POLITECNICO DI TORINO
Repository ISTITUZIONALE

An Efficient MPI Implementation for Multi-Core Neuromorphic Platforms

Original

An Efficient MPI Implementation for Multi-Core Neuromorphic Platforms / Barchi, Francesco; Urgese, Gianvito; Macii,
Enrico; Acquaviva, Andrea. - ELETTRONICO. - (2017), pp. 273-276. (Intervento presentato al convegno 2017 New
Generation of CAS (NGCAS) tenutosi a Genova (IT) nel 7-9 Settembre 2017) [10.1109/NGCAS.2017.31].

Availability:
This version is available at: 11583/2680585 since: 2020-10-21T10:50:48Z

Publisher:
IEEE Computer Society

Published
DOI:10.1109/NGCAS.2017.31

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

20 May 2024

An Efficient MPI Implementation for Multi-Core
Neuromorphic Platforms

Francesco Barchi, Gianvito Urgese, Enrico Macii and Andrea Acquaviva
Politecnico di Torino, Torino, Italy, Email: andrea.acquaviva@polito.it

Abstract—Multicore neuromorphic platforms come with a cus-
tom library for efficient development of neural network simu-
lations. While these architectures are mainly focused on real-
time biological network simulation using detailed neuron models,
their application to a wider range of computational tasks is
increasing. The reason is their effective support for parallel
computation characterised by an intensive communication among
processing nodes and their inherent energy efficiency. However,
to unlock the full potential of these architectures for a wide
range of applications, a library support for a more general
computational model has to be developed. This work focuses
on the implementation of a standard MPI interface for parallel
programming of neuromorphic multicore architectures. The MPI
library has been developed on top of the SpiNNaker multi-
core neuromorphic platform, featuring a toroid interconnect and
packet support for multicast communication. The proposed MPI
implementation has been evaluated using an N-body simulation
kernel, showing very good efficiency and suggesting that the
considered neuromorphic platform with our MPI library is very
promising for communication-intensive applications.

I. INTRODUCTION

In the last decade massively parallel bio-inspired systems
have been designed for emulating brain activity in real time
by running spiking neural networks [1, 2, 3, 4, 5]. At the
same time, because of their inherent efficient support for
inter-chip communication, these systems are under study for
accelerating communication intensive applications involved in
other computational physics and biology applications.

In this work we consider the SpiNNaker neuromorphic
platform, a massively parallel architecture exploiting a toroidal
inter-chip communication network. The platform considered
in this work entails 48 chips each one featuring 18 ARM
cores and a custom router. Since SpiNNaker has mainly been
developed to run brain simulations, it does not natively support
a general purpose programming model, like the Message
Passing Interface (MPI). In this work, we explore the potential
of this type of architectures to accelerate communication
intensive applications by exploiting the MPI library that we
completely developed and optimised from scratch leveraging
the SpiNNaker interconnect support.

We evaluated the developed library using an N-body simula-
tion kernel, typically used in computational biology tasks such
as molecular dynamics. Results suggest that the SpiNNaker
architecture with our MPI implementation is promising for
tasks where communication is prevalent.

The rest of the paper is organised as follows. Section II
provides an overview of the neuromorphic platform. Section
IIT describes the design and implementation of the MPI library.
Section IV explains the tests performed in order to validate the
developed implementation. Section V provides the summary
and the final evaluations.

Routing Rules

O e Es (Q Aldirections
O nNe O ssw

O SW, W, N O Opposite direction

@

N NE
0+ *+1,#1

w E
-1,0 +1,0
N>

X sSwW S

Fig. 1: The broadcast routing rule

II. BACKGROUND

SpiNNaker is a neuromorphic platform built such a hexag-
onal shaped triangular network of SpiNNaker chips. SpiN-
Naker architecture has been designed as a low-power globally
asynchronous and locally synchronous system (GALS) [6].
The basic building block of the system is the SpiNN-5, a
PCB with 48 SpiNNaker chips and an Ethernet interface
connected to the first chip for linking the board with the
external devices. Each chip embeds 18 ARM968 processors,
a custom router, 128 kB of SRAM, and 128 MB of SDRAM
and a NoC. The applications can be executed on 16 cores
that are called Application Processors (APs), one core, called
Monitor Processor (MP), is used for chip management and
communication operations. The embedded router is capable
of transmitting packets of 72bit, 40bit of header and 32 bit
of optional payload, of two different types: Point to Point
(P2P) and Multicast (MC). Payloads greater than 32 bit can be
transmitted using the SpiNNaker Data Protocol (SDP), running
on the monitor processor, that splits a message into several P2P
packets.

The software is divided into layers: the SpiNNaker Appli-
cation Runtime Kernel (SARK) that exposes several APIs for
the hardware functionalities and the Spin1API for supporting
the Event Driven Programming (EDP) [7]. Applications are
built on top of these two libraries and loaded in the SpiNNaker
cores using the Spinnaker Command Protocol (SCP) [8]. Users
can also use in their applications the Application Command
Protocol (ACP) [9].

Some applications, like the Spiking Neural Network (SNN)
simulations, need to be configured by high-level software
modules running on the host computer, like PACMAN and
GHOST [10, 11]. In the same way, the MPI implementation
developed during this work needs a host library.

III. METHOD
To implement a high-level message passaging interface we
need some low-level functionalities: i) A synchronisation sys-
tem between all computing nodes. ii) A Middle-level interface
for handling the SpiNNaker native multicast communication.

SYNC1
o Manager
SYNC2
O Manager
SYNC3
O Manager

Fig. 2: The sync levels in a SpiNN-5 Board.

iii) A high-level interface to read/write data between nodes.

Therefore, we developed two auxiliary libraries (Spin2 API
and SpinACP) for supporting the MPI library itself (SpinMPI).
Spin2API is an extension of Spin1 API, the standard application
library for Spinnaker. It provides an interface to use the
multicast message system in a broadcast way and implements
a synchronisation system. Whereas, SpinACP implements an
Application Command Protocol (ACP), exploited to send and
to receive commands between SpiNNaker nodes and from/to
the Host. SpinACP provides some facilities and built-in com-
mands for sharing memory objects (referred in this paper as
Memory Entities). The SpinMPI is built over these two layers,
in particular, we implemented the receiving buffer as an ACP
Memory Entity. Both SpinACP and SpinMPI have an on-host
runtime written in Python (ACP-Runtime and MPI-Runtime).

The goal of this section is to describe the implementation of
an MPI programming abstraction that exploits the SpiNNaker
event-driven programming model and the on-board intercon-
nection structure using the three designed libraries.

A. Spin2API

Spin2API provides facilities for configuring, sending and
receiving in broadcast more than 32 bit of data. The payload
is fragmented and carried into a flow of MC packets. Each
MC packet has a header composed of four fields: i) The
packet source, ii) The communication control flags, iii) The
synchronisation flags, iv) The channel information field. We
will refer to this packet format as SPIN2-MC.

The policies for generating routing rules for a particular
source are summarised in Figure 1. We define four rules
according to the relative position of the router compared to
the packet source: i) The router of the source chip sends its
packets to all its six neighbours. ii) The router of all chips on
the z+ axis spread packets to ;E, NE, S;, while the router of
all chips on the ™~ axis spread packets to ;W, SW, N,. iii) The
router of all chips on the yT axis spread the packets to ;N,
NE;, while the router of all chips on the y~ axis spread packets
to /S, SW;. iv) The router of all chips that do not belong to the
categories listed above spread packets in the opposite direction
from which they receive them. It is possible to cover the whole
area with one routing rule for each source chip.

The synchronisation function uses the SPIN2-MC format
and implements a multilevel synchronisation infrastructure
composed of signaller and synchroniser nodes, as shown in
Figure 2. During a synchronisation phase inside a level,,
a signaller sends a SYNC, message to the synchroniser of
the level. Once the synchroniser collects all the expected
signals it becomes an x + 1 signaller and sends a SYNC,
message to the synchroniser of the next level. At the end, the
synchroniser of the last level sends in broadcast a SYNCyyrock
message. Inside the SpiNN-5 three levels are used: level;

M$ MC MPI Communicator
Eventy Buffers
SPIN2-MC Reassembly

Hash Table for

Callback PRIO -1
‘éfi ACP Memory entities —
SDP
CPoverSDP ACPoverMC)
ACP

Callback PRIO 0 Callback PRIO 0
allbac allbacl . E ‘_M=m0ry Entity 4

A
ACP
Execution

Cmd Memory Entity

Other Commands

Fig. 3: ACP remote command flow.

the SpiNNaker Chip; levelqy the Ring, a set of chips at the
same distance from the Root Chip; levels the Board itself.

B. SpinACP

In this work we extended and simplified the ACP that
was initially born as a system to read/write predefined vari-
ables through commands sent over the SpiNNaker network
[9]. We removed from ACP some features like fragmenta-
tion and composition including them in supplementary high-
level libraries. The ACP library can be summarized into
three functional parts: i) Command management ii) Command
spreading over the network, ACPoverSDP or ACPoverMC.
ii) Memory Entities management and built-in commands.

It is possible to create commands and use them as callback
functions, but the most useful commands are the built-in
commands for manage Memory Entities described as structs
and collected in hash tables.

The command flow is shown in Figure 3. A single execution
node is supplied from two ACP interpreter nodes: one for
commands sent over SDP, and one for commands sent over
SPIN2-MC. When a SPIN2-MC packet arrive a packet reaches
a node it is processed and the payload extracted. According
to the packet source address and communication control the
payload is added to a buffer for the reconstruction. The
SpinACP library handles a circular buffer that it is used to
save and re-compose multiple ACPoverMC messages. Once
the message is re-composed, it is consumed by a lower priority
callback that interprets and executes the command.

C. SpinMPI

The MPI reference implementation, OpenMPI, provides two
components: i) mpicc is a wrapper of a C compiler that
provides the environment variables to include the library files
and to link the object files. ii) mpirun is the OpenMPI
runtime environment that launch and manages the execution
of the application over multiple nodes.

Differently, a SpinMPI application is compiled with
spinnaker_tools, the compiler tool-chain provided with
the SpiNNaker board. The launcher is the Python package
MPI-Runtime that loads the compiled application on a set
of processors called MPT-Context. Moreover, it initializes
the application with the context info such as MPIRank and
MPI Communicator via the ACP.

The MPI-Context is identified by the number of rings
involved and by the number of processors used for each chip:
Context : (RingIDyay,VIDuax). Each Ring contains a
variable number of chips. For example, Ring 0 contains the
chip (0,0), Ring 1 the chips (0,1), (1,1), (1,0) and so on, as

shown in Figure 2. Each processor is identified by a VID!.
For example, for parallelizing a program on 32 processors we
can choose a context of C(1,8), C(3,2) or C(5,1), each of them
describes a set of 32 processors. When the context is defined,
the application is loaded on SpiNNaker.

An MPI application starts with the MPI_TInit (...)
function, whereas on SpiNNaker we need to call the
MPI_Spinn (...) thatinitialize the libraries to implement the
event driven programming and insert in the scheduler queue
the mpi_main function that contain the MPI application. A
code template is reported below.

#include “mpi.h”

void c_main() {
MPI_Spinn(mpi_main);
}

void mpi_main(uint argl, uint arg2) {
MPI_Init (NULL, NULL);

MPI_Finalize ();

}

The MPI_Spinn(...) is performed in three steps: i) In
the Callback registration step, the Spin2API and SpinACP?
libraries register several callbacks to manage the incoming
packets: SDP from the Monitor Processors and the MC from
the router. In this way, only incoming SDP on port 7 and
incoming SPIN2-MC packets are dispatched to the ACP. ii)
The second step is to initialise the support for multicast
connections. Spin2API register the routing rules for each
possible source and SpinACP register an internal callback that
will be used for reconstructing the ACPoverMC messages.
iii) In the last step, the mpi_main handler that contains the
application code is scheduled on a low priority event queue
before to leave the control to the event scheduler that is then
forced to execute the mpi_main function. We detach the MPI
application from c_main ()3 and include it in a standalone
function.

Inside the mpi_main, the MPI library is initialised
through the MPI_TInit (...) function. The initialization
procedure is divided into three phases: i) Initialize ACP
Memory Entities that are recorded and will be used to
receive from the MPI-Runtime the processor Rank and
the coordinates (x, y, vid) of all processors involved in the
MPI-Context. ii) Receive the context information from
the runtime and configuration variables for the SPIN2-MC
synchronisation feature. iii) Finally, each processor waits for a
signal from the MPI-Runt ime. Once the MPI-Context has
verified that all the processors have been properly configured,
it sends a signal and the MPI_Init (...) function ends.

MPI offers two types of communications: Point to Point
(Itol) and collective (1to*, *tol, *to*). The 1tol communi-
cations have three properties: i) Blocking/Non-Blocking*, ii)

'Each processor has a physical ID (location on the die) and a virtual ID
assigned when the machine is powered up.

2Spin2API callbacks are registered directly on the SpinlAPI events, while
the SpinACP callbacks are registered on Spin2API.

3The standard entry point for SpiNNaker application

#A blocking function is released only when the data buffer to be sent can
be modified, otherwise non-blocking functions are released immediately and
the submission is postponed or delegated to a competing thread.

‘ Data Multiplicity

|

‘ Itol ‘ lto* ‘ *tol ‘ *to* ‘

‘ ;» ‘ 1to* MPI_Bcast ‘ - ‘ MPI_Scatter ‘ - ‘
=)

‘ gz:l ‘ *to 1 ‘ - ‘ MPI_Gather ‘ ‘ - ‘

\ = | *tox N | MPLAlgather | | MPI_Alltoall |

TABLE I: MPI collective functions.
Synchronous/Asynchronous’, iii) Buffered/Unbuffered®. The
specification defines MPI_Send and MPI_Recv as blocking
functions and MPI_Isend and MPI_Irecv as non-blocking func-
tions. These functions can be also Synchronous or Buffered.
The user can force the use of synchronous functions via
MPI_Ssend and MPI_Issend. On SpiNNaker, the implementa-
tion of MPI_Send is blocking, synchronous, and non-buffered,
while MPI_Recv is blocking and buffered. MPI 1tol communi-
cation functions use ACPoverSDP to send the write command
for modifying the content of the Memory Entities used as
communication buffer in the target processor. Specifically, the
MPI_Recv buffer is an ACP Memory Entities of 60 Bytes.
For sending more than 60Byte it is necessary to fragment
the data into groups to be sent individually. Each fragment is
followed by a confirmation signal from the receiving processor,
thus obtaining a synchronous communication.

The collective communications differ depending on the type
of operation and the multiplicity of addresser/addressee. In
particular, there are three types of operations: synchronism (de-
scribed in section III-A), data reduction (to be implemented),
and data movement (described in the following). The data
movement functions can be classified according to the number
of nodes involved in the data transmission (group multiplicity),
and the number of data units inside the receiving and sending
buffers (data multiplicity), see Table I. The group multiplicity
of 1To* identifies an operation where one sender node spreads
data to all nodes involved in the communication (including the
sending node). Instead, the data multiplicity of 1To* identifies
an operation where the buffer size of the sender nodes (one
or many) is the same size of the item to be transmitted, while
the buffer size of the receiver nodes (one or many) is equal to
the item size multiplied with the number of nodes involved in
the communication. The SpinMPI library provide MPI_Bcast
and MPI_Allgather that are functions for replicating data
on the nodes using the SpiNNaker-native multicast/broadcast
transmission system. This type of functions can exploit SPIN2-
MC protocol and are implemented using the ACPoverMC
functions.

For example, the MPI_Allgather is implemented as a simple
linear cycle where each processor, in turns, sends an ACP to
write command to all others processors. This is possible only
if all involved processors are synchronised. To synchronise all
MPI contexts, it is possible to use the synchronisation feature
provided in the Spin2 APIL

IV. BENCHMARK
The NBody simulation consists of N particles each with a
position in a D-dimensional space Z? € R” and with a mass
my. Integration of motion equations with Velocity Verlet is
discretized by step equal to 7 = At and consists of three

3Synchronous functions (send only) require a receiving acknowledgement
from the receiver before considering the communication successful

%The message before being sent and/or received is copied into a system
buffer

equations to be solved for each ;farticle p: 1) Equation 1:
position update, ii) Equation 2: calculation of forces due to
gravitational interaction iii) Equation 3: velocity update.

" P, = 1
:ctp+1 :xtp—l—vtpr—i— 5atp’r2 (1)
1 = 1 .
aP P _ 2 : i,p
a = — = — F
t+1 t+1 t+1
myp mp <)
_ 5 %(fl’l,ﬁﬂ)
- =D — 9 t+
mp |xt+1 - xt2+1|3

6tp+1 =7+ %(@p + 6tp+1)7' €)

The NBody simulation was parallelized with MPI by dis-
tributing the particles, equally, on each computation node. Each
node will have to update only the positions and speed of its
particles, bringing complexity from O(N2) to O(%N) where
P is the number of processors.

To calculate the force exerted on a particle p each node
must know the position of each particle of the system. At each
iteration a particle position update step is then performed by
the function MPI_Allgather (---). All calculations were
executed in fixed points. As seen in Section III-B, we im-
plemented MPI_Allgather (---) with a broadcast transfer
mediated by MC packets, the complexity of communication
passes from O(P?) to O(P) as data replication is done in
parallel by architecture routers. We evaluate the performances
of the implementation in terms of speed-up x,, and efficiency
7, as the number of used computational nodes increases.
Xn = AT5 T = 3

We performed two series of simulations, one with 1k parti-
cles and another with 2 k particles, for evaluating the scalability
of the MPI implementation from 1 to 240 processors and for
analysing the impact on the efficiency when the number of
particles to be calculated for each node is increasing.

As shown in Figure 4 the results show good scalability per-
formances, comparable with state-of-the-art implementations
on parallel computing platforms [12]. The speed-up is directly
proportional to the number of cores until 100 nodes, and reach
194 x when 240 nodes are used to simulate 2k particles (156 x
for 1k particles).

The efficiency stays above 90% with 64 processors for the
1 k simulation and up to 128 processors for the 2 k simulation.
With 240 processors, we obtained an efficiency of 65% for
the simulation with 1k particles and more than 80% for the
simulation with 2 k particles. With this results we can speculate
and hypothesize that is convenient to distribute the problem on
additional processors.

Speedup and Efficiency

ey Efficiency 1k =mge Efficiency 2k

e SpeEAUP 1K ==@==Specdup 2k

100%
95%
90%
85%
80%
75%
70%
65%
60%
55%
50%

100 150

Nodes

200 250 300

Fig. 4: Speedup on blue axes and efficiency on orange axes
measured for two simulation sizes, 1k and 2k particles.

Speedup Reference

Efficiency

Results show that the considered neuromorphic architecture
with the proposed MPI library is a promising solution for
accelerating communication intensive applications.

V. CONCLUSION

In this work, we presented an implementation of the MPI
paradigm on the SpiNNaker neuromorphic platform. The MPI-
SpiNNaker implementation required the development of mul-
tiple abstraction-level software grouped in three new libraries.
1) Spin2API implements broadcast connection/synchronisation
methods and a hash table ADT. ii) SpinACP implements mem-
ory entities and network command functionalities. iii) SpinMPI
implements the MPI on SpiNNaker. We implemented an N-
Body simulation to benchmark and evaluate the performance
of the board in the execution of an MPI parallel application. In
this simulation, 2k particles were simulated on 240 processors
with a speed-up of 194x and an efficiency of 80% when
compared to the serial version running on a single CPU.

ACKNOWLEDGMENTS
The research leading to these results has received funding from EC-H2020
[H2020/2014-20] under grant agreement no 720270 [HBP-SGA1].

REFERENCES
Michael Beyeler et al. “Efficient spiking neural network model of
pattern motion selectivity in visual cortex”. In: Neuroinformatics 12.3
(2014), pp. 435-454.
Liam P Maguire et al. “Challenges for large-scale implementations of
spiking neural networks on FPGAs”. In: Neurocomputing 71.1 (2007),
pp. 13-29.
Andreas Griibl. “VLSI implementation of a spiking neural network”.
In: (2007).
Paul A Merolla et al. “A million spiking-neuron integrated circuit with
a scalable communication network and interface”. In: Science 345.6197
(2014), pp. 668-673.
Steve B Furber et al. “Overview of the spinnaker system architecture”.
In: Computers, IEEE Transactions on 62.12 (2013), pp. 2454-2467.

(1]

(2]

(3]
(4]

(5]

[6] Evangelos Stromatias et al. “Power analysis of large-scale, real-time
neural networks on SpiNNaker”. In: Neural Networks (IJCNN), The
2013 International Joint Conference on. IEEE. 2013, pp. 1-8.

[71 Andrew D. Brown et al. “SpiNNaker Programming Model”. In: IEEE

Transactions on Computers 64.6 (June 2015), pp. 1769-1782.

Steve Temple. AppNote 5 - Spinnaker Command Protocol (SCP)
Specification. 2011. URL: https://spinnaker.cs.manchester.ac.uk/.
Alessandro Siino et al. “Data and commands communication protocol
for neuromorphic platform configuration”. In: MCSoC, 2016 IEEE 10th
International Symposium on. IEEE. 2016, pp. 23-30.

Steve B Furber et al. “The spinnaker project”. In: Proceedings of the
IEEE 102.5 (2014), pp. 652-665.

Gianvito Urgese et al. “Optimizing Network Traffic for Spiking Neural
Network Simulations on Densely Interconnected Many-Core Neuro-
morphic Platforms”. In: IEEE Transactions on Emerging Topics in
Computing (2016).

Roberto Capuzzo-Dolcetta, Mario Spera, and D Punzo. “A fully
parallel, high precision, N-body code running on hybrid computing
platforms”. In: J. of Computational Physics 236 (2013), pp. 580-593.

(8]
[9]

[10]

[11]

[12]

