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Aging and Cost Optimal

Residential Charging for Plug-in EVs
Alberto Bocca, Member, IEEE, Yukai Chen, Member, IEEE, Alberto Macii, Senior Member, IEEE,

Enrico Macii, Fellow, IEEE, Massimo Poncino, Senior Member, IEEE

Abstract—The scheduling of at-home charging of plug-in electric
vehicles (PEVs) normally depends solely on the electricity cost.
However, since each charge cycle causes a small degradation of
the available capacity of the battery, there is a hidden cost that
typically exceeds that of the electricity.

This work presents a method for minimizing the total cost of PEV
charging by accounting for both the estimated costs of battery
degradation and variable electricity costs.

We show that our solution reaches the bound of 20% loss in
capacity with a 46% increase in cycle life with respect to a
standard delayed charging scheme.

Index Terms—EVs, PHEVs, Li-ion batteries, battery charge,
battery aging

I. INTRODUCTION

The charging of plug-in electric vehicles (PEVs) introduces

a new dimension to the process of adding mileage to a car

with respect to traditional gasoline re-fueling, i.e., charge time.

The fact that charging requires non-negligible time (even with

the fastest options, this means 5-10x longer than re-fueling)

produces an unconventional correlation between charge time

and driving range that is peculiar to PEVS. However, the time

aspect of charging, which affects the driver in terms of his/her

range anxiety, is mostly relevant when charging in public

stations. In this case, paradoxically, cost is only a secondary

metric and what matters is charging in the shortest possible

time.

The picture is totally different for residential (“at-home”)

charging; here the time available for charging is usually

abundant, causing the driver to re-focus on the charging cost.

This becomes a priority because the energy required for the

charge goes directly on the user’s electricity bill. Besides

this intuitive dimension of charging costs, there is another

aspect that is usually underestimated by or unknown to the

driver but can have an impact on total cost that is at least

as important as that of the electricity, i.e., the cost of the

aging of the battery due to the charging process. In practice,

a battery supports a finite number of charge/discharge cycles

called cycle life. While the discharge phase is determined by

the driving patterns, the charge process could be controlled

in such a way that the parameters affecting battery aging are

mostly kept under control.

There are two reasons why this aging effect is understimated

from the user perspective. Firstly, the user is generally oblivi-

ous to such a technical aspect. Secondly, the available chargers

have little or no degrees of freedom, which allow the user to

control the charging process.

We focus here on residential charging, for two main reasons.

Firstly, although the numbers may vary depending on the ge-

ographical area, there is general consensus about the fact that

the majority of charging events occur at home [1]. Secondly, as

mentioned above, non-residential charging is usually dictated

by charging time and not by cost. It is worth noticing that the

case of long charging events away from home (e.g. at work

for the duration of a typical working day) is comparable to the

case of at-home charging and our considerations are applicable

to such a case as well.

This works proposes a generalized Constant Current-Constant

Voltage (CC-CV) charge protocol, in which the charge start

time, and the charging current can be regulated, targetting the

optimization of the total (electricity and aging) cost for the

user.

Based on the desired plug-off time specified by a user, as

in state-of-the-art delayed charging schemes [2], we derive

a cost and aging-optimal CC-CV charge cycle. The calcu-

lation relies on a capacity fade model that accounts for all

the relevant parameters, namely the average and variance

of the state-of-charge (SOC), depth-of-discharge (DOD), and

discharge/charge current. This model has been derived em-

pirically from public data available for the battery pack of

a Nissan Leaf [3], [4], [5]. Then, we compare the quality of

our solution to traditional delayed charging. Simulation results

show that by judiciously scheduling the start of the charge and

regulating the charge current it is possible to improve battery

life and, therefore, reduce the total cost of the energy per cycle.

II. BACKGROUND

A. Battery Charge Protocols

Charging a battery is a delicate operation that may have a

noticeable impact on battery health. An appropriate charge

protocol is thus essential to keep battery performance as

unaltered as possible, but also to avoid dangerous side effects,

like overcharging.

In Lithium-Ion (Li-ion) batteries the CC-CV protocol is con-

sidered the de-facto charging protocol [7] due to its simplicity

of implementation and because it guarantees battery safety by

protecting from over-voltage and over-current. Figure 1 shows

a generic typical CC-CV profile and an instance of the latter

for a real-life battery pack.

The CC-CV protocol consists of two main phases. Initially,

the battery is charged with a constant current (CC), until

the cell voltage reaches a specified value, smaller than the

maximum voltage, in order to avoid over-voltage. Then, the

battery voltage is kept constant, resulting in a progressively
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Fig. 1. Typical CC-CV charging profiles: A generic one reporting the most relevant parameters of the protocol (left), and a measured profile relative to the
24kWh Battery Pack for a Nissan Leaf [6] (right).

decreasing charge current. This constant voltage (CV) step is

terminated when the charging current drops below a predefined

threshold value, or when a predefined maximum charging time

is exceeded. Initially, the SOC has a linear growth (integral

of the current) and the voltage also increases. When the CC

phase is over, the voltage has almost reached its final value,

but the charge process continues until it achieves maximum

filling.

The power used during a CC-CV charge is therefore not con-

stant, in particular during the CV phase, where it progressively

decreases and tracks the shape of current waveform. The actual

breakdown of charge time between the CC (Tcc) and CV (Tcv)

phases depends on various factors. One is the CC current Icc,

which is inversely related to Tcc but correlated with Tcv (a

larger Icc shortens Tcc and extends Tcv) [6]. In general, however,

CC-CV profiles are mostly affected by the battery chemistry.

Concerning battery charge, some standards have been defined

for automotive applications that are usually grouped into three

different levels of charging [2], labeled Type 1–3, and are

associated to different power charging levels (Type 1 using

the least power).

Besides the CC-CV protocol, other charging schemes are

possible, such as pulsed charge, constant power (CP), or

multi-stage constant current [7]. Most datasheets however

typically report data concerning CC-CV charging since battery

chargers traditionally implement the CC-CV scheme. For this

reason in this paper we focus on CC-CV and do not consider

“alternative” charge schemes.

B. Battery Aging Issues

When a rechargeable battery ages, its usable capacity de-

creases. This phenomenon is mainly due to two effects: (i)

self-discharge, and (ii) how and how many times the battery

is charged and discharged (number of charge-discharge cycles)

[5]. The latter is definitely the effect more considered in the

literature, because it might be more controlled. The discharge

phase of the battery can significantly contribute to its aging. It

is, in fact, quite difficult to be controlled as it strongly depends

on the behavior of the user. On the contrary, the charging

phase is normally fixed, designed a priori and implemented

into the charger. For this reason, many studies in the literature

are focused on charging.

The aging of a battery can become particularly critical in the

field of PEVs, where the cost of the battery pack significantly

contributes to the total cost of the vehicle [8]. Therefore, it

becomes extremely important to efficiently design the charging

scheme so as to delay the time when the battery pack is

replaced [9]. For these reasons, the vast literature on cus-

tomized charge protocols to reduce cycle aging is almost

entirely focused on the PEV domain.

The degradation rate of a single battery cycle primarily de-

pends on the following stress factors:

• Temperature. Aging increases as temperature increases.

• Depth-of-Discharge (DOD). The DOD is used to de-

scribe how deeply the battery is discharged. A DOD of

100% implies that a battery gets fully discharged before

being recharged. DOD always can be treated as how much

energy the battery delivered. Aging is increased by deeper

discharge cycles (i.e., higher DOD values).

• Average State-Of-Charge (SOC). The SOC of a battery

(or cell) is the percentage of its total energy capacity

that is still available to discharge. Aging accelerates with

higher values of average SOC.

• Charge/Discharge Current. Charge/Discharge current

is usually measured in C-rate, a current normalized to

the one necessary to charge/discharge the nominal bat-

tery capacity in one hour. Aging increases with higher

charge/discharge currents [10].

Various aging-aware charging protocols have been proposed

in the recent years (e.g., [9]). However, implementation of

these protocols requires generally a non-trivial settings of the

parameters and, furthermore, they requires a higher complexity

of the charger.

III. OPTIMAL CHARGE PROTOCOL

A. Scenario and Problem Definition

The top plot of Figure 2 shows a conceptual plot describing the

evolution of the battery SOC over time in a typical cycle, with

the purpose of defining its key quantities. Since in this work

we focus on the charge phase, the discharge phase, usually

longer than the charge one, has been compacted in order to

better emphasize the charge step.

Starting from a given value SOCeoc, which is the SOC of the

battery at end of the previos charge period, the discharge phase
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will depend on the user activity on the device and will reach,

at some point in time (tplug−in), a value SOCeod , i.e., the SOC

when the user connects the car to the power grid. As soon

as the device is plugged the CC-CV protocol is applied and

the device starts charging. The difference ΔSOC = SOCeoc −

SOCeod represents the depth of discharge.

All the parameters reported in Figure 2 are summarized in

Table I.

Fig. 2. (Top) Generic charge-discharge cycle and the corresponding relevant
quantities (top); (bottom) the charge phases for delayed charging ( a�) and the
proposed scheme ( b�) .

The bottom diagram in Figure 2 zooms into the charge phase

to show the CC-CV profiles of the delayed charge ( a ) and

the proposed optimal one ( b ). Notice that the various terms

in the bottom figure have an extra subscript (a or b) depending

on the curve they refer to.

The two curves differ in when the battery starts charging

(tstart ). In general, some time Tdelay may elapse between

tplug−in and when it starts charging; this is a typical option

offered by most PEVs. As already mentioned, delayed charge

targets only the minimization of the electricity cost by trying

to include the whole charging time (Tcharge) in the period

with the lowest electricity cost. However, in this way no

countermeasures to the battery aging are taken (i.e., by acting

on the parameters that affect aging).

Conversely, the proposed charging scheme does still follow a

“delayed” charge approach, but chooses an optimal Tdelay, to

account for the the tradeoff between electricity cost and battery

aging. As it can be observed in the figure, the green dashed

curve b has a more gradual slope of the SOC compared to

curve a , implying a lower charging current and consequently,

a smaller battery aging. Average SOC (area below the two

curves) is instead approximately the same.

This anticipation of tstart does not come for free; the charging

period may start in a time period that is subject to a higher

electricity cost. It is thus essential, as explained in the next

sections, to correctly play with the tstart in order to optimize

the tradeoff between electricity cost and aging.

TABLE I
PARAMETER DEFINITIONS

Parameter Description

tplug−in Time when the user connects the device to the power grid.

tstart Time when the device starts charging.

tend Time when the charging period ends.

tplug−out Time when the device is disconnected from the power grid.

TCC
Time period in which the battery is charged with a

Constant Current (CC).

TCV
Time period in which the battery is charged with a

Constant Voltage (CV).

Tdelay Time period in which the device is plugged in but not charged.

Tcharge
Time period in which the device is charged;

it is computed as Tcc + Tcv.

Tplugged
Total time period in which the device is plugged in;

it is computed as Tdelay + Tcharge.

B. Models

1) Aging Model: We adopt the widely used aging model of

[11], which relies on a modular template in which each of the

parameters affecting aging (Section II-B) corresponds to an

independent term that causes a loss in capacity. For a given

cycle m, the loss of capacity can be conceptually expressed as

Lm = Πi fi(Xi) (1)

where fi(Xi) is a function describing the aging incurred to

a given parameter Xi (e.g., Xi = SOCavg). Functions fi are

typically empirically fitted to measured data to determine

their actual expression. With respect to [11], we consider the

extended model with two extra factors fi relative to charge

and discharge currents [10].

The total normalized capacity loss L (0 = no loss, 1 = no

capacity available) after M cycles is then simply obtained by

summing over the M cycles, i.e., L =
�M

m=1 Lm.

2) Cost Model: There are two main contributions to the total

cost of the charge: aging cost caging and electricity cost celec.

Aging cost of a generic cycle m is simply defined as follows:

caging,m = cbatt ·
Lm

Lmax

(2)

where, cbatt is the battery cost, Lm the capacity loss in a cycle

as defined previously, and Lmax is the maximum acceptable

degradation before replacing the battery pack (typically 0.2).

Electricity cost for a generic cycle m is defined as:

celec,m =

�
Tcharge

e(t)P(t)dt (3)

where e(t) is the electricity cost (per kWh), and P(t) is the

instantaneous charge power (kW).In most cases, e(t) is a

stepwise function with step values associated to different times

of the day.

The total (aging+electricity) cost in a cycle is obviously ob-

tained by summing caging,m and celec,m. Summing over multiple

cycles yields the total cost.
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Notice that while celec,m accrues only during charge time,

caging,m is cumulated during both charge and discharge.

After considering the current cost of the battery pack in U.S.

and Europe, and also the related electricity pricing, which

depends on specific Country legislation and provider’s policy,

in general the aging cost is about double, or even more,

than the electricity cost. For this reason, we focus on the

optimization of the battery life degradation and minimization

of the total cost.

C. Calculation of the Optimal Charging Protocol

The charging algorithm (Figure 3) is invoked for a given

cycle m at plug-in time tplug−in and receives two inputs: (i)

the SOC at the time of plug-in SOCeod , and (ii) the plug-out

time tplug−out ; it returns the cost-optimal charge profile that,

as an instance of CC-CV, is uniquely defined by (i) a value

of Icc, and (ii) a delay Tdelay from the plug-in time tplug−in as

defined in Section III-A. Moreover, it also return the total cost

(aging+electricity) for the current cycle.

The algorithm is based on a simple exhaustive exploration of

the values of the only “free” parameter of a CC-CV protocol,

i.e., Icc. Given the scales of the current magnitudes in play,

the exploration step can be relatively coarse: we chose a

discretization step of 0.1 A.
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Fig. 3. Aging and Cost-Optimal CC-CV Charging Algorithm

Icc ranges between a lower and an upper bound that are

obtained from the constraints on the charge power. Charge

current is obtained from the charge rate Pcharge as I =
(Pcharge/Epack) ∗Qnom, where Epack is the total energy of the

pack and Qnom the nominal capacity of a single cell. Using

the maximum and minimum charge power (6.16 kW and 1.41

kW) specified for the 2015 Nissan Leaf battery in [12], we get

Icc,max = 7.5A and Icc,min = 1.5A (Lines 1–2). The two values

are not proportional to charge power because efficiency of

the charge is not constant and decreases for lower currents.

Moreover, these bounds are an approximation since they are

calculated assuming a constant charge power, which is not

exactly true for a CC-CV profile. With these current bounds,

the exploration space consists of (7.5−1.5)/0.1= 60 current

values to be evaluated.

Notice that we include points with lower efficiency (and

therefore not to be used if considering only energy costs) in the

exploration because by using lower current we may decrease

the aging cost.

The exploration of Icc values in the range (Line 3) consists

of the calculation of several intermediate quantities needed to

arrive at the total cost of the charge. First (Line 4), Tcc and

Tcv are computed. We run an electrical circuit model of the

battery to derive them: Tcc is first computed as the time at

which the voltage reaches the VCV value under application of

a constant Icc current (Figure 2). Similarly, Tcv is then obtained

by applying a voltage source VCV at the output of the circuit

model and monitoring when current reaches the Ieoc value that

determines the end of the charge. Knowing Tcc and Tcv, we

calculate Tdelay as Tplugged −Tcc −Tcv (Line 5).

Fig. 4. SOC (a) and Energy (b) Calculation for a Charge Profile.

In Lines 6 and 7 the SOC-related parameters to be used in

the aging model are computed. The calculation of the average

charge SOC is done by approximating the SOC profile with

piecewise segments as shown in Figure 4-(a). Since a constant

current implies a linear increase of the SOC in the CC phase,

the approximation only involves the short CV phase. The area

below the curve divided by Tplugged yields the average SOC.

Using ΔSOC,SOCavg and Icc we can evaluate the aging and

its relative cost caging (Line 8).

Then, the total charge power is computed using the actual

current and voltage profiles tracked by the simulation model

and stored during the calculation of Tcc. As for the SOC, we

simplify the calculation during the CV phase due to its small

impact on the total (Figure 4-(b)). The area under the power

waveform is the total charge energy, which yields the total

electricity cost celec.

Finally (Lines 10-11), the total cost of this charge profile is

stored as the new optimum value if it improves the current

one.
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IV. SIMULATION RESULTS

A. Setup and Characterization

For the validation of the model, we chose the battery pack of

the Nissan Leaf, with nominal voltage of 360 V and nominal

capacity of 24 kWh. It consists of 48 smaller modules, each

consisting of four individual pouch cells; the four cells are

configured in a 2-series, 2-parallel organization [3]. The list

price of the pack is approximately 5,000 Euros.

Our simulations were carried out on a single cell with nominal

voltage of 3.75 V and nominal capacity of 122 Wh, and then

reflected on the entire pack by appropriately scaling current

and voltage values.

We used the method described in [13] for deriving the circuit

equivalent battery model to track voltage and current and so

compute the charge power.

We extracted the charger efficiency as a function of current

from data provided in [12]. We empirically fitted data to a

cubic curve, yielding η(I)= a1×I3+a2×I2+a3×I+a4, with

a1 = 0.000217,a2 = −0.00593,a3 = 0.0563,a4 = 0.736. The

SSE and RMSE of the fitting are 5.04 ·10−4 and 2.51 ·10−3,

respectively.

For the electricity cost, we used time-of-use (TOU) pricing

most widely used in Italy, which features three fares that are

summarized in Table II.

TABLE II
ELECTRIC CHARGE WITHIN ONE WHOLE DAY

Prices (Euro/kWh) Time Segment

F1 = 0.0896 8:00 – 19:00

F2 = 0.0786 7:00 – 8:00 & 19:00 – 23:00

F3 = 0.0580 23:00 – 7:00

B. Charge and Discharge Profiles

For the discharge phase, we generated various values of

SOCeod according to the distribution of the initial SOC for

a charge event reported in [14] (top plot of Figure 5).

We assumed that tplug−in is between 18:30 and 24:00. It reflects

the time when users arrive home and plug the charger, with

a log-normal distribution in which the early hours are more

likely to occur (middle plot Figure 5). On the other hand, we

simply set tplug−out at 7 : 00 (bottom plot Figure 5).

C. Simulation Results

We compared the proposed aging-aware charge against the

default “delayed” charge as implemented in the Nissan Leaf,

using the same parameters described in Section IV-A. We ap-

plied multiple charge/discharge cycles until the battery reached

a loss of capacity of 20% (state of health = 80%).

TABLE III
SIMULATION RESULTS: LIFETIME AND ELECTRIC CHARGE

Protocols Lifetime (Cycles) Electric Charge (Euro)

Delayed Standard CC-CV 977 625

Cost-Optimal CC-CV 1428 671
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Fig. 5. Distributions of SOCeod (top), tplug−in (middle), and Tplugged (bottom),
using 1500 cycles.

Table III shows the battery lifetime and electric charge costs

for the two charging schemes. The proposed cost-optimal CC-

CV protocol allows a much larger number of cycles (1428 vs.

977) with a minimal increase of the electricity bill (671 vs.

625 Euros).

Figure 6 shows the cycle-by-cycle capacity loss of the two

schemes; the plot stops at cycle 977, when the delayed charge

exhausts the battery capacity. It is clear how the aging degra-

dation under the delayed CC-CV protocol is always larger than

the proposed one; the two curves actually diverge, with the top

one increasing faster than the bottom one.

Figure 7 shows the cumulative saving in Euros over the 977

cycles; the total saving is about 560 Euros.

Notice that the proposed method, thanks to the use of a circuit
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Fig. 7. Cumulative Saving obtained by the proposed charge policy.

equivalent for deriving the relation between I and V during the

charging phase, is suitable for any charge profile, e.g., constant

power - constant voltage (CP-CV).

V. CONCLUSIONS

The cost of battery aging is essential in determining the total

cost of a charge cycle in PEVs. Only considering the electricity

cost, as occur in default cost-optimized charge schedules in

commercial PEVs, does not actually minimize the total cost.

We have proposed a total cost-optimized charging scheme

based on a standard charger implementing CC-CV protocol,

achieving an optimal balance between electricity and battery

aging costs by appropriate tuning of the charge current.

Simulation results show that a judicious selection of the charge

current can lead to a 46% longer cycle life of the battery.
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