending-torsion coupling

problem using FEM for ships was proposed by Kawai [86]. Kawai proposed a simplified

finite element analysis of a ship structure based on modern beam theory taking into

account the coupling of horizontal bending and torsion and cross section warping. In

his paper, St. Venant’s warping due to torsion was discussed as well as the effect of

transverse bulkheads was incorporated in the analysis. Restrained warping has been

addressed using Vlasov’s thin-walled beam theory in Vlasov [49]. In restrained warping,

warping is prevented locally as opposed to St.Venant’s free warping. The stresses in

the cross section are thus the St. Venant’s shear and axial and shear stresses due to

restrained warping.

Considerable literature, such as Gunnlaugsson [37], Senjanović [41], Bishop [5],

Pedersen [71] and [72], Wu [96], Pittaluga [73] deal with the coupled horizontal bending-

torsion response under dynamic conditions such as wave loads. For ships with large

hacth openings, Senjanović and his co-workes have implemented advanced theories in

beam girder idealization in several papers (See Senjanović [40, 80, 99, 43, 42, 79]).

This thesis includes discussion on warping of container ships which was also published

in [69].

Advanced Beam Models

The 1D beam models used in early studies of global ship models were based on classical

theories by Euler-Bernouli (EBBBM) and Timoshenko (TBM). EBBM did not take in
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account the transverse shear whereas TBM assumed a constant shear strain over the

cross section. The out-of-plane warping and in-plane deformations of arbitrary cross

sections are significant deformations which cannot be captured by these classical mod-

els. Well known book by Novozhilov [66] gives many examples to overcome limitations

of classical models. Kapania and Raciti [51] and [52] are few of the best reviews on the

advanced beam models. Since the problem of warping is pronounced for open section

and thin-walled beams, the advanced beam models presented originally for aerospace

or other structures are equally well suited for ship structures modelled as beams. The

refined beam theories presented over the last century have primarily addressed the

issues such as shear correction factor and cross section warping.

An improved shear correction factor for 1D beams has been focus of early inves-

tigations in works by Timoshenko and Goodier [91], Sokolnikoff [83], Stephen [84],

Hutchinson [39], and much recent work by Nguyen et al. [65]. Nevertheless, the diffi-

culty remains in arriving at a definite solution for shear factor as reported by a review

paper by Kaneko [50] and a paper by Dong et al. [30]. Jensen [46] draws a conclu-

sion that very accurate natural frequencies can be achieved if consistent formulation

for the shear coefficient, as proposed by Cowper [27] or Stephen [84], is used in the

Timoshenko beam model, even for wavelengths of the size of the transverse dimension

of the ship hull.

Improvement in displacement kinematics across beam cross-section was introduced

by El Fatmi [34] and [33] by introducing non-uniform warping function. This and

many other advanced beam models addressing the issue of warping are based on de

Saint-Venant solution. In addition to bending-torsion coupling, cross-section warping

has been discussed using advanced beam models by ships idealised as thin-walled

open/closed section beams by Senjanović in literature cited above.

1.2.2 State-of-the-Art, CUF

This thesis demonstrates the use of 1D beam finite elements based on CUF to model

structural response of marine vessels under the buoyancy as boundary condition. CUF

provides an automatic procedure to implement any order of cross section refinement

for FE beam model. The formulation thus obtained has the cross section and beam

discretizations mutually independent. This way, beam geometries with any aspect

ratio can be modeled giving structural response close to that of 3D solid elements

from a commercial FE code, yet requiring relatively much less DOFs compared to 3D

FE models.
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CUF was initially demonstrated in the area of structural mechanics for the devel-

opment of refined plate plate and shell theories [7, 8]. The 1D CUF beam models

were then utilized for the study of isotropic, solid and thin-walled sections in [10, 11].

These works employed Taylor polynomials to model cross-sectional displacement field.

The adoption of higher order expansion functions led to the accuracy of 3D solid finite

elements yet at a much less computational cost [36]. Cross section displacement was

modelled with a new class of polynomials, the Lagrange polynomials in [20]. These

models had pure displacements as the only unknowns. With Lagrange models, it was

easy to involve geometric discontinuities and the local boundary conditions through

localised mesh refinement. The free vibration of isotropic structures by Carrera et

al. [22] were analysed using CUF where mode shapes with transverse distortions were

effectively captured.

1D CUF models have also been used for the investigation of composite structures

by Catapano et al. [24] and Carrera and Petrolo [21]. The former employed Tay-

lor expansion functions while latter utilised Lagrange functions for the cross section

refinement. The work demonstrated the enhanced capability of 1D CUF models in

capturing the 3D stress field requiring much less DOFs.

Recently, the works in [14] and [15] comprehensively demonstrated use of refined

1D beam models based on CUF [12],[9] for structural analysis of marine vessels of

complex solid-like 3D geometry.

1.2.3 The Component-Wise (CW) Models

Recently, the CUF has been extended to an approach namely the Component-Wise

(CW) models [19]. In CW approach, various structural features such as walls, floors

or bulkheads of a complex structure may be considered as components (hence the

name Component-Wise). Each component is a beam with its own cross section and a

length arbitrarily oriented in a 3D global reference system. The approach is effectively

modelled employing Lagrange elements in cross sections. Since the CW models are

based on CUF, the beam shape-functions and the cross section expansion functions

remain uncoupled, allowing the modelling of beams with very large cross section and

very small beam length. The interface edges of the components have physical nodes

which can be connected by imposing continuity of displacement.

The use of CW has been widely demonstrated for the analysis of aircraft structures

where individual structural members (e.g. skin, stringer and longerons) are modelled

through 1D CUF. The CW models where employed to carry out the static and vi-

bration analysis of complex aerospace structures by Carrera et al. [16], [17]. These
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papers demonstrated that CW models allow actual geometries of different components

be connected at common physical nodes and thus no fictitious links are required to

connect DOFs of 1D, 2D or 3D components. The CW models were also successfully

applied to civil structures by Carrera et al [13] and [18]. In these papers, the industrial

and civil structures were analysed.

1.2.4 Beams on Buoyancy Springs

Presently available classical beam models EBBM and TBM and refined beam models

can include the effect of buoyancy in the form of employing winklerfounation (See

Hetenyi [38]) but their scope is limited to the few available Degrees of Freedom (DOFs)

they offer. These models cannot capture a general 3D warpage of cross section in

addition to the gross displacements of the floating structure. Hence, employing 3D

solid Finite Elements (FE) remains as next available possibility to capture detailed

3D kinematics but solid FE models are computationally expensive and cannot be

employed for preliminary analyses. Ship hulls were modeled as beams in classic works

by Bishop and Price [74–76] whereby 2D hydroelasticity theories were developed to

model the behaviour of ship hull and the surrounding fluid. These and many early

works employed Euler-Bernoulli or Timoshenko beam models to represent ship.

The effect of buoyancy on floating structures is often modeled by elastic founda-

tion. Emil Winkler [55] in 19th century modeled for the first time the beams on

elastic foundation. Hetenyi [38] employed winkler model to develop closed form solu-

tions for various cases of beams on elastic foundations which is considered as a series

of disconnected springs. Kennard([54]) and Todd [92]) analysed the ship vibrations

by considering ship as beam on springs and dampers. Considerable literature deals

with general structures supported on elastic foundation. These structures include Very

Large Floating Structures (VLFS) such as ice-sheets [60] and floating beams [26] and

plates [53] and [87] and jack-up rigs [25] and barges [57] for moving loads and collision

problems. Not much literature is seen so far dealing with global structural analysis of

ships modelled as beams with buoyancy as boundary condition. Jensen [47] models

ship as a rigid body while analysing the effect of hydrostatic forces on ship hull. The

vibration problem of hull girder is explained with simply supported boundary condi-

tions. This and works of Shama [81] and Senjenovic [80, 99] involve torsional analysis

of container ship with closed ends providing boundary conditions for the analysis. Use

of Finite Element Method (FEM) has allowed buoyancy to be modelled as 1D springs

attached to the wetted surface [1]. Wu and Sheu [97] have considered ship as a rigid

body floating over distributed springs and dampers in their analysis of moving loads on
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ships. Jong-Shyong [98] employed uniformly distributed springs to simulate buoyancy

for the analysis of floating barge with moving loads. Zhang [101] analysed dynamic

behaviour of floating bridges with buoyancy springs as the elastic support. Jer-Fang

[48] have considered ship supported on buoyancy springs while analyzing vibration.

Getter [70] have analysed hurricane induced barge impact on flood walls with springs

attached to the Finite Element model to simulate buoyancy. Recently, the works in

[14] and [15] comprehensively demonstrated use of refined 1D beam models based

on well-known Carrera Unified Formulation (CUF) [12],[9] for structural analysis of

marine vessels of complex solid-like 3D geometry.





Chapter 2

Carrera Unified Formulation

Over the years attempts have been made to address the inconsistencies of classical beam

models in capturing the higher-order phenomena such as the bending-shear coupling

and restrained warping under torsion. In literature, much focus has remained on Euler-

Bernouli and Timoshenko beam models. This chapter introduces the novel approach

namely Carrera Unified Formulation (CUF) which unifies the displacement kinematics

in compact form. Classical beam theories become special cases through this generic

approach which can be automatically extended to any degree of enhancement to include

all kind of higher order kinematics.

2.1 Preliminaries

With reference to the coordinate system shown in Fig.2.1, consider a beam of length

l which is aligned to global y axis and the cross section area is Ω parallel to xz-plane.

Introducing the displacement vector u as function of global coordinates x, y, z and

time t as follows:

u (x, y, z; t) =
{

ux uy uz

}T
(2.1)

where the superscript T is for transpose of the vector. Similarly, the stress σ and

strain ǫ vectors can be written as follows:

σ =
{

σyy σxx σzz σxz σyz σxy

}T

ǫ =
{

ǫyy ǫxx ǫzz ǫxz ǫyz ǫxy

}T (2.2)
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z
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y

Ω

l

Figure 2.1 Beam aligned with cartesian coordinates

Assuming linear strain-displacement relation for small displacements, strain ǫ is

given as:

ǫ = Du (2.3)

where D is the linear differential operator on u and it is given as follows:

D =
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(2.4)

The stresses and strains are related through Hook’s law as Eq. 2.5:

σ = Cǫ (2.5)

where C is the stiffness matrix comprising of following terms for an isotropic material:
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(2.6)

where

C11 = C22 = C33 =
(1 − ν)E

(1 + ν)(1 − 2ν)
= λ+ 2µ

C12 = C13 = C23 =
νE

(1 + ν)(1 − 2ν)
= λ

C44 = C55 = C66 =
E

2(1 + ν)
= G

(2.7)

and λ and µ are the Lamé’s parameters and ν, E and G are respectively the

poisson’s ratio, young’s modulus and the shear modulus for the material.

For generally orthotropic composite materials with fiber orientation angle θ, the

stiffness matrix becomes as follows:
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(2.8)

where the terms of the stiffness matrix can be found in many books for example

Reddy [77].

2.1.1 1D Variable Kinematic Modelling

Present 1D finite element formulation is derived in the framework of Carrera Unified

Formulation (CUF). According to CUF, the displacement field u over the cross section
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is assumed to have certain class of expansion function Fτ while along the length it is

in terms of interpolation functions, Ni which are function of y-axis. Reader is referred

to the book by Carrera [12] for comprehensive detail on the expansion functions and

Bathe [3] for the details of the interpolation functions Ni. Referring to Fig. 2.1, the

three dimensional displacement field u can be defined in terms of functions Fτ and

nodal displacements uτ as:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (2.9)

where Fτ are the generic expansion functions to approximate displacements in

terms of coordinates x and z over the cross-section. M is the number of expansion

terms in Fτ . uτ is the vector of the generalized displacements, and the repeated sub-

script, τ , indicates summation following the Einstein notation. In general, Eq.2.9

represents an axiomatic model to for the three dimensional behaviour of a structure.

The order of expansion function allows one to freely increase the accuracy of displace-

ment kinematics surpassing the limits of classical beam theories.

The cross section expansion function can be approximated through different classes

of polynomials. In this thesis, Lagrange Expansion (LE) polynomials [13] have been

used represented as Fτ . Using LE it was possible to use pure displacements as degrees

of freedom for the nodes over beam cross section. The beam cross section can be

meshed using 3 noded (L3), 4 noded (L4) or 9 noded (L9) Lagrange elements. An L9

element, for example, has the interpolation function as given in Eq.A.1:

Fτ =
1

4
(α2 + αατ )(β2 + ββτ ), τ = 1, 3, 5, 7

Fτ =
1

2
βτ

2(β2 + ββτ )(1 − α2) +
1

2
ατ

2(α2 + αατ )(1 − β2), τ = 2, 4, 6, 8

Fτ = (1 − α2)(1 − β2), τ = 9

(2.10)

where α and β range from -1 to +1, whereas ατ and βτ are the coordinates of the

nine points whose numbering and location in the natural coordinate frame are shown

in Fig.A.2. The 3D displacement field of the beam model based on L9 polynomial is
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Figure 2.2 L9 element in natural coordinates

given as:

ux = F1ux1
+ F2ux2

+ F3ux3
+ F4ux4

+ F5ux5
+ F6ux6

+ F7ux7
+ F8ux8

+ F9ux9

uy = F1uy1
+ F2uy2

+ F3uy3
+ F4uy4

+ F5uy5
+ F6uy6

+ F7uy7
+ F8uy8

+ F9uy9

uz = F1uz1
+ F2uz2

+ F3uz3
+ F4uz4

+ F5uz5
+ F6uz6

+ F7uz7
+ F8uz8

+ F9uz9

(2.11)





Chapter 3

Finite Element Method

The Carrera Unified Formulation was introduced in previous chapter to model the

displacement kinematics associated with a 1D beam problem. In this chapter, the

weak form of the same problem will be presented as a weighted integral equation

and governing equations are formed employing principle of virtual displacement. The

Finite Element Method (FEM) is then used to solve these equations.

In the Finite Element formulation, the CUF generalized displacements uτ (y) from

Eq.2.9 can be expressed as a weighted linear combination of arbitrary interpolation

functions namely the shape functions represented as Ni; i.e.

uτ (y) = Ni(y)qτi, i = 1, 2, ..., p+ 1 (3.1)

where i is the number of nodes of a beam element of the order p. The Eq.2.9

for displacements can now be written in terms of cross section functions Fτ (x, z) and

length-wise interpolation functions Ni as:

u(x, y, z) = Fτ (x, z)Ni(y)qτi, i = 1, 2, ...p+ 1; τ = 1, 2, ...,M (3.2)

where qτi is the vector consisting of generalized nodal unknowns:

qτi =
{

qxτi
qyτi

qzτi

}T
(3.3)

The interpolation functions,Fτ , chosen to discretize the cross-section and the shape

function Ni to discretize the beam are independent of each other.

In this thesis, 1D Lagrange Elements have been used as shape functions to ap-

proximate displacement variation along the length. These functions can be 2-noded
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linear (p=1), 3-noded quadratic (p=2) and 4-noded cubic (p=3) and are given in many

books on FEM such as [3]. For the sake of completeness, they are being reported here.

Two-noded B2 Beam Element:

N1 = 1
2
(1 − r), N2 = 1

2
(1 + r),







r1 = +1

r2 = −1
(3.4)

Three-noded B3 Beam Element:

N1 = 1
2
r(1 − r), N2 = 1

2
r(1 + r), N3 = −(1 + r)(1 − r),















r1 = +1

r2 = −1

r3 = 0

(3.5)

Four-noded B4 Beam Element:

N1 = − 9
16

(r + 1
3
)(r − 1

3
)(r − 1), N2 = + 9

16
(r + 1

3
)(r − 1

3
)(r + 1),

N3 = +27
16

(r + 1)(r − 1
3
)(r − 1), N4 = −27

16
(r + 1)(r + 1

3
)(r − 1),



























r1 = −1

r2 = +1

r3 = −1
3

r4 = +1
3

(3.6)

All the aforementioned shape functions are written in terms of natural coordinate

r which ranges between -1 and +1 and ri is the coordinate of the ith node along the

natural coordinate r.

3.1 Static Structural Analysis

The principal of virtual work can be employed to obtain FEM equations for structural

analyses. In case of static analysis, the virtual work done by the internal strain energy

Lint is equal to the work done by external loads Lext as follows:

δLint = δLext (3.7)

The virtual variation of strain energy is given as follows:

δLint = δqTKq (3.8)
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where δq is the vector containing generalized nodal unknowns and K is the global

stiffness matrix in the assembled form. The derivation of the matrix K is briefly

discussed later in this chapter. The virtual variation of the external work done on the

structure is given as follows:

δLext = δuT P (3.9)

where P is the vector of global generalized forces acting on the structure and is

discussed in Sec.3.7. Substituting Eqs.3.8 and 3.9 in Eq.3.7 we obtain the algebraic

equation for static analysis as follows:

Kq = P (3.10)

3.2 Free Vibration Analysis

The free vibration problem is analysed by considering equilibrium between elastic

and inertial forces. Employing principle of virtual displacement for this problem, the

work done by internal strain energy and the inertia are related through the following

equation:

δLint = −δLine (3.11)

The FEM approximation for the virtual variation of work of inertial forces is written

as follows:

δLine = δqTMq̈ (3.12)

where M is the global assembled mass matrix and q̈ is the global vector of nodal

generalized accelerations. Substituting Eqs.3.12 and 3.8 in 3.11, we get the equation

of motion for the free vibration problem as follows:

Kq + Mq̈ = 0 (3.13)

Assuming a the solution q to be harmonic in time with amplitude Q and the

angular frequency ω, the Eq.3.13 reduces to an eigenvalue problem as follows:

(K − ω2M)Qeiωt = 0; (3.14)
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3.3 Dynamic Response Analysis

As a more general case, the works of internal strain energy, inertia and external forces

are considered and their virtual variations are related as follows:

δLint = δLext − δLine (3.15)

for which the FEM form is as follows:

Kq + Mq̈ = P (3.16)

This equation is solved for variation of q in time domain using a suitable numerical

technique.

3.4 Stiffness Matrix

The work done by the internal strain energy can be written as:

δLint =
∫

V
δǫT

σdV (3.17)

where Lint stands for the internal strain energy and δ stands for the virtual variation.

The Eq. 3.17 can be re-written using Eqs.2.3, 2.5 and 3.2 as follows:

δLint = δqT
τiK

ij τ sqsj (3.18)

where Kij τ s represents the stiffness matrix in compact form termed as Fundamental

Nucleus (FN). The FN of the stiffness matrix comprises of nine components mentioned

as follows:
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Kijτs
11 = (λ+ 2G)

∫

Ω
Fτ,xFs,xdΩ

∫

l
NiNjdy +G

∫

Ω
Fτ,zFs,zdΩ

∫

l
NiNjdy+

G
∫

Ω
FτFsdΩ

∫

l
Ni,yNj,ydy

Kijτs
12 = λ

∫

Ω
Fτ,xFsdΩ

∫

l
NiNj,ydy +G

∫

Ω
FτFs,xdΩ

∫

l
Ni,yNjdy

Kijτs
13 = λ

∫

Ω
Fτ,xFs,zdΩ

∫

l
NiNjdy +G

∫

Ω
Fτ,zFs,xdΩ

∫

l
NiNjdy

Kijτs
21 = λ

∫

Ω
FτFs,xdΩ

∫

l
Ni,yNjdy +G

∫

Ω
Fτ,xFsdΩ

∫

l
NiNj,ydy

Kijτs
22 = G

∫

Ω
Fτ,zFs,zdΩ

∫

l
NiNjdy +G

∫

Ω
Fτ,xFs,xdΩ

∫

l
NiNjdy+

(λ+ 2G)
∫

Ω
FτFsdΩ

∫

l
Ni,yNj,ydy

Kijτs
23 = λ

∫

Ω
FτFs,zdΩ

∫

l
Ni,yNjdy +G

∫

Ω
Fτ,zFsdΩ

∫

l
NiNj,ydy

Kijτs
31 = λ

∫

Ω
Fτ,zFs,xdΩ

∫

l
NiNjdy +G

∫

Ω
Fτ,xFs,zdΩ

∫

l
NiNjdy

Kijτs
32 = λ

∫

Ω
Fτ,zFsdΩ

∫

l
NiNj,ydy +G

∫

Ω
FτFs,zdΩ

∫

l
Ni,yNjdy

Kijτs
33 = (λ+ 2G)

∫

Ω
Fτ,zFs,zdΩ

∫

l
NiNjdy +G

∫

Ω
Fτ,xFs,xdΩ

∫

l
NiNjdy+

G
∫

Ω
FτFsdΩ

∫

l
Ni,yNj,ydy

(3.19)

3.5 Mass Matrix

The mass matrix can be obtained by considering the virtual variation of the work of

the inertial loadings:

δLine =
∫

V
ρδuT üdV (3.20)

where ρ is the material density and ü is the acceleration vector. Rewriting Eq.3.20

using Eq. 3.2 we get

δLine = δqT
τi

∫

l
NiNjdy

∫

Ω
ρFτFsdΩq̈sj = δqT

τiM
ij τ sq̈sj (3.21)
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where Mij τ s is the fundamental nucleus of the mass matrix and its components are

written as follows:

M τ sij
xx = M τ sij

yy = M τ sij
zz = ρ

∫

l
NiNjdy

∫

Ω
FτFsdΩ,

M τ sij
xy = M τ sij

xz = M τ sij
yx = M τ sij

yz = M τ sij
zx = M τ sij

zy = 0

(3.22)

The shape functions integrals are calculated through the use of Gauss integration

method [85]. The integration procedure involves reduced integration method as it

overcomes the problem of shear locking (see [3], [93]).

The Fundamental Nuclei (FNs) are independent of the order and choice of cross

section functions Fτ . Thus, they manifest as nine lines of code in the FEM program

affording any order of theory can be easily implemented. The assembly procedure of

FNs into the stiffness and mass matrices is achieved by employing four indices τ , s, i

and j as four loop cycles in the code. Figure 3.1 shows the position of a FN within

the stiffness matrix of an element and the global stiffness matrix. Having obtained the

global matrix, the boundary conditions are applied onto the matrices to render them

non-singular for onwards solution of the problem.

s = 1
τ = 1 M

M

is reti tion t ith node

i = 1 p+1

j = 1

p+1

e ent ti ness tri

x y z

x K11 K12 K13

y K21 K22 K23

z K31 K32 K33

nd ent e s

Figure 3.1 A 3×3 Fundamental Nucleus and its position in the element stiffness matrix
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1 NDOF

1

NDOF

Figure 3.2 Element stiffness matrices assembled into Global Stiffness Matrix

3.6 Hydrostatic Stiffness Matrix

In present work (Part II of this thesis), the buoyancy has been modelled in the form

of hydrostatic stiffness acting over the submerged area. Employing PVD, the virtual

work done by strain energy of the hydrostatic stiffness can be written as follows:

δLint|HS = δuT KHSu (3.23)

where the subscript HS stands for Hydrostatic Stiffness and u is the generalized

displacement. This hydrostatic stiffness is the product of stiffness per unit area times

the area over which it acts. From Eq.3.2, we may write displacement in terms of shape

functions and nodal displacements from so that:

δLint|HS = δqT
τi

∫

l
NiNjdy ko

∫

Ω
FτFsdΩqsj = δqτiK

ijτs
HS qsj (3.24)

where Kijτs
HS is the 3×3 Fundamental Nucleus (FN) of Hydrostatic Stiffness. In the

above equation, buoyancy is written in terms of linear 1D shape functions Ni which act

over area
∫

Ω
FτFsdΩ. Since only the nodal value is the sole contribution of buoyancy

spring to the global structural stiffness, we can write:

∫

l
NiNjdy = 1 (3.25)
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Also, since buoyancy acts only vertically, depending on the axis aligned with grav-

ity, the corresponding FN term is active and remaining 8 terms are all zero. For

example, for the case with y-axis aligned with gravity we have:

Kijτs
HS =









KHSijτ s
xx KHSijτ s

xy KHSijτ s
xz

KHSijτ s
yx KHSijτ s

yy KHSijτ s
yz

KHSijτ s
zx KHSijτ s

zy KHSijτ s
zz









=









0 0 0

0 KHSijτ s
yy 0

0 0 0









(3.26)

where

KHSijτ s
yy = ko

∫

Ω
FτFsdΩ (3.27)

and

ko = Foundation Modulus of water = ρg

g = Gravity acceleration constant = 9.81 m/s2
(3.28)

3.7 Loading Vector

For the case of a concentrated load P acting on a point P with coordinates xp, yp

and zp, a loading vector variationally coherent to the hierarchial model is obtained as

follows:

P =
{

Px Py Pz

}T
(3.29)

For the other cases such as line or surface loads, the virtual variation in the work

due to force P can be written as:

δLext = δuT P (3.30)

Introducing the shape functions and nodal displacements from Eq.3.2, we get

δLext = δqτiFτNiP (3.31)

where Fτ and Ni are functions of (x, z) and y coordinates respectively. The Eq.3.31

allows the proper assembly of FNs of load vector. This way each global displacement

DOF can be assigned a load component.
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3.7.1 Inertia Load

The virtual variation of external work done by acceleration due to gravity, ü =
{

üx üy üz

}T
=
{

0 0 g
}T

, can be written from Eq. 3.20 as follows:

δLext = δqT
τi

∫

l
NiNjdy

∫

Ω
ρFτFsdΩq̈sj = δqT

τiM
ij τ sq̈sj = δqT

τiP
j s (3.32)

where Mij τ s is the mass matrix derived above and g is constant of acceleration

due to gravity, 9.81 m/s2.
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Chapter 4

Single Beam Models for Marine

Vessels

This chapter is first of the series of chapters on results of application of CUF with

CW models. As a start only simple marine structural configurations such as barges

which resemble boxes and simplified boat-like geometries have been analysed for static

and dynamic analysis. The analyses were performed on dry hull (without water) con-

figurations. The efficacy of CW approach for the analysis of typical marine structures

is demonstrated for dry configurations.

4.1 CW Single Beam Models

The Component-Wise (CW) models were introduced in second chapter which have

pure displacement DOFs as the only unknowns. Geometrical complexities such as cross

section discontinuities and localised warping and stresses can be efficiently captured

using CW models of CUF. Only the dry models are analysed in this and next chapter

since no effect of water is taken into consideration. The objective of this chapter is

to introduce CW models for modeling typical marine structures such as barges and

boat-like geometries. All the cases discussed in this chapter comprise of a single beam

with multiple cross sections. Each cross section is associated to a beam element and

thus the change of cross section along the beam length is materialised. The strength

of CW approach and the refined displacement kinematics for these simple cases is

presented here as an initial approach towards analysis of more complex geometries

such as container ships later to appear in the thesis.

It is important to highlight here the fact that typical FE models of modern complex

marine vessels may employ a mix of different elements types e.g. 1D, 2D or 3D
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in a single model. For this purpose fictitious links are introduced to account for

inconsistencies in DOFs at an interface location shared between two different element

types. The present beam model effectively overcomes this issue by affording a rich

displacement field over the cross section in the form of physical nodes (Lagrange

element nodes). At the element-to-element interface (beam node), the sections share

many common nodes thereby sharing DOFs and finally affording us with a realistic

displacement field. Hence, no fictitious elements are needed at these interfaces.

4.1.1 Box-like structures-Barges

Barges are flat-bottomed floating vessels which may or may not be self propelled. Their

usual purpose is to transport cargo over relatively shorter distances compared to large

container ships. In configuration, they mostly resemble box-like shapes therefore they

were chosen as initial cases for the application of CW models for marine vessels. The

dynamic and static analyses for the box-like barges discussed hereinafter have been

published in [15].

Referring to the Fig.4.1, the boxes have the longest dimension along y-axis which

is also the longitudinal axis for the beam. Various cross sections are parallel to the xz-

plane which is the transverse plane. Configuration Fig.4.1a is the simplest geometry

involving only the two side walls and a floor. In the configuration shown in Fig.4.1b a

longitudinal bulkhead is introduced in the middle and in Fig.4.1c a transverse bulkhead

is added to the preceding two geometries.

0.56

2.5

1.7
z

y

x

(a) Box with 2 walls

0.85
z

y

x

(b) Box with 2 walls and
1 stiffener

1.25

z

y

x

(c) Box with 4 walls and 2
crossing stiffeners

Figure 4.1 Box-like structure geometries (dimensions in meters)

In general, the configuration shown in Fig.4.1c may be modelled using three FE

approaches as shown in Fig.4.2. Figure 4.2a shows the model meshed with 2D shell

elements from a commercial software and Fig.4.2b shows the same model meshed with

3D solid elements. The model is finally meshed using CW approach in Fig.4.2c. The



4.1 CW Single Beam Models 33

shell mesh has ANSYS shell elements (Shell-281) meshed on the surface that lies mid-

way through the wall thicknesses. Each node of shell element has 6 DOFs (i.e. three

translations and three rotations). The shell model from hereinafter will be referred to

as ANS2D. The ANSYS solid mesh comprises of 3D brick element (Solid-186) with

each node having 3 DOFs (translations only). The solid model will be hereinafter

referred to as ANS3D. In CW mesh, the beam nodes are along y-axis while the cross

sections are meshed with nine nodded L9 Lagrange elements. The beam mesh is

discretised in 13 elements along y-axis. The model comprises two cross sections types:

1 and 2 as shown encircled. Each node of the L9 element has a physical location in

the 3D model and has three translation DOFs. As an example, the two cross sections

meshed with Lagrange elements are shown in Fig.4.3.

(a) Shell element mesh (b) Solid element mesh

(c) CUF LE Beam elements mesh with two cross section types

Figure 4.2 Various FE approaches to model the box-like structure of Fig.4.1c

(a) L9 Mesh for Cross
section-1

(b) L9 Mesh for Cross
section-2

Figure 4.3 Two cross section mesh types used in Fig.4.2c
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Modal analysis

This section describes the free vibration analysis of a box-like structure for the three

configurations as shown in Fig.4.1. The structure has free-free boundary conditions

and the material made of an aluminum alloy with the following material constants:

E = 75 GPa, ν = 0.33, and material density ρ = 2700 Kg/m3. The wall and floor

thicknesses everywhere is 10 mm. Results of the analyses, natural frequencies, are

presented in Tables 4.1 to 4.3 and the correspondingly their first and fourth mode

shapes are shown in Fig.4.4.

Table 4.1 Natural frequencies (Hz) with free-free boundary conditions the case of
Fig.4.1a

(DOFs)
5L9 Model

(1023)
8L9 Model

(4743)
12L9 Model

(6975)
ANS2D
(51678)

ANS3D
(153948)

Mode 1 6.52 5.26 5.23 5.16 5.22
Mode 2 9.79 8.41 8.25 8.04 8.11
Mode 3 19.30 14.21 14.00 13.73 13.89
Mode 4 28.30 19.57 18.39 17.41 17.65
Mode 5 48.10 22.73 21.91 21.11 21.41
Mode 6 49.30 23.01 22.01 21.48 21.72
Mode 7 50.60 32.87 29.30 26.05 26.44
Mode 8 53.90 38.79 31.61 28.44 28.87
Mode 9 69.50 46.15 31.93 30.97 31.43
Mode 10 71.00 48.09 37.76 35.07 35.62

Table 4.2 Natural frequencies (Hz) with free-free boundary conditions the case of
Fig.4.1b

(DOFs)
16L9 Model

(6975)
ANS2D
(61710)

ANS3D
(73824)

Mode 1 5.65 5.54 5.61
Mode 2 7.75 7.50 7.59
Mode 3 12.61 12.23 12.39
Mode 4 15.03 14.49 14.70
Mode 5 19.73 19.16 19.44
Mode 6 25.84 22.80 23.21
Mode 7 27.77 24.92 25.36
Mode 8 29.21 26.43 27.01
Mode 9 31.19 28.68 29.26
Mode 10 31.30 30.46 30.91
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(a) Config. Fig.4.1a Mode
1: ANSYS

(b) Config. Fig.4.1b Mode
1: ANSYS

(c) Config. Fig.4.1c Mode 1:
ANSYS

(d) Config. Fig.4.1a Mode
1: CW Model

(e) Config. Fig.4.1b Mode
1: CW Model

(f) Config. Fig.4.1c Mode 1:
CW Model

(g) Config. Fig.4.1a Mode
4: ANSYS

(h) Config. Fig.4.1b Mode
4: ANSYS

(i) Config. Fig.4.1c Mode 4:
ANSYS

(j) Config. Fig.4.1a Mode 4:
CW Mode4

(k) Config. Fig.4.1b Mode
4: CW Model

(l) Config. Fig.4.1c Mode 4:
CW Model

Figure 4.4 First and forth mode shapes for the box-like configurations of Figs.4.1a,
4.1b and 4.1c
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Table 4.3 Natural frequencies (Hz) with free-free boundary conditions the case of
Fig.4.1c

(DOFs)
15L9 Model

(8352)
20L9 Model

(10872)
28L9 Model

(14364)
ANS2D
(81114)

ANS3D
(99366)

ANS3D
(238200)

Mode 1 8.60 8.48 7.47 7.10 7.19 7.19
Mode 2 40.29 39.88 39.66 37.95 38.69 38.52
Mode 3 44.51 44.19 41.89 39.01 39.78 39.61
Mode 4 55.90 55.011 44.15 42.70 43.44 43.28
Mode 5 56.10 55.21 46.02 43.53 44.28 44.12
Mode 6 58.86 57.95 49.29 45.71 46.66 46.47
Mode 7 61.90 61.04 55.20 52.11 53.08 52.88
Mode 8 76.03 74.88 74.43 62.84 64.05 63.83
Mode 9 79.81 78.77 78.09 64.21 65.42 65.23
Mode 10 88.84 87.51 86.15 68.32 69.58 69.37

Static analysis

The CW model shown in Fig.4.5 was analysed for its static analysis with a variety

of loading and boundary conditions. The first two loading cases are shown in Fig.

4.5a and 4.5b, where a 10 kN vertically downward point load is applied at intersection

of longitudinal and transverse bulkheads. The other two loading cases as shown in

Fig.4.5c and 4.5d are where a Uniformly Distributed Load (UDL) is applied on the

top of longitudinal bulkhead. The four cases shown in the Fig.4.1c have the two types

of boundary condition sets applied to the four bottom edges. An edge with a Simply-

supported boundary condition is denoted as "S" and a Free edge with "F" and the two

types of boundary conditions are denoted as SSSS and SFSF.

The deflections and stresses obtained from the static analyses are are presented in

Tables 4.4 to 4.7, and the deformed shapes, as obtained from ANS3D and the present

CW beam model, are shown in Fig.4.7 to 4.10 for the respective cases. Fig.4.6 shows

a plan view of the box highlighting eight selected locations (A to H) on the surface

lying midway through the floor thickness at z = −0.275 m. Taking into account the

symmetry in the structure, only the results at points A and E are being reported here.

It can be inferred from the results of the static analysis that the CW requires

much less DOFs compared to ANS3D models for fairly close results. The efficacy of

CW is manifest in the fact that the loads and boundary conditions are applied at

realistic geometrical locations. Apart from vertical bending of the beam in yz-plane,

the out-of-plane and in-plane displacement kinematics are quite obvious and realistic

for the walls and bulkheads. It is observed that introducing more supports reduces the
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z
y

x

10 kN

(a) Point Load with SFSF
Boundary Condition

z
y

x

10 kN

(b) Point Load with SSSS
Boundary Condition

z
y

x

UDL 4 kN/m

(c) Uniformly Distributed Load
with SFSF Boundary Condition

z
y

x

UDL 4 kN/m

(d) Uniformly Distributed Load
with SSSS Boundary Condition

Figure 4.5 Four cases of loading and boundary conditions

Figure 4.6 Plan view of the verification points for results
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Table 4.4 Results under the loading shown in Fig.4.5a; CW and ANS3D refer to
77/29L9 and ANSYS Solid Models respectively

Point Model (DOFs) Displacements (×10−6 m)

u v w

A CW (27288) 0.289 -0.843 -18.576
ANS3D (515103) 0.294 -0.857 -18.776

E CW (27288) -0.336 -0.088 -42.476
ANS3D (515103) -0.334 -0.090 -42.997

Point Model (DOFs) Stresses (×105 Pa)

σxx σyy σzz σxy σxz σyz

A CW (27288) 0.130 0.726 0.004 -0.543 -0.007 -0.009
ANS3D (515103) 0.122 0.744 0.000 -0.549 -0.003 -0.002

E CW (27288) 4.058 2.892 -0.028 -1.049 -0.637 0.052
ANS3D (515103) 4.278 2.919 -0.008 -1.038 0.017 -0.018

(a) Static Deflection from CW Model (b) Static Deflection from ANSYS

Figure 4.7 Deflected box under the loading shown in Fig. 4.5a
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Table 4.5 Results under the loading shown in Fig. 4.5b; CW and ANS3D refer to
77/29L9 and ANSYS Solid Models respectively.

Point Model (DOFs) Displacements (×10−6 m)

u v w

A CW (27288) 0.063 -0.2382 -13.017
ANS3D (515103) 0.067 -0.248 -13.120

E CW (27288) -0.302 -0.048 -38.350
ANS3D (515103) -0.300 -0.049 -38.849

Point Model (DOFs) Stresses (×105 Pa)

σxx σyy σzz σxy σxz σyz

A CW (27288) -0.078 -0.067 0.002 -0.089 -0.011 -0.016
ANS3D (515103) -0.073 -0.051 0.000 -0.103 -0.004 -0.002

E CW (27288) 3.618 2.290 -0.024 -1.049 -0.503 0.046
ANS3D (515103) 3.843 2.329 -0.007 -1.021 0.005 -0.013

(a) Static Deflection from CW
Model (b) Static Deflection from ANSYS

Figure 4.8 Deflected box under the loading shown in Fig.4.5b
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Table 4.6 Results under the loading shown in Fig. 4.5c; CW and ANS3D refer to
77/29 L9 and ANSYS Solid Models respectively

Point Model (DOFs) Displacements (×10−6 m)

u v w

A CW (27288) 0.318 -0.587 -18.642
ANS3D (515103) 0.335 -0.593 -19.047

E CW (27288) -0.356 0.217 -31.703
ANS3D (515103) -0.362 0.234 -31.524

Point Model (DOFs) Stresses (×105 Pa)

σxx σyy σzz σxy σxz σyz

A CW (27288) 0.268 0.628 0.000 -0.421 -0.005 -0.005
ANS3D (515103) 0.281 0.654 0.000 -0.425 -0.004 -0.001

E CW (27288) 3.081 0.097 -0.034 -0.214 0.051 -1.078
ANS3D (515103) 3.154 -0.152 -0.008 -0.268 -0.029 0.084

(a) Static Deflection from CW
Model (b) Static Deflection from ANSYS

Figure 4.9 Deflected box under the loading shown in 4.5c
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Table 4.7 Results under the loading shown in Fig. 4.5d; CW and ANS3D refer to
77/29 L9 and ANSYS Soild Models respectively

Point Model (DOFs) Displacements (×10−6 m)

u v w

A CW (27288) 0.094 -0.055 -11.460
ANS3D (515103) 0.099 -0.037 -11.733

E CW (27288) -0.284 0.201 -25.199
ANS3D (515103) -0.288 0.221 -24.817

Point Model (DOFs) Stresses (×105 Pa)

σxx σyy σzz σxy σxz σyz

A CW (27288) 0.065 -0.082 -0.002 0.013 -0.010 -0.016
ANS3D (515103) 0.082 -0.086 0.000 0.022 0.000 -0.004

E CW (27288) 2.405 -0.184 -0.028 -0.230 0.042 -0.862
ANS3D (515103) 2.457 -0.440 -0.007 -0.256 -0.022 0.065

(a) Static Deflection from CW
Model (b) Static Deflection from ANSYS

Figure 4.10 Deflected box under the loading shown in Fig.4.5d
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vertical deflection which is again a realistic behaviour. The sharp vertical deflection

is lessened when a UDL replaces the Point load.
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4.1.2 Boat-like structures

Boat-like configurations were chosen to demonstrate the usefulness of CW model

through free vibration analysis. The four configurations are shown in Fig. 4.11. The

structure has free-free boundary conditions and the material is the same aluminum

alloy as was used in box problems. Figure 4.11a is the simple hull with flat faces, then

it is stiffened through a stiffener in the middle as shown in Fig. 4.11b and then further

stiffened by introducing three transverse and two edge stiffeners as shown in Fig.4.11c.

Finally, Fig.4.11d shows the configuration has four edge stiffeners and two end walls

and has simply supported boundary conditions applied to edge fillets of R0.2. The

height of each stiffener is 100 mm and wall thickness is 10 mm at all places.

z

x

y

2 - 0.45
0.56

2.5
1.7

(a) Flat hull with no stiffeners

z

x

y

0.1

2.5 1.7

(b) Flat hull with 1 stiffener

1.25

z

x

y

2 - R0.2

(c) Hull with 2 crossing and 2 edge
stiffeners

z

x2 - R0.2

y0.1

0.1

(d) Hull with various stiffeners and 2
end walls

Figure 4.11 Boat-like structure geometries (dimensions in meters)
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The natural frequencies obtained from the modal analysis of the boat-like configu-

rations of Fig.4.11a to 4.11c are given in Tables 4.8 to 4.10 and mode shapes for the

configurations shown in Fig.4.11c and Fig.4.11d are presented in Figs. 4.12 and 4.13.

Table 4.8 Comparison of natural frequencies of the boat-like structure of Fig. 4.11a

(DOFs)
CW 13L9

(7533)
CW 19L9
(10881)

ANS2D
(117126)

ANS2D
(29766)

ANS3D
(53910)

ANS3D
(121695)

Mode 1 6.47 6.46 6.37 6.37 6.45 6.45
Mode 2 9.98 9.88 9.65 9.65 9.84 9.83
Mode 3 14.48 14.40 14.13 14.13 14.35 14.34
Mode 4 24.23 24.11 23.71 23.71 23.99 23.98
Mode 5 26.42 26.10 25.46 25.46 25.83 25.81
Mode 6 27.52 27.09 26.19 26.19 26.73 26.70
Mode 7 30.81 30.43 29.56 29.56 30.10 30.07
Mode 8 40.16 39.97 39.42 39.41 39.76 39.75
Mode 9 42.26 41.83 41.05 41.05 41.44 41.42
Mode 10 61.55 60.63 58.51 58.51 59.39 59.37

Table 4.9 Comparison of natural frequencies of the boat-like structure of Fig. 4.11b

(DOFs)
CW 20L9
(11439)

ANS2D
(32280)

ANS3D
(63324)

1 6.66 6.54 6.62
2 9.81 9.54 9.73
3 14.29 13.98 14.19
4 25.76 25.24 25.43
5 26.10 25.42 25.75
6 26.79 25.91 26.34
7 30.29 29.38 29.84
8 41.54 40.69 41.00
9 41.88 41.06 41.39
10 58.96 55.96 57.15
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Table 4.10 Comparison of natural frequencies of the boat-like structure of Fig. 4.11c

(DOFs)
CW 30L9
(11184)

CW 54L9
(18672)

ANS2D
(94302)

ANS2D
(150270)

ANS3D
(90702)

ANS3D
(149637)

Mode 1 8.59 6.78 6.44 6.44 6.70 6.70
Mode 2 43.78 41.71 42.34 42.34 41.2 41.20
Mode 3 57.49 54.51 55.06 55.06 53.80 53.78
Mode 4 100.53 98.21 97.35 97.35 96.36 96.36
Mode 5 111.83 105.21 100.70 100.70 101.99 101.97
Mode 6 113.98 109.15 109.93 109.93 107.33 107.38
Mode 7 130.00 126.85 123.49 123.49 123.71 123.75
Mode 8 152.82 140.60 128.80 128.80 133.52 133.47
Mode 9 154.19 149.92 141.49 141.49 145.52 145.56
Mode 10 165.65 154.40 145.04 145.04 146.83 146.81

The results of modal analysis for the boat-like configurations are quite close to those

obtained from ANSYS models. Similar to the box-like configurations, the torsional

modes are the initial modes which realistically corresponds to the fact that boats

without decks have very low torsional rigidity. It is evident that the natural frequencies

from CW model fall quite close to those from commercial software yet requiring much

less DOFs.
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(a) Mode 1: ANS3D Model (b) Mode 1: CW Model

(c) Mode 2: ANS3D Model (d) Mode 2: CW Model

(e) Mode 3: ANS3D Model (f) Mode 3: CW Model

(g) Mode 4: ANS3D Model (h) Mode 4: CW Model

Figure 4.12 First four mode shapes for the boat-like configurations of Figs.4.11c and
4.11d
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(a) Mode 1: 81.748 Hz (b) Mode 2: 91.137 Hz

(c) Mode 3: 139.666 Hz (d) Mode 4: 148.293 Hz

(e) Mode 5: 167.326 Hz (f) Mode 6: 167.972 Hz

(g) Mode 7: 194.656 Hz (h) Mode 8: 203.411 Hz

Figure 4.13 First eight mode shapes for the boat-like configurations of Figs.4.11d using
CW model





Chapter 5

Single Beam Models for Container

Ship

Modern container ships are complex structures. They resemble beam in their global ap-

pearance but classical beam theories are too simple to capture the bending-torsion cou-

pling behaviour they usually exhibit under torsional loads. The CW models presented

earlier, are used in this chapter to capture the detailed kinematics such as out-of-plane

and in-plane warping and stresses associated with them.

5.1 Simplified Container Ship Model

Modern container ships can be idealised as large sized beams with a very complex cross

section geometry. Despite the addition of stiffeners to the free edges and doubling the

side walls and bottom, the overall form of the cross section remains close to a U-

channel. This means that the shear center has to lie below the keel and the beam will

display significant bending-torsion coupling in addition to the out-of-plane warping

when subjected to torsional loads.

A container ship is subjected to torsional loads when it encounters waves at an

angle to the longitudinal axis. In such situation, the wave pattern is not symmetrical

about the vertical plane of symmetry. Typical container ships have the main hull in

the form of a channel while the bow and the stern are built-up by engine room or

other infrastructure for the crew. The container ship has large hatch openings and

a larger portion of the length remains in the form of open channel section. Under

a torsional load, the built-up ends of the beam restrain the transverse section from

warping out-of-plane and as a result, significant warping stresses are developed at the

corners interfaces where opened-sections meet closed-sections.
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Researchers have developed ad-hoc formulations to deal with the bending-torsion

coupling of channel idealization of container with large hatch openings. In this regards,

works of Senjanovic et al. [40, 80, 99, 43, 42, 79] are quite pertinent. This and

many other models still employ some assumptions and many higher modes cannot be

detected through these models. The advantage of CW models over classical beam

models is clearly explained in earlier chapters for box-like and boat-structures. This

chapter will introduce the efficacy of their use to model global structural behaviour of

container ships. Like previous chapters, the container ship will also be modelled as a

single beam model whereby a single cross section is extruded to form a 3D shape of a

container ship. All the analyses are performed without the effect of water or buoyancy

forces.

Firstly, the container ship is modelled as a simple channel shape to observe and

validate the warping behaviour under a torque load and later a cross section with

realistic scantlings is employed for a prismatic representation of a container ship under

distributed torsional loads. The results are subsequently compared to analytical and

commercial software. The two analyses have been published in Ref.[69].

5.1.1 Case-1: Simple Channel Idealization for a Container

Ship Hull

A typical container ship can be idealised as a prismatic beam (C-Chennel)[47, 81]. The

cross section of such beam is symmetric about the vertical plane, passing through the

beam axis but asymmetric about any horizontal plane. This results in a significant

distance between the geometric centroid and shear center of the cross section in vertical

plane. Because of this reason, following are observed:

a. Under horizontal transverse loads passing through the area centroid of cross

section, the beam not only bends in the horizontal plane but also twists about the

twist axis.

b. The cross sections warp out of their planes through out the beam length except

at places where beam has a built-up end.

c. Under pure torsional loads, a channel beam will not undergo bending but all

the cross sections rotate in the manner that their projections in vertical plane rotate

as rigid body. Additionally, significant out-of-plane warping of the cross section is

observed.

In the following, the case of a channel (Fig.5.1) subjected to an end torque is

presented. The beam is constrained rigidly at one end in a manner that both the twist
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and the warping are prevented. The other end is free and is the end where a torque

is applied. The longitudinal beam axis is along y-axis. The case is a Non-uniform

Torsion problem since the rate of twist along the length, dθ/dy, is not a constant.

Such loading configuration results in warping stresses (axial stresses) at places where

beam is restrained. The end torque is T=2600000 Nm. The beam width is b = 26

m, height h = 16.2 m, all the walls have thickness t = 0.05 m and length l = 120

m and the material is alloy steel (E = 210 GPa, ν = 0.33). A comparison between

analytical and CW model is presented in order to demonstrate the capability of CW

models to capture warping and associated stresses. Travelling along the length from

fixed to free end, the out-of-plane warping becomes pronounced whereas the warping

stresses vanish. Within a cross section, the warping or axial stress assumes the same

distribution as that of warping displacement and warping function ω, which depends

on cross section geometry as well as the rate of twist. The warping function, ω has

the distribution as shown in Fig.5.2. Its distribution over the segments s1, s2 and s3

of the cross sections is given by Eqs. 5.4(Ref [47]). The maximum rotation of the tip

θmax and its rate at root θ
′′

max are respectively given by Eq. 5.1 and Eq. 5.2 (Ref[6]).

Employing these and various terms defined in the following the warping stress, σw,

can be calculated from Eq. 5.3 (Ref[81]). It can be seen that the warping pattern is

antisymmetric and so is the warping stress over the cross section of the channel beam.

26

16.2
120

Fixed End

T

Figure 5.1 Loading and constraints on a channel beam

θmax =
T

CwEβ3
(βl − tanh βl) (5.1)

θ
′′

max =
T

CwEβ
tanh βl (5.2)
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Figure 5.2 Sectorial diagram of warping function over cross section

σw =
ωM

Cw
(5.3)

and

ω1(s1) =
b

2
(s1 + e− h)

ω2(s2) = −es2

ω3(s3) =
b

2
(s3 − e)

(5.4)

where
ω : Warping function

M : Bi-moment acting over the cross section = ECwθ
′′

Cw : Warping constant =
b2h3t

12

2b+ 3h

b+ 6h
= 9778.4 m6

Jt : Torsional constant =
t3

3
(b+ 2h) = 0.00243 m4

β =
[

GJt

ECw

]1/2

= 0.00031

e : Vertical offset of shear center =
3h2

b+ 6h
E : Young’s modulus

G : Shear modulus
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The component-wise model for the present problem employed 12 B3 elements along

the beam length. The thin-walled cross section was meshed with 14 L9 Lagrange

elements. All the cross section nodes of the first section were fully constrained. The

torque was applied on two corner Lagrange nodes in the form of a couple at the free

end of the beam.

The CW model results for the torsional analysis of channel beam are discussed as

follows. The torsional displacement of CW model is shown in Fig.5.3. Magnitudes

of torsional rotation and warping stresses obtained through analytical formulas and

CW model are compared in Table 5.1. Figures 5.4a and 5.4b show comparison of

the warping stress distribution in the vertical side wall and the floor for the CW and

analytical models.

Figure 5.3 Torsional deflection of CW mesh for channel beam

Table 5.1 Maximum torsional deflection and warping stress in the channel

Model (DOFs) Value

θmax (deg) Analytical (Eq.5.1) 0.04176
CW (6525) 0.04289

σw (MPa) at Point A in Fig.5.2 Analytical (Eq.5.3) 4.06701
CW (6525) 5.31933



54 Single Beam Models for Container Ship

1

1

1

1

1

ei
g
h

t 

rping tress w

n ti

(a) Stress distribution in wall

-4

-3

-2

-1

0

1

2

�

4

-15 -10 -5 0 5 10 15

rp
in

g
 

tr
es

s
�

Distance along floor (m)

CW

An��yti���

(b) Stress distribution in floor

Figure 5.4 CW and analytical warping stress plots

The results in Table 5.1 show that torsional displacements are satisfactorily cap-

tured by the CW model while the stress values for location A are reasonably close. The

warping stresses shown in Fig.5.4 bear the same antisymmetric pattern as assumed

by the warping function. The overall warping stress distribution from CW model

is quite close to the analytical one except the values at the ends. Main reason for

slight deviations is that the stresses employ derivatives of the displacements whereas

the shape-functions of the elements are C0 continuous and their derivatives are not

continuous resulting is visible disunities in stress values at element interfaces or edges.
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5.1.2 Case-2: Container Ship Hull with Realistic Mid-ship

Section

This section discusses the torsion of a container ship modelled as a prismatic single

beam with a realistic mid-ship section. The loading and overall geometry is shown

in Fig. 5.5 and the cross section geometry employed here is shown in Fig 5.6. The

section is a multi-cell double-walled and its overall configuration resembles that of the

channel analysed earlier. This way it is implied that the shear center lies below the

keel and significant warping stresses will arise. The torsional load is distributed over

the entire length of the ship and is in triangular form along the length to approximate

the effect of a wave load.

Open deck structure

Closed
deck

structure

Closed
deck

structure

To

a a

Constrained
End

Constrained
End

Figure 5.5 Container ship torsional loading
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Figure 5.6 Mid-ship section for a container ship (dimensions in mm)

The bow and stern of the ship have built-up construction and thus the out-of-plane

warping is resisted. The torsional rotation is also resisted at the two ends. The ship
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length is aligned with y-axis and the cross section is in x-z plane. The flexible portion

has length 2a=L=120 m, being the length under torsion. The applied torque is 8100

ton-m. The ship width is 26 m and height is 16.2 m. The material is alloy steel. Figure

5.7 shows the CW mesh for the current analysis along with the loading. The arrows

in the figure indicate the loading direction. A rigid wall is introduced at mid-length

position which prevents the differential bending and ensures the torsional behaviour.

The CW model employed 11 Lagrange (B3) elements along the length and the cross

section was meshed using 76 L9 elements. The analysis was also performed using

ANSYS solid element SOLID-185 in order to compare the computational efficacy.

Fixed End

Fixed End

Figure 5.7 CW model with loading and constraints

The deflections from the CW and ANS3D models are shown in Fig 5.8 whereas the

warping stresses over an inner edge located in constrained section are plotted in Fig

5.9. The CW model required 31473 DOFs while those required by ANS3D were 762264.

The results clearly show the two stress distributions closely match and that the pattern

is indicative of anti-symmetric distribution. Achieving close accuracy of the results

of 3D solid elements through a few DOFs establishes the computational advantage of

CW models. The CW results also imply that thin-walled section comprise of lagrange

elements with large aspect ratios yet affording accurate solid-like results. This, in case

of solid elements, requires a heavy mesh to avoid element shape warnings and thus

warrants computationally a heavy mesh.
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(a) CW deformed mesh, Max. displace-
ment=1.033 mm (DOF=31473)

(b) ANS3D deformed mesh, Max. dis-
placement=0.99 mm (DOF=762264)

Figure 5.8 Torsional deflection of CW and ANS3D models
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Chapter 6

Multiple Beams for a 3D Hull

The strength of the Component-wise (CW) models for thin walled idealization of ship

hulls using single and prismatic beam models is well established through the results of

previous chapters. The CW models will now be discussed for much realistic sections

that entail inclined boat faces which are typical feature of any boat hull. The complex

shaped boats analysed in this chapter comprise of various 1D beams connected to each

other at angle so the problem dimensionality is 3D. Finally, the results of CW models

are then compared to those from 3D element of a commercial software.

6.1 Rotated Beam Configuration

In earlier cases discussed, the configurations comprised of structural features, e.g.

walls, floors or bulkheads, that were all mutually orthogonal. For this reason, only

a single beam model was required that could accommodate cross section changes.

Change of cross section was incorporated by associating every cross section to a beam

node. In this chapter, the idea is extended to relatively complex models employing:

a Features such as hull walls, floors or bulkheads are not necessarily mutually

perpendicular

b Thin-walls can be conveniently modelled as beams with beam length being the

wall thickness while the large face of the wall modelled as beam’s cross section.

Thanks to Carrera Unified Formulation (CUF), the extra ordinary aspect ratios

do not affect results since the beam interpolation functions are independent of

cross section expansion functions . . .

In such models individual beams are rotated to assume the slanted position relative

to the other beam in a global reference system. Carrera and Enrico [23] introduced
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the idea of beam rotation for CUF whereby the stiffness and displacements matrices

of rotated beams were calculated in global reference system instead of local one. Thus,

the final structure was an assembly of various beams connected with each other at

Lagrange nodes.

Consider, for example, a hull wall and a floor inclined to the axes of global reference

system as shown in Fig.6.1. The two structural components have an arbitrary orein-

tation with respect to the global reference system and their wall thickness is much

smaller than the other dimensions of the face. CW approach allows the face to be

considered as the cross section Ω and the wall thickness as beam length l. Classical

beam models will give highly erroneous results for such beam configuration. The 3D

FEM, on the other hand, requires a very fine mesh to avoid shape warnings arising

because of highly distorted solid elements. The 2D shell elements do not give accurate

results, especially at the interface edges of structural components.

Be  ength l

W  geo etry
Cross section mesh

Beam

Element

mesh

Beam

cross section

Ω
z-local

y-local

x-local

z-global

y-global

x-global

y-local

x-local

z-local
Floor geometry

Figure 6.1 A wall and floor represented as rotated beams

6.2 3D Boat Configurations

Employing rotated beams as structural components, CW models were developed and

analysed for the three boat configurations shown in Fig.6.2. The configuration-1 as

shown in Fig.6.2a has four faces inclined to vertical plane while other faces are parallel

or perpendicular to vertical plane. The hull in configuration-2 (Fig.6.2b) includes

faces inclined to both vertical and horizontal planes. This configuration is further

made complex by introducing a cabin in configuration-3 (Fig.6.2c). In the discussion
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to follow, a modal analysis for the three configuration is presented which is followed

by a static analysis performed on configuration-1.

(a) Configuration-1: Boat with One-
sided tapered Wall

(b) Configuration-2:Boat with Two-sided ta-
pered Wall

(c) Configuration-3: Cabin added to the boat
with two-sided taper

Figure 6.2 Boat geometries with tapered walls incorporated in front and rear (all
dimensions in meters, all wall thicknesses are 10 mm and ribs are 100 mm wide

6.2.1 Modal Analysis

Modal analyses of the three configurations shown in Fig.6.2 were performed and the

mode shapes and natural frequencies obtained from CW model were compared to

those from ANSYS. It is clear that given the complexity of geometry of these models,

they cannot be modelled using classical beam theories and 2D/3D FEM require heavy

mesh rendering the computations heavy.

From the results of the CW and ANS3D models, a comparison of the natural

frequencies for the three configurations is given Tables 6.1 and 6.2 and various modes

are compared in Figs.6.3 to 6.5.

The results of the modal analyses clearly establish the efficacy of CW models over

commercial software by requiring much less DOFs (6777 for configuration-1, 12825 for
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Table 6.1 Comparison of natural frequencies for the three boat configurations of Fig.6.2

(DOF)
CW

(6777)
ANS3D
(193425)

CW
(12825)

ANS3D
(217539)

Configuration-1
Fig.6.2a

Configuration-2
Fig.6.2b

Mode 1 7.522 7.433 15.831 14.937
Mode 2 10.498 10.835 20.126 18.434
Mode 3 13.462 13.485 25.478 25.130
Mode 4 14.527 14.608 28.022 28.201
Mode 5 22.020 23.420 28.276 28.866
Mode 6 24.286 24.390 32.072 33.230
Mode 7 27.857 25.331 32.899 34.315
Mode 8 29.087 26.696 37.542 38.260
Mode 9 29.436 32.591 41.307 39.019
Mode 10 30.105 33.967 43.371 44.954

Table 6.2 Selected natural frequencies for the boat Configuration-3 of Fig.6.2c

(DOF)
CW

(19125)
ANS3D
(434130)

Mode 3 22.840 19.402
Mode 4 26.490 25.019
Mode 8 50.080 48.717
Mode 11 57.460 53.662
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(a) Config-1, Mode-1: CW
Model

(b) Config-1, Mode-1: ANS3D
Model

(c) Config-1, Mode-2: CW
Model

(d) Config-1, Mode-2: ANS3D
Model

Figure 6.3 Comparison of the first two mode shapes of configuration-1

(a) Config-2, Mode-1: CW Model
(b) Config-2, Mode-1: ANS3D
Model

(c) Config-2, Mode-2: CW Model
(d) Config-2, Mode-2: ANS3D
Model

Figure 6.4 Comparison of the first two mode shapes of configuration-2
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(a) Config-3, Mode-1: CW Model (b) Config-3, Mode-1: ANS3D Model

(c) Config-3, Mode-2: CW Model (d) Config-3, Mode-2: ANS3D Model

Figure 6.5 Comparison of the third and forth mode shapes of configuration-3

configuration-2 and 19125 for configuration-3) compared to ANS3D which required

respectively 193425, 217539 and 434130 DOFs to achieve close values of natural fre-

quencies. Except for some modes , the values in general are quite close even for higher

modes. The observed discrepancies can be overcome by refining mesh along particular

directions to which the respective mode is sensitive. In general, the mode shapes from

CW and ANS3D models are very much same. These results demonstrate that com-

plex 3D geometrical configurations, such as boat hulls with slanted faces, are easily

modelled using CW models with relatively much less computational cost.

6.2.2 Static Analysis

The boat Configuration-1 was chosen for a static analysis to demonstrate further the

computational capability of CW models. The loading and boundary conditions are

shown in Fig.6.6. A point load of 1kN was applied at point located in the middle

of the floor and on its upper face. The boundary conditions were simply-supported

applied to the two bottom edges on either sides of the boat. Two points A and B were

chosen as shown in Fig.6.6 for the values of deflections and stresses. The deflections

Rehan
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Rehan
Sticky Note
None set by Rehan
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at the two locations and stresses at point A are given in Table6.3. A deformed mesh

is plotted in Fig.6.7.

B

y

x

z

Figure 6.6 Point load and boundary conditions for static analysis for configuration-1
(all dimensions in meters and all wall thicknesses are 10 mm)

Table 6.3 Results under the loading shown in Fig. 6.6

Point Model (DOFs) Displacements (mm)
u v w

A CW (6777) 0.000 0.000 -3.781
ANS3D (193425) 0.000 0.000 -3.673

B CW (6777) 1.754 0.000 -0.002
ANS3D (193425) 1.732 0.000 -0.002

Point Model (DOFs) Stresses (MPa)
σxx σyy σzz

A CW (6777) 7.72 9.57 0.619
ANS3D (193425) 7.65 6.93 0.737

The results of the static analysis clearly demonstrate that the CW model captures

the displacements accurately and the magnitude of the displacements is very close to

those of 3D solid elements of ANSYS. This accuracy is achieved requiring much lower

DOFs and the high aspect ratio of the CW elements has not affected the accuracy of

the results. The results of the stresses are however not satisfactory for all stress com-

ponents. Indeed, further mesh refinement along the thickness direction can improve
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(a) Static Deflection from CW beam
model

(b) Static Deflection from AN-
SYS

Figure 6.7 Deflected plots for boat under the loading shown in Fig. 6.6

the results. Many stress components obtained from the CW models have very close

magnitudes to the values from a commercial software in over-all stress distribution.

However, since the stress is calculated from the derivatives of the displacements, they

are discontinuous at the element interfaces.

6.2.3 Conclusion

The global structural response of the ships and barges in vacuo (without water) was

satisfactorily captured using CW models based on CUF. The free vibration and static

analyses of these models were performed. The open-hatch configuration of such vessels,

e.g. container ships, exhibit warping displacements and stresses and present CW

models captured them within close approximation to the analytical and commercial

software results. The analyses were performed following the practices in published

literature for global bending and torsional behaviour. The results of modal and static

analysis were compared to analytical and commercial software. For very simple cases

where the analytical solution was available, the CW models produced accurate results.

The results additionally comprised of in-plane and out-of-plane displacements which

could not be captured using analytical models. The CW models also proved their

efficacy over commercial 3D solid finite element models as the former required much

less DOFs compared to the ANSYS yet affording quite accurate results. The thin-

walled configurations had high aspect ratio (cross section dimensions to beam length

length) which, in case of 3D solid elements, generates distorted solid elements unless

a very fine mesh is employed. CW models, on the other hand required fewer elements

that produced accurate results even with elements of higher aspect ratios.
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Chapter 7

Buoyancy as Elastic Foundation

The CW models based CUF were employed to simulate the structural analyses of dry

hull configurations of marine vessels in previous chapters. Global bending, torsion and

vibration modes were analysed involving typical boundary conditions of a structure in

vacuo. This part of the thesis introduces buoyancy as boundary conditions applied to the

realistic 3D geometries of marine vessels. Component-wise model are best suited beam

models for this purpose as their physical surfaces can easily be attached to 1D buoyancy

springs. Initially, the idea is validated for simple cases. Then various scenarios such

as rigid-body and flexible body deflections, structural behaviour under still waters and

wave loads have been studied and validated through well known examples.

7.1 FEM Beam as a Floating Vessel

A floating vessel may be considered as a beam floating in water. Taking advantage of

CW model (introduced in Chapter 4) the floating vessel may be modelled as prismatic

beam using two possible approaches:

a Vessel modelled as a beam with beam length along the vessel’s longitudinal axis

or ship length regarded as Hull Beam Model

b Vessel modelled as a beam with beam length along vessel height Hull Planform

Model

7.1.1 Hull Beam Model

This approach is illustrated in Fig.7.0c. The ship length is along y-axis which is the

beam axis and is perpendicular to gravity. The beam cross section is along x−z plane
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which is perpendicular to horizontal plane. The ship is prismatic along its length but

cross sections can take arbitrary shape. Utilizing this approach, many vessel with

arbitrary section shapes have been analysed in this thesis. For this case, Kijτs
HS will

have non-zero terms only for the submerged nodes lying on contours of each beam

section (colored in blue in Fig.7.0c).

7.1.2 Hull Planform Model

This approach is illustrated in Fig.7.0d. The ship height is along y-axis which is the

beam axis and is parallel to gravity. The beam cross section is along x−z plane which

is parallel to keel. The ship is prismatic along its height but cross sections can take

arbitrary shape. Utilizing this approach, many vessel with arbitrary section shapes

have been analysed in this thesis. For this case, Kijτs
HS will have non-zero terms only

for the nodes falling at the first beam section (i.e. i, j = 1).

The remaining of the thesis discusses various vessel shapes analysed by either

of the two approaches. The choice of using one of the two modeling approaches is

arbitrary. The hull beam model has the advantage that arbitrary hull sections can be

analysed through this approach and the planform model allows to model planform of

any arbitrary shape. Both model mesh geometries are prismatic in nature. That is,

beam section cannot be varied within a single element. At present, the two approaches

could not be combined and this can be useful a future work. Chapter 7 to 11 of this

thesis utilize the hull beam model approach except at a few places where planform

approach is used. Thereby, the beam cross sections are ship’s transverse sections.

7.2 Elastic Beam on Winkler Foundation

Structures floating on water can be modeled by considering them resting on elastic

foundations which in case of water is the buoyancy force. The ships have been re-

peatedly represented over the years as simple continuous beams resting on springs to

demonstrate certain fundamental structural aspects such as ship vibration. As shown

in Fig. 7.1 from Ref [58], the ship is represented as an Euler beam with springs and

dampers attached to it simulating the effect of buoyancy. The ship is subjected to a

forcing function f(x, t) applied near the stern as a result of propeller vibrations.

The beams on elastic foundation have been studied in detail by Hetenyi [38] and

it will be shown that the same approach works well when elastic foundations are
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(c) Beam elements along ship length

(d) Beam elements along ship height

Figure 7.0 Two ways to model ship with hydrostatic stiffness

Figure 7.1 Ship hull beam model, Ref. [58]
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applied to CW models. This chapter presents validation of CW models using elastic

foundations as boundary condition for beams.

Referring to Fig. 7.2 consider a square cross section beam under such conditions

with a point load P acting at mid-length and the ends of the beam being free. The

beam cross section has sides b and length l. The vertical beam deflection z at a point

located at distance y from point C generates reaction force per unit beam length in

underlying material which is kz = bkoz [N/m2]. Thus, k = bko is the reaction force

to produce unit vertical deflection over span of unit beam length. The term ko is

the foundation modulus [N/m3]. The symbol λ denotes
4

√

k/4EI where EI is beam

rigidity. The deflection z is given using Eq. 7.1 from Ref [38]:

z =
Pλ

2k

1

Sinhλl + sinλl
[Coshλycosλ(l − y) + cosλyCoshλ(l − y)−

Sinhλysinλ(l − y) + sinλySinhλ(l − y) + 2Coshλycosλy]

(7.1)

l/2 l/2

P y

z

C

Elastic

Foundation

Figure 7.2 Schematic of analytical beam model resting over elastic foundations

7.3 Addition of Buoyancy Springs

The effect of buoyancy can be modelled by employing 1D linear springs attached to

the beam mesh as boundary conditions. Thanks to the CW approach, the beam mesh

has physical nodes on the outer surface much like a 3D solid mesh. Let NBS be the

number of nodes of the original beam mesh that are in contact with water where the

subscript BS stands for "Buoyancy Springs". Then, there will be NBS springs with

their upper nodes connected to those beam nodes while their other ends are fixed to

the ground (See Fig 7.3).

Let KB denote the stiffness matrix of the beam mesh for which Fundamental Nuclei

Kij τ s were derived using Eq. 3.8. It has dimensions NB × NB and correspondingly,

the force and displacement vectors have dimensions NB × 1. Here NB denotes the



7.3 Addition of Buoyancy Springs 73

b
l

y

z

x

Fixed End

Figure 7.3 Finite element model of beam on elastic support

total DOFs for all the nodes of beam mesh. For M nodes in a cross section mesh and

NN beam nodes, NB = 3 ×m×NN .

The stiffness matrix KBS of a 1D spring element can be obtained by considering

the element shown in Fig. 7.4.

Fz1

uz1 uz2

1 2 Fz2

KBS

Figure 7.4 Loads and displacements of 1D spring element

Thus, the loads and displacements for the 1D spring are related through Eq. 7.2:





KBS −KBS

−KBS KBS











uz1

uz2







=







Fz1

Fz2







(7.2)

Procedure to determine spring constant is mentioned later in this section. The

final stiffness matrix is obtained by assembling the original beam stiffness KB and the

spring stiffness matrices KBS. The DOFs are shared for the nodes where buoyancy

springs are connected to the existing beam mesh. Thus the only additional DOFs

added to the total system are associated to the grounded ends of the buoyancy springs

which are 3 × NBS corresponding to the three components of displacement; x, y and

z.
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x y z

x Kxx Kxy Kxz

y Kyx Kyy Kyz

z Kzx Kzy Kzz+KBS

KBS -KBS

-KBS KBS

DOF=NB=3× m×NN DOF=3×NBS

System DOF=NT

i = 1 N N

j = 1

NN

τ = 1 M

s = 1

N

System Stiffness Matrix

Discretization at ith beam node
Fundamental Nucleus with

addition of spring stiffness Stiffness matrix of
a single buoyancy spring

KB

Figure 7.5 Procedure for assembling single spring stiffness into system stiffness

The stiffness K of complete system is now an assembly of original beam stiffness

KB and the stiffness of NBS buoyancy springs KBS. Fig. 7.5 elaborates the assembly

procedure adopted to assemble an individual spring into the stiffness matrix of the

system. The system stiffness matrix will have the size NT × NT where NT = NB +

(3 × NBS). It can be observed that out of four terms of stiffness matrix of Eq. 7.2,

only one term is added to the matrix KB for the shared nodal location. The other

three correspond to the grounded DOFs of springs.

7.3.1 Determining Spring Constant

The total buoyancy force on the floating structure acts like a spring with cumulative

stiffness of all springs as KT allowing a displaced weight of W = ρwgATl to displace

through a distance h. This can be written as Eq. 7.3.

b

h

l

A
w

= b × l

A
T

= ×b h

A
T

Figure 7.6 Floating beam with rectangular cross section
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h =
ρwgATl

KT
(7.3)

where

ρw : Density of sea water [kg/m3]

g : Gravity constant [N/m2]

KT : : Total buoyancy stiffness [N/m]

AT : : Area of the immersed region in the transverse plane [m2]

Figure 7.6 shows a rectangular section beam under floating equilibrium. For this

case, AT = bh, Eq. 7.3 becomes:

h =
ρwgbhl

KT

or KT = ρwgbl. Since from Fig. 7.6, bl = Aw, we have KT = ρwgAw and finally we

get:

KT = koAw (7.4)

where ko is defined as foundation modulus of water.

As evident from Figs. 7.6, the buoyancy springs will act vertically only at the

bottom face with area Aw = bl. This area is contained at the water-plane and is

purely the projection of the bottom face of the beam for the rectangular section beam.

Each buoyancy spring is attached to a node from beam mesh above it. Thus, the

area Aw can be considered as meshed with 9-noded Lagrange elements. The total

buoyancy stiffness acting on a Lagrange element is considered divided and lumped

into its nine nodes. Mathematically, the spring stiffness over the area of Lagrange

element can be written as:

KEL = koAEL (7.5)

where the subscript EL stands for Lagrange Element. The area AEL may have

arbitrary shape and can be obtained employing shape functions Fτ give by Eq.A.1.

That is:

KEL = ko

∫

Ω
FτFsdΩ, τ, s = 1...9 (7.6)
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This nodal stiffness acts along gravity axis and becomes a component of Funda-

mental Nuclei Kijτs
HS representing Hydrostatic Stiffness matrix (See Eq. 3.26).

Iterative Procedure to Determine the Draught, h

In the procedure above, the area Aw was determined (and consequently the buoyancy

spring constant) if the draught h is known a priori. In this section, the procedure is

explained whereby h is determined through an iterative procedure when h is unknown.

The procedure is illustrated in a flow chart shown in Fig. 7.7 and an example as

follows.

hTrial

Section Dra t rea A

anel rea A

anel ring Constt ko A

o al B oyancy ring

Constant KB

ssembly o KB into lobal

ti ness

FE  tatic ol tion

merical es lts hC

rial hC

ol

es lt h
CW

o

es

Figure 7.7 Iterative procedure to determine draught depth, h

A vessel is considered with front view shown in Fig.7.8. The vessel has length of

7 meters and the material is aluminum. The objective is to determine the draught

depth h at equilibrium as the vessel descends under gravity. The procedure physically

resembles the way a typical vessel is lowered below a water line until an equilibrium

is reached.

The numerical procedure begins by iteratively assuming trial draught values de-

noted here as htrial. Running the numerical solution, the CW model returns a draught

value hCW which may have a certain degree of deviation d from the assumed draught.
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hana=

all thic ness   m

Figure 7.8 Front view of the vessel (all dimensions in m)

The deviation is thus defined as follows:

d = |hCW − htrial| (7.7)

Amongst these deviations obtained against each iteration, the solution correspond-

ing to the smallest deviation, falling within a prescribed tolerance, holds as the final

draught value, hCW. For present problem, the plot shown in the Fig. 7.9 shows this

process where the following values are obtained:

d = 0.001

htrial = 0.25

hCW = 0.249

hana = 0.25

-

rial al es htrial m

e
ia

ti
o
n

, 
d

m

(-0.250, 0.001)

Figure 7.9 Plot of deviation values against iteration values

The converged value of draught hCW can finally be compared to the analytical

value hana obtained through the procedure previously explained.

7.4 Validation for Beam on Winkler Foundation

The analytical problem discussed in previous section has been numerically modeled

using 1D Carrera Unified Formulation (CUF) [9] with Component − wise (CW) ap-
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proach [13]. The advantage of CW model is that it affords displacements as degrees of

freedoms which can be easily manipulated for further processing requirements. This

facilitates ease of connecting other element types to the beam mesh. Figure 7.3 shows

the mesh for CW beam model. The springs attached to the mesh provide the effect

of elastic foundation. Beam length is along y axis while x and z axes are parallel to

cross section. Beam has been meshed with the second order Lagrange polynomials

(B3 elements [3]) with nodes shown as solid white circles along y axis and the cross

section associated to each beam node comprises of a mesh of 9 noded Lagrange ele-

ments whose nodes are shown in solid black circles. The bottom surface of the beam is

connected to springs that on the other ends are connected to the rigid ground. Thus,

only the shared node between the beam and the spring can move.

7.5 Results and Convergence

The vertical deflection plots obtained through analytical (Hetenyi) and CW models

are shown in Fig. 7.10. The figure clearly indicates the closeness between the two

plots implying the suitability of CW for the present problem. Table 7.1 shows the con-

vergence behaviour of vertical displacements for the beam with loading configuration

shown in Fig. 7.2. The table shows results obtained using analytical model of Eq. 7.1

and three CW models with increasing beam elements. The results for CW model were

obtained using 10, 15 and 30 B3 beam elements. The beam length is 20m and has

square cross section with sides of 1 m. The beam material was aluminum with young’s

modulus E = 72 GPa and poisson’s ratio ν =0.3. The cross section was meshed with

1 Lagrange element. Following can be inferred from the results:

Another convergence plot is shown in Fig.7.11 whereby vertical deflection of the

mid point of the beam is plotted against varying beam elements as well as the cross

section elements. Beam elements range from 5 to 30 in steps of 5 where as the cross

section elements (Lagrange Elements, LE) vary as 1, 4 and 16 L9 elements per cross

section. For the square section under study, all edges were regularly divided. The

figure shows that all the CW plots converge towards analytical value of z=-0.49767

m. The convergence of cross section refinement is faster compared to the refinement

along beam length.

Based on the results of beam deflection and its validation, the following conclusions

can be drawn:

The effect of buoyancy on a partially submerged floating vessel is accurately simu-

lated by employing 1D springs. Since the nodes are required to be physically attached
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Figure 7.10 Vertical deflection of beam over elastic foundation

Table 7.1 Comparison of vertical deflections for beam loading shown in Fig. 7.2

y
(m)

Hetenyi
(mm)

10B3
(mm)

15B3
(mm)

30B3
(mm)

-10 -496.628 -496.603 -496.612 -496.625
-8 -496.905 -496.910 -496.909 -496.906
-6 -497.174 -497.204 -497.191 -497.184
-4 -497.416 -497.468 -497.448 -497.431
-2 -497.596 -497.662 -497.638 -497.618
0 -497.669 -497.738 -497.716 -497.694
2 -497.596 -497.661 -497.639 -497.620
4 -497.416 -497.463 -497.451 -497.431
6 -497.174 -497.198 -497.190 -497.184
8 -496.905 -496.903 -496.902 -496.908
10 -496.628 -496.597 -496.605 -496.622
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Figure 7.11 Convergence plots for vertical deflection of mid point

to the 3D nodal positions on the surface of the beam mesh, Component-wise (CW)

models are best suited for this purpose.

The procedure adopted to determine the spring constant is validated as it affords

results that are significantly close to the analytical solutions obtained for the beam

resting on elastic foundation.



Chapter 8

Hulls with Slanted Immersed Faces

8.1 Corrected Water Plan Area

The idea of attaching Buoyancy Springs to the CW models was introduced in previous

chapter. The beam involved flat surface at bottom so that the side walls did not

receive the buoyancy forces. Towards achieving the main objective of modeling realistic

ship hulls through CW models, this chapter introduces hull configurations that have

immersed faces at an angle or are curved so that the buoyancy forces acting on them

cannot be ignored.

b

h

l

A
w

= b × l

A
T

= ×b h

A
T

(a) Floating beam with rectangular cross
section

b*

h

l

A
w

= * ×b l

(b) Floating beam with trapezoidal cross
section

Figure 8.1 Beam geometries under floating equilibrium

As discussed earlier, the procedure to determine the spring constant KBS involves

determination of water plan areaAw (Eq.7.5). For simple rectangular section, (Fig.8.1a),

Aw is b× l which is the exact projection of immersed areas on the free water surface.

However, for the case of inclined immersed faces (Fig.8.1b), the area Aw is not simply
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the projection of immersed regions. Instead, as shown, the area Aw is now b∗ × l. The

dimension b∗ is found from the transverse area AT. The area AT has a trapezoidal

shape and can now be represented as a rectangle with depth h and width b∗. Thus,

b∗ = AT/h. Generally, the immersed area AT may assume any arbitrary shape de-

pending on equilibrium conditions and vessel geometry. The aforementioned area Aw

is now product of b∗ and l and the total buoyancy stiffness can be found using Eq. 7.5.

8.1.1 Cases for Hulls with Slanted Faces

The capability of present model is genuinely highlighted through the structural analysis

of realistic geometries of marine vessels. The procedure adopted begins by determining

the transverse immersed area AT and displacement depth h under equilibrium condi-

tions. Analytically obtained water depth h thus can be compared to the one from CW

model for various boat-like configurations. Cases of static deflection due to self weight

for various boat-like configurations floating over water are shown in 8.2. All vessels

have length l = 7 m. It is assumed that any wet face perpendicular to the water line

is not acted upon by any buoyancy force. Thus, in the first three cases, the end walls

have not been modelled for simplicity of the problem. However, presence of vertical

walls do affect the stiffness of the vessel against structural deflection as is evident in

the result from last case. Results for each case are presented in the following.

45°

h=0.464

1

Wall thickness = 0.01 m

(a) Vessel-1

20°

h=0.769

1.33
Wall thickness = 0.01 m

(b) Vessel-2

h=0.293

Wall thickness = 10 mm 1.3

R1

(c) Vessel-3

h=0.25

1

Wall thickness = 0.01 m

2- 0.51

(d) Vessel-4

Figure 8.2 Transverse section of vessels 1 to 4 (all dimensions in m and drawn not to
scale
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Results for Vessel-1 to 4

Parameters and results of vertical deflection for the configurations shown in Fig. 8.2

are presented in the following Tables 8.1 to 8.4 and Figs. 8.3 to Fig. 8.6.

Table 8.1 Parameters and results for vessel-1

Vessel mass = 1545.2 kg
Vessel length = 7 m
Area, AT = 0.215 m2

Area, Aw = 3.2484 m2

Results
Displacement obtained analytically h = -0.464 m
Displacement using CW model, Fig. 8.3 Wmax = -0.4638 m

Wmin = -0.4678 m

X

Z

Y

W

-0.464

-0.4645

-0.465

-0.4655

-0.466

-0.4665

-0.467

-0.4675

Figure 8.3 Vertical deflection of vessel-1 using CW model

Table 8.2 Parameters and results for vessel-2

Vessel mass = 1545.2 kg
Vessel length = 7 m
Area, AT = 0.215 m2

Area, Aw = 1.959 m2

Results
Displacement obtained analytically h = -0.7692 m
Displacement using CW model, Fig. 8.4 Wmax = -0.7662 m

Wmin = -0.7667 m
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X

Z

Y

W

-0.7662

-0.7663

-0.7664

-0.7665

-0.7666

-0.7667

Figure 8.4 Vertical deflection of vessel-2 using CW model

Table 8.3 Parameters and results for vessel-3

Vessel mass = 2047 kg
Vessel length = 7 m
Area, AT = 6.818 m2

Area, Aw = 0.2853 m2

Results
Displacement obtained analytically h = -0.2929 m
Displacement using CW model, Fig. 8.5 Wmax = -0.2912 m

Wmin = -0.2919 m

X

Z

Y

W

-0.2912

-0.2913

-0.2914

-0.2915

-0.2916

-0.2917

-0.2918

-0.2919

Figure 8.5 Vertical deflection of vessel-3 using CW model
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Table 8.4 Parameters and results for vessel-4

Vessel mass = 2001.67 kg
Vessel length = 7 m
Area, AT = 0.2813 m2

Area, Aw = 7.875 m2

Results
Displacement obtained analytically h = -0.2500 m
Displacement using CW model, Fig. 8.6 Wmax = -0.2467 m

Wmin = -0.2522 m

(a) Displacement plot in m from ANSYS
solid mesh (DOF=105786)

X

Z

Y

W

-0.247

-0.2475

-0.248

-0.2485

-0.249

-0.2495

-0.25

-0.2505

-0.251

-0.2515

-0.252

(b) Displacement plot in m from
CW beam mesh (DOF=11332)

Figure 8.6 Vertical displacements plot of vessel-4 using ANSYS and CW model

8.1.2 Conclusion

The results discussed above for hulls with slanted faces are significantly close to the

analytical ones. The four configurations analysed involve the flat as well as curved

surfaces immersed in sea water. Moreover, since the structures are thin-walled, they

exhibit localised deflections that are additional to the gross vertical deflection in water.

Hence, the less stiffened regions are deflected downward due to weight or upward due

to buoyancy. This is also in line with the fact that localised deflection is based on the

net force balance of local weight and local buoyancy. It is clear from all the results

that the average displacement from CW models is always the analytically obtained

displacement for a rigid body. The results also indicate that the CW model of the

floating body undergoes a pure vertical displacement as long as the center of buoyancy

and center of gravity of the body are collinear. The cases with the points not collinear

result in trim or list of the floating body which will be shown in the following chapter.

The results of Fig.8.6 show that the 1D CW model requires much less DOFs (11332)

compared to ANSYS model (105786) with displacements close to within 1 percent of
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difference. This way, the efficacy of CW models with buoyancy springs is sufficiently

established and various scenarios of marine vessels will now be presented.



Chapter 9

Validation Cases: Trim in Still

Water

9.1 Parameters

The discussion in this chapter involves rigid body positions acquired by a floating body

under static equilibrium. The position of the floating body can be defined in terms of

parameters of equilibrium and they are displacement, angle of heel and angle of trim.

These parameters will be analytically calculated through relations given in any book

on Hydrostatics such as Ref [4]. The hydrostatic behaviour for simplified geometries

is also simulated using CW models with buoyancy springs and the obtained results

are compared to analytical values. Following assumptions hold during the treatment

of the problem:

a. the water is incompressible;

b. viscosity plays no role;

c. surface tension plays no role;

d. the water surface is plane;

e. the floating bodies are perfectly rigid.

Referring to Fig.9.1, the coordinate system, xo-yo-zo, is global while the other is

local and attached to the floating vessel. If the vessel inclines statically around x-axis,
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it is termed as trim, denoted as θ in Fig.9.1a, and under dynamic (varying with time)

as pitch. Similarly, a static inclination around y-axis, denoted as Φ in Fig.9.1b, is

termed as heel if it is temporary and list if is permanent. The vessel, otherwise, is

said to float at even keel if its y-axis is parallel to free water surface.

y

yo

zoz

θ

(a) Trim or pitch

x
xo

zoz

(b) List or heel

Figure 9.1 Ship inclinations under static equilibrium

9.2 Trim Calculation

A ship may undergo small angle of trim under the following conditions:

a. when the center of buoyancy and center of mass of the vessel do not lie in a

vertical transverse plane (parallel to xz-plane);

b. an external load acts on the ship causing to disturb the equilibrium at even keel;

For present analysis, only the first of the above conditions is considered. This

condition may arise due to shifting of cargo weight along the length. Referring to

Fig.9.2, the trim calculations are given as follows. The objective is to find trim and

two draughts, TF and TA at the two perpendiculars and the angle θ. These values will

be compared to those from CW models for an example problem.

Wo

W�

L�

Lo

LCF

Lpp
T�

TF

Ttm

θ

Figure 9.2 Forward and Aft draughts
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Under the trim condition, the original water line denoted as WoLo now assumes a

new position WθLθ. The two lines intersect at Center of Floatation, F, located at a

distance LCF (Longitudinal Center of Floatation) from AP. The mid-ship draught at

even keel is denoted as Tm and is found from the hydrostatic curves for actual ship

hulls. For simplified geometry such as box-like vessels, Tm = ∆/Aw where ∆=displaced

volume of water and Aw=Water plan area. The trim is given through the following

Eq.9.1:

trim = TF − TA =
∆(LCG− LCB)

MCT
(9.1)

and the trim angle θ as :

tanθ =
TF − TA

Lpp
(9.2)

where

LCG : Longitudinal Center of Gravity

LCB : Longitudinal Center of Buoyancy

MCT : Moment to change trim by 1 m = ∆GML/Lpp

GML : Longitudinal Metacentric Height = IL/∆

IL : Longitudinal Moment of Inertia of water plan area, Aw

The ship trims around a horizontal transverse axis that passes through the center

of floatation, F. The point F is the centroid of the water plan area Aw and can be

geometrically calculated. Hence LCF is known and using the Fig.9.2 we can find the

draughts at perpendiculars as:

TA = Tm − LCF.tanθ = Tm − LCF.tan

(

trim

Lpp

)

(9.3)

and

TF = trim+ TA = Tm + trim

(

1 −
LCF

Lpp

)

(9.4)

9.3 Numerical Example-1: Box-like beam

A simplified box-like solid beam is considered whose trim is calculated analytically

using Eq.9.1 and CW model. The box has length l=100m, breadth, b=10m and
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depth, d=10m. The solid model comprises of two dissimilar materials M1 and M2

with different densities ρ1=0.7 gm/cm3 and ρ2=0.512 gm/cm3. The two materials

occupy the beam geometry as shown in the Fig.9.3. Various parameters defined above

have the following values for present problem.

Wo

W�

L�

Lo

LCF=50

Lpp 100

T�
T	

Ttm

θ

M1, ρ1 M2, ρ2

b=10

20 80

Figure 9.3 Box-like vessel parameters (drawn not to scale and all dimensions in meters)

LCG = 47.263 m

LCB = 50 m

LCF = 50 m

MCT = 8333.333 m

GML = 155.415 m

IL = 833333.333

∆ = 5362 m3

Tm = 5.362 m

And putting all the above values in Eq.9.1,9.3 and 9.4, we get the following values

of the two draughts as follows:

TA = 6.2425 m, TF = 4.4814 m

9.4 Numerical Example-2: Simple Boat

A 3D boat is modelled using CW approach with realistic features such as floor and

walls contoured along the floor edges as shown in Fig.12.1. The material is aluminum

and all wall thicknesses are 50 mm. Various parameters discussed above were obtained

for the boat and are given in the following:
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Figure 9.4 Comparison of box-like beam deflection from CW and analytical methods

LCG = 4.2364 m

LCB = 4.0186 m

LCF = 4.0186 m

MCT = 11.1262 m

GML = 20.5443 m

IL = 106.7 m-N/m

∆ = 5.1937 m3

Tm = 0.2767 m

1

0.2372

9.6

2.36

LCF

4.018

LCG 4.236

CG

AP FP

Figure 9.5 Boat parameters in meters (Left: Isometric view and Right: Plan view)

And putting all the above values for boat in Eq.9.1,9.3 and 9.4, we get the following

analytical values of the two draughts as follows:

TA = 0.3358 m, TF = 0.2341 m

Figures 9.6 and 9.4 are the plots of deflection curves obtained using analytical

method and the CW model for the beam and the boat models respectively. In each

figure, the two curves are in fairly close implying the correctness of the presented
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approach of employing Buoyancy Springs in CW Models. Figure 9.7 shows the vertical

deflection V in isometric view.

-0.340

-0.320

-0.300

-0.280

-0.260

-0.240

0 2 4 6 8

W Anal al

an AP

l
a

z

Figure 9.6 Comparison of boat deflection from CW and analytical methods
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Figure 9.7 Deflection of CW Model of the boat

9.5 Conclusion

The trimming behaviour of a floating beam and a boat were discussed. The objective

was to determine the trim parameters for the two structures analytically and compare

the values obtained through CW models. The results from CW model were in close
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agreement with the analytical ones. The CW models were deliberately rigidized em-

ploying solid section for the beam and thick walls for the boat model, so that the rigid

body behaviour is clearly evident and comparable with analytical results.

Although the examples discussed involved only the trimming which was a 2D sce-

nario, the rigid body deflections of a real ship are 3D in nature and final deflection

can have both the trim and heel component. The present CW model with buoyancy

springs involves realistic vessel geometry and the buoyancy distribution. Thus, a CW

model with CG and CF not sharing any plane, will render the model to include trim-

ming and heeling deflections simultaneously. For the purpose of brevity and similarity

of treatment, the heeling is not discussed here.





Chapter 10

Validation Cases: Flexible Ship

Deflections in Still Water

10.1 Analytical Procedure

This chapter discusses the case of a container ship deflections in a still sea water

environment. A reference example has been considered from Ref.[63] for which the

results from analytical and CW models are compared. A simplified container ship

has been modelled as a single beam and has the mid-ship section as the beam cross

section through out the beam length. Referring to Fig.10.1, a typical container ship

structure is acted upon by the still water buoyancy force and mass distribution acting

in the form of weight. The difference of the two loading curves gives the differential

loading that acts on the ship which is idealised as a beam. Like any beam problem,

the deflections are analysed through the ability of cross section geometry to resist the

loads. Similarly, the flexural stresses thus arisen are also obtained employing classical

beam models such as Euler Beam Theory.

a onBuoyancy distribution

Beam

Figure 10.1 Buoyancy and mass distribution loading curves on a ship idealised as a
beam
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Since to this point, the efficacy of CW models involving buoyancy springs is well

established, the container ship with important realistic scantlings is considered here

as a CW 1D beam model with buoyancy springs attached. Fig.10.2 shows a simplified

loading scenario for a container ship for which the mid-ship scantlings are shown in

Fig.10.3. The material is steel with young’s modulus E=210 GPa and poisson’s ratio,

ν=0.3. The problem is given as a numerical example in Ref.[63] at page 160.

Still Water Buoyancy

184.5 t/m

Mass

148.8 t/m

500 t/m10 m

Figure 10.2 Buoyancy and mass distribution curves on a ship

3 m

13 m

8 m

20 m

1.5 m 12 mm

18 mm

20 mm

14 mm

22 mm

16 mm

2 - 6 m

Figure 10.3 Mid-ship section scantlings

In the analytical procedure adopted in Ref. [63] for the ship of length 140 m, 20

m breadth and 13 m height, following parameters are calculated:

Buoyancy moment at mid-ship = 4434.365 MN m

Mass moment at mid-ship = 3637.302 MN m

Net Still water bending moment = 797.062 MN m

Section modulus at base = 8.16 m3

Normal stress at base = 97.7 N/m2
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10.2 CW Results

The container ship was analysed using CW model with 11 and 27 B3 elements along

beam length and 59 and 39 L9 Lagrange elements for the respective cross sections of

the three bulkheads and remaining beam section. The weight distribution over the

beam length has been modelled in the form of assigning appropriate densities to the

beam elements. Figure 10.4a shows the deflected plot which very closely resembles

the deformed configuration of a generic ship illustrated in Fig. 10.4b from Ref. [63].

This indicates the correctness of the procedure adopted to model the buoyancy in CW

model.
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(a) Deformed container ship from CW
model

(b) Deformed container ship (generic)
from Ref. [63]

Figure 10.4 Comparison of 3D deformed configuration of a container ship

The stiffening effect of bulkheads is clearly evident in the results and un-stiffened

hull walls and floors are seen deflected inwards due to the effect of external forces.

The self weight has caused the top plates in CW model, to sag which realistically

corresponds to the reference configuration shown in Fig. 10.4b.

Figure 10.5 shows the stress plots along a path located at the middle of the bottom

most surface along length of the beam. As shown, the maximum stress is 98.56 MPa

for CW model with 27 B3 elements which is very close to the analytically obtained

value of 97.7 MPa. The stress discontinuity at the element interface is seen and is

because of the discontinuous second derivatives.
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10.3 Rigidization of the Ship Model

The previous analysis considered a flexible model of the ship. The same model may be

rigidized by increasing the young’s modulus in order to manifest a rigid body immersed

configuration. For present model, all the points such as center of buoyancy, center of

gravity and center of floatation lie in the same longitudinal vertical plane and thus

there is no inclination angles involved. Figure 10.6 shows the results of this study

whereby deflections of a path are compared as the structure is rigidized. The path is

a straight line which is an intersection of a transverse plane and the base surface. The

transverse plane is chosen mid-way along the length between the two bulkheads. At

such location, the in-plane deflections of the cross section are more pronounced.
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Figure 10.6 Deflection plot as the ship is rigidized
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The results clearly show that, as the young’s modulus is considerably increased,

the deflection curve converges to a final value that is obtained analytially as z=-0.917

m. Also, it is observed that the less stiffened regions of the floor are lifted upwards

due to buoyancy forces and the stiffened regions such as corners are pushed downward.

All the curves mutually intersect at common point which is the analytical immersion

depth.

Present rigidised CW models on buoyancy springs produce very accurate results

and do not require calculation parameters such as Metacentric Height or Center of

Floatation and various other hydrostatic parameters.





Chapter 11

Ship Poised over Wave Loads

11.1 Buoyancy in Waves

The forces acting on a ship moving through a seaway are very different from those in

still water. The static buoyancy is greatly altered both in space and time which was

previously assumed a constant for still water. The pressure in a sea wave differs from

normal static pressure under still water. The heave and pitch motions involve inertia

of both the ship and the surrounding water. The problem thus becomes a dynamic one.

In traditional practice (See Ref. [63], [61]), the problem is reduced to an equivalent

static problem and the ship is considered as statically poised on a wave.

X

Y

Z

Figure 11.1 Isometric view of container ship meshed with 1D CW beam elements (all
dimensions in meters)

A brief discussion on waves is required in order to model the buoyancy forces

associated with them. Sea waves can broadly be classified into regular and irregular



102 Ship Poised over Wave Loads

waves. In this thesis, only the regular waves are considered. Out of many wave forms

trochoidal waves most closely represent the regular sea waves. The trochoidal wave

theory was proposed by Gerstner [35]. A trochoid is characterised by crest relatively

being sharp compared to the troughs which are flatter. The so-called Trochoidal Wave

Theory is based on the mathematical description of the free surface of an ocean wave

by representing it through a Trochoid. A trochoid is a path traced by a point P lying

within a circle which is rolling under a straight line (as shown in Fig.11.2). As shown

in Fig. 11.3, the still water line is located at a distance ζ = πro
2/λ below the orbit

center line. Thus, the still water line divides the area under the curve of trochoid in

two equal halves. The coordinates of point P travelling along a trochoid are given

through the following Eq. 11.1:

r

R P

ω

Base line

P

P
P

P

P

P

rochoi

θ

z

y

Figure 11.2 Trochoid

y = Rθ − r sin θ

z = R− r cos θ
(11.1)

The nature of trochoidal waves is stationary and the particles under the wave do

not get transported along the wave. Instead, they undergo a circular motion in the

plane of wave. The circle geometry varies horizontally as well as vertically . Travelling

from deep sea towards sea shore, the circles tend to become ellipses whereas travelling

along the depth the circles tend to shrink through a function that is hyperbolic in

depth, z. Very near the sea shore, at shallow water depths, the waves tend to break.

This behaviour is illustrated in Fig.11.4.
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Figure 11.4 Section showing the wave changes approaching shore

11.2 CW Model of a Container Ship

In order to model buoyancy forces due to waves, a container ship is modelled as a single

beam with multiple sections using CW approach. Each beam element is assigned a

cross section out of the two sections types i.e. the bulkheads and the simple channel

shaped section. As seen in Fig. 11.1, in all there are 16 B3 elements out of which

4 are bulkheads and the rest of them are channel section. The material is steel and

wall thicknesses at all places is 50 mm. There are no external loads applied to the

structure and the only loads are the self-weight of the ship and the buoyancy forces.

The ship length is 120 m, width is 26 and height is 16.2 m.

For present study, the ship is assumed to poised statically over a trochoidal wave.

Thus, at crest the buoyancy is higher than the still water buoyancy and lower at the

other region. The results of the study are presented in the form of contour plots

for vertical deflection of vessel floor. The Fig.11.5 and Fig.11.6 show the weight and

buoyancy loading on the CW model of container ship along with the contours of

vertical deflection. In Fig.11.5, the wave has crests at two ends while the middle of

wave has the trough. The wave orbital center line is positioned at distance ζ = πro
2/λ

= 0.026 m above the still water line which is 1.014 m from keel. Here, ro = 1 m and
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λ = length of the ship = 120 m. In the second Fig.11.6, the same wave is modelled

with crest in the middle and two troughs at the ends.
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Figure 11.5 Wave loading with crest at ends and displacement contour plot from CW
model

11.3 CW Model of a Realistic Boat Geometry

In previous section, the ship exhibited a non-uniform deflection owing to the non-

uniform buoyancy. In this section, it is shown that a non-uniform weight distribution

in the presence of a uniform buoyancy distribution causes a non-uniform deflection.

For this purpose, the boat discussed in Sec. 9.4 is considered again but with less stiff

material with Young’s modulus, E being 0.1 GPa. Figure 11.7 shows the deflection

plot from the static analysis of the boat. The plot shows that downward deflection due

to weight is dominant in frontal region whereas the lower region of the floor experiences

an upward lift due to buoyancy force.

11.4 Conclusion

The effect of changing buoyancy and weight distribution is convincingly demonstrated

in a realistic manner for CW models of a container and a boat vessel. The buoyancy

springs have produced the realistic and flexible static deflections in structure. It is

seen that each section is acted upon by the net sum of weight and buoyancy loads on
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the ship. A section is pushed upward by buoyancy in places where buoyancy is higher

whereas it is lowered where weight is higher than the buoyancy.



Chapter 12

Dynamic Structural Analysis of

Ship on Buoyancy Springs

12.1 Free Vibration Analysis

The efficacy of present beam model has been well demonstrated for the static loading

conditions in previous chapters. In this chapter, the beam models representing realistic

ship hulls are analysed for free vibration and transient response. The free vibration

problem is reduced to an Eigenvalue or Modal Analysis which gives natural frequencies

and mode shapes and is given by Eq. 12.1:

(K − ω2M)Qeiωt = 0; (12.1)

where K and M are respectively the global assembled stiffness and mass matrices

and Q is the amplitude of the assumed harmonic solution q with ω being the angular

frequency in rad/sec. The first six lowest frequencies correspond to rigid body modes

that comprise of three translations and three rotations. The three motions of heave,

pitch and roll are among these six modes arranged interspersed in ascending order.

Subsequent mode 7 and onward are flexible structural modes exactly the same as would

have been obtained for a boat in vacuo. For the validation requirement a realistic boat

geometry has been chosen for the free vibration analysis under still water conditions.

The dynamic analyses in this chapter do not involve so called Added Mass and

Hydrodynamic Damping effects for the sake of simplicity. The added mass has the

effect of added inertia due to the fluid motion of the oscillating body and similarly
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damping is the energy dissipation mechanism of waves generated in the fluid around

the hull. Given the geometrical form of the vessel and particular mode of motion,

the corresponding added mass and hydrodynamic coefficients are added to the overall

mass of the vessel finally leading to correct results. This study is presented in next

chapter.

Next, the accuracy of present model with buoyancy springs is further demonstrated

by simulating the dynamic response of ship due to moving loads on its deck. The

governing equation for this case is the most general form of equation of motion and

its is re-written here from chapter 3.

Mq̈(t) + Kq(t) = P(y, t) (12.2)

where quantities q̈ and q(t) are time-dependent responses due to time and position

dependent loading P. Well known "Newmark" direct time integration scheme has been

employed to solve the equation of motion. The scheme is termed as "direct" since it

does not require the equation of motion be transformed into any other form prior to

time-integration. In direct numerical integration, the Eq. 12.3 is satisfied at discrete

time steps. Thus the equation of motion for an undamped system at time t+ ∆t is:

Mq̈t+∆t + Kqt+∆t = Pt+∆t (12.3)

The time domain is divided into time steps of interval ∆T . Objective is to obtain

the displacement vector q at each time step. The total time span T is the interval over

which the response of the system is evaluated and is subdivided into NT time steps.

The Newmark scheme [64] is an implicit time integration procedure meaning that the

displacement vector calculated at time instant t+∆t depends on known displacements,

velocities, accelerations computed at previous time instant and the unknown velocities,

accelerations calculated at time instant t+∆t. The displacement qt+∆t at time t+ ∆t

is found from the following Eq.:

K̄qt+∆t = F̄t+∆t (12.4)

where K̄ is the effective Stiffness Matrix and F̄t+∆t is the effective Vector of Equiv-

alent Nodal Forces at time t+ ∆t. The matrix K̄ is related to the original stiffness

matrix K and mass matrix M as:

K̄ = K +
1

α∆t2
M (12.5)
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and the vector F̄t+∆t is found from Ft+∆t and initial quantities of qt, q̇t and q̈t

through the following Eq.:

F̄t+∆t = Ft+∆t +
1

α∆t2
Mqt +

1

α∆t
Mq̇t +

(

1

2α
− 1

)

Mq̈t (12.6)

Once the new displacement qt+∆t is known from Eq. 12.5, the new velocities and

accelerations are obtained as follows:

q̇t+∆t = q̇t + [(1 − δ)q̈t + δq̈t+∆t]∆t (12.7)

and

q̈t+∆t =
1

α∆t2
qt+∆t −

1

α∆t2
qt −

1

α∆t
q̇t −

(

1

2α
− 1

)

q̈t (12.8)

where the constants δ and α have the values 0.5 and 0.25 respectively. The proce-

dure is repeated as the new displacements, velocities and accelerations become current

ones and effective force vector is updated through Eq. 12.6 and all quantities calcu-

lated for the subsequent time step.

Employing the Newmark time-integration scheme, a dynamic response analysis of

an aircraft carrier subjected to moving load of an aircraft has been performed. The

aircraft carrier is assumed to be rigid body floating over still water. The problem has

been referenced from a well cited paper [82] and results are validated. Presently, the

effect of damping has not been included.

12.2 Free Oscillations of a Boat in Still Water

A boat of geometry shown in Fig 12.1 was analysed for its free vibration response

using the present CW model supported on buoyancy springs. The problem has well

established analytical procedure in textbooks on Fluid Dynamics whereby the boat

is assumed rigid. The boat exhibits vertical oscillations termed as heave, rotational

oscillations about transverse axis termed as pitch and rotational oscillations about

longitudinal axis termed as roll. An important aspect to consider is that the boat

has at least one plane about which the geometry is not symmetric (e.g. the vertical

transverse plane, z-plane in Fig 12.1). This leads to the coupling of heave and pitch

oscillations which otherwise remain uncoupled for bodies perfectly symmetric about

all three axes.
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Figure 12.1 Boat parameters in meters (Left: Isometric view, Right: Plan view)

12.2.1 Analytical Model

Heave

From any good reference book on vibrations such as [100], the heave frequency is

obtained in Hz through the following Eq. 12.9.

fheave =
1

2π

√

ρwgAw

m
(12.9)

where for the boat in Fig. 12.1

ρw = 1025 : Density of sea water [kg/m3]

g = 9.81 : Gravity constant [N/m2]

Aw = 18.7914 : Water plane area [m2]

m = 5303 : Mass of the boat [Kg]

which gives

fheave = 0.950027 Hz

Pitch

The pitch frequency is obtained in Hz through the following Eq. 12.10.

fpitch =
1

2π

√

√

√

√

Whpitch

Ipitch
(12.10)



12.2 Free Oscillations of a Boat in Still Water 111

where for the boat in Fig. 12.1

W = 52022.43 : Weight of the boat [N]

hpitch = 20.342 : Meta centric height [100] measured from center of gravity [m]

Ipitch = 40191.035 : Pitch Moment of Inertia [kg-m2]

which gives

fpitch = 0.8163Hz

Pitch

The roll frequency is obtained in Hz through the following Eq. 12.11.

froll =
1

2π

√

Whroll

Iroll
(12.11)

where for the boat in Fig. 12.1

W = 52022.43 : Weight of the boat [N]

hroll = 1.3912 : Meta centric height [100] measured from center of gravity [m]

Iroll = 4262.511 : Roll Moment of Inertia [kg-m2]

which gives

froll = 0.65704Hz

12.2.2 Numerical Results

The present CW model with buoyancy springs has 4 B3 beam elements which are

along y-axis (along the boat height). The first two beam elements used to model the

floor while the remaining two for the hull walls. These elements have the cross sections

lying along x − z planes. Thus, there are two cross section types assigned to 4 beam

elements. The floor has been modelled with 48 L9 elements with 221 nodes and the
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walls have been modelled with 24 L9 elements with 144 nodes. The complete model

has 1681 nodes with 5043 DOFs. The boat material is Aluminum with E = 72 GPa

and ν = 0.3.

The results of the modal analysis (Natural frequencies and mode shapes) are pre-

sented in the following. The natural frequencies obtained are listed in Table 12.1

which do not include the first three translational frequencies. The table also lists the

analytical values for the rigid body modes for the purpose of comparison. Ignoring

the first three translation modes, the remaining initial six mode shapes are plotted in

Fig. 12.2. The coupling effect between the heave and pitch modes is clearly evident

owing to the asymmetric geometry across the vertical transverse plane.

Table 12.1 Natural frequencies obtained from numerical (CW) and analytical models

Mode CW Model (Hz) Analytical Model (Hz)
Roll 0.6995 0.6570
Pitch 0.8173 0.8163
Heave 0.9608 0.9500

Mode 1 18.1712 –
Mode 2 18.6957 –
Mode 3 28.7631 –
Mode 4 35.3432 –
Mode 5 40.4544 –
Mode 6 43.7889 –
Mode 7 44.5117 –
Mode 8 56.8689 –
Mode 9 58.9391 –



12.2 Free Oscillations of a Boat in Still Water 113

Y

Z

X

V

-0.01

-0.012

-0.014

-0.016

-0.018

-0.02

-0.022

-0.024

-0.026

-0.028

-0.03

-0.032

-0.034

(a) Heave mode

Y

Z

X

W

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

-0.07

-0.08

(b) First flexible mode
Y

Z

X

V

0.02

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

-0.02

-0.025

-0.03

-0.035

(c) Pitch mode

Y

Z

X

V

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

-0.02

-0.025

-0.03

-0.035

-0.04

(d) Second flexible mode

X

Y

Z

V

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

-0.02

-0.025

-0.03

-0.035

(e) Roll mode

Y

Z

X

V

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

-0.02

-0.025

-0.03

-0.035

-0.04

-0.045

(f) Third flexible mode

Figure 12.2 Free vibration modes of the boat shown in Fig. 12.1
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12.3 Dynamic Response of an Aircraft Carrier due

to a Moving Load on Deck

The accuracy of the present model in capturing a dynamic problem is further high-

lighted through simulation of an aircraft carrier in sea water subjected to a moving

load exerted by an aircraft on her deck. The problem has been referenced from an

article [82] with which the results of CW model have been compared. In the analysis,

the ship has been assumed as a rigid body floating in still sea water. The aircraft

exerts 150 kN downward force. The ship is symmetric from all sides except across a

vertically transverse plane owing to the tapper at bow. The ship geometry is shown

in Fig. 12.3. The ship mass used in the problem is 358.3741 × 105 kg which includes

the added mass in addition to its original mass of 132 × 105 kg.

132 m

24 m

Stern

Bo

1 0 N

7 m

22 m

10 m

Figure 12.3 Simplified model of aircraft carrier with moving load (shown in perspective
view)

The problem has been modelled in the Ref [82] analytically and numerically with

the effect of damping included. The effect of added mass is only to contribute towards

inertia and hence affects the time period of the vibrations. The present CW analysis

involves all the same parameters except damping. It may be noted that the damping

only alleviates the response amplitudes therefore in the Ref [82], the oscillations are

seen decaying down as the time progresses. As shown in Fig. 12.3, the aircraft travels

from stern toward bow with a constant velocity represented as Vp.
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12.3.1 Numerical Results

The CW model for the present problem has been modelled using 3 B3 beam elements

aligned with y-axis. Gravity is along negative y-axis. The beam cross sections are large

areas lying parallel to x − z plane. Each cross section has 20 L9 elements with 105

nodes and the complete model has 2205 DOFs. The lowest cross section (keel surface)

has all the nodes connected to vertical springs simulating the effect of buoyancy.

The results of the analysis are the plots of vertical oscillations of center of gravity

of the ship (Wcg) versus the travelled distance of the aircraft represented as xp. Figure

12.4 shows the deflected position of the ship at an arbitrarily chosen time instance

for which the distance xp = 33 m. Each of the plots for the response in the following

comprise of two phases, I and II. Phase-I refers to the condition when xp < L that is

when the aircraft is on the ship and phase-II refers to the condition xp > L that is

when the aircraft has left the ship.

1 0 kN
xp= 33 m

Wcg

Figure 12.4 Deflected position of aircraft carrier due to moving load

The first result is for the case of aircraft moving with constant velocity of 11 m/s

in the direction from stern to bow. The distance travelled from the initial position is

denoted as xp. Figure 12.5 shows the plot of vertical deflection of center of gravity

of the ship (denoted as Wcg) vs the distance xp. The figure also shows the plot from

exact solution from Ref. [82] for the comparison purpose. In addition to the response

during time when aircraft remains on the ship (xp < L), the vertical CG oscillations

are continued to be monitored while xp > L till xp = 2L as the aircraft leaves the

ship oscillating freely. The curve from CW model (shown in Red) is seen closely
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approaching the exact solution (shown in blue). As expected, the absence of damping

manifests in the form of unchanging amplitude of oscillations.
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Figure 12.5 Comparison of vertical response of CG of Aircraft Carrier at Vp = 11 m/s

For further comparison, two more cases have been plotted for the aircraft velocities

Vp = 22 m/s and Vp = 6 m/s in Figs. 12.6 and 12.7 respectively. The forced and free

frequencies of oscillations of CW model are closely approaching the exact solution with

the undamped amplitude remaining higher than the damped response. In Fig. 12.7, a

noticeable time lag is observed in the free response regime where xp > L. The reason

for this lag is the change of initial conditions for this free response part of the curve.

For the damped response curve, the amplitude is considerably reduced at location

xp = L resulting in an early start of the free oscillations that follow in phase-II.
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Figure 12.6 Comparison of vertical response of CG of Aircraft Carrier at Vp = 22 m/s
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Figure 12.7 Comparison of vertical response of CG of Aircraft Carrier at Vp = 6 m/s
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12.4 Conclusion

Some marine vessels with realistic geometries were chosen for demonstrating the capa-

bility of present CW model with buoyancy springs for the dynamic response analysis.

A simple boat hull entailing realistic geometrical features was chosen for modal analy-

sis. It was observed that the initial rigid body modes include the oscillation modes of

the boat whose analytical solutions were available. The natural frequencies and mode

shapes from CW model were accurately close to the analytical solution validating the

idea of employing buoyancy springs. The analysis of the boat was followed by the

dynamic response analysis of an aircraft carrier subjected to the moving load of an

aircraft. The problem was referenced from an article and the results were compared.

The analysis was performed for different velocities which affected the ship response

differently. All the results were found closely matching the exact solution.



Chapter 13

Dynamic Sea Loads on Ships

13.1 Introduction

The effect of loads such as weight and buoyancy under the static hydrodynamics

was studied in previous chapters. Buoyancy Springs were introduced that accurately

captured the hydrostatic restoring forces which are all time present for the case of a

floating vessel. This chapter will introduce the bigger picture whereby the dynamics

of floating vessels will be studied. It will be seen that previously introduced buoyancy

spring model constitutes a part of the complete governing equation of motion for a

sea vessel.

13.2 Equation of Motion of a Ship

The dynamic model of a floating ship in sea can be expressed in the most general way

through equation of motion as follows:

Mq̈(t) + Cq̇(t) + Kq(t) = P(t) (13.1)

where M, C and K are respectively the global assembled matrices of mass, hy-

drodynamic damping and stiffness and q, q̇ and q̈ are respectively the generalised

displacement, velocity and acceleration vectors. This is the familiar form of equation

of motion for a typical spring-mass-damper system.

For the case of ships, Eq.13.1 is modified where some additional terms are added

to the terms for mass, damping and stiffness. This is because an oscillating ship
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in water generates additional forces of which some forces are in-phase with the ves-

sel’s acceleration namely the Added Mass and forces in-phase with velocity namely

Hyrdynamic Damping. The coefficient for the displacement is stiffness matrix which

is the stiffness of the whole system comprising of the structural stiffness of the vessel

and the hydrostatic stiffness (See Lewis [59]). The RHS of Eq.13.1 involves generalized

force vectors due to the presence of waves. They are categorized into Incident and

Diffraction Waves and will be discussed later. Hence the equation of motion can be

written as:

[M+A]q̈(t) + [CHD]q̇(t) + [KS + KHS]q(t) = FI(t) + FD(t) (13.2)

where the matrices are:

M : Mass of vessel or Displacement denoted as ∆

A : Hydrodynamic Added mass

CHD : Hydro-Dynamic damping

KS : Structural stiffness

KHS : Hydro-Static stiffness

FI : Incident Wave Force

FD : Diffraction Wave Force

13.3 Forces on a Ship

Forces acting on the hull of a moving and oscillating ship are explained in many books

such as Refs. [76], [47] and [32]. The procedure adopted here has been referenced from

Lewis [59] whereby the coefficient matrices in Eq.13.2 have been obtained for 6-DOF

rigid body motions of a ship. Thus, there are three translational and three rotational

DOFs. The coordinate system adopted for the present discussion is shown in Fig. 13.1.

The three translations along x, y and z axes are respectively called as surge, heave

and sway and the three rotations about these axes are respectively termed as roll, yaw

and pitch.

Coordinate System

As can be noticed from Fig.13.1 that the present coordinate system is different from

the one considered in previous chapters. In earlier models, the ship’s longitudinal axis

was along the beam axis and the transverse hull sections were contained by planes

parallel to the x− z-plane. Such beam orientation could produce only prismatic hulls
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Figure 13.1 Six DOFs of a ship in seaway

with no variation along the length. Changes in transverse section along the length

have significant impact on pitch-heave coupling.

In this chapter, the planform area of the vessel has been taken as the beam cross

section and the vessel’s height is along the beam axis. Thus, the length-wise variations

in planform can be accommodated in the beam cross sections. In these models, each

transverse section of hull is a rectangle with width equal to the "Beam" 1, B = B(x)

and draught T (x).

x

z

y

B(x)

Bow
Stern

Figure 13.2 Beam meshing scheme for ships with varying width (B = B(x))

13.3.1 Simplifications and Assumptions

The ship is assumed to travel at velocity Uo and an angle µ to the sea waves that have

the frequency of ω. Thus, the Frequency of Encounter, ωe is given as follows:

1Width of the ship is called Beam
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ωe = ω +
ω2g

Uo
cosµ (13.3)

The waves are assumed to be linear whereby the wave height is assumed to be

smaller compared to wave length. The following discussion on the wave forces is based

on this assumption and is well known as Airy Wave Theory. The Airy theory assumes

the fluid properties as inviscid, incompressible and irrotational and hence the fluid

particle kinematics can be described through a velocity potential Φ. The forces in

fluid-hull interaction problem result from solving these velocity potential functions

under appropriate boundary conditions.

In general, the ship geometry may have starboard-port side symmetry. That is, a

vertical plane of symmetry passing through center line of the vessel. The ship, however,

may not be For-Aft Symmetric (as seen in Figs.13.1 and 13.2). That is, the bow and

stern may be different when looked in top view. Such asymmetries result in coupling

of some DOFs. For example, for the ship with For-Aft asymmetry, the heave DOF is

coupled with the pitch DOF. As a result we find coupling coefficients in mass, damping

and stiffness matrices. In general, a force acting in ith direction exciting motion in

jth direction will have subscripts ij. Thus the mass, damping and stiffness matrices

will have terms Mij , Cij and Kij where i, j = 1, 2, ..., 6. For the case of no coupling

the corresponding coefficient is zero. Following the aforesaid, the mass, damping and

stiffness matrices for the present 6-DOF system are written in the following. Here,

referring to the coordinate system shown in Figs.13.1 and 13.2, the serge, heave and

sway are numbered 1,2 and 3 and roll, yaw and pitch are numbered 4,5 and 6.

Writing Euler’s equation of motion for the six rigid body generalised displacements

and generalized forces, we get:

6
∑

k=1
Mjkq̈k(t) = Fj(t) j = 1, 2, ..., 6 (13.4)

where M is the generalised inertia matrix with terms Mjk. The subscripts j, k

correspond to the six DOFs and the matrix M includes three mass terms M11 =

M22 = M33 = ∆, three principle inertia terms and coupling inertia terms when j 6= k.

Both the displacements and forces are harmonic in time. For the ship with Star-Port

side symmetry, many of the terms become zero and the generalised force in each of

the six DOF is given as follows:
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∆(q̈1 + yq̈6) = F1 (serge)

∆(q̈2 − xq̈6) = F2 (heave)

∆(q̈3 − yq̈4 + xq̈5) = F3 (sway)

I44q̈4 − I45q̈5 − ∆yq̈3 = F4 (roll)

I55q̈5 − I54q̈4 + ∆xq̈3 = F5 (yaw)

I66q̈6 + ∆[yq̈1 − xq̈2] = F6 (pitch)

(13.5)

where

Fj , j = 1, 2, 3 : Total forces in x,y and z directions

Fj , j = 4, 5, 6 : Total moments about x,y and z axes

∆ : Total mass of the ship

Ijj, j = 4, 5, 6 : Moment of inertia about x,y and z axes

I45 = I54 : Roll-yaw coupled product of inertia

x, y : Coordinates of Center of Gravity in ship coordinate system

q̈j , j = 1, 2, ..., 6 : Generalized acceleration in jth DOF

Mij =





























∆ 0 0 0 0 ∆y

0 ∆ 0 0 0 −∆x

0 0 ∆ −∆y ∆x 0

0 0 −∆y I44 −I45 0

0 0 ∆x −I54 I55 0

∆y −∆x 0 0 0 I66


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(13.6)

Recognizing the two kind of forces as being the weight of the ship and the fluid

forces, Eq.13.4 can be written as:

6
∑

k=1
Mjkq̈k(t) = Fj(t) = FGj + FFj j = 1, 2, ..., 6 (13.7)

where

FGj : Gravity component of force which is the weight of ship

FFj : Fluid component of force

Mjk : Inertia matrix given by Eq.13.6

The gravitational forces are simply the weight acting at center of gravity of ship

while the fluid forces are further divided into Hydrostatic and Hydrodynamic forces.
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In general, the fluid forces FFj are obtained by integrating the fluid pressure over the

hull surface which can written as:

FFj =
∫∫

S

P nj ds, j = 1, 2, ..., 6 (13.8)

where

nj : Unit normal in direction of generalized force

P : Fluid pressure

S : Surface area of submerged portion of ship

The fluid pressure on the hull is obtained using Bernoulli’s equation. Under the

assumption of an incompressible, inviscid and irrotational flow, the equation for the

pressure is:

P = 1
2
ρU2

o + ρ
∂Φ

∂t
− 1

2
ρ(∇Φ × ∇Φ) − ρgy (13.9)

where ρ is the density of water. The first three terms in Eq.13.9 are hydrodynamic

pressure and the last term is hydrostatic pressure. Thus we can write.

FF = FHS + FHD

(Hydrostatic) + (Hydrodynamic)
(13.10)

where

FHSj = ρg
∫∫

S

y nj ds, j = 1, 2, ..., 6 (13.11)

and

FHDj = ρg
∫∫

S

(

1

2
U2

o +
∂Φ

∂x
−

1

2
(∇Φ.∇Φ)

)

ds, j = 1, 2, ..., 6 (13.12)

The total fluid forces represented as FHD are written as the sum of Incident Wave

Forces (Froude-Krylov Forces), Diffraction Wave Forces and Radiation Wave Forces

each of which is explained in the following. That is,

FHD = FI + FD + FR

where
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FI : Incident Wave Forces (ship is assumed absent)

FD : Diffraction Wave Forces (ship is assumed fixed)

FR : Radiation Wave Forces (ship is assumed oscillating)

13.4 Hydrostatic Forces

These are the forces due to the weight of water at a given point on the hull surface.

Since the hydrostatic pressure acts normal to the surface therefore, only the vertical

components of the hydrostatic pressure is balanced by weight of the structure. The

Hull on Buoyancy Spring model was introduced in Chapter 7 to 11 which accurately

simulates the hydrostatic stiffness where each buoyancy spring has upper end con-

nected to the wetted surface of hull and the lower end is fixed to the ground. As

the buoyancy linearly increases with depth, there is a constant of linearity which acts

as a spring constant. That spring constant is Buoyancy Stiffness. These hydrostatic

forces are in-phase with displacement and hence the quotient with the generalised dis-

placement vector q is termed as Hydrostatic Stiffness matrix appearing together with

Structural Stiffness with dimensions as much as the DOFs of the model at hand.

For the purpose of completeness, the expressions for the hydrostatic stiffness com-

ponents for a Star-port symmetric ship are explained in the following ([59]). For the

problem with 6-DOFs, the hydrostatic stiffness matrix KHS is a 6 × 6 matrix whose

each term, Kij, is the hydrostatic generalized restoring force in ith direction due to

unit generalized displacement in jth direction. All the terms of KHS matrix are zero

except the following:

K22 = ρg
∫

B(x) dx

K26 = K62 = −ρg
∫

xB(x) dx

K44 = ρg∇GMT

K66 = ρg∇



GML +
LCF

2

∇
S





(13.13)

where

GMT : Transverse metacentric height

GML : Longitudinal metacentric height

S : Waterplane area =
∫

L

B(x)dx
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13.5 Hydrodynamic Forces

The aforementioned coefficients for hydrostatic force, Kjk and mass matrix, ∆jk are

easily obtained. The hydrodynamic forces are unsteady complex forces and Strip

Theories (Ref [76]) are employed to reduce the complexity of three dimensional problem

to 2D. The ship is considered divided through transversal planes resulting in strips

of length dx and sectional area A. Use of strip theory entails certain assumption; for

instance, the ship is assumed as a slender body whereby the breadth B and draught T

are assumed much smaller than the length. Within a strip, the fluid flow is assumed

to be two dimensional. Various coefficients are obtained for the strip and their total

effect is obtained by integration over all strips along the length. The fluid forces have

three main components which are explained in the following.

13.5.1 Radiation Wave Forces

These are the forces due to the motion of the ship when it generates outgoing waves in

otherwise calm water. The waves take away the energy and hence the motion dampens

out. They result in two additional terms as seen in equation of motion (Eq.13.2). Thus

the force FR has two components as shown in Eq.14.1. One is proportional and in-

phase with acceleration and the other is proportional and in-phase to velocity.

Frj =
6
∑

k=1
(ω2

eAjk − iωeCjk)qke
iωet j = 1, 2, ..., 6 (13.14)

where, qk is the response amplitude for the kth DOF.

Ajk : Added mass in the jth DOF due to unit motion in the kth direction

Cjk : Damping in the jth DOF due to unit velocity in the kth direction

qk : Response amplitude for the kth DOF

Determination of Radiation Coefficients

For the rigid body with 6-DOFs, there are 36 coefficients for the 6 × 6 matrices of Ajk

and Cjk. Because of symmetries many of the coupling terms are zero. A complete list

of non-zero terms is given in Ref [59] from where for the heave motion i.e. j = 2, we

have:

A22 =
∫

a22dx C22 =
∫

c22dx (13.15)

where



13.5 Hydrodynamic Forces 127

A22 : Added mass coefficient for entire ship for unit acceleration in vertical direction

a22 : Added mass coefficient for section of length dx for unit acceleration in vertical direction

C22 : Damping coefficient for entire ship for unit velocity in vertical direction

c22 : Damping coefficient for section of length dx for unit velocity in vertical direction

In each term, the integration is carried over the ship length l along x direction. The

integrands come from 2D sectional properties for which well known 2D Strip Theory

Ref [76]. In strip theory the sectional forces are calculated using 2D Velocity Potentials

i.e. along y − z plane.
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13.5.2 Incident Wave Forces

These forces are also known as Froude-Krylov forces. They are the forces due to

fluid particle motions acting over the hull surface but considering hull to be absent.

Hence, the fluid is undisturbed by the presence of ship. The Froude-Krylov excitation

force can be found by integrating the pressure given by Eq.13.9 in which the potential

function Φ is ΦI , the Incident Wave Potential. Since the flow is assumed linear, the

term with ∇Φ is dropped and the Eq. 13.8 for the force on the hull due to Incident

waves becomes:

FF K = −ρ
∫∫

S
nj

(

iωe − Uo
∂

∂x

)

ΦI ds (13.16)

where for deep water conditions, ΦI is:

ΦI =
i g ζa

ωo
e−ik(x cos µ+z sin µ) eky (13.17)

Thus, the Eq.13.16 becomes:

FF Kj = −ρ
∫∫

S
nj

(

iωe − Uo
∂

∂x

)(

i g ζa

ωo
e−ik(x cos µ+z sin µ) eky

)

ds

≅ +ρ g ζa

∫

L
dx e−ik x cos µ +

∫

Cx
n̂j e

−kz sin µ eky dl

(13.18)

In Eq.13.18, the line integral gives the sectional Froude-Krylov force. Representing

it by fj(x) where j is the DOF number:

fj(x) = −ρ g ζa

∫

Cx
Nj e

−kz sin µ eky dl j = 1, 2, 3, 4 (13.19)

Hence,

FF Kj =
∫

L
e−ik x cos µ fj(x) dx j = 1, 2, 3, 4

FF K5 = −
∫

L
e−ik x cos µ xf3(x) dx

FF K6 =
∫

L
e−ik x cos µ xf2(x) dx

(13.20)

In the above equations the term eky indicates the hyperbolic variation of amplitudes

along the depth (along y-axis). At any given depth from free surface, the force is
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function of time t as well as the wave period k. The wave amplitude is represented

as ζa. The term Nj are the unit normals for sections for the jth force in DOF. The

expressions for unit normals for modes along the six DOF are given as follows:

N1 = ∂b/∂x
/√

1 + (∂b/∂y)2

N2 = ∂b/∂y
/√

1 + (∂b/∂y)2

N3 = ±1
/√

1 + (∂b/∂y)2

N4 =

(

z
b

y
+ y

)/

√

1 + (∂b/∂y)2

N5 = +xN3

N6 = −xN2

(13.21)

where z = ± b is the equation of hull section contour and b = b(x, y) is half beam

with x− y plane being the plane of Star-Port symmetry.

13.5.3 Diffraction Wave Force

These are the wave forces that result from the diffraction of waves that strike the

ship. They complement the Froude-Krylov forces as together the pair of these forces

are called Excitation Forces. For large vessels, or small wave lengths, the diffraction

component constitutes significant proportion of the excitation forces. The velocity

potential is represented by ΦD and requires boundary conditions similar to those of

radiation potential ΦR. Although, the potential ΦD is difficult to solve, the diffraction

excitation forces are determined employing only the potentials ΦR and Φj and this

method is known as Haskind Relations. Like Froude-Krylov force problem, the expres-

sions are reduced to 2D sectional equations involving sectional potential functions ψj

and unit normals Nj (given above in Eq. 13.21). Defining sectional diffraction force

function as hj(x) as:

hj(x) = ρ ζa ωo

∫

Cx
(iN2 + N1 cosµ + N3 sin µ) × eikz sin µ eky ψj(y, z) dl j = 1, 2, 3, 4

(13.22)
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Total diffraction force is obtained by integrating the sectional diffraction force over

the ship length. Thus for each of the six DOF modes, we have:

FD
j =

∫

L
e−ikx cos µ hj(x)dx j = 1, 2, 3, 4

FD
5 = +

∫

L
e−ikx cos µ

(

x +
Uo

iωe

)

h3(x)dx

FD
6 = +

∫

L
e−ikx cos µ

(

x +
Uo

iωe

)

h2(x)dx

(13.23)

For the case of head seas (i.e. µ = 180 deg), the sectional diffraction force for heave

(DOF=j=2) becomes

h3(x) = ρ ζa ωo

∫

Cx
(iN2 + N1) e

kz ψ2(y, z) dl
(13.24)



Chapter 14

Verification Model for Dynamic Sea

Loads

14.1 Introduction

The dynamics of ship motion are governed by Equation of Motion 13.1 as given in

previous chapter. As stated earlier, the fluid forces due to motion are of three types;

Incident Wave Forces, Diffraction Wave Forces and Radiation Wave Forces. These

forces for a simplified geometry are obtained and applied onto the submerged part of

the hull as external forces. The response of the vessel will be the main outcome of

the analyses. All the analyses involve ship modelled as a rigid body and hence serge,

sway, heave, roll, pitch and yaw are the only DOFs.

As an example a box-like vessel has been chosen to study the dynamic characteris-

tics involving hydrodynamic damping and added mass. The vessel has been referenced

from [94] and is of prismatic shape with a rectangular transverse section of size 0.4 m

× 0.4 m. The vessel length is 4.19 m.

Unlike typical spring-mass-damper system where the damping and mass coefficients

can be constant, for oscillating vessel, the added mass and damping are functions of

oscillation frequency. Ref [94] gives frequency dependent variation of added mass and

hydrodynamic damping coefficients for various cylinders with circular, rectangular,

wedge shaped sections. Figure 14.4 shows the plot sectional added mass a22 and sec-

tional damping c22 for the chosen box-like vessel studied by Vught [94]. The two plots

are normalized and denoted by a33 for sectional added mass and sectional damping

b33 respectively. The plots consider the damping and added mass forces only in a
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2D plane transverse to the vessel’s longitudinal axis. Strip theory is then required to

integrate all the sectional forces to obtain the total damping and added mass force.

14.1.1 Hydrodynamic Damping and Added Mass

Radiation wave loads on a floating structure are result of waves that radiate radially

outwards from the structure owing to the oscillatory motions of platform in otherwise

still water. As explained in section 13.5.1 the wave radiation forces typically comprise

of those acting in phase with acceleration q̈ namely the Added Mass and others out-

of-phase with velocity q̇ namely the Hydrodynamic Damping. They are written as

follows:

Frj =
6
∑

k=1
(ω2

eAjk − iωeCjk)qke
iωet j = 1, 2, ..., 6 (14.1)

where,

Ajk : Added mass in the jth DOF due to unit motion in the kth direction

Cjk : Damping in the jth DOF due to unit velocity in the kth direction

qk : Response amplitude for the kth DOF

For the present box-like model, the values of added mass and damping coefficients

have been obtained using the plots provided by Vught [94] and ANSYS AQWA Work-

bench. The problem is solved in frequency domain after which frequency dependent

plots of damping and added mass coefficients are obtained against frequency of oscil-

lations. The values depend on the transverse section geometry and Vught [94] gives

similar plots for other sectional forms.

The curves for radiation coefficients are obtained by solving the dynamic problem

in frequency domain. For present analysis, the problem was required to be solved in

time domain. Therefore, the radiation coefficients from Fig.14.4 need be transformed

into time dependent values. Equation of motion in time dependent coefficients is

obtained from Cummins [29] and is written as follows:

(M + A)ẍ+
∫ t

0
k(τ)ẋ(t− τ)dτ +K(t)x = F (t) (14.2)

where K is the hydrostatic spring constant. The terms Aẍ and
∫ t

0
k(τ)ẋ(t− τ)dτ

in the above equation can be combined and called Radiation Force FRad:
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FRad = −A(ω)ẍ(t) − B(ω)ẋ(t) = −MAẍ(t) −
∫ t

0
k(τ)ẋ(t− τ)dτ (14.3)

where A(ω) and B(ω) are the respectively the added mass and damping coefficients

in frequency domain. The term MA is A(ω) at ω = ∞. The term k(t) is defined as

Retardation Function or Kernel of the wave radiation. Retardation function k(t) can

be obtained by integrating B(ω) over entire frequency range as follows:

k(t) =
2

π

∫

∞

0
B(ω) cos(ωt)dω (14.4)

This means that at any time (t), the function k(t) is the integral of all frequencies

in range. For the box-like vessel for which damping function B(ω) comes from Fig.14.1,

the retardation function is plotted in Fig.14.2.

The damping force comes from the convolution integral that is the product of

retardation function and system’s velocity. The use of convolution results in so-called

memory effect. Mathematically, we can write damping force as memory Force that

remembers history of oscillations till the current time τ .
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Figure 14.1 Heave damping force vs heave oscillation frequency for 4.19 m long vessel
(Plot obtained after removing non-dimensionalization of Fig.14.4a)

14.1.2 Mass Properties of the Model

The model details are mentioned in Ref.[94] which has the following properties:
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Figure 14.2 Retardation function k(t) for the box-like vessel for heave DOF

Length, L = 4.19 m

Breadth, B = 0.4 m

Draught, T = 0.2 m

B/T ratio, L = 2 m

Immersed sectional area, A = 0.08 m 2

Displacement, ∆ = 343.26 kg

14.2 Results and Discussion

The hydrostatic and hydrodynamic analysis of the vessel model of [94] were performed

using present CUF and ANSYS Workbench models. In both the models, the vessel

was assumed as rigid body with 6-DOFs. For the hydrodynamic analysis, only vertical

(Heave) DOF was analysed and results are presented in the following. The present

CUF model is oriented in a way that vertical axis perpendicular to the water surface

is global y-axis while the x-z plane is parallel to the water plan area. Thus, the vessel

is modelled as a beam with beam length along y-axis.

14.2.1 Hydrostatic Results
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Table 14.1 Hydrostatic Results of the box-like model

ANSYS AQWA WB Present (CUF) Units

Hydrostatic Stiffness in Heave DOF 16846.883 16852.599 N/m
Waterplan Area 1.676 1.676 m2

Center of Gravity 0,0,0 0,0,0 m
Center of Buoyancy 0,0,-0.1 0,-0.1,0 m
Draught -0.2 -0.2 m
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14.2.2 Hydrodynamic Results

Hydrodynamic results presented in this section include the effect of Radiation Coef-

ficients of Added Mass and Hydrodynamic Damping. The scope was limited only to

vertical DOF (Heave) oscillations. The Added Mass is the addition of mass to the

mass matrix. The additional mass taken here was value of A(ω) at ω = ∞ which was

obtained from Fig.14.4a (A∞ = 400 kg).

Hydrodynamic damping was considered like an external force regarded here as FRad.

The force is obtained through a convolution integral introduced earlier in Eq.14.3. For

a time step of size dt and frequency step size of dω, the integrals in Eqs.14.2 and 14.4

are written as summation as follows:

k(t) =
2

π

N
∑

j=1
B(ωj) cos(ωjt)(ωj+1 − ωj) (14.5)

FMemory =
M
∑

i=1

i
∑

j=1
k(τj)ẋj(ti − τj)(τj+1 − τj) (14.6)

The time integration in the above Eq.14.6 is implemented through Newmark time

integration scheme. At each time step, current damping force includes contribution

from previous time steps by employing all previous velocities. This contribution spans

only for the time for which the retardation function k(t) lasts. Hence, the Eq.14.6 has

two summation loops; outer one ranging from t=0 to total simulation time and the

inner one spanning for the length of retardation function.
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Figure 14.3 Time decaying heave oscillations obtained through ANSYS AQWA and
CUF Model



14.2 Results and Discussion 137

Figure 14.3 is the result of the two simulations run in ANSYS AQWA Worbench

and CUF model. The plots are the heave responses triggered by imparting an initial

velocity (=-0.0075 m/s) to the vessel. The vessel was initially in equilibrium depth of

-0.2 m from still water line. The two plots sufficiently match implying the correctness

of the procedure adopted using CUF model. The total damping force is distributed

on all keel nodes by applying per unit area damping force on the area of the 9-noded

panels and distributing the panel force among nodes.
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(a) Added mass versus frequency

(b) Hydrodynamic damping versus frequency

Figure 14.4 Rectangular sectional added mass and damping coefficients in heave [94]



Chapter 15

CW Model for a Composite Boat

15.1 Introduction

This chapter demonstrates the capability of present CW model to capture the deflec-

tions in a composite boat under mechanical loading. For this purpose, a simplified

boat has been modelled as a beam and a static analysis was performed with beam

length aligned vertically to the waterplan area. Figure 15.1 shows the basic geometric

configuration.
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Figure 15.1 Boat dimensions in meters and composite lamination scheme
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15.1.1 Material Properties and Lamination Details

The lamination details as shown in schematic Fig.15.1 are given in detail in Table

15.1 and the orthotropic material properties of Unidirectional Carbon/Epoxy layers

are given in Table 15.2:

Table 15.1 Lamination details

Lamination Thickness per layer Material

Floor [0/90/0] 16.6667 mm Unidirectional Carbon/Epoxy
All walls [90] 50 mm Unidirectional Carbon/Epoxy

Table 15.2 Material properties of Unidirectional Carbon/Epoxy layer

E11 = 138 GPa E22 = 8.28 GPa E33 = 8.28 GPa
ν12 = 0.33 GPa ν23 = 0.0198 ν13 = 0.33
G12 = 6.9 GPa G23 = 6.9 GPa G13 = 6.9 GPa

Density = 1900 kg/m2

15.1.2 Meshing Details

The 3D configuration of the boat comprises of 8 B3 Lagrange beam elements aligned

along y-axis. Utilizing Component-Wise Model, two types of cross sections have been

employed. Both section types are meshed with L9 Lagrange elements. Starting from

bottom, the floor has been meshed with 48 L9 elements. This section type holds for

first 6 B3 beam elements. Next 2 Beam elements comprise of 24 L9 elements. The

first section type has 221 Lagrange nodes and second one has 144 nodes. Total DOFs

are 3449.

The ANSYS mesh is comprised of Shell-99 elements which are 9 noded and each

node has 6 DOFs. The DOFs of the ANSYS model are 42783.

15.1.3 Boundary Conditions and Loading

The boat is assumed to be simply supported on four bottom corners. The loading is

only through the self weight which is 36624.04 N.
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15.2 Results and Discussion

The first results presented are the vertical deflection plots. For CW model, the vertical

deflection is along y-axis and for ANSYS model, it is along z-axis. The origin for the

CW model lies at mid point of rear edge of floor. x-axis is along the length of the

boat. The two deflections are shown in Fig.15.2. It is seen that the two deflections

closely match validating the procedure adopted using CW model.

(a) ANSYS Model
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(b) CW Model

Figure 15.2 Vertical deflection plots of composite boat

Next, the stress components in top and bottom surfaces of the floor are listed

in Table 15.3 for both the ANSYS and CW models at location X = 3.17634 m,

Y = Z = 0 (bottom) and X = 3.17634 m, Y = 0.05 m and Z = 0 (top). It is noted
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that the displacements are continuous across element interfaces but stresses are not

and ANSYS takes the average values at nodes.

Table 15.3 Stress components at locations bottom and top on the floor (Components
written for ANSYS are along CW model coordinate axes)

Model (DOFs) Stresses (MPa)

σxx σyy σzz σxy σxz σyz

Bottom CW (3449) 0.5371 0.0734 -0.3208 0.0219 0.0000 0.0000
ANSYS (42783) 0.4208 0.0000 -0.3032 0.0000 0.0000 0.0000

Top CW (3449) 0.4015 -0.07168 0.3653 0.02353 0.0000 0.0000
ANSYS (42783) 0.2255 0.0000 0.3356 0.0000 0.0000 0.0000
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Conclusions

The main advantage of Carrera Unified Formulation (CUF) manifested itself through

the Component Wise approach and this paved the way for the advancements such as

present work. The CW models have displacements DOFs of nodes that are spatially

distributed in the entire structure much like a 3D solid mesh. The global structural

behaviour of marine vessels required special boundary conditions to afford us with

accurate and realistic results. The buoyancy springs are attached to particular DOFs

on the structural mesh. Corresponding to those DOFs, a nodal hydrostatic stiffness

is obtained by multiplying foundation modulus of water with the nodal share of the

area over which it acts. Finally, a global hydrostatic stiffness matrix is obtained.

Present work included two approaches to model hull. In the first approach, the

hull is considered a horizontal beam with beam sections representing transverse hull

sections. This model is length-wise prismatic and the transverse sections can take

any arbitrary shape. These models were termed as Hull Beam Model. Through the

results it was demonstrated that the approach captured displacements with sufficient

accuracy in its comparison with both analytical and commercial codes.

In the second approach, the hull is modelled as a vertical beam, that is, beam

length is along ship height. The first beam section is the submerged keel area which

can take an arbitrary shape. The model is prismatic height-wise. These models are

termed as Hull Planform Model. The thesis includes the validated results for these

models through comparison with published work and commercial codes.

Attaching buoyancy springs have had previously been employed with 3D solid

element meshes. Those FEM meshes have always been computationally heavy and

therefore the computational advantage of CUF was needed to be exploited involving

complex geometries such as realistic ship hulls. The CW approach allows attachment
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of 1D springs to the physical nodes distributed three dimensionally much like the way

one would attach them to a mesh of solid elements.

The buoyancy springs act like elastic foundations which are dealt in problems of

beams on elastic foundation. One such problem was chosen from literature as the

first validation case for the present approach of attaching numerous 1D linear spring.

The beam displacements closely matched the analytical results with a well rounded

convergence behaviour.

Having gained the confidence, various submerged cross section geometries were

considered as validation cases. Those shapes involved inclined and curved hull surfaces.

It was observed that the simply using the graphical projection of the submerged faces

onto the free water surface does not give correct solution. A special procedure was

employed whereby an equivalent transverse rectangle was introduced which had the

same area as that of the actual submerged transverse geometry. This provided a new

Water Plan Area which lead to the correct buoyancy spring constant and thereby a

correct solution for hulls with slanted or curved faces.

The procedure to determine the spring constant of buoyancy springs involved an

iteration loop which starts by an assumed draught depth. This approach resembles

the way a typical vessel is physically lowered into the water until it stabilizes at

equilibrium. The converged final equilibrium position of the vessel obtained through

the CW model was accurately close to the analytical solution and thus the present

approach was validated.

It was learnt from the literature that a vessel under the global equilibrium of

buoyancy and weight experiences a net load distribution spread across the vessel area.

Considering vessel divided into sections, the buoyancy and weight are not necessarily

balanced section-wise and the local net force varyingly may act upward or downward.

Modeled by classic beam theories, this variation is considered only length-wise. How-

ever, in present CW model, the variation is addressed over the entire area of the

submerged geometry. This results in less stiffened regions displacing upward owing to

the buoyancy in contrast to the stiffened and the heavy portions which displace down-

ward. Thus, the final result is a three dimensional and realistic deformed shape of a

hull which otherwise was possible only through the heavy mesh of 3D solid elements

of a commercial software.

The accuracy of present model has also been demonstrated for the dynamic anal-

yses. A structural modal analysis of a realistic boat geometry was performed and

rigid body modes of heave, pitch and roll were obtained which closely matched the

analytical solutions. Using present model, the dynamic response of an aircraft carrier
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subjected to moving load of an aircraft was analysed. The analyses were performed

for different aircraft velocities which resulted in the different response frequencies. In

all cases, the results closely matched the published ones.

The hydrodynamic behaviour of a floating vessel was also analysed. The hydrody-

namic loads comprised of Radiation Loads which have two components, viz. hydro-

dynamic damping and added mass. The hydrodynamic damping force was obtained

in time domain with memory effect. The force in time domain was obtained after

its conversion from frequency domain which was obtained from damping vs frequency

plots. The decaying oscillation plot was compared with that of commercial software.

The capability of present model is fairly established through the above mentioned

scenarios that cover both the static and dynamic regimes for hull structures.

16.1 Further Work

Having obtained confidence in the efficacy of present model in capturing structural

response of hulls, certain areas are foreseen as further work. In Part-I of the thesis,

complex hull geometries were modelled having walls inclined at 3D angles. Those

hulls were analysed in vacuo. The Part-II where hulls were analysed with hydrostatic

and hydrodynamic loads, included hulls that were prismatic in configuration. As an

extension of the work, hulls with three dimensionally oriented walls may be analysed

in presence of hydrostatic and hydrodynamic loads.

Another area for future work can be the extension of work in chapter 13. Present

study was limited to the ship modelled as rigid body with vertical oscillations in which

all the bottom submerged nodes had an in-phase vertical motion. In the extended

study, the ship may be considered divided into slices called strips. The ship may be

considered as a rigid body and pitching or rolling oscillatory behaviour be captured.

In that case, the vertical motion of submerged nodes will be out−of−phase along the

length. Each strip will observe a gross vertical deflection with a local vertical velocity.

This local velocity will produce local damping contribution. Similarly, the same strip

approach can be extended to the more general case of flexible vessels. In any deflected

configuration, the strips will have their local velocity component and hence the strip

wise damping force acting corresponding to the velocity of the strip.
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Appendix A

Component-Wise Model

What are the ’Components’

The 1D beam models in this thesis utilize the Component-Wise (CW) approach [20].

Each structural feature of a hull such as hull Walls, bulkheads, floors etc. are modeled

as components. The CW models have the advantage that displacements are the only

unknown variables over the beam cross section. The displacement kinematics over the

cross section is approximated through 2D Lagrange Polynomials. Cross section is thus

meshed with 2D Lagrange elements. CW beam mesh has solid-like appearance and

thus has physical nodes much similar to 3D solid element mesh.

The given complex geometry is broken down into simpler components, each compo-

nent is prismatic in nature. That is, it has a planar area of arbitrary geometry which

is extruded to some height. In terms of beam model, this area is beam cross section

and the height is beam length. For a component, such as hull wall, the area is the

large planar area of wall and beam length is wall thickness. In other words, we have

a plate modeled through 1D beam formulation. This is well visualized through Fig.

A.1.

Lagrange Expansion

The CUF model in present work is referred to as Lagrange Expansion (LE) class.

The beam is considered aligned with y-axis. At each beam node, the cross section is

meshed with 2D elements that can have a 3-noded (L3), 4-noded (L4) or 9-noded (L9).

The shape functions describing the displacements of these nodes are Lagrange func-
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Figure A.1 A wall modelled with CW approach

tions which are isoparametric functions. These functions are interpolation functions

represented as Fτ and are written in terms of cross section coordinates x and z.

An L9 element, for example, has the interpolation function as given in Eq.A.1:

Fτ =
1

4
(α2 + αατ )(β2 + ββτ ), τ = 1, 3, 5, 7

Fτ =
1

2
βτ

2(β2 + ββτ )(1 − α2) +
1

2
ατ

2(α2 + αατ )(1 − β2), τ = 2, 4, 6, 8

Fτ = (1 − α2)(1 − β2), τ = 9

(A.1)

where α and β range from -1 to +1, whereas ατ and βτ are the coordinates of the

nine points whose numbering and location in the natural coordinate frame are shown

in Fig.A.2. The 3D displacement field of the beam model based on L9 polynomial is

β

α
2

2

1 2 3

8 9 4

7 6 5

Figure A.2 L9 element in natural coordinates
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given as:

ux = F1ux1
+ F2ux2

+ F3ux3
+ F4ux4

+ F5ux5
+ F6ux6

+ F7ux7
+ F8ux8

+ F9ux9

uy = F1uy1
+ F2uy2

+ F3uy3
+ F4uy4

+ F5uy5
+ F6uy6

+ F7uy7
+ F8uy8

+ F9uy9

uz = F1uz1
+ F2uz2

+ F3uz3
+ F4uz4

+ F5uz5
+ F6uz6

+ F7uz7
+ F8uz8

+ F9uz9

(A.2)

Illustrative Example

The working of CW model is explained with the help of box-like geometry as follows.

Consider the box-like configuration as shown in Fig. A.4a. The given geometry is

3D with considerable complexity rendering it to be not feasible for 1D beam models

employing classical beam theories. However, this configuration will be easily handled

using CW 1D beam model. For the sake of clarity, Fig. A.4b shows the cross section

mesh and 1D beam mesh separately. The 1D beam mesh has all elements aligned with

y-axis. There are two section types assigned to the beam nodes. Each of these sections

comprises of 2D Lagrange elements. These sections are shown separately in Fig. A.4.

Starting with the first beam node (towards left in Fig A.4b), the beam element has

the cross section in the shape of the wall (Section-1). Each node of this element has

the same cross section mesh associated with it. The length of this element is the

thickness of the wall. Proceeding further toward right, the second beam element has

the new cross section that is assigned to all of its beam nodes. In the similar fashion,

the meshing continues and every changed section manifests in the form of a new cross

section mesh.
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(a) Geometric configuration

Section-1

Section-1

x

(b) Meshing configuration

Figure A.3 Box-like shape for illustrative example of CW Model

(a) Section-1 (b) Section-2

Figure A.4 2D Lagrange element mesh with two section types
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