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Abstract

A novel micromechanical framework based on higher-order refined beam models is presented. The mi-

cromechanical framework is developed within the scheme of the Carrera Unified Formulation (CUF), a

hierarchical formulation which provides a framework to obtain refined structural theories via a variable

kinematic description. The Component-Wise approach (CW), a recent extension of one-dimensional (1D)

CUF models, is utilized to model components within the representative volume element (RVE). CW mod-

els employ Lagrange-type polynomials to interpolate the kinematic field over the element cross-sections of

the beams and efficiently handles the analysis of multi-component structures such as RVE. The governing

equations are derived in the weak form using finite element method. The framework derives its efficiency

from the ability of CUF models to produce accurate displacement and 3D fields at a reduced computational

cost. Three different cases of micromechanical homogenization are presented to demonstrate the efficiency

and high-fidelity of the proposed framework. The results are validated through published literature results

and via the commercial software ABAQUS. The capability of CUF-CW models to accurately predict the

overall elastic moduli along with the recovery of local 3D fields is highlighted.
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1 Introduction

With the latest advances in the field of computing power, the viability of virtual testing simulations of

advanced heterogeneous material systems has significantly improved over the years. Virtual testing aims

at reducing the extensive reliance on empirical testing of such advanced structural systems as well as the

associated costs [1]. In addition, the accurate modeling via virtual testing can significantly boost the

design space of engineers in the preliminary design phase [2].

The micromechanical analysis is often incorporated into a virtual testing framework to capture sub-scale

phenomena such as the fiber-matrix interaction in a fiber reinforced composite system, the honeycomb

packing within a sandwich structure, and the non-linear behavior of inclusions in an alloy system. In

contrast to macro-scale simulations, the various phases of the material system (geometry and constituent

properties) are explicitly modeled through the definition of representative volume elements (RVE). A

number of micromechanical theories, including analytical, semi-analytical, and fully-numerical methods,

are available in the literature. An extensive review of various kinds of micromechanical homogenization

techniques can be found in [3, 4, 5].

Analytical models have been developed to obtain closed-form solutions for effective elastic properties of

composites [6, 7, 8, 9] and cellular solids [10] in terms of the constituent properties and the volume frac-

tions. Hashin and Rotem developed bounds and expressions for the effective elastic moduli of reinforced

composites by proposing the Concentric Cylinder Model (CCM) [6]. The rules of mixture bounds by

Voigt [11] and Reuss [12], Eshelby model [7], Mori-Tanaka scheme [8], and the self-consistent estimate

by Hill [9] are extensively applied micromechanical theories for computing the effective elastic moduli of

composite materials. Gibson and Ashby [10] proposed a mesomechanics method to evaluate the in-plane

effective Young modulus for thin-walled cellular materials. Even though these analytical methods are

extensively used for the linear analysis of composite structures, they fail to provide local stress and strain

concentrations in the constituent materials. This may hinder the usage of such models for non-linear

analysis within the virtual testing framework.

Semi-analytical methods often provide a better prediction of elastic moduli of aforementioned material

systems, especially in the case of non-linear analysis. In addition, such methods resolve the local fields at

the constituent level, thereby providing better insights into the micromechanical problem in hand. These

methods often represent the microstructure of the material by a representative volume element (RVE),



which is partitioned into a number of subregions. Nemat-Nasser et al. expressed the overall moduli of a

composite in terms of several infinite series which depend only on the geometry of the void [13]. Fourier

series were employed to obtain the local strain fields and bounds on overall elastic and elasto-plastic mod-

uli in [14]. Williams proposed an elasticity-based cell model (ECM) for a periodic array of 3D unit cells

[15]. ECM describes the displacement field in each sub-cell via an eigenfunction expansion up to fifth or-

der. Aboudi developed a semi-analytical micromechanics theory based on the analysis of a repeating cell,

referred to as the Method of Cells (MOC) [16]. The generalized method of cells (GMC) is an extension

of MOC, in which an RVE is subdivided into an arbitrary number of sub-cells with a linearly expanded

displacement field [17]. GMC takes into account the fiber packing and the geometry of the RVE. The

local stress fields were resolved at the sub-cell level and the effective properties are determined via volume

averaging of the local fields. The high-fidelity generalized method of cells (HFGMC) is a recent extension

of MOC, in which displacement fields are expanded using second-order approximations [18]. HFGMC can

provide accurate local fields within the sub-cell and it has been extensively used for non-linear and failure

analysis of composites [19].

Fully numerical methods, such as FEM, are often utilized as micromechanics tool to obtain accurate local

fields within the constituent material. Sun and Vaidya provided a rigorous mechanics foundation for

predicting the mechanical properties of unidirectional fiber composites [20] using FEM. Heinrich et al.

utilized the FEM based RVE analysis to study the influence of fiber packing and the number of fibers

on the homogenized response of a cured fiber composite [21]. Yu and Tang proposed the variational

asymptotic method for unit cell homogenization (VAMUCH) to predict the effective properties of period-

ically heterogeneous materials and recover the local fields [22]. The variational statement of the unit cell

was formulated through an asymptotic expansion of the energy functional. Even though fully-numerical

methods provide accurate descriptions of the local stress, computational limitations often inhibit their

application into multi-scale models. Users often come across trade-off between the high-fidelity analysis

and the computational requirement. Improved efficiency at the micromechanical level can significantly

boost the computational overhead required by such large-scale virtual testing simulation. To circum-

vent high computational costs, techniques such as order-reduction techniques are employed, in which the

order-reduced models approximate the solution to an acceptable error with an increased efficiency [23].

The purpose of the following paper is to present a novel micromechanics framework based on computa-

tionally efficient refined beam models. Refined beam models are based on the Carrera Unified Formulation



(CUF) [24], a hierarchical formulation to obtain refined structural theories that account for a variable

kinematic description. In particular, the Component-Wise approach (CW) is adopted for modeling mi-

cromechanics problem, in which various components of the RVE are modeled via 1D finite elements

[25, 26]. CUF models can deal with arbitrary cross-sections, various classes of material models and

boundary conditions, without any ad-hoc assumptions, which makes it an ideal candidate for microme-

chanics analysis. The efficiency of the framework is derived from the ability of CUF models to provide

accurate 3D displacement and stress fields at a reduced computational cost (approximately one order of

magnitude of degrees of freedom less as compared to standard 3D brick elements) [24, 25, 27]. Over the

last couple of decades, CUF models have been extensively used for wide range of structural simulations

such as static analysis of laminated beams [28], dynamic response for aerospace structures [29], vibration

characteristics of rotating structures [30], evaluation of failure indices in composite structures [26], buck-

ling and post-buckling analysis of compact and composite structures [31, 32]. Carrera et al. reported an

extended review of recent developments in refined theories for beam based on CUF with particular focus

on diverse applications [33].

The paper is organized as follows: CUF is introduced in Section 2 along with detailed description of the

CW. The finite element formulation of the CUF model is described in Section 3. Section 4 describes the

proposed Component-Wise micromechanics framework in detail. It also includes aspects pertaining to the

numerical implementation of the micromechanics framework. Numerical results are enlisted in Section 5.

The concluding remarks are outlined in Section 6.

2 Carrera Unified Formulation

The CUF formulates the kinematic field over the cross-section - 1D models such as beams - or along the

thickness - 2D models such as plates - in a unified manner. Within the 1D CUF structural models, generic

cross-section expansion functions Fτ are utilized to define the displacement field, which can be expressed

as follows:

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, ...,M (1)

where M is the number of expansion terms in the cross-section functions Fτ , and uτ is the generalized

displacement vector. Unlike the classical models, such as the Euler-Bernoulli Beam Theory (EBBT) and

Timoshenko Beam Theory (TBT), the choice of Fτ and M remains arbitrary, and various classes of basis



functions such as polynomial, harmonic or exponential etc. can be adopted as Fτ . The theory of structure

used in the beam formulation is determined by the type of the expansion function. Over the past few

years, three main classes of 1D models have been developed under the umbrella of the CUF, namely:

Taylor-based Expansions (TE) [27], Lagrange-based Expansions (LE) [25], and Hierarchical Legendre-

based Expansions (HLE) [28].

The micromechanics framework presented in this paper is based on LE, in which Fτ is defined using

Lagrange polynomials. LE CUF models consist of only displacement unknowns and they were first intro-

duced in [25]. Four types of Lagrange polynomial sets are utilized to define the cross-section expansion,

namely: three-point linear (L3), four-point bilinear (L4), nine-point biquadratic (L9), and sixteen-point

bicubic (L16) polynomials. In this work, L9 Lagrange polynomials are used to model the cross-section

as shown in Fig. 1. The isoparametric formulation is exploited to deal with arbitrary-shaped geometries.

The interpolation function for an L9 element can be expressed as

Fτ =
1

2
(r2 + rrτ )(s2 + ssτ ) τ = 1, 3, 5, 7

Fτ =
1

2
r2
τ (r2 + rrτ )(1− s2) +

1

2
s2
τ (s2 + ssτ )(1− r2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2) τ = 9

(2)

where r and s vary from −1 to +1 and rτ and sτ are the coordinates of the nine points as illustrated in

Fig. 1. The displacement field within an L9 element can be expressed as

r

s
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Figure 1: Cross-section L9 element in natural coordinate system



ux = F1ux1 + F2ux2 + ...+ F9ux9

uy = F1uy1 + F2uy2 + ...+ F9uy9

uz = F1uz1 + F2uz2 + ...+ F9uz9

(3)

where ux1 , ..., ux9 represent the translational, unknown, displacement components of each of the nine nodes

in the L9 element. Multiple L9 elements can be employed for modeling cross-section, thereby allowing

local refinements of the kinematic field. The Component-Wise (CW) approach stems outs from this very

property of the LE-CUF models, in which Lagrange elements are used to model the displacement variables

for each component at the cross-sectional level.

3 Finite Element Approximation

The strain ε and stress σ vectors are grouped as follows:

ε = {εxx εyy εzz εxy εxz εyz}T

σ = {σxx σyy σzz σxy σxz σyz}T
(4)

With small strain assumptions, the linear strain-displacement relations can be given as

ε = Du (5)

where D is the linear differential operator on u given by

D =
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= DΩ + Dy

(6)



where DΩ and Dy correspond to differential operators for cross-section expansion and beam shape func-

tions. In this work, two types of materials are considered, namely isotropic and orthotropic. Hence, the

Hooke law providing the constitutive law holds,

σ = C ε (7)

where the material matrix C is given as

C =



C11 C12 C11 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


(8)

where the coefficients of the material matrix C are based on the Young modulus E, Poisson ratio ν and

Shear modulus G of the constituents [34].

The beam is discretized using the finite element approach along y, as shown in Fig. 2. Via the classical

finite element technique, the displacement vector (Eq. 1) can be reformulated as

u(x, y, z) = Fτ (x, z)Ni(y)uτi, τ = 1, ...,M, i = 1, ..., p+ 1 (9)

where Ni stands for the shape function of order p and uτi is the nodal displacement vector. In this work,

beam elements with four nodes (B4), i.e. a cubic approximation, are adopted. For the sake of brevity, the

shape functions are not reported, the reader is referred to the book by Bathe [35]. The discretization of

the cross-section of the beam element remains independent of the choice of the beam finite element used.

By adopting the Principle of Virtual Displacement (PVD), the governing equations for a static response

hold the following

δLint = δLext (10)



Ω x

z

y

L

Figure 2: Coordinate frame of reference for a generic beam

where δLint and δLext are the virtual variation of internal work and work due to external loading respec-

tively. The internal work can be expressed as

δLint =

∫
l

∫
Ω
δεTσ dΩ dy (11)

where l and Ω are the length of the beam and area of the cross-section, respectively. The virtual variation

of internal work (Eq. 11) can be rewritten using the geometrical relation (Eq. 6) and the constitutive

law (Eq. 8) as follows:

δLint = δuTjs

∫
l

∫
Ω

[
Nj(y)Fs(x, z)D

T C D Fτ (x, z)Ni(y)
]
dΩ dl

= δuTjs Kijτs uiτ

(12)

where Kijτs is the fundamental nucleus of the stiffness matrix of size 3 × 3. Indices i and j correspond

to the beam shape functions Ni and Nj , respectively; τ and s are related to the cross-section expansion

functions Fτ and Fs, respectively. The explicit expressions of the nine components of the fundamental

nucleus are not repeated here but are given in the book by Carrera et al. [24], with detailed information

on the implementation aspects.

4 Component-Wise Micromechanics framework

An illustration of the CW modeling of a three-phase triply periodic microstructure is depicted in Fig.

3. The RVE is modeled as a beam structure with the cross-section discretized into an arbitrary number

of Lagrange elements along the x2-x3 plane. Multiple Lagrange elements with different constitutive

properties can be assembled to construct the cross-section of the RVE. This enables the displacement



(a) (b)

+

(c)x2

x3
x1

Figure 3: An illustration of a component-wise modeling of composite microstructure with arbitrary con-
stituents (a) a triply periodic composite microstructure with three different phases, (b) Component-Wise
modeling of a triply periodic RVE with individual components modeled as separate components and (c)
assembled cross-section with Lagrange elements along with the beam for the RVE

continuity across the interface of different constituents. The cross-section extends along the span of the

beam in x1 direction. The beam is modeled using B4 elements (cubic interpolation). The framework is

also capable of including span-wise heterogeneity.

The micromechanical framework is formulated based on the periodic nature of the RVE. To ensure the

compatibility of displacements along the faces of the RVE, periodic boundary conditions (PBCs) need to be

applied [36, 20]. The displacements applied on the faces of the RVE must maintain the energy equivalence

between the actual heterogenous material and the homogenized medium [20]. The displacements along

the opposite boundary surfaces of the RVE can be formulated as

uj+i (x, y, z)− uj−i (x, y, z) = ε̄ik(x
j+
k − x

j−
k ) (13)

where ε̄ik is the average strains, indices j+ and j− represent the positive and negative directions along

Xk. Based on the rigorous mechanical foundation laid by Sun and Vaidya [20], the average strains (ε̄ij)



and stresses (σ̄ij) the RVE are given by:

ε̄ij =
1

V

∫
V
εijdV

σ̄ij =
1

V

∫
V
σijdV

(14)

where εij and σij are the local strains and local stresses within the individual constituents of the RVE,

respectively. The overall material matrix of the homogenized RVE can be formulated as

σ̄ij = C̄ijklε̄ij (15)

where C̄ijkl is the homogenized material matrix of the RVE.

As illustrated in Fig. 4, the application of PBCs can be classified into two categories: (1) PBC over the

cross-section degrees of freedom and (2) PBC over the end nodes of the beam. Taking the applied strain

(a)

u
2+

u
2-

u
3-

u
3+

x2

x3
x1

u
1-

u
1+

(b)

Figure 4: Periodic boundary conditions applied for the (a) cross-section of the beam and (b) end nodes
of the beam



as εmij , the explicit expressions for the PBCs for the cross-section degrees of freedom is expressed as

u1
2+ − u1

2− = εm22l2

u2
2+ − u2

2− = 2 εm21l2

u3
2+ − u3

2− = 2 εm23l2

u1
3+ − u1

3− = εm33l3

u2
3+ − u2

3− = 2 εm31l3

u3
3+ − u3

3− = 2 εm32l3

(16)

where ukx+ represents the degrees of freedom associated with dimension x along the positive direction of k,

l2 and l3 are the lengths of the cross-section along x2 and x3, respectively. These boundary conditions are

applied at the cross-section associated with each beam node. PBCs for the beam end nodes are expressed

as

u1
1+ − u1

1− = εm11L

u2
1+ − u2

1− = 2 εm12L

u3
1+ − u3

1− = 2 εm13L

(17)

where uk1+ and uk1− are the degrees of freedom associated with positive and negative end nodes of the

beam element along the direction k, and L is the length of the beam element. The overall system of

equation is of the form:

Ku = f (18)

where K is the symmetric-sparse matrix obtained via assembly of CUF fundamental nuclei and matrix f

is of the size N × 6, where each one of the 6 columns contain the contributions of the individual applied

strain εm, in which N is the number of degrees of freedom of the model.

5 Numerical Results

CUF-CW is utilized to undertake homogenization and de-homogenization analyses of fiber-reinforced

composites, void-filled composites, and periodic cellular structures. The predicted values are compared



against reference solutions from literature and 3D finite element models.

5.1 Fiber reinforced composites

A. Effective moduli

The effective moduli of uni-directional fiber reinforced composites are examined in this section. Two cases

of fiber reinforced composites, which are extensively studied in the literature, are considered, namely

Boron/Aluminum and Graphite/Epoxy material systems. A square packed RVE is modeled. Table 1

enlists the material properties of the constituents for the two uni-directional composites. The fiber volume

fractions for Boron/Alumnium and Graphite/Epoxy were 47% and 60%, respectively. Figure 5 shows the

Table 1: Material properties of fiber reinforced composite constituents

Material E11 E22 G12 ν12 ν23

(GPa) (GPa) (GPa) (-) (-)

Boron fiber 379.3 379.3 172.41 0.1 0.1

Graphite fiber 235.0 14.0 28.0 0.2 0.25

Aluminum matrix 68.3 68.3 26.3 0.3 0.3

Epoxy matrix 4.8 4.8 1.8 0.34 0.34

CW discretization of the cross-section of the RVE for the Boron/Aluminium and Graphite/Epoxy material

systems. The cross-section of the RVE contains 20 L9 elements. The beam is discretized using two B4

elements, essentially summing to a global system with 1869 DOFs. Table 2 and 3 compare the effective

properties predicted by the CUF-CW against the results available from literature. Comparisons are

made between the finite element approach by Sun and Vaidya [20], Concentric Cylinder model (CCM)

developed by Rotem and Hashin [6], Method of Cells (MOC) by Aboudi [16], Generalized Method of Cells

(GMC) by Paley and Aboudi [17], High Fidelity Generalized Method of Cells (HFGMC) by Aboudi [18],

Elasticity based Cell Method (ECM) by Williams [15], and Variational Asymptotic Method for Unit Cell

Homogenization (VAMUCH) by Yu and Tang [22].

B. Effect of fiber packing

To expand further on the capabilities of the CUF-CW, a study on the effect of fiber packing on the effective

moduli of the RVE is undertaken. As depicted in Fig. 6, two classes of RVE architectures are considered

for the study, namely square packed and hex-packed RVEs. The square packed and hex-packed RVEs are



Boron or Graphite

Aluminium or Epoxy

2 B4

+

20 L9

Figure 5: CW discretization of the square packed RVE for analysis of Boron/Aluminium and
Graphite/Epoxy material systems

Table 2: Predicted effective material properties of Boron/Aluminum composites

Models E11 E22 G12 G23 ν12 ν23

(GPa) (GPa) (GPa) (GPa) (-) (-)

CUF-CW 215.2 144.3 54.4 46.0 0.195 0.253

FEM [20] 215.0 144.0 57.2 45.9 0.190 0.290

CCM [6] 231.9 127.3 54.0 49.6 0.193 0.282

MOC [16] 215.0 142.6 51.3 43.7 0.200 0.250

GMC [17] 215.0 141.0 51.2 43.7 0.197 0.261

HFGMC [18] 215.4 144.0 54.3 45.8 0.195 0.255

ECM (3rd) [15] 215.0 143.4 54.3 45.1 0.190 0.260

VAMUCH [22] 215.0 144.1 54.4 45.9 0.195 0.255

Table 3: Predicted effective material properties of Graphite/Epoxy composites

Models E11 E22 G12 G23 ν12 ν23

(GPa) (GPa) (GPa) (GPa) (-) (-)

CUF-CW 142.8 9.6 6.10 3.13 0.252 0.349

FEM [20] 142.6 9.6 6.00 3.10 0.250 0.350

CCM [6] 144.6 8.9 5.8 3.3 0.252 0.361

MOC [16] 143.0 9.6 5.47 3.08 0.250 0.350

GMC [17] 143.0 9.5 5.68 3.03 0.253 0.358

HFGMC [18] 142.9 9.6 6.09 3.10 0.252 0.350

ECM (3rd) [15] 143.0 9.6 5.85 3.07 0.250 0.350

VAMUCH [22] 142.9 9.6 6.10 3.12 0.252 0.350



modeled using 20 L9 and 44 L9 elements, respectively. The beam is discretized using 2 B4 elements.

Boron or Graphite

Aluminium or Epoxy

20 L9 44 L9

Figure 6: CW discretization of the square packed and hex-packed RVE for analysis of Boron/Aluminium
and Graphite/Epoxy material systems

Table 4: Comparison of elastic moduli for different RVE architecture for Boron/Aluminium and
Graphite/Epoxy material system

Boron/Aluminium (Fiber VF=47%) Graphite/Epoxy (Fiber VF=60%)

Square-packed Hex-packed Square-packed Hex-packed

CUF-CW FEM [20] CUF-CW FEM [20] CUF-CW FEM [20] CUF-CW FEM [20]

E1 215.22 215.0 215.19 215.0 142.83 142.60 142.83 142.6

E2 144.29 144.0 132.91 136.5 9.63 9.60 9.17 9.20

ν12 0.19 0.19 0.19 0.19 0.25 0.25 0.25 0.25

ν23 0.25 0.29 0.31 0.34 0.35 0.35 0.38 0.38

G12 54.44 57.2 54.18 54.0 6.10 6.00 5.86 5.88

G23 46.03 45.9 51.13 52.5 3.13 3.10 3.34 3.35

C. De-homogenization of randomly distributed fiber composite

The capability of the CUF-CW micromechanics module to produce accurate stress fields with a re-

duced computational overhead is illustrated. An RVE of a fiber/matrix composite with 13 randomly

distributed fibers (fiber volume fraction of 60%) is modeled using CW approach. The RVE architecture

(21.25µm × 21.25µm) is obtained from the work of Pineda et. al., where progressive damage analysis

of the fiber/matrix composite RVE is reported [19]. The fiber is assumed to be made of transversely

isotropic graphite fiber, and matrix as linearly isotropic epoxy with properties listed in Table 1. The



Fiber

Matrix

Figure 7: CW discretization of the cross-section of RVE with 13 randomly distributed fibers and a fiber
volume fraction of 60%

cross-section is modeled using 265 L9 elements as depicted in Fig. 7, and 2 B4 elements were used. The

total degrees of freedom of the problem amounts to a sparse system of 19080. A similar RVE model is

developed in ABAQUS using 3D brick element using 24765 brick elements with total degrees of freedom

of 91305. A global transverse tensile strain (ε22) of 0.001 is applied to the RVE. The numerical results

for the de-homogenization analysis are enlisted in Table 5. Figures 8-9 depicts the maximum principal

strain (ε1) and stress contours (σ22) for the RVE obtained from CUF-CW and ABAQUS-3D analysis.

Table 5: Numerical results from de-homogenization of RVE with 13 randomly distributed fibers subjected
to transverse tensile strain

DOF Maximum principal strain (εmax
1 ) Maximum transverse stress (σmax

22 )

(-) 10−3 (MPa)

CUF-CW 19080 2.08 14.92

ABAQUS 3D 91305 2.11 14.22

Results suggests that

• CUF-CW models are able to predict the effective properties of the aforementioned material system

accurately.

• The model is able to capture the effect of packing in composite materials.

• Effective transverse moduli of the composite are more vulnerable to the packing architecture of the
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+1.17e−03
+1.31e−03
+1.44e−03
+1.57e−03
+1.71e−03
+1.84e−03
+1.97e−03
+2.11e−03

(b) ABAQUS 3D - (91305 DOFs)

Figure 8: Maximum principal strain contours εp1 over the cross-section of the RVE with 13 randomly
distributed fibers subjected to transverse tensile strain (a) CW-CUF model and (b) ABAQUS 3D model

 4.58
 5.45
 6.31
 7.17
 8.03
 8.89
9.75
10.62
11.48
12.34
13.20
14.06
14.92

(a) CUF-CW (19080 DOFs)

 1.76
 2.80
 3.84
 4.87
 5.91
 6.95
 7.99
 9.03
10.06
11.10
12.14
13.18
14.22

(b) ABAQUS 3D - (91305 DOFs)

Figure 9: Transverse stress contours σ22 [MPa] over the cross-section of the RVE with 13 randomly
distributed fibers subjected to transverse tensile strain (a) CW-CUF model and (b) ABAQUS 3D model



RVE.

• The de-homogenization analysis of randomly distributed fiber RVEs demonstrates the high-fidelity

and efficiency of the framework.

5.2 Void filled composite

In the following example, CUF-CW is employed to simulate the global and local behavior of void-filled

composites. As depicted in Fig. 10, two kinds of inclusion shapes are investigated, namely square and

circular. The beam is discretized using 2 B4 element and the degrees of freedom of the global linear

system accounts to 4032 and 3780 for circular and square voided composites, respectively. The void

filled composite is made of copper with Young modulus E = 127.0 GPa and Poisson ratio ν = 0.34.

Table 6 enlists the effective transverse Young modulus predicted for different void volume fractions of

Circular void (40L9) Square void (40L9)

Figure 10: CW discretization of the circular and square void for analysis of void filled Cu composite

0.0204, 0.1837, 0.5102 and 0.7511. The predicted values are compared against Method of Cells (MOC) by

Aboudi [16], Elasticity-based Cell Method (ECM) (3rd and 5th order) by Williams [15], and Variational

Asymptotic Method for Unit Cell Homogenization (VAMUCH) by Yu and Tang [22].

Square inclusions exhibit strong gradients due to stress concentration around the corner. To highlight

the computational efficiency obtained via CUF-CW, a FEM model using 3D brick element (C3D8) was

developed in ABAQUS for the square inclusion with a void volume fraction of 0.5102. The RVE is

subjected to a transverse tensile strain (ε11) of 0.001. The von-Mises stress contour over the cross-section

of the RVE is depicted in Fig. 11. The ABAQUS 3D model has 72225 DOFs, the CUF-CW 3456. The

results suggest that



Table 6: Predicted transverse Young modulus E22 (GPa) of void-filled Cu composite with varying void
volume fraction

Void volume fraction

0.0204 0.1837 0.5102 0.7511

Circular void

CUF-CW 120.36 82.27 39.57 10.32

VAMUCH [22] 120.34 82.67 39.08 10.31

FEM [22] 120.34 82.64 39.08 10.31

Square void

CUF-CW 120.22 82.02 39.85 18.28

MOC [16] 110.20 75.27 38.22 17.99

G-F [37] 120.63 83.50 40.48 18.40

ECM (3rd)[15] 110.20 75.38 38.23 17.99

ECM (5th)[15] 118.90 80.97 39.64 18.20

VAMUCH [22] 120.22 81.73 39.75 18.25

FEM [22] 120.22 81.70 39.75 18.25

 10.339
 31.750
 53.162
 74.573
 95.985
117.396
138.808
160.219
181.631
203.042
224.454
245.865
267.277

(a) CW-CUF model (3456 DOFs)

 27.014
 46.340
 65.667
 84.993
104.320
123.646
142.973
162.299
181.626
200.952
220.279
239.605
258.931

(b) ABAQUS 3D - (72225 DOFs)

Figure 11: von-Mises stress contours σvm [MPa] over the cross-section of the RVE of void-filled Cu
composite with a void volume fraction of 0.5102 subjected to transverse tensile strain (ε11): (a) CUF-CW
and (b) ABAQUS 3D



• CUF-CW models can predict the transverse Young modulus accurately.

• CUF-CW models can capture the strong stress gradients observed along the edges of the square-

inclusion.

5.3 Periodical cellular material

The section focuses on the prediction of the effective Young modulus for periodical cellular materials

using CUF-CW. As depicted in Fig. 12(a), the architecture of the RVE is of hexagonal honeycomb.

The dimensions of the hexagonal honeycomb RVE is tabulated in Table 7. The material of the RVE is

assumed to be isotropic with the Young modulus E0 of 0.91 GPa and Poisson ratio ν of 0.3. The RVE is

Table 7: Dimensions of hexagonal honeycomb RVE

a t/a φ

3−3/4

√
3

12
600

modeled using 28L9 elements as shown Fig. 12(b). In order to stay consistent with the micromechanical

formulation, the void areas (white areas in 12(b)) are modeled with a weak material with very low stiffness

(Evoid/E0 = 10−5). The RVE is discretized using 2B4 elements along the longitudinal axis and the total

degrees of freedom of the system amounts to 6993 (includes the additional degrees of freedom due to void

elements). Table 8 enlists the predicted transverse Young modulus and compares against the reference

and ABAQUS 3D solutions.

A de-homogenization analysis is undertaken with RVE being subject to transverse strain (ε33) of 0.001.

Maximum principal strain (εp1) contour and von-Mises stress (σvm) are depicted in Fig. 13 and Fig. 14,

respectively. An ABAQUS 3D model with 79104 DOFs was used, whereas CUF-CW 6993.

Φ

a

t

(a) (b)

Figure 12: Architecture of hexagonal honeycomb RVE: (a) Dimensions of the hexagonal honeycomb RVE
and (b) CW discretization of the cross-section for hexagonal honeycomb RVE using 18L9 elements



Table 8: Predicted tranverse Young modulus E22 (GPa) of the celluar hexagonal honeycomb RVE

CUF-CW G-A MMM FEM 3D

0.0504 0.0498 0.0485

+1.190e−04
+2.535e−04
+3.880e−04
+5.225e−04
+6.569e−04
+7.914e−04
+9.259e−04
+1.060e−03
+1.195e−03
+1.329e−03
+1.464e−03
+1.598e−03
+1.733e−03

(a) CUF-CW (6993 DOFs)

(Avg: 75%)
E, Max. Principal

+1.000e−07
+1.156e−05
+1.203e−04
+4.140e−04
+5.682e−04
+7.237e−04
+8.656e−04
+1.007e−03
+1.149e−03
+1.291e−03
+1.433e−03
+1.575e−03
+1.717e−03

(b) ABAQUS 3D - (79104 DOFs)

Figure 13: Maximum principal strain contours εp1 for hexagonal honeycomb RVE with subjected to trans-
verse tensile strain (ε33) (a) CW-CUF model and (b) ABAQUS 3D model

0.114
0.217
0.321
0.424
0.528
0.631
0.735
0.838
0.942
1.046
1.149
1.253
1.356

(a) CUF-CW (6993 DOFs)

0.000
0.041
0.091
0.309
0.425
0.562
0.685
0.753
0.911
1.020
1.128
1.236
1.345

(b) ABAQUS 3D - (79104 DOFs)

Figure 14: von-Mises stress contours σvm [MPa] for hexagonal honeycomb RVE with subjected to trans-
verse tensile strain (ε33) (a) CW-CUF model and (b) ABAQUS 3D model



Results suggests that

• In comparison to the reference solution and FEM 3D results, CUF-CW can predict the transverse

Young modulus accurately.

• CUF-CW can effectively capture strong gradients within the honyecomb RVE.

6 Conclusion

A novel and computationally efficient micromechanics framework based on refined beam models is pre-

sented. The framework is built within the scheme of the Carrera Unified Formulation (CUF), a generalized

hierarchical formulation which yields a refined structural theory via variable kinematic description. The

representative volume element (RVE) is modeled using the Component-Wise approach (CW), an extension

of the CUF beam model based on Lagrange type polynomials. The versatility of the framework is demon-

strated through numerical results taken from the literature for fiber-reinforced composites, void-filled

composites, and periodic cellular material. The efficiency of the framework is highlighted by comparing

the total number of degrees of freedom of the global system of CUF-CW models against ABAQUS 3D

results. Following conclusions can be drawn:

1. CUF-CW can accurately predict the effective elastic moduli of the three cases presented.

2. CUF-CW is able to recover the 3D fields accurately and efficiently.

3. On average, CUF-CW requires one order of magnitude of degrees of freedom less compared to

standard 3D brick elements to obtain similar results.

4. The high fidelity of the framework is demonstrated through de-homogenization analysis of randomly

distributed fiber-reinforced composites.

It can be concluded that CUF-CW provides a reliable and efficient tool to accurately undertake microme-

chanics analysis. Future works will deal with the extension of the tool for the non-linear analysis, such

as progressive damage analysis.



7 Acknowledgement

This research work has been carried out within the project FULLCOMP (FULLy analysis, design, manu-

facturing, and health monitoring of COMPosite structures), funded by the European Union Horizon 2020

Research and Innovation program under the Marie Sk lodowska-Curie grant agreement No. 642121.

References
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