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Diffusion of innovation in large scale graphs
Fabio Fagnani Member, IEEE, and Lorenzo Zino

Abstract—Will a new smartphone application diffuse deeply in the population or will it sink into oblivion soon? To predict this, we argue
that common models of spread of innovations based on cascade dynamics or epidemics may not be fully adequate. In this paper, we
model the spread of a new technological item in a population through a novel network dynamics where diffusion is based on the
word-of-mouth and the persuasion strength increases the more the product is diffused. In this paper we carry on an analysis on large
scale graphs to show off how the parameters of the model, the topology of the graph and, possibly, the initial diffusion of the item,
determine whether the spread of the item is successful or not. The paper is completed by a number of numerical simulations
corroborating the analytical results.

Index Terms—Network dynamics, innovation diffusion, epidemics, phase transitions

F

1 INTRODUCTION

IN this paper we consider a novel network dynamics that
models the diffusion of a new technological item (e.g.

a smartphone application) in a population. The scenario
is that of a set of agents (individuals) that are connected
through a network and modify their state (1 or 0 indicating
whether they have the new item or not) at random times,
through an interaction with their neighbors. Specifically,
the state update is due to two different mechanisms: a
gossip persuasion that pushes adoption of the new item
(state changes from 0 to 1) by contacting a neighbor already
possessing it, and a spontaneous regression where an agent
autonomously drops the new item (state changes from 1 to
0) .

The original feature of this model, with respect to clas-
sical epidemic models ([1], [2]), lays in the fact that the
strength of the gossip persuasion depends on the global
diffusion already reached by the new technological item in
the population. Instead of a diffusion channel, the gossip
mechanism plays here the role of a learning channel. It is
the media through which agents gets aware of the existence
of this new item, while its attraction for a potential new
adopter in the end depends on the size of the diffusion of
such an item not just among the neighbors, but in the whole
population. This is a phenomenon known in economics as a
“positive externalities” effect [3].

In many papers ([4], [5], [6], [7]), the spread of innova-
tions and of new behaviors is modeled and studied under a
network game scenario. In this setting each agent tends to
maximize its own payoff by coordinating its choice with that
of its neighbors. This hypothesis seems to be realistic when
dealing with what we might call “big choices”, such as the
terms of economic contracts [6] or the choice of an operating
system [7]. In such cases, a wrong decision can be very costly
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for the one who took it, therefore it is reasonable that an in-
dividual contacts many of his or her friends/colleagues (i.e.
the neighbors) before taking the “big choice”. In this work
we instead focus on those we might call “light choices”, (e.g.
downloading an application for smartphone or joining an
online community/social network). In such cases, negative
consequences of the choice are usually mild, hence we can
assume that individuals take their own choices after a pair-
wise interaction with one of their neighbors (a recent survey
[8] supports our hypothesis highlighting the centrality of the
world-of-mouth in the spread of assets), instead of involving
their whole neighborhood in the choice.

The presence of the spontaneous dropping mechanism
has various motivations. It may model a tendency to aban-
don technologies that have a maintenance cost or, also, a
limitation of the time during which an agent can influence
their neighbors. Mathematically, the case when only the
persuasion mechanism is present is not particularly inter-
esting as in this case the item, if originally present, will
eventually diffuse to the whole population, independently
on the strength of the mechanism and on the topology of the
network. Our analysis, however, covers also, as a limit case,
the situation when the dropping mechanism is not present.

Our model was first introduced in [9] and there studied
on large scale graphs under a mean field assumption (i.e.
assuming that each individual is connected to all the others).
The mean field assumption is clearly quite restrictive for
application to real networks. In this paper, we extend the
analysis to more general interaction networks encompassing
classical random graphs (e.g. configuration model) typically
used to model social networks. This paves the way for
the application of our model to network topologies recon-
structed from real-world data. We will address this issue
further on in this paper.

Formally, our model is a jump Markov process [10]
on the space of state configurations of all agents. As for
the Susceptible-Infected-Susceptible (SIS) model [11], the
regression mechanism induces an absorbing state that is
the configuration where every agent is in the 0 state. Stan-
dard probabilistic arguments (such as Borel-Cantelli lemma)
allow to conclude that with probability 1, the system is
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absorbed in that configuration in a finite time. The key point
is thus to analyze the behavior of the dynamics (maximum
level of diffusion and its persistence in time) before the
absorbing event.

In the SIS model, we witness the presence of two differ-
ent regimes determined by a threshold value that is function
of connectivity features of the graph. If the strength of the
contagion mechanism with respect to the rate of regression
is below this threshold, the epidemic quickly decades to the
absorbing state. Whereas if it is above this threshold, the
epidemic expands and remains persistent in the population
for a time exponentially large in the size of the population
(see [12]). In our model, besides these two regimes, we
witness in many cases the presence of a third intermediate
regime where the behavior strictly depends on the initial
condition, namely the original fraction of agents in state 1
in the population. In this third regime, if the initial fraction
of 1’s in the population is below a certain level, the item
will not be able to spread. Whereas if it is sufficiently large,
the persuasion mechanism will be able to push towards
a wide and persistent diffusion. This is the main novelty
of our model with respect to standard SIS, where the ini-
tial condition instead (as long as the fraction of infected
agents is initially non zero) never influences qualitatively
the behavior of the system. In [9] we proved the existence
of this intermediate regime for some mean field network
topologies. A different mean field model with the same
driving mechanism was considered in [13] (Chapter 17) and
an analogous dependence on the initial fraction of adopters
was found.

The main result of this paper is Theorem 17. It general-
izes the main result of [9] to general graphs, relating the
presence of the intermediate regime, where the behavior
strongly depends on the initial condition, to the topology of
the interaction network (measured through the degrees, the
spectral radius of the adjacency matrix and the bottleneck
ratio). Even if results in Theorem 17 are not exhaustive
as in the mean field case, nevertheless, they are sufficient
to prove the existence of the intermediate regime for a
number of relevant families of graphs including random
Erdős-Rényi graphs and random graphs with prescribed
(bounded) degree distribution.

In the remaining part of this Section, we present a
formal description of the proposed model along with all
notation and concepts used throughout the paper. Section
2 is devoted to a brief recall of the mean field results,
whose analysis is in [9], and Section 3 to the analysis on
general graphs. Finally, Section 4 discusses the application to
a number of specific families of graphs. In this last Section,
we also present a number of numerical results corroborating
the analytical results. These simulations actually show the
presence of phase transitions among the different regimes
also in less connected families of graphs, for which our
theoretical results are not sufficient to give conclusive results
in this sense.

1.1 Description of the model

Let G = (V,E) be a directed graph with a finite set of nodes
V , called agents, and a set of (directed) edges E ⊆ V ×
V . Put N = |V |. The presence of an edge (v, w) has to be

interpreted in the sense that agent v is influenced by agent
w. Let Nv be the set of the (out-)neighbors of v, namely

Nv = {w ∈ V : (v, w) ∈ E} ,

that is the set of agents who influence v. The (out-)degree
of v is denoted by dv = |Nv|. Agents are described by their
state, precisely

Xv(t) =

{
1 if v has the item at time t
0 if v has not the item at time t.

States are assembled in a vector X(t) ∈ {0, 1}V , called
configuration of the system at time t. δv denotes the con-
figuration where agent v has state 1, whereas all the other
agents have state 0. 1 denotes the pure configuration where
all nodes have state 1 and, consequently, 01 denotes the pure
configuration where all nodes have state 0. Given a configu-
ration y ∈ {0, 1}V , whose v-th component is denoted by yv ,
we define z(y) := N−1

1
∗y = N−1

∑
v yv ∈ [0, 1], which is

the fraction of agents in state 1 in configuration y.
Dynamics is defined as follows: nodes and edges are

equipped with independent Poisson clocks. For the sake of
simplicity, agents activate at rate 1, whereas edges activate
at rate βd̄−1, where d̄ is the average degree of the graph
(this rescaling with respect to d̄ is useful in presenting our
large scale results). When agent v or edge (v, w) activates,
agent v has the possibility to revise its state according to the
following rules.

• Persuasion by gossip: If

– edge (v, w) activates at time t,
– Xv(t) = 0 and Xw(t) = 1,
– z(X(t)) = z,

then, agent v updates its state to 1 with probability
φ(z) where φ : [0, 1] → [0, 1] is a function, called
persuasion strength, whose properties are described
below.

• Spontaneous regression: If

– agent v activates at time t,
– Xv(t) = 1,

then, agent v updates its state to 0.

Formally, X(t) is a jump Markov process on {0, 1}V whose
non-zero transition rates from X(t) = y are:{

λy,y+δv = βd̄−1(1− yv)
∑

w∈Nv
ywφ(z(y))

λy,y−δv = yv.
(1)

Notice that when φ is constant, this model reduces to the
standard SIS model [11]. The main feature and novelty of
this model is the fact that, when the function φ is instead
not constant, the gossip dynamics is affected by the global
distribution of the state in the population of agents. In this
model agents influence each other through two “informa-
tion channels”: the one determined by the graph edges
and the another one due to the pressure of the global
population state. These two channels are coupled through
the persuasion mechanism described above.

In this paper we assume that φ is a C2 function possess-
ing the following properties:

(A1) φ is non-decreasing: φ′(z) ≥ 0, ∀ z;
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(A2) φ is concave: φ′′(z) ≤ 0, ∀ z;
(A3) φ′(0) > φ(0).

From this moment on, we refer to a φ satisfying properties
(A1) to (A3) as to an admissible persuasion strength.

Remark 1. We briefly motivate these properties. Property (A1)
is a natural consequence of the “positive externalities effect” [3]
cited before: the more the new item is diffused, the higher is
its persuasion strength. Regarding property (A2), a sub-linear
growth of the persuasion strength with respect to the diffusion
of the new item can be inferred from real world observations:
trivially, an increase of a single new agent adopting the item has a
bigger impact when adopters are still few than when they are more
numerous. Finally, (A3) is assumed for the sake of simplicity: the
case φ′(0) < φ(0) (studied in [9] for complete graphs) leads to a
theory with essentially no difference with respect to the SIS model.

As for the SIS dynamics [11], the pure configuration
01 is the only absorbing state of X(t) and from every
configuration there is a non zero probability of reaching it
in finite time. Consequently, X(t) enters the absorbing state
01 in a finite time with probability 1. Our aim is to study
the behavior of the system in the transient phase, i.e. before
the occurrence of the absorbing event. The analysis will be
carried on by considering the evolution of the fraction of 1’s
in the population: Z(t) := z(X(t)) = N−1

∑
vXv(t), taking

values in SN = {0, 1/N, . . . , 1}.
In this paper, the admissible persuasion strength φ is

assumed to be fixed once and for all. Our goal is to analyze
the transient behavior of the process Z(t) in dependence of
the parameter β as well of the graph topology. Typically we
will consider sequences of graphs with increasing size, i.e
N → +∞.

Our main results, Theorem 17 and Corollary 19, show
that, for expansive families of graphs (e.g. complete graphs,
Erdős-Rényi graphs, configuration model with bounded
degrees), a double bifurcation phenomenon occurs, with
probability converging to 1 as N →∞. The first bifurcation
takes place with respect to the parameter β. It is governed
by four threshold values β1 < β2 < β3 < β4 that depend
on topological properties of the graphs family. If β < β1,
the process Z(t) enters forever into an ε-neighborhood of 0
in a time independent on the size of the graph. If β > β4,
Z(t) reaches a level zs(β) in a time that does not depend
on N and remains above that level for an exponentially (in
N ) long time. In the regime β2 < β < β3, we witness a
further bifurcation with respect to the initial condition Z(0),
governed by thresholds z′u(β) and z′′u(β). In this interme-
diate regime, if Z(0) < z′u(β) we have the analogous fast
extinction phenomenon that takes place for β < β1, whereas
if Z(0) > z′′u(β), we have the analogous slow extinction
phenomenon as for β > β4. This results are not exhaustive,
since we are not able to tackle the regimes β1 < β < β2 and
β3 < β < β4. However, the extensive simulations carried on
in Section 4, suggest that, in the expansive graph families of
interest, no other behavior shows up and that transitions
among the various regimes are indeed sharp.

Coherently with to our interpretation of the model, from
now on the two behaviors described above, namely the frac-
tion of 1’s that quickly becomes smaller than ε, or instead
that remains large for a long time are respectively called,
a failure and a success. As already pointed out, the main

novelty of our model is the presence of the intermediate
regime where failure and success depend on the initial
condition.

In order to apply this model to real world cases, a
crucial point is the estimation of the various thresholds, in
particular z′′u(β) for its role in possible marketing strategies.
Indeed, this value represents the fraction of agents needed
to possess the new technological item at the beginning
(possibly as consequence of initial launch offers and free
trials) to guarantee that a large and persistent diffusion
will take place. Concretely, to obtain an estimation of these
thresholds, two steps must be taken. Starting from the real
data, first the structure of the interaction network must be
inferred. Then the parameter β and the function φ must
be tuned. Many efforts have been made to tackle the first
step, such as in [14], [15], [16], [17], [18]. Instead, the tuning
step remains an open problem. At the end of this paper,
in a paragraph devoted to this issue, we will give some
suggestions of possible strategies to tackle it.

The main difficulty in the analysis of Z(t) relies in the
fact that, when G is not a complete graph, the process is
not Markovian. This is because the distribution of 1’s in
a neighborhood of a node is in general different from the
global distribution of 1’s in the population.

To study Z(t) on a general graph, we introduce the idea
of active edges. An edge (v, w) is called active at time t if
Xv(t) = 0 and Xw(t) = 1. If we now denote by ξ(t) =
ξ(X(t)) the fraction of active edges at time t (namely ξ(t) is
the ratio between the number of active edges at time t and
|E|), the process Z(t) is Markovian when conditioned to
ξ(t). Notably, when conditioned to ξ(t) = ξ, Z(t) is a birth
and death jump Markov process whose transition rates from
the state z to z + 1/N and z − 1/N are, respectively{

λ+(z, ξ) = |E|d̄−1βξφ(z) = Nβξφ(z)
λ−(z, ξ) = Nz.

(2)

Of course, the difficulty arises from the fact that the process
ξ(t) is not explicitly known. The next section is devoted to
recall the main results in the mean field case, analyzed in
[9]. This is essentially the only case in which ξ(t) can be
expressed as a deterministic function of Z(t), so that Z(t)
is Markovian itself. The general case will be taken up in
Section 3.

Throughout the paper, we use the notation Pz[·] to
denote the probability conditioned to the initial condition
Z(0) = z. In all our results concerning the behavior of the
process Z(t) positive constants show up to denote times
and rate of probability decay and they typically depend on
the model (e.g. the parameter β and the graph topology)
through a single scalar variable, say x. We use the following
jargon: we say that A = A(x) is bounded (A is bounded
away from 0) when x is bounded away from a set of point
S if for every δ > 0, there exists δ̃ > 0 such that A < δ̃
(A > δ̃) if |x− s| > δ for each s ∈ S.

2 THE MEAN FIELD CASE

In this section we assume G to be a complete graph with
each node equipped with a self-loop (this last assumption
only simplifies the notation and it has no effect in the large
scale analysis). Under this assumption, the fraction of active



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 0, NO. 0, MONTH YYYY 4

edges is a deterministic function of Z(t), in particular ξ(t) =
Z(t)(1−Z(t)). This immediately implies that Z(t) is a birth
and death jump Markov process whose transition rates can
be determined from (2):{

λ+(z) = Nβz(1− z)φ(z)
λ−(z) = Nz.

(3)

For such processes a quite complete analysis is available and
it has been developed in [9]. Of course, in this case the local
gossip interaction and the global influence are somehow
mixed together, but some key interesting phenomena can
already be observed here. The main result of [9], which is the
object of our extension in Section 3, is the following theorem.

Theorem 2. Consider the birth and death jump Markov process
Z(t) whose transition rates are given in (3) where β > 0 and φ is
an admissible persuasion strength (i.e. properties (A1), (A2), and
(A3) are satisfied). Put

β∗ =

[
max
z∈[0,1]

(1− z)φ(z)

]−1

, A = 14(1 + β)2 (4)

Then, for every ε > 0 we can find Cε > 0 and Tε > 0 for which
the following holds true for every N > 0.

1) if β < β∗, then ∀z,

Pz

(
sup
t≥Tε

Z(t) > ε

)
≤ 5Ne−CεN ;

2) if β∗ < β < φ(0)−1, then
∀z < zu(β)− ε,

Pz

(
sup
t≥Tε

Z(t) > ε

)
≤ 5Ne−CεN ,

∀z > zu(β) + ε,

Pz
(

inf
t∈[Tε,Tε+eCεN ]

Z(t) < zs(β)− ε
)
≤ AN2e−CεN ;

3) if β > φ(0)−1, then ∀z > ε

Pz
(

inf
t∈[Tε,Tε+eCεN ]

Z(t) < zs(β)− ε
)
≤ AN2e−CεN .

With the understanding that if φ(0) = 0 case 3) does not show
up. Points zs(β) and zu(β), when they exist, can be characterized
as follows

zu(β) = min{z > 0 | β(1− z)φ(z)− 1 = 0},
zs(β) = min{z > zu(β) | β(1− z)φ(z)− 1 = 0}. (5)

Remark 3. The constants Cε and Tε appearing in the statement
of Theorem 2 depend on the choice of the parameter β. They can be
chosen in such a way that, for every ε > 0, Cε is bounded away
from 0 and Tε is bounded when β is bounded away from β∗ and
φ(0)−1.

Remark 4. Choosing φ(z) = z, which is the case considered in
the simulations of Section 4, we have that β∗ = 4 and, for β ≥ 4,
an explicit computation shows that:

zu(β) =
1

2
− 1

2

√
1− 4

β
, zs(β) =

1

2
+

1

2

√
1− 4

β
. (6)

In [9], Theorem 2 has actually a slightly different formu-
lation. There, the expression bounding the probabilities are

all pure exponentials with no polynomial factors in N . This
simplification has been obtained at the price of a validity
that is only for sufficiently large N . Here, we prefer this
more precise formulation for the use we will make of it in
Section 3. The proof of this theorem, whose details are in [9],
is based on the application of Kurtz’s Theorem [19], along
with a couple of technical lemmas. Below we recall a simple
version of Kurtz’s theorem and one of these lemmas as they
will be directly used later on in the proofs of Section 3.

Kurtz’s theorem allows to approximate a birth and death
jump Markov process with the solution of an associated
ODE.

Theorem 5. (Kurtz) Let Z(t) be a birth and death pro-
cess on the state-space SN with transitions rates, respectively,
λ+(z) = Nf+(z) and λ−(z) = Nf−(z) where f+ and f−

are Lipschitz continuous functions of z. Suppose that Z(0) = z0

deterministically. Consider the Cauchy problem:{
z′(t) = f+(z)− f−(z)

z(0) = z0.
(7)

Then, for every T > 0 ∃ C > 0, such that the following
exponential decay holds:

P

(
sup

0≤t≤T
|Z(t)− z(t)| > ε

)
≤ 4 exp

(
−CNε2

)
. (8)

Moreover, C only depends on T and on the sup norm ||f+ −
f−||∞ and is bounded away from 0 when T and ||f+ − f−||∞
are bounded.

Finally, we have the following result.

Lemma 6. Let Z(t) be a birth and death process on the state-
space SN with transitions rates, respectively, λ+(z) and λ−(z)
satisfying the following properties:

• λ+(0) = λ−(0) = 0;
• there exist δ > 0 such that

λ−(z) ≥ (1 + δ)λ+(z), ∀z > 0. (9)

Then, called C = ln(1 + δ), for any ε > 0 and z < ε, it holds

Pz (∃t ≥ 0 |Z(t) > 2ε) ≤ εNe−CεN . (10)

Proof. First, for any k ∈ {0, . . . , d2δNe}, put ek =
Pk/N (∃t ≥ 0 |Z(t) ≥ d2εNe/N). A straightforward argu-
ment based on conditioning on the first transition shows
that the values eks satisfy the Laplace equation:

ek =
λ+(k/N)ek+1 + λ−(k/N)ek−1

λ+(k/N) + λ−(k/N)
. (11)

This, along with the boundary condition e0 = 0, gives

(ek+1 − ek) =
k∏
j=1

λ−(j/N)

λ+(j/N)
e1. (12)

Since edεNe ≤ 1, we obtain

e1 ≤

d2εNe−1∑
k=0

k∏
j=1

λ−( jN )

λ+( jN )

−1

≤

d2εNe−1∏
j=1

λ−( jN )

λ+( jN )

−1

(13)
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Combining (12) and (13) we finally obtain

ebεNc =

bεNc−1∑
k=0

k∏
j=1

λ−(j/N)

λ+(j/N)
e1 ≤ bεNc

bεNc−1∏
j=1

λ−(j/N)
λ+(j/N)

d2εNe−1∏
j=1

λ−( jN )

λ+( jN )

≤ bεNc
b2εNc−1∏
j=bεNc

λ+(j/N)

λ−(j/N)
≤ bεNc(1 + δ)−εN ,

which yields the thesis.

3 ANALYSIS ON GENERAL GRAPHS

In this section, we partially extend Theorem 2, proving the
existence of the three regimes (in particular of the interme-
diate one), for a large family of expander graphs.

For the epidemic SIS model, an estimation of the mean
absorbing time has been carried on general graphs [11], [12],
[20]. Notably, fast extinction results have been obtained [12]
by upper bounding the original process with another one
whose transition rates depend linearly on the state variable
x and for which, consequently, the moment analysis turns
out to be particularly simple. The key graph parameter in
this estimation is the spectral radius of the corresponding
adjacency matrix. On the other hand, slow extinction has
been analyzed by essentially estimating the fraction of active
edges in terms of bottleneck ratios of the graph and then
lower bounding the process with a simple birth and death
process.

However, the techniques developed in [12] can not be
straightforwardly applied to our model. Indeed, the pres-
ence of the term φ(z) poses a number of technical issues
that are absent in the SIS model. This will be particularly
evident in the analysis of the intermediate regime where
success or failure depends on the initial condition.

In the next three subsections we determine a series of
lower and upper bounds of process Z(t) using standard
coupling techniques, inspired by the results in [11], [12],
[20]. Specifically, in 3.1 we propose a lower bound based
on bottleneck estimation that allows to prove the existence
of the success regimes - thereby extending the second part of
item 2) and item 3) of Theorem 2. In 3.2 instead, we propose
a quite simple upper bound sufficient to prove the existence
of the failure regime - extending item 1) of Theorem 2.
Finally, in 3.3 we develop a stronger upper bound using
a linearization technique and a second moment analysis in
order to prove the existence of the failure regime depending
on the initial condition - extending the first part of item 2)
of Theorem 2. This last case is the most original technical
part of this paper. Though inspired by [11], [12], [20], our
technique is based on a detailed second order analysis of
the bounding process, which is not needed in the analysis
of the SIS model. All these partial results are assembled in
3.4 where the main result is finally stated and proved.

Fixed a strongly connected graph G = (V,E), we denote
by A ∈ {0, 1}V its adjacency matrix (Auv = 1 ⇐⇒ (u, v) ∈
E) and by ρA its spectral radius. The Cheeger constant [21]
of G is defined as

γ = γG = inf
U⊂V

|{(u, v)|u ∈ U, v ∈ V \ U}|
min {|U |, |V \ U |}

. (14)

We recall that X(t) is a jump Markov process on the state-
space {0, 1}V having transition rates given by (1). Z(t) =
z(X(t)) denotes the total fraction of 1’s in the population
and ξ(t) = ξ(X(t)) is the fraction of active edges.

3.1 A bottleneck-based lower bound
The following result, inspired by an argument used in [22],
yields a lower bound of the process Z(t) in terms of a birth
and death jump Markov process.

Proposition 7. There exists a coupling of the process X(t) with
a birth and death jump Markov process Z̃(t) over SN having
transition rates{

λ̃+(z) = Nβd̄−1γz(1− z)φ(z)

λ̃−(z) = Nz,
(15)

in such a way that Z(t) ≥ Z̃(t) for all t.

Proof. From (14), choosing as U the set of all agents with
state equal to 0, we obtain

γ ≤ ξ|E|
min {z|V |, (1− z)|V |}

≤ ξ|E|
z(1− z)|V |

=

=
ξd̄|V |

z(1− z)|V |
=

ξd̄

z(1− z)
.

This implies that the fraction of active edges satisfies the
inequality ξ ≥ γd̄−1z(1− z). This yields, using (2),

λ+(z, ξ) ≥ λ̃+(z) and λ−(z, ξ) = λ̃−(z).

The proof is now concluded by applying a simple coupling
argument, similarly to the one used to prove Theorem 8.8 in
[11].

The following Corollary proves the existence of the two
success regimes, extending the second part of item 2) and
item 3) of Theorem 2 to general graphs.

Corollary 8. Put zu = zu(βd̄−1γ) and zs = zs(βd̄
−1γ) as

defined in (5). For every ε > 0 we can find Cε > 0 and Tε > 0
for which the following hold true

1) if d̄γ−1β∗ < β, then, ∀z > zu + ε,

Pz
(

inf
t∈[Tε,Tε+eCεN ]

Z(t) < zs − ε
)
≤ AN2e−CεN ;

2) if, moreover, d̄γ−1φ(0)−1 < β, then, ∀z > ε,

Pz
(

inf
t∈[Tε,Tε+eCεN ]

Z(t) < zs − ε
)
≤ AN2e−CεN ,

where A = 14(1 + β)2. The constants Cε and Tε only depend
on the quantity d̄−1γβ and are, respectively, bounded away from
0 and bounded, when this quantity is bounded away from β∗ and
φ(0)−1.

Proof. Using Proposition 7, process Z(t) can be lower
bounded by a birth and death jump Markov process
Z̃(t) having transition rates (15). Hence Pz[Z(t) < z̄] ≤
Pz[Z̃(t) < z̄], ∀z, z̄. A comparison with (3) shows that the
transition rates of Z̃(t) coincide with the ones of the mean
field model (3) with β replaced by βd̄−1γ. Results then
follow from items 2) and 3) of Theorem 2.
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3.2 A degree-based upper bound

In this subsection we provide a simple upper bound that
depends only on the degrees of the nodes in the graph.
Let ∆ be the maximum in-degree in G, then the following
proposition holds.

Proposition 9. There exists a coupling of the process X(t) with
a birth and death jump Markov process Z̃(t) over SN having
transition rates {

λ̃+(z) = N∆d̄−1βzφ(z)

λ̃−(z) = Nz,
(16)

in such a way that Z(t) ≤ Z̃(t) for all t.

Proof. This simply follows from the estimation

ξ =
|{(u, v)|Xu = 0, Xv = 1}|

|E|
≤ ∆zn

d̄n
= ∆d̄−1z.

The following Corollary proves the existence of the
failure regime, extending item 1) of Theorem 2 to general
graphs.

Corollary 10. If β < d̄∆−1φ(1)−1, then, for every ε > 0 we
can find Cε > 0 and Tε > 0 for which

Pz

(
sup
t≥Tε

Z(t) > ε

)
≤ 5Ne−CεN , ∀ z.

For every ε > 0, the constants Cε and Tε only depend on the
quantity βd̄−1∆ and are, respectively, bounded away from 0 and
bounded, when this quantity is bounded away from φ(1)−1.

Proof. From Proposition 9, process Z(t) can be upper
bounded by a birth and death jump Markov process
Z̃(t) having transition rates (16). Hence Pz[Z(t) > z̄] ≤
Pz[Z̃(t) > z̄], ∀z, z̄. We now apply Theorem 5 to the process
Z̃(t). The assumption β < d̄∆−1φ(1)−1 implies that 0 is
asymptotically stable in the ODE (7). More precisely, the
solution z(t) of (7) with z(0) = 1 converges to 0 when
t→ +∞ and this clearly implies that, for every fixed ε > 0,
there exists Tε > 0 such that z(t) < ε/2 for every t ≥ Tε
and for every initial condition z(0) = z. Moreover, Tε only
depends monotonically on the quantity d̄−1β and blows
up when this quantity approaches φ(1)−1. Using (5) with
T = Tε we thus obtain that there exists C ′ε > 0 such that

Pz
(
Z̃(Tε) > ε/2

)
≤ 4e−C

′
εN ∀z. (17)

It follows from Theorem 5 and from the considerations
above on Tε that C ′ε only depends on d̄−1β and it is
bounded away from 0, when this quantity is bounded
away from φ(1)−1. If we apply Lemma 6 to Z̃(t) with
1 + δ = d̄∆−1β−1φ(1)−1 > 1, we obtain that, for every
z < ε/2,

Pz
(
∃t ≥ 0 | Z̃(t) > ε

)
≤ ε

2
Ne−[ln(1+δ)]ε/2N . (18)

From (17) and (18) we finally obtain that, ∀ z

Pz

(
sup
t≥Tε

Z(t) > ε

)
≤ Pz

(
sup
t≥Tε

Z̃(t) > ε

)
≤ 5Ne−CεN ,

where Cε = min{C ′ε, [ln(d̄∆−1β−1φ(1)−1)]ε/2}. In consid-
eration of the properties already discussed for the quantity
C ′ε, the result is now proven.

3.3 An upper bound based on linearization
What remains to be shown is the existence, for general
graphs, of the failure regime as described in the first part
of 2) of Theorem 2. This is fundamental in order to prove
the existence of the bifurcation with respect to the initial
condition. In this subsection we tackle this issue by upper
bounding the process Z(t) with another jump Markov pro-
cess whose transition rates depend linearly on the configu-
ration vector. In [12] a similar idea was used to analyze the
SIS model. However, while in [12] it was sufficient to carry
on a first moment analysis of the linearized process to prove
the existence of the fast extinction regime, here a much
more complex analysis is needed. In fact, differently from
the SIS model, in our model the fraction of 1s influences
the persuasion strength and, ultimately, the behavior of the
system. In the study of the bifurcation in dependence on the
initial condition, to make our bounding technique effective,
we must make sure that the fraction of 1s always remains
below a certain threshold. For this, a first moment analysis
of the linearized process is no longer sufficient. It must
be coupled with a concentration result based on a second
moment analysis.

Consider the jump Markov process Y (t) over Θ = NV :{
λ̄y,y+δv = µ

∑
w∈Nv

yw

λ̄y,y−δv = yv,
(19)

where µ = βd̄−1φ(1).
Notice that the original process Z(t), taking values in

{0, 1}V , can be trivially extended to Θ by simply putting
λy,y+δv = 0 if yv > 0 and using the same expression for
λy,y−δv = yv . In the case when β < d̄ρ−1

A φ(1)−1, it follows
that λ̄y,y+δv ≥ λy,y+δv for all y and for all v. We now
consider any coupling between X(t) and Y (t) such that
X(0) = Y (0) and X(t) ≤ Y (t) (entry-wise) for all t. Clearly,
it holds Z(t) ≤ ZY (t) := z(Y (t)) for all t.

In the remaining part of this section, we study the
behavior of ZY (t). In this way, we will later derive the fast
extinction result for Z(t) and we will finally complete the
analysis of the bifurcation phenomena.

The analysis of ZY (t) proceeds as follows. In Lemma 11,
we provide an upper bound for its first moment. Then, an
analysis on its second moment and a bound on its variance
is provided in Lemmas 13 and 14. Finally, we combine these
results in Lemma 15 that analyzes the asymptotic behavior
of ZY (t).

Lemma 11.

E[ZY (t)] ≤ exp((µρA − 1)t)Z(0)1/2. (20)

Proof. Let us denote the first moment of the process Y (t) by
M (1)(t) = E(Y (t)). The distribution p(t) ∈ [0, 1]Θ of Y (t)
satisfies the forward Kolmogorov equation ṗ = −pL(λ̄)
where L(λ̄) is the Laplacian of the process (i.e. L(λ̄)xy =∑
y′ λ̄xy′ − λ̄xy). Therefore, M (1)(t) satisfies the ODE

Ṁ (1) = (µA− I)M (1). (21)
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We can thus estimate

||M (1)(t)|| ≤ exp((µρA − 1)t)||Y (0)||, (22)

where ρA is the spectral radius of A. This yields

E[ZY (t)] ≤ n−1n1/2 exp((µρA − 1)t)||X(0)|| =
= exp((µρA − 1)t)Z(0)1/2.

(23)

Proof is now completed.

Remark 12. Since µ = βd̄−1φ(1), it holds

µρA − 1 = βd̄−1ρAφ(1)− 1.

Hence, β < d̄ρ−1
A φ(1)−1 implies µρA − 1 < 0, yielding an

exponential decay of E[Z(t)] to 0 . However, as already pointed
out above, this is not yet sufficient to generalize item 1) of Theorem
2.

We now undertake a second order analysis of the process
Y (t). To this aim, putM (2) = E(Y (t)Y (t)∗) and Ω = M (2)−
M (1)M (1)∗.

Lemma 13. Ω satisfies the ODE

Ω̇ = µ(AΩ+ΩA)−2Ω+µdiag(AM (1))+diag(M (1)), (24)

with Ω(0) = 0.

Proof. Using the Kolmogorov equation it follows that

Ṁ (2) =
∑
x∈Θ

ṗxxx
∗

=
∑
x∈Θ

µ
∑
v∈V

px−δv (A(x− δv))vxx∗+

+
∑
x∈Θ

∑
v∈V

px+δv (xv + 1)xx∗+

−
∑
x∈Θ

µ
∑
v∈V

px(Ax)vxx
∗+

−
∑
x∈Θ

∑
v∈V

pxxvxx
∗.

(25)

We rearrange the first two terms of (25) by adding and
subtracting δv to both x and x∗, expanding the products
and, finally, changing the indexes. We thus obtain∑

x∈Θ
µ
∑
v∈V

px−δv (A(x− δv))vxx∗ =

= µ
∑
v∈V

∑
x∈Θ

px(Ax)vxx
∗+

+µ(AM (2) +M (2)A) + µdiag(AM (1)),

(26)

and ∑
x∈Θ

∑
v∈V

px+δv (xv + 1)xx∗ =

=
∑
v∈V

∑
x∈Θ

pxxvxx
∗ − 2M (2) + diag(M (1)).

(27)

Substituting (26) and (27) into (25), we finally obtain

Ṁ (2) = µ(AM (2) +M (2)A)− 2M (2)+
+µdiag(AM (1)) + diag(M (1)).

(28)

Thesis now follows by differentiating the expression
M (1)M (1)∗ with the use of (21) and then subtracting it from
(28).

We can now bound Var(ZY (t)) = N−2
1
∗Ω1 through

the following Lemma.

Lemma 14.

Var(ZY (t)) ≤ N−1/2 1 + µρA
1− µρA

e(µρA−1)tZY (0)1/2. (29)

Proof. Let S(V ) be the set of symmetric matrices over V
and let L : S(V ) → S(V ) be the linear operator given by
L(M) = µ(AM + MA) − 2M . Then, using (24), we can
represent the centered second moment as

Ω(t) =

t∫
0

exp((t− s)L)U(s) ds,

where

U(t) = µdiag(AM (1)(t)) + diag(M (1)(t)). (30)

Hence,

Var(ZY (t)) = N−2
1
∗

t∫
0

1
∗[exp((t− s)L)U(s)] ds1. (31)

Using the representation

exp(tL)M = exp(t(µA− I))M exp(t(µA− I)),

we can estimate the variance as follows:

Var(ZY (t)) ≤ N−2N1/2
t∫

0

e(2(t−s)(µρA−1)||U(s)||dsN1/2,

where ||U(s)|| is the induced 2-norm of U(s). From (30) we
can estimate this norm as

||U(s)|| ≤ µmaxv |δ∗vAM (1)|+ maxv |δ∗vM (1)|
≤ (µρA + 1) exp((µρA − 1)s)||Y (0)||.

Combining this estimation with the previous inequality, we
obtain the thesis.

We are now ready to analyze the convergence behavior
of the process ZY (t) in the case when µρA < 1.

Lemma 15. Assume that µρA < 1. For every ε > 0 there exists
a time Tε > 0 and a constant Kε > 0 such that

1) if ZY (0) ≤ a2, it holds

P(∃t ≥ 0 |ZY (t) > a+ ε) ≤ KεN
−1/2; (32)

2) for every ZY (0), it holds

P(∃t ≥ Tε |ZY (t) > ε) ≤ KεN
−1/2. (33)

Moreover, for every ε > 0, the constants Kε and Tε only depend
on the quantity µρA and are bounded when this quantity is
bounded away from 1.

Proof. Consider the underlying discrete time Markov chain
Ỹ (k) for k = {0, 1, . . . } and the corresponding ZỸ (k) =
z(Ỹ (k)). The Poisson process Λ(t) governing the jumps of
Y (t) has intensity ν = (β + 1)N . Hence it holds

Var(ZY (t)) =
+∞∑
k=0

Var(ZỸ (k))P(Λ(t) = k)

≥ Var(ZỸ (bνtc))P(Λ(t) = bνtc).
(34)

The last multiplicative term of (34) can be lower bounded
using Stirling’s approximation:

P(Λ(t) = bνtc) =
(νt)bνtc

bνtc!
e−νt ≥

≥ (νt)bνtc

bνtcbνtc
ebνtc√
2πbνtc

e−νt ≥ 1

9bνtc
.

(35)
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From (34) and (35) we obtain that

Var(ZỸ (k)) ≤ 9kVar(ZY (k/ν)), ∀ k = {0, 1, . . . }. (36)

Combining the assumption ZY (0) ≤ a2 with the estimation
in Lemma 11, we bound

P(∃t ≥ 0 |ZY (t) > a+ ε) ≤

≤ P(∃k ≥ 0 |ZỸ (kbεN/2c) > a+ ε/2)

≤
∑
k≥0

P(|ZY (kbεN/2c)− E(ZY (kbεN/2c))| ≥ ε/2)

≤ 4

ε2

∑
k≥0

Var(ZỸ (kbεN/2c)).

Using now estimation (36) and Lemma 14, we obtain item
1).

Item 2) can be proven in a similar fashion. First, we
notice that Lemma 11 implies that there exists Tε > 0 such
that E(ZY (t)) ≤ ε/2 for all t ≥ Tε. We then conclude using
again the variance estimation in (14).

We are now ready to go back to our original process Z(t).
The following Corollary proves the existence of two failure
regimes, one that does not depend on the initial condition
and the second one that does depend on it, extending items
1) and the first part of item 2) of Theorem 2 to general
graphs, respectively. Notice that a different extension of item
1) was already obtained in Corollary 10. Later on we will
comment on the relation between these two estimations.

Corollary 16. For every ε > 0, there exist Kε > 0, K ′ε > 0,
Tε > 0, and T ′ε > 0 s.t.

1) if β < d̄ρ−1
A φ(1)−1, then for every z,

Pz(∃t ≥ Tε |Z(t) > ε) ≤ KεN
−1/2; (37)

2) if d̄ρ−1
A φ(1)−1 < β < d̄ρ−1

A φ(0)−1, let z∗ be the unique
solution of the equation φ(z∗) = β−1d̄ρ−1

A and assume that
ε < z∗/2. Then, for every z ≤ (z∗ − 2ε)2, it holds

Pz(∃t ≥ T ′ε |Z(t) > ε) ≤ K ′εN−1/2. (38)

Moreover, the constants Kε and Tε only depend on the quantity
βd̄−1ρA and are bounded when this quantity is bounded away
from φ(1)−1. The constants K ′ε and T ′ε only depend on ε.

Proof. Item 1) is a straightforward consequence of the
stochastic domination between Z(t) and ZY (t) and of item
2) is a consequence of Lemma 15 with µ = βd̄−1φ(1).

Regarding item 2), notice first of all that because of the
assumptions on φ, we have that |{z|φ(z) = w}| = 1 for
every w ∈ [φ(0), φ(1)). This implies the uniqueness of z∗.
At this stage, we consider the jump Markov process Y (t)
with transition rates given by (19) and µ = βd̄−1φ(z∗ − ε).
We notice that

µρA = βd̄−1φ(z∗ − ε)ρA =
φ(z∗ − ε)
φ(z∗)

< 1, (39)

and that λ̄y,y+δv ≥ λy,y+δv as long as y is such that z(y) ≤
z∗ − ε. Put

T̄ = inf{t |Y (t) > z∗ − ε}.

We can establish a coupling between X(t) and Y (t) such
that X(0) = Y (0) and X(t) ≤ Y (t) for all t < T̄ . Choose
now Tε that satisfies item 2) of Proposition 15. It holds

P(∃t ≥ Tε |Z(t) > ε) =
= P(∃t ≥ Tε |Z(t) > ε , T̄ = +∞)+

+P(∃t ≥ Tε |Z(t) > ε , T̄ < +∞)
≤ P(∃t ≥ Tε |ZY (t) > ε) + P(∃t ≥ 0 |ZY (t) > z∗ − ε).

Result now follows from Proposition 15 with a = z∗ − 2ε
and δ = ε. The fact that we get constants K ′ε and T ′ε that
only depend on ε is due to the fact that for every ε > 0
the quantity µρA in (39) is uniformly bounded away from 1
when β varies in the specified interval.

3.4 The core result
The main result of this paper can be finally obtained by com-
bining Corollaries 8, 10 and 16. For the sake of readability,
we recall here the standing assumptions.

LetG = (V,E) be a fixed graph having average degree d̄,
maximum degree ∆, Cheeger constant γ and spectral radius
of the adjacency matrix ρA. We recall that X(t) is a jump
Markov process on {0, 1}V governed by the transition rates
(1) and Z(t) = z(X(t)) is a process counting the fraction of
nodes having state 1. The persuasion strength φ is assumed
to be admissible, namely it satisfies properties (A1), (A2),
and (A3). The following result holds true.

Theorem 17. Let z′u ≤ z′′u < zs be points in [0, 1] defined by

φ(
√
z′u) = β−1d̄ρ−1

A ,
z′′u = zu(∆d̄−1β),
zs = zs(∆d̄

−1β),
(40)

where zu(·) and zs(·) have been defined in (5). Depending on the
conditions of the various parameters each of this point may exist or
not. Below, whenever we write them, we are implicitly affirming
their existence. Let A = 14(1 + β)2.

For every ε > 0 we can find Ciε > 0, T iε > 0 for i = 1, 2, 3,
Kε > 0, and Sε > 0 such that

1) if β < d̄∆−1φ(1)−1, then ∀z,

Pz

(
sup
t≥T 1

ε

Z(t) > ε

)
≤ 5Ne−C

1
εN ;

2) if d̄γ−1β∗ < β < d̄ρ−1
A φ(0)−1, then

• ∀z < z′u − 4ε,

Pz

(
sup
t≥Sε

Z(t) > ε

)
≤ KεN

−1/2,

• ∀z > z′′u + ε,

Pz

(
inf

t∈[T 2
ε ,T

2
ε+eC

2
εN ]

Z(t) < zs − ε
)
≤ AN2e−C

2
εN ;

3) if d̄γ−1φ(0)−1 < β, then ∀z > ε,

Pz

(
inf

t∈[T 2
ε ,T

2
ε+eC

2
εN ]

Z(t) < zs − ε
)
≤ AN2e−C

2
εN .

(with the understanding that if φ(0) = 0, then case 3) does not
show up). Moreover, for every ε > 0, the various constants exhibit
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the following dependence on the parameters. C1
ε and T 1

ε only
depend on the quantity βd̄−1∆ and are, respectively, bounded
away from 0 and bounded, when this quantity is bounded away
from φ(1)−1. C2

ε and T 2
ε only depend on the quantity βd̄−1γ

and are, respectively, bounded away from 0 and bounded, when
this quantity is bounded away from β∗ and φ(0)−1. Finally, Kε

and Sε only depend on ε.

Proof. Item 1) is a consequence of Corollary 10. Regarding
item 2), notice first that the following inequalities hold

γ ≤ ρA ≤ d̄ ≤ ∆ and φ(1)−1 ≤ β∗ ≤ φ(0)−1. (41)

The first and third inequalities of the first expression are
trivial, while the second one comes form [23]. The second
expression is a direct consequence of the monotonicity of
φ(z). This yields, in particular, γ−1β∗ ≥ ρ−1

A φ(1)−1. Item 2)
now follows from item 2) of Corollary 16 and from item 1) of
Corollary 8. Finally, item 3) comes from item 2) of Corollary
8.

Remark 18. Using item 1) of Corollary 16, we can obtain the
following variant of item 1) of Theorem 17:

1 bis) if β < d̄ρ−1
A φ(1)−1, then ∀ z,

Pz

(
sup
t≥T ′ε

Z(t) > ε

)
≤ C ′εN−1/2,

where the constants C ′ε and T ′ε only depend on the quantity
βd̄−1ρA and are bounded when this quantity is bounded away
from φ(1)−1. On the one hand, 1 bis) improves the result by
widening the interval for β, as ρA ≤ ∆ and the gap between
the two quantities may actually be large. On the other hand, it
weakens the result in terms of probability decay. Bound 1 bis) can
be useful when dealing with large-scale random graphs, where
results on the concentration of ρA and ∆ have already a slow
decay in probability, so that the exponential decay would be lost
in any case.

Theorem 17 is a result that holds true for any possible
graph. Of course, its most interesting use is for sequences of
graphs having size N → +∞. Since the various thresholds
and constants involved in the statement depend on graph
properties (and thus ultimately on N ), suitable assumptions
on the sequence of graphs are needed in order for the three
regimes to be observed in the large scale limit, similarly to
the mean field case. Notably, in order to ensure the existence
of the intermediate regime with the bifurcation with respect
to the initial condition, we need to consider graphs where
the Cheeger constant (14) and the average degree have the
same asymptotic behavior, as the population size N grows.
In the next section we will show some very interesting
topologies with this property. To sum up, in Theorem 17
we notice two important differences with respect to the
results established in Theorem 2. First, the cases considered
in Theorem 17 are not exhaustive as the various intervals
considered for the parameter β do not cover the whole
positive line. Second, exponential decay of probabilities is
not always insured.

4 ANALYTICAL AND NUMERICAL RESULTS ON SPE-
CIFIC TOPOLOGIES

In this section, we discuss the application of Theorem 17
to specific sequences of graphs with increasing size N . For

the sake of simplicity we stick to the case φ(z) = z. This
choice of the persuasion strength yields β∗ = 4 and to the
occurrence of only the cases depicted in items 1) and 2) of
Theorem 17.

First we introduce the notion of a regularly expansive
sequence of graphs that includes popular random graphs
examples like Erdős-Rényi graphs and random configura-
tion models. For such graphs, we show that Theorem 17
guarantees the existence of the two regimes: the first one
where failure always occurs and the second one where both
failure and success may occur, depending on the initial
condition. Finally we present some numerical simulations
on Erdős-Rényi graphs and random configuration models
corroborating our analytical results. We conclude with some
simulations on graphs for which Theorem 17 does not
give any information. Such simulations suggest that these
bifurcation phenomena should hold under less stringent
assumptions than those assumed in results.

We recall below the graph parameters that need to be
computed (or at least estimated) in order to use Theorem
17:

• d̄ and ∆ are, respectively, the average and the largest
degree of the graph;

• γ is the Cheeger constant of the graph, defined in
(14);

• ρA is the spectral radius of the adjacency matrix.

A sequence of graphs GN with increasing number of nodes
N is called (a, e1, e2)-regularly expansive if, for every N ,

d̄∆−1 ≥ a and e1 ≤ d̄ρ−1
A ≤ d̄γ

−1 ≤ e2.

Notice that, because of (41), we can always choose e1 ≥ a.
For such graph sequences, Theorem 17 can be reformu-

lated as follows.

Corollary 19. Assume that φ(z) = z and that GN is a
(a, e1, e2)-regularly expansive sequence of graphs. Let z′u ≤
z′′u < zs be points defined by

z′u = β−2e2
1,

z′′u =
1

2
− 1

2

√
1− 4e2

β
,

zs =
1

2
+

1

2

√
1− 4e1

β
.

(42)

Let A = 14(1 + β)2. For every β > 0 and for every ε > 0 we
can find Cε > 0, Kε > 0, and Tε > 0 for which the following
holds true for every N :

1) if β < a, then ∀z,

Pz

(
sup
t≥Tε

Z(t) > ε

)
≤ 5Ne−CεN ;

2) if β > 4e2, then ∀z < z′u − 4ε,

Pz(∃t ≥ Tε |Z(t) > ε) ≤ KεN
−1/2;

and ∀z > z′′u + ε,

Pz
(

inf
t∈[Tε,Tε+eCεN ]

Z(t) < zs − ε
)
≤ AN2e−CεN .
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Proof. It is an immediate consequence of Theorem 17, of the
explicit formulas (6), and the inequalities (41).

Remark 20. We stress the fact that the quantities Cε, Kε and
Tε appearing in the statement of Corollary 19, only depend on the
graph parameters a, e, 1, e2 and on the choice of β, but not on the
size N .

We notice that, the condition a > 0 ensures that there
exists a transition with respect to the parameter β from
the failure regime to the intermediate regime. Instead, the
condition e1 > 0 ensures the presence of the transition with
respect to the initial condition in the second regime.

Below we present two fundamental examples of random
graph ensembles which yield, under specific assumptions,
regularly expansive graphs sequences.

Example 1. (Erdős-Rényi graphs) The Erdős-Rényi model
G(N, p) is the first random graph model, introduced in 1959 [24].
G(N, p) is a random undirected graph with N nodes where each
edge {u, v} is independently present with a probability p ∈ (0, 1).
The degree of each node is thus a realization of a binomial random
variable with parameters N − 1 and p, which means that the
expected average degree is (N − 1)p. Standard concentration
results [11] show that with high probability (w.h.p.)1 as N →∞,

d̄ � ∆ � Np.

Here we restrict our analysis to the case above connectivity
threshold, i.e. when lnN

Np → 0. In this regime, w.h.p. G(N, p)
is connected [11] and, moreover,

d̄γ−1 = 2 + o(1) [11] and d̄ρ−1
A = 1 + o(1) [25].

This implies that in the connectivity regime, G(N, p) is w.h.p.
(1− δ, 1− δ, 2 + δ)-regularly expansive for any δ > 0.

Example 2. (Configuration model) Consider a probability
distribution qd over {3, . . . , dmax}. The configuration model
G(N, qd) is a random undirected graphs with N nodes whose
degrees are independent random variables distributed according
to qd and where edges are created through a random permutation
(see [26] for details). Notice that, by construction, 3 ≤ d̄ ≤ ∆ ≤
dmax. Moreover, ∃α > 0 such that γ ≥ α for all finite N
and w.h.p. as N → ∞ [26]. Consequently, G(N, qd) is w.h.p.
(3/dmax, 3/dmax, dmax/α)-regularly expansive.

Numerical simulations with Erdős-Rényi graphs and
with regular configuration models are shown in Figs. 1 and
2. In particular, Fig. 1 shows the bifurcation with respect to
β and the bifurcation with respect to the initial condition
in the intermediate regime for β = 10. Simulations seem to
show that such bifurcations are sharp as it was happening
in the mean field case (notice also that the bifurcation with
respect to β is placed in the same position β∗ = 4). Fig.
2 deepens the analysis of the bifurcation with respect to the
initial condition that seems to become sharper for larger and
larger values of N .

In this final paragraph we consider some examples of
graph sequences that are not regularly expansive and for
which, consequently, Theorem 17 can not infer the presence
of the phase transitions. Nevertheless, we show through

1. A family of events En occur with high probability (w.h.p.) if
P[En] ≥ 1− CN−α, for some α > 0.
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(a) Success varying β, z0 = 1.

0.05 0.1 0.15 0.2

20

40

60

80

100

z0

%
of

su
cc

es
s
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Fig. 1: Simulations on random graphs with N = 1000. In
Erdős-Rényi graphs p = 0.05 (blue dashed), in the regular
configuration model d̄ = 20 (red solid).

numerical simulations that such phenomena (or at least
some of them) do take place.

Example 3. (Barábasi-Albert model) The Barábasi-Albert
model is a random graph model introduced in 1999 to represent
social networks [27]. Starting from an initial connected graph, at
each time step a node is added to the graph and it is connected to
m existing nodes with a probability proportional to their degrees,
until there are N nodes (see [27] for details). This algorithm con-
structs a graph whose degree distribution follows asymptotically
a power-law [27] (in particular P[dv = k] ∝ k−3). As N → ∞
it is immediate to verify that d̄ = m+o(1) (due to construction).
On the other hand, from [25], ∃α > 0 such that w.h.p.

∆ =
√
n(1 + o(1)), ρA = 4

√
n(1 + o(1)) and γ ≥ α.

Therefore, Barábasi-Albert graphs are only (0, 0,m/α + δ)-
regularly expansive, for any δ > 0.

Example 4. (Toroidal graphs) A 1-torus is a cyclic graph Cn.
A k-torus can be defined as the cartesian product between k 1-tori
with k

√
N nodes each [28]. For a k-torus we have that γ � N−k/2

and d̄ = 2k is constant. Therefore, d̄/γ always diverges.

Therefore, in these two examples Corollary 19 can not be
applied to prove any phase transitions neither on β, nor on
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Fig. 2: Simulations on Erdős-Rényi graphs with β = 10 and
n = 800 (blue), n = 1200 (red) and n = 1600 (green). The
vertical dotted lines are the estimated thresholds z′u and z′′u .
As N increases the transition seems to be sharper. Notice
that the analytical thresholds from Corollary 19 are z′u =
0.01 and z′′u ' 0.2764.
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Fig. 3: Simulations of the dynamics on Barábasi-Albert
graphs with N = 1000 and m = 6.
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Fig. 4: Simulations of the dynamics on k-tori (dashed in blue
k = 1, solid in green k = 2) with N = 1024.

the initial condition. Nevertheless, in the case of Barábasi-
Albert graphs, simulations presented in Figs. 3a and 3b
show the existence of the two different regimes: the failure
regime, and a regime where success and failure are both
possible depending on the initial condition. However, from
our simulations, the phase transition in this intermediate
regime seems to be smooth, even increasing N (see Fig. 3b).

Even in the case of k-tori, simulations (see Fig. 4) seem to
show the existence of the intermediate regime. In this case
the transition with respect to the initial condition seems to
be sharp, as one can see in Fig. 4b. Finally, the simulations
in Fig. 4 also suggest that the various thresholds for a k-
torus are monotonically decreasing in the dimension k. This
is intuitive for the role played by the connectivity features
of the graph in the diffusion dynamics.

5 CONCLUSIONS AND FUTURE RESEARCH

In this work we have proposed a novel network dynamics
modeling the diffusion of the adoption of a new tech-
nological item, such as a smart-phone application or a
PC program. For the spread of such “light choices”, we
have proposed a novel gossip diffusion mechanism whose
strength depends on the global diffusion of the item in the
community, coupled with a spontaneous regression drift.
This model can also be interpreted as a generalization of an
SIS epidemic model with a non fixed infection probability.
We have proven that, for important classes of random
interaction graphs (e.g. Erdős-Rényi graphs and random
configuration models with fixed and bounded degree distri-
bution), depending on the strength of the gossip mechanism

and the connectivity of the graph, three possible regimes
show up: one where the diffusion of the item fails and it
quickly disappears, one where the diffusion succeed since
the item diffuses to a consistent part of the population and
persists for an exponentially long time (with respect to the
size of the system), and, finally, one intermediate regime
where both scenarios can appear, depending on the initial
fraction of agents possessing the item. This intermediate
regime is the main novelty of our model with respect to a
standard SIS epidemic model, where no dependence on the
initial condition shows up. Simulations seem to suggest that
even for more general graphs (e.g. preferential attachment
graphs, regular grids) such phase transitions phenomena do
take place and a theoretical analysis of such cases is left for
future research.

The main research lines arising from this work go in
two different directions. On the one hand, in view of the
results of the simulations in Section 4, as already pointed
out above, we are interested in extending our analytical
results to some classes of non-expander graphs used to
model social networks (e.g. scale-free networks). On the
other hand, we want to test our model in real world case
studies. Our aim is to acquire temporal data describing the
spread of a technological issue on social networks (e.g. the
use of a service or the downloads of an application for
smartphone) and, against them, to test our model also in
comparison with classical epidemic models and with stan-
dard model used for “big choices”. Of course a key point
is the tuning of the parameters appearing in the model,
specifically β and the function φ. As the persuasion strength
function φ is considered, the first step consists in choosing
a parametrized family of functions φ(z) consistent with the
properties (A1), (A2) and (A3), one simple possibility being
φ(z; a) = (a− 1)−1(a− z)z, with a > 2. Thereafter, the new
parameter a and β can be estimated from real world data
using parameter identification methods similar to the one
used for epidemic models [29]. Parameterizations with more
degrees of freedom can also be considered, being careful of
course not to over-fit the data.
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