
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Frequent Itemsets Mining for Big Data: A Comparative Analysis / Apiletti, Daniele; Baralis, ELENA MARIA; Cerquitelli,
Tania; Garza, Paolo; Pulvirenti, Fabio; Venturini, Luca. - In: BIG DATA RESEARCH. - ISSN 2214-5796. - STAMPA. -
9:C(2017), pp. 67-83. [10.1016/j.bdr.2017.06.006]

Original

Frequent Itemsets Mining for Big Data: A Comparative Analysis

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.bdr.2017.06.006

Terms of use:

Publisher copyright

© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.bdr.2017.06.006

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2680344 since: 2017-09-27T11:33:43Z

Elsevier Inc.

Frequent Itemsets Mining for Big Data: a comparative

analysis

Daniele Apiletti, Elena Baralis, Tania Cerquitelli, Paolo Garza, Fabio
Pulvirenti∗, Luca Venturini

Politecnico di Torino, Dipartimento Automatica e Informatica, Torino, Italy

Abstract

Itemset mining is a well-known exploratory data mining technique used to

discover interesting correlations hidden in a data collection. Since it supports

different targeted analyses, it is profitably exploited in a wide range of differ-

ent domains, ranging from network traffic data to medical records. With the

increasing amount of generated data, different scalable algorithms have been

developed, exploiting the advantages of distributed computing frameworks,

such as Apache Hadoop and Spark.

This paper reviews Hadoop- and Spark-based scalable algorithms address-

ing the frequent itemset mining problem in the Big Data frameworks through

both theoretical and experimental comparative analyses. Since the itemset

mining task is computationally expensive, its distribution and parallelization

strategies heavily affect memory usage, load balancing, and communication

costs. A detailed discussion of the algorithmic choices of the distributed

∗Corresponding author
Email addresses: daniele.apiletti@polito.it (Daniele Apiletti),

elena.baralis@polito.it (Elena Baralis), tania.cerquitelli@polito.it (Tania
Cerquitelli), paolo.garza@polito.it (Paolo Garza), fabio.pulvirenti@polito.it
(Fabio Pulvirenti), luca.venturini@polito.it (Luca Venturini)

Preprint submitted to Big Data Research May 25, 2017

methods for frequent itemset mining is followed by an experimental anal-

ysis comparing the performance of state-of-the-art distributed implementa-

tions on both synthetic and real datasets. The strengths and weaknesses of

the algorithms are thoroughly discussed with respect to the dataset features

(e.g., data distribution, average transaction length, number of records), and

specific parameter settings. Finally, based on theoretical and experimental

analyses, open research directions for the parallelization of the itemset mining

problem are presented.

Keywords: Big Data, Frequent itemset mining, Hadoop and Spark

platforms

1. Introduction

In recent years, the increasing availability of huge amounts of data has

changed the importance of data analytic systems for Big Data and the in-

terest towards data mining, an important set of techniques useful to extract

effective and usable knowledge from data. On the one hand, the Big Data

analytics scenario is very challenging for researchers. Indeed, the application

of traditional data mining techniques to big volumes of data is not straight-

forward and some of the most popular techniques had to be redesigned from

scratch to fit the new environment. On the other hand, companies are inter-

ested in the strategic benefits that Big Data could deliver. Data mining, to-

gether with machine learning [1], is the main research area on which Big Data

analytics rely. It includes (i) clustering algorithms to discover hidden struc-

tures in unlabeled data [2], (ii) frequent itemsets mining and association rule

mining techniques to discover interesting correlations and dependencies [3],

2

and (iii) supervised algorithms to infer models from labeled datasets and use

them to predict the label of new data [4].

Several traditional centralized mining algorithms have been proposed.

They are very efficient when the datasets can be completely loaded in main

memory. However, they cannot cope with Big Data, because they are not

designed for a parallel and distributed environment. The recent shift towards

horizontal scalability has highlighted the need of distributed/parallelized

data mining algorithms able to exploit the available hardware resources

and distributed Big Data frameworks (e.g., Apache Hadoop [5], Apache

Spark [6]). In this survey, we focus on distributed/parallel itemset min-

ing algorithms in the Big Data context because they represent exploratory

approaches widely used to discover frequent co-occurrences from the data.

These algorithms have been widely exploited in different application do-

mains (e.g., network traffic data [7], healthcare [8], biological data [9], energy

data [10], images [11], open linked data [12], document and data summariza-

tion [13, 14, 15]).

The parallelization of the frequent itemset mining problem in a dis-

tributed environment by means of the MapReduce programming paradigm

and a Big Data framework is not an easy task. The main challenge is devis-

ing a smart partitioning of the problem in independent subproblems, each

one based on a subset of the data, to exploit the computation power of a

cluster of servers in parallel. In the following, we will describe how this prob-

lem has been addressed so far and which are pros and cons of the current

MapReduce- and RDD-based parallel algorithms by taking into considera-

tion load balancing and communication costs, which are two very important

3

issues in the distributed domain. They are strictly related to the adopted

parallelization strategy and usually represent the main bottlenecks of parallel

algorithms.

The contributions of this survey are the followings.

• A theoretical analysis of the algorithmic choices that have been pro-

posed to address the itemset mining problem in the Big Data context

by means of MapReduce, with the analysis of their expected impact on

main memory usage, load balancing, and communication costs.

• An extensive evaluation campaign to assess the reliability of our expec-

tations. Precisely, we ran more than 300 experiments on 14 synthetic

datasets and 2 real datasets to evaluate the execution time, load bal-

ancing, and communication costs of five state-of-the-art parallel itemset

mining implementations.

• The identification of strengths and weaknesses of the algorithms with

respect to the input dataset features (e.g., data distribution, average

transaction length, number of records), and specific parameter settings.

• The discussion of promising open research directions for the paralleliza-

tion of the itemset mining problem.

This paper is organized as follow. Section 2 briefly introduces the Hadoop

and Spark frameworks, while Section 3 introduces the background about the

itemset mining problem, providing the main definitions and a brief descrip-

tion of the state-of-the-art centralized itemset mining algorithms. Section 4

describes the algorithmic strategies adopted so far to partition and parallelize

4

the frequent itemset mining problem by means of the MapReduce paradigm,

while Section 5 describes the state-of-the-art distributed algorithms and their

implementations. In Section 6 we benchmark the selected algorithms with

a large set of experiments on both real and synthetic datasets. Section 7

summarizes the concrete and practical lessons learned from our evaluation

analysis, while Section 8 discusses the open issues raised by the experimen-

tal validation of the theoretical analysis, highlighting some possible research

directions to support a more effective and efficient data mining process on

Big Data collections.

2. Apache Hadoop and Spark

The availability of increasing amounts of data has highlighted the need

of distributed algorithms able to scale horizontally. To support the design

and implementation of these algorithms, the MapReduce [16] programming

paradigm and the Apache Hadoop [5] distributed platform have been com-

monly used in the last decade. In the last couple of years, instead, Apache

Spark [6] has become the favorite distributed platform for large data analyt-

ics, outperforming Hadoop thanks to its distributed dataset abstraction.

The success of Hadoop and Spark is mainly due to their data locality

paradigm. The basic idea consists in processing data in the same node storing

it instead of sending large amounts of data on the network.

Hadoop and Spark support the MapReduce paradigm, a distributed pro-

gramming model introduced by Google [16]. A MapReduce application con-

sists of two main phases, named map and reduce. The map phase applies a

map function on the input data and, after processing them, it emits a set of

5

key-value pairs. To parallelize the execution of the map phase, each node of

the cluster applies the map function in isolation on a disjoint subset of the

input data. Then, the map results are exchanged among the cluster nodes

and the reduce phase is run. Specifically, the reduce phase considers one

unique key at a time and iterates through the values that are associated with

that key to emit the final results. Also the reduce phase can be parallelized

by assigning to each node a subset of keys.

MapReduce-based programs implemented on Hadoop do not fit well it-

erative processes because each iteration requires a new reading phase from

disk. This feature is critical when dealing with huge datasets. This issue

motivated the improvements introduced by Spark, which enables the nodes

of the cluster to cache data and intermediate results in memory, instead of

reloading them from the disk at each iteration. This goal is achieved through

the introduction of the Resilient Distributed Dataset (RDD) data structure,

which is a read-only partitioned collection of records distributed across the

nodes of the cluster. An RDD, when it is reused multiple times, is cached in

the main memory of the nodes to avoid the overhead given by multiple reads

from disk.

2.1. Hadoop and Spark Data Mining and Machine Learning Libraries

In recent years the success of Hadoop and Spark was supported by the

introduction of open source data mining and machine learning libraries. Ma-

hout [17] for Hadoop has been one of the most popular collection of Machine

Learning algorithms, providing distributed implementations of well-known

clustering, classification, and itemset mining algorithms. All the current im-

plementations are based on MapReduce. MADlib [18], instead, provides a

6

SQL toolkit of algorithms that run over Hadoop. Finally, MLLib [19] is

the Machine Learning and data mining library developed on Spark. MLlib

allows researchers to exploit Spark special features to implement all those

applications that can benefit from them, e.g. faster iterative procedures.

2.2. Distributed data mining approaches based on MPI and GPUs

Hadoop and Spark are not the only frameworks supporting the paralleliza-

tion of data mining algorithms and their distributed execution. Specifically,

the distributed execution of the data mining algorithms has been addressed

also by using solutions based on Message Passing Interface (MPI) [20], one

of the most adopted framework in academic environment, or more recent

hardware components, such as GPUs.

For instance, the solutions proposed in [21, 22, 23, 24, 25, 26] are MPI-

based solutions for the itemset mining problem, whereas solutions like [27,

28, 29] take advantage of GPU-based commodity cluster. A comparative

analysis of the GPU-based solutions is reported in [30].

The focus of this work is the comparison of the MapReduce-based ap-

proaches. Hadoop and Spark have been widely adopted in the research en-

vironment [31, 32, 33]. The reasons are partly related to the easier data

management and better fault tolerance [34, 34, 26] but, above all, these

frameworks allow the development of parallel algorithms by unexperienced

users [31].

3. Frequent itemset mining

A frequent itemset represents frequently co-occurring items in a transac-

tional dataset. More formally, let I be a set of items. A transactional dataset

7

D

tid items

1 a b c d

2 a c d e

3 b c d e

4 a d e

(a) Horizontal

representation of

D

TT

item tidlist

a 1,2,4

b 1,3

c 1,2,3

d 1,2,3,4

e 2,3,4

(b) Transposed

representation of D

Frequent itemsets

itemset support

a 3

b 2

c 3

d 4

e 3

a c 2

a d 3

a e 2

b c 2

b d 2

c d 3

c e 2

d e 3

a c d 2

a d e 2

b c d 2

c d e 2

(c) Frequent itemset ex-

tracted from D with a

minsup=2

Figure 1: Running example dataset D

8

D consists of a set of transactions {t1, . . . , tn}. Each transaction ti ∈ D is

a collection of items (i.e., ti ⊆ I) and is identified by a transaction identi-

fier (tidi). Figure 1a reports an example of a transactional dataset with 4

transactions.

An itemset I is defined as a set of items (i.e., I ⊆ I) and is character-

ized by a support value, which is denoted by sup(I) and defined as the ratio

between the number of transactions in D containing I and the total num-

ber of transactions in D. In the example dataset in Figure 1a, for example,

the support of the itemset {a,c,d} is 50% (2/4). This value represents the

frequency of occurrence of the itemset in the dataset. An itemset I is consid-

ered frequent if its support is greater than a user-provided minimum support

threshold minsup. Figure 1c reports the frequent itemset extracted from D

with a minsup value equal to 50% (i.e., an absolute support equal to 2).

Given a transactional datasetD and a minimum support thresholdminsup,

the Frequent Itemset Mining [3] problem consists in extracting the complete

set of frequent itemsets from D.

The dimension of the search space can be represented as a lattice, whose

top is an empty set. Its size increases exponentially with the number of

items [35, 36]. In Figure 2, the lattice related to our running example is

shown.

In this paper, we focus on closed itemsets. Closed itemsets [37] are a

particular and valuable subset of frequent itemsets, being a concise but com-

plete representation of the set of frequent itemsets. Precisely, an itemset I

is closed if none of its supersets (i.e. the set of itemsets which include I) has

the same support count as I. For instance, in our running example, given

9

Figure 2: Lattice representing the search space based on the items appearing in the ex-

ample dataset D

a minsup = 2, the itemset {a,d} is a closed frequent itemset (support=3).

The itemset {a,c}, instead, is a frequent itemset (support=2), but it is not

closed because of the presence of the itemset {a,c,d} (support=2).

A transactional dataset can also be represented in a vertical format, in

which each row represents an item i and the list of tids of the transactions in

which it appears, also called tidlist({i}). For instance, the tidlist of the item

a in the example dataset D is {1, 2, 4}. Figure 1b reports the transposed

representation of the running example reported in Figure 1a. The main

10

advantage of the vertical format is the possibility to obtain the tidlist of an

itemset by intersecting the tidlists of the included items, without the need

of a full scan of the dataset.

3.1. Centralized algorithms

The search space exploration strategies of the distributed approaches are

often inspired by the solutions adopted by the centralized approaches. Hence,

this section shortly introduces the main strategies of the centralized itemset

mining algorithms. This introduction is useful to better understand the

algorithmic choices behind the distributed algorithms.

The frequent itemset mining task is challenging in terms of execution

time and memory consumption because the size of the search space is expo-

nential with the number of items of the input dataset [35]. Two main search

space exploration strategies have been proposed: (i) level-wise or breadth-

first exploration of the candidate itemsets in the lattice and (ii) depth-first

exploration of the lattice.

The most popular representative of the breadth-first strategy is Apri-

ori [38]. Starting from single items, it iteratively generates and counts the

support of the candidate itemsets of size k + 1 from the frequent itemsets

of size k. At each iteration k, the supports of the candidate itemsets of

length k are counted by performing a new scan of the input dataset. The

search space is pruned by exploiting the downward-closure property, which

guarantees that all the supersets of an infrequent itemset are infrequent too.

Specifically, the downward-closure property allows pruning the set of candi-

date itemsets of length k+1 by considering the frequent itemsets of length k.

The Apriori algorithm is significantly affected by the density of the dataset.

11

The higher the density of the dataset, the higher the number of frequent

itemsets and hence the amount of candidate itemset stored in main mem-

ory. The problem becomes unfeasible when the number of candidate itemsets

exceeds the size of the main memory.

More efficient and scalable solutions exploit the depth-first visit of the

search space. FP-Growth [39], which uses a prefix-tree-based main memory

compressed representation of the input dataset, is the most popular depth-

first based approach. The algorithm is based on a recursive visit of the

tree-based representation of the dataset with a “divide and conquer” ap-

proach. In the first phase the support of each single item is counted and

only the frequent items are stored in the “frequent items table” (F-list).

This information allows pruning the search space by avoiding the analysis

of the itemsets extending infrequent items. Then, the FP-tree, that is a

compact representation of the dataset, is built exploiting the F-list and the

input dataset (together they compose the “header table”) . Specifically, each

transaction is included in the FP-tree by adding or extending a path on the

tree, exploiting common prefixes. Once the FP-tree associated with the input

dataset is built, FP-growth recursively splits the itemset mining problem by

generating conditional FP-trees and visiting them. Given an arbitrary prefix

p, where p is a set of items, the conditional FP-tree with respect to p, also

called projected dataset with respect to p, is substantially the compact repre-

sentation of the transactions containing p. Each conditional FP-tree contains

all the knowledge needed to extract all the frequent itemsets extending its

prefix p. FP-growth decomposes the initial problem by generating one con-

ditional FP-tree for each itemt i and invoking the itemset mining procedure

12

on each of them, in a recursive depth-first fashion.

FP-growth suits well dense datasets, because they can be effectively and

compactly represented by means of the FP-tree data structure. Differently,

with sparse datasets, the compressions benefits of the FP-tree are reduced

because there will be a higher number of branches [3] (i.e., a large number

of subproblems to generate and results to merge).

Another very popular depth-first approach is the Eclat algorithm [40]. It

performs the mining from a vertical transposition of the dataset. In the verti-

cal format, each transaction includes an item and the transaction identifiers

(tid) in which it appears (tidlist). After the initial dataset transposition,

the search space is explored in a depth-first manner similar to FP-growth.

The algorithm is based on equivalence classes (groups of candidate itemsets

sharing a common prefix), which allows smartly merging tidlists to select fre-

quent itemsets. Prefix-based equivalence classes are mined independently, in

a “divide and conquer” strategy, still taking advantage of the downward clo-

sure property. Eclat is relatively robust to dense datasets. It is less effective

with sparse distributions, because the depth-first search strategy may require

generating and testing more (infrequent) candidate itemsets with respect to

Apriori-like algorithms [41].

4. Itemset mining parallelization strategies

Two main algorithmic approaches are proposed to address the parallel

execution of the itemset mining algorithms by means of the MapReduce

paradigm. They are significantly different because (i) they use different so-

lutions to split the original problem in subproblems and (ii) make different

13

assumptions about the data that can be stored in the main memory of each

independent task.

Data split approach. It splits the problem in “similar” subproblems, ex-

ecuting the same function on different data chunks. Specifically, each

subproblem computes the local supports of all candidate itemsets on

one chunk on the input dataset (i.e., each subproblem works on the

complete search space but on a subset of the input data). Finally, the

local results (i.e., the local supports of the candidate itemsets) emit-

ted by each subproblem/task are merged to compute the global final

result (global support of each itemset). The main assumptions of this

approach are that (i) the problem can be split in “similar’ subproblems

working on different chunks of the input data and (ii) the set of candi-

date itemsets is small enough that it can be stored in the main memory

of each task.

Search space split approach. It splits the problem by assigning to each

subproblem the visit of a subset of the search space (i.e., each subprob-

lem visits a part of the lattice). Specifically, this approach generates,

from the input distributed dataset, a set of projected datasets, each

one small enough to be stored in the main memory of a single task.

Each projected dataset contains all the information that is needed to

extract a subset of itemsets (i.e., each dataset contains all the infor-

mation that is needed to explore a part of the lattice) without needing

the contribution of the results of the other tasks. The final result is the

union of the itemset subsets mined from each projected dataset.

14

Figure 3: Itemset mining parallelization: Data split approach

Figures 3 and 5 depict the first and the second parallelization strategies,

respectively. In the data split approach (Figure 3), the map phase computes

the local supports of the candidate itemsets in its data chunk (i.e., each

mapper runs a “local itemset mining extraction” on its data chunk). Then,

the reduce phase merges the local supports of each candidate itemset to

compute its global support. This solution requires each mapper to store a

copy of the complete set of candidate itemsets (i.e., a copy of the lattice).

This set must fit in the main memory of each mapper. Since the complete set

of candidate itemsets is usually too large to be stored in the main memory of

a single mapper, an iterative solution, inspired by the level-wise centralized

itemset mining algorithms, is used. Figure 4 reports the iterative solution. At

each iteration k only the subset of candidates of length k are considered and

15

Figure 4: Itemset mining parallelization: Iterative Data split approach

hence stored in the main memory of each mapper. This approach, thanks also

to the exploitation of the apriori-principle to reduce the size of the candidate

sets, allows obtaining subsets of candidate itemsets that can be loaded in the

main memory of every mapper.

In the search space split approach (Figure 5), the map phase generates

a set of local projected datasets. Specifically each mapper generates a set

of local projected datasets based on its data chunk. Each local projected

dataset is the projection of the input chunk with respect to a prefix p.1

1Note that the projected datasets can overlap because the transactions associated with

two distinct prefixes p1 and p2 can be overlapped.

16

Figure 5: Itemset mining parallelization: Search space split approach

Then, the reduce phase merges the local projected datasets to generate the

complete projected datasets. Each complete projected dataset is provided

as input to a standard centralized itemset mining algorithm running in the

main memory of the reducer and the set of frequent itemsets associated to

it are mined. Each reducer is in charge of analyzing a subset of complete

projected datasets by running the itemset mining phase on one complete

projected dataset at a time. Hence, the main assumption, in this approach,

is that each complete projected dataset must fit in the main memory of a

single reducer.

Table 1 summarizes the main characteristics of the two parallelization

approaches with respect to the following criteria: type of split of the problem,

usage of main memory, communication costs, load balancing, and maximum

17

Table 1: Comparison of the parallelization approaches.

Criterion Iterative data split approach

(Figure 4)

Search space split approach (Fig-

ure 5)

Type of split/Split

of the search space

Each subproblem analyzes a different

subset of the input data and computes

the local supports of all the candidate

itemsets of length k on its chunks of

data. The final result is given by the

merge of the local results.

Each subproblem analyzes a different

subset of itemsets/a different part of

the search space. The final result is

the union of the local results.

Usage of main

memory

The candidate set of length k is stored

in the main memory of a single task.

The complete projected dataset is

stored in the main memory of a single

task.

Communication

cost

Number of candidate itemsets × num-

ber of mappers × number of iterations.

Sum of the sizes of the local projected

datasets.

Load balancing Load balancing is achieved by associ-

ating the same number of itemsets to

each reducer.

The tasks could be significantly unbal-

anced depending on the characteristics

of the projected datasets assigned to

each node.

Maximum number

of mappers

Number of chunks Number of chunks

Maximum number

of reducers

Number of candidate itemsets Number of items

parallelization (i.e. maximum number of mappers and reducers).

Type of split/Split of the search space. The main difference between the

two parallelization approaches is the strategy adopted to split the problem

in subproblems. This choice has a significant impact on the other criteria.

Usage of main memory. The different usage of the main memory of

the tasks impact on the reliability of the two approaches. The data split

approach assumes that the candidate itemsets of length k can be stored in

the main memory of each mapper. Hence, it is not able to scale on dense

datasets characterized by large candidate sets. Differently, the search space

18

split approach assumes that each complete projected dataset can be stored in

the main memory of a single task. Hence, this approach runs out of memory

when large complete projected datasets are generated.

Communication costs. In a parallel MapReduce algorithm, communica-

tion costs are important, because the network can easily become the bottle-

neck if large amounts of data are sent on it. The communication costs are

mainly related to the outputs of the mappers which are sent to the reducers

on the network. For the data split approach the data that is sent on the net-

work is linear with respect to the number of candidate itemsets, the number

of mappers, and the number of iterations. Differently, for the search space

approach, the amount of data emitted by the mappers is equal to the size of

the projected datasets.

Load balancing. The different split of the problem in subproblems signifi-

cantly impacts on load balancing. For the data split approach, the execution

time of each mapper is linear with respect to the number of input transactions

and the execution time of each reducer is linear with respect to the number of

assigned itemsets. Hence, the data split approach can easily achieve a good

load balancing by assigning the same number of data chunks to each mapper

and the same number of candidate itemsets to each reducer. Differently, the

search space split approach is potentially unbalanced. In fact, each subprob-

lem is associated with a different subset of the lattice, related to a specific

projected dataset and prefix, and, depending on the data distribution, the

complexity of the subproblems can significantly vary. A smart assignment

of a set of subproblems to each node would mitigate the unbalance. How-

ever, the complexity of the subproblems is hardly inferable during the initial

19

assignment phase.

Maximum number of mappers and reducers. The two approaches

are significantly different in terms of “maximum parallelization degree”, at

least in terms of number of maximum exploitable reducers. The maximum

parallelization of the map phase is equal to the number of data chunks for

both approaches. Differently, the maximum parallelization of the reduce

phase is equal to the number of candidate itemsets for the data split approach,

because potentially each reducer could compute the global frequency of a

single itemset, whereas it is equal to the number of global projected datasets

for the second approach, which can be at most equal to the number of items.

Since the number of candidate itemsets is greater than the number of items,

the data split approach can potentially reach a higher degree of parallelization

with respect to the search space split approach.

The two parallelization approaches are used to design efficient parallel im-

plementations of well-known centralized itemset mining algorithms. Specif-

ically, the data split approach is used to implement the parallel versions

of level-wise algorithms (like Apriori [38]), whereas the search space split

approach is used to implement parallel versions of depth-first recursive ap-

proaches (like FP-growth [39] and Eclat [40]).

5. Distributed itemset mining algorithms

This section describes the algorithms, and available implementations, rep-

resenting the state-of-the-art solutions in the parallel frequent itemset min-

ing context. We considered the following algorithms: YAFIM [42], PFP [43],

BigFIM [44], and DistEclat [44]. The only algorithm which is lacking a pub-

20

licly available implementation is YAFIM. Among the considered algorithms,

YAFIM belongs to the ones based on the data split approach, while PFP

and DistEclat are based on the search space split approach. Finally, BigFIM

mixes the two strategies, aiming at exploiting the pros of them. For PFP we

selected two popular implementations: Mahout PFP and MLlib PFP, which

are based on Hadoop and Spark, respectively. The description of the four

selected algorithms and their implementations are reported in the following

subsections.

5.1. YAFIM

YAFIM [42] is an Apriori distributed implementation developed in Spark.

The iterative nature of the algorithm has always represented a challenge for

its application in MapReduce-based Big Data frameworks. The reasons are

the overhead caused by the launch of new MapReduce jobs and the require-

ment to read the input dataset from disk at each iteration. YAFIM exploits

Spark RDDs to cope with these issues. Precisely, it assumes that all the

dataset can be loaded into an RDD to speed up the counting operations.

Hence, after the first phase in which all the transactions are loaded in an

RDD, the algorithm starts the iterative Apriori algorithm organizing the can-

didates in a hash tree to speed up the search. Being strongly Apriori-based,

it inherits the breadth-first strategy to explore and partition the search space

and the preference towards sparse data distributions. YAFIM exploits the

Spark “broadcast variables abstraction” feature, which allows programmers

to send subsets of shared data to each slave only once, rather than with every

job that uses those subset of data. This implementation mitigates commu-

nication costs (reducing the inter job communication), while load balancing

21

is not addressed.

5.2. Parallel FP-growth (PFP)

Parallel FP-growth [43], called PFP, is a distributed implementation of

FP-growth that exploits the MapReduce paradigm to extract the k most fre-

quent closed itemsets. It is included in the Mahout machine learning Library

(version 0.9) and it is developed on Apache Hadoop. PFP is based on the

search space split parallelization strategy reported in Section 4. Specifically,

the distributed algorithm is based on building independent FP-trees (i.e.,

projected datasets) that can be processed separately over different nodes.

The algorithm consists of 3 MapReduce jobs.

First job. It builds the F-list, that is used to select frequent items, in a

MapReduce “Word Count” manner.

Second job. In the second job, the mappers project with respect to group

of items (prefixes) all the transactions of the input dataset to generate the

local projected contributions to the projected datasets. Then, the reducers

aggregate the projections associated with the items of the same group and

build independent complete FP-trees from them. Each complete FP-tree

is managed by one reducer, which runs a local main memory FP-growth

algorithm on it and extracts the frequent itemsets associated with it.

Third job. Finally, the last MapReduce job selects the top k frequent closed

itemsets.

The independent complete FP-trees can have different characteristics and

this factor has a significant impact on the execution time of the mining tasks.

As discussed in Section 4, this factor significantly impacts on load balancing.

Specifically, when the independent complete FP-trees have different sizes and

22

characteristics, the tasks are unbalanced because they addresses subproblems

with different complexities. This problem could be potentially solved by

splitting complex trees in sub-trees, each one associated with an independent

subproblem of the initial one. However, defining a metric to split a tree in

such a way to obtain sub-mining problems that are equivalent in terms of

execution time is not easy. In fact, the execution time of the itemset mining

process on an FP-Tree is not only related to its size (number of nodes)

but also to other characteristics (e.g., number of branches and frequency of

each node). Depending on the dataset characteristics, the communication

costs can be very high, especially when the projected the datasets overlap

significantly because in that case the overlapping part of the data is sent

multiple times on the network.

Spark PFP [19] represents a pure transposition of PFP to Spark. It

is included in MLlib, the Spark machine learning library. The algorithm

implementation in Spark is very close to the Hadoop sibling. The main

difference, in terms of addressed problem, is that MLlib PFP mines all the

frequent itemsets, whereas Mahout PFP mines only the top k closed itemsets.

Both implementations, being strongly inspired by FP-growth, keep from

the underlying centralized algorithm the features related to the search space

exploration (depth-first) and the ability to efficiently mine itemsets from

dense datasets.

5.3. DistEclat and BigFIM

DistEclat [44] is a Hadoop-based frequent itemset mining algorithms in-

spired by the Eclat algorithm, whereas BigFIM [44] is a mixed two-phase

algorithm that combines an Apriori-based approach with an Eclat-based one.

23

DistEclat is a frequent itemset miner developed on Apache Hadoop. It

exploits a parallel version of the Eclat algorithm to extract a superset of

closed itemsets

The algorithm mainly consists of two steps. The first step extracts k-

sized prefixes (i.e., frequent itemsets of length k) with respect to which, in

the second step, the algorithm builds independent projected subtrees, each

one associated with an independent subproblem. Even in this case, the main

idea is to mine these independent trees in different nodes, exploiting the

search split parallelization approach discussed in Section 4.

The algorithm is organized in 3 MapReduce jobs.

First job. In the initial job, a MapReduce job transposes the dataset into a

vertical representation.

Second job. In this MapReduce job, each mapper extracts a subset of the k-

sized prefixes (k-sized itemsets) by running Eclat on the frequent items, and

the related tidlists, assigned to it. The k-sized prefixes and the associated

tidlists are then split in groups and assigned to the mappers of the last job.

Third job. Each mapper of the last mapReduce job runs the in main memory

version of Eclat on its set of independent prefixes. The final set of frequent

itemsets is obtained by merging the outputs of the last job.

The mining of the frequent itemsets in two different steps (i.e., mining

of the itemsets of length k in the second job and mining of the other fre-

quent itemsets in the last job) aims at improving the load balancing of the

algorithm. Specifically, the split in two steps allows obtaining simpler sub-

problems, which are potentially characterized by similar execution times.

Hence, the application is overall well-balanced.

24

DistEclat is designed to be very fast but it assumes that all the tidlists

of the frequent items should be stored in main memory. In the worst case,

each mapper needs the complete dataset, in vertical format, to build all

the 2-prefixes [44]. This impacts negatively on the scalability of DistEclat

with respect to the dataset size. The algorithm inherits from the centralized

version the depth-first strategy to explore the search space and the preference

for dense datasets.

BigFIM is an Hadoop-based solution very similar to DistEclat. Analo-

gously to DistEclat, BigFIM is organized in two steps: (i) extraction of the

frequent itemsets of length less than or equal to the input parameter k and

(ii) execution of Eclat on the sub-problems obtained splitting the search space

with respect to the k-itemsets. The difference lies in the first step, where Big-

FIM exploits an Apriori-based algorithm to extract frequent k-itemsets, i.e.,

it adopts the data split parallelization approach (Section 4). Even if BigFIM

is slower than DistEclat, BigFIM is designed to run on larger datasets. The

reason is related to the first step in which, exploiting an Apriori-based ap-

proach, the k-prefixes are extracted in a breadth-first fashion. Consequently,

the nodes do not have to keep large tidlists in main memory but only the set

of candidate itemsets to be counted. However, this is also the most critical

issue in the application of the data split parallelization approach, because,

depending on the dataset density, the set of candidate itemsets may not be

stored in main memory.

Because of the two different techniques used by BigFIM in its two main

steps (data split and then search space split), in the first step BigFIM achieves

the best performance with sparse datasets, while in the second phase it better

25

fits dense data distributions.

DistEclat and BigFIM are the only algorithms specifically designed for

addressing load balancing and communication cost by means of the prefix

length parameter k. In particular, the choice of the length of the prefixes

generated during the first step affects both load balancing and communica-

tion cost.

6. Experimental evaluation

In this section, the results of the experimental comparison are presented.

The behaviors of the algorithm reference implementations are compared by

considering different data distributions and use cases. The experimental

evaluation aims at understanding the relations between the algorithm per-

formance and its parallelization strategies. Algorithm performance are eval-

uated in terms of (i) efficiency (i.e., execution time and scalability) under

different conditions (Sections 6.2-6.8), (ii) load balancing (Section 6.9), and

(iii) communication costs (Section 6.10).

6.1. Experimental setup

The experimental evaluation includes the following four algorithms, which

are described in Section 5:

• the Parallel FP-Growth implementation provided in Mahout 0.9 (named

Mahout PFP in the following) [17],

• the Parallel FP-Growth implementation provided in MLlib for Spark

1.3.0 (named MLlib PFP in the following) [19],

26

• the June 2015 implementation of BigFIM [45],

• the version of DistEclat downloaded from [45] on September 2015.

We recall that Mahout PFP extracts the top k frequent closed itemsets,

BigFIM and DistEclat extract a superset of the frequent closed itemsets,

while MLlib PFP extracts all the frequent itemsets. To perform a fair com-

parison, Mahout PFP is forced to output all the closed itemsets. Addition-

ally, in our experiments, the numbers of frequent itemsets and closed itemsets

are in the same order of magnitude. Therefore, even if the extraction of the

complete set of frequent itemsets is usually more resource-intensive than deal-

ing with only the set of frequent closed itemsets, the disadvantages related

to the more intensive task performed by MLlib are mitigated2

We defined a common set of default parameter values for all experiments.

Specific experiments with different settings are explicitly indicated. The de-

fault setting of each algorithm was chosen by taking into account the physical

characteristics of the Hadoop cluster, to allow each approach to exploit the

hardware and software configuration at its best.

• For Mahout PFP, the default value of k is set to the lowest value forcing

Mahout PFP to mine all frequent closed itemsets.

• For MLlib PFP the number of partitions is set to 6,000. This value

has shown to be the best tradeoff among performance and the capacity

2We recall that the complete set of frequent itemsets can be obtained expanding and

combining the closed itemsets by means of a post-processing step. Hence, to obtain the

same output, the execution times of Mahout PFP, BigFIM and DistEclat may increase

with respect to MLlib PFP

27

to complete the task without memory issues. In particular, with lower

values of the the number of partitions MLlib PFP cannot scale to very

long transactions or very low minsup. Higher values, instead, do not

lead to better scalability, while affecting performance.

• The default value of the prefix length parameter of both BigFIM and

DistEclat is set to 2, which achieves a good tradeoff among efficiency

and scalability of the two approaches.

• We did not define a default value of minsup, which is a common pa-

rameter of all algorithms, because it is highly related to the data distri-

bution and the use case, so this parameter value is specifically discussed

in each set of experiments.

We considered both synthetic and real datasets. The synthetic ones have

been generated by means of the IBM dataset generator [46], commonly used

for performance benchmarking in the itemset mining context. We tuned the

following parameters of the IBM dataset generator to analyze the impact

of different data distributions on the performance of the mining algorithms:

T = average size of transactions, P = average length of maximal patterns,

I = number of different items, C = correlation grade among patterns, and

D = number of transactions. The full list of synthetic datasets is reported in

Table 2, where the name of each dataset consists of pairs <parameter,value>.

Finally, two real datasets have been used to simulate real-life use cases. They

are described in Section 6.8.

All the experiments, except the speedup analysis, were performed on

a cluster of 5 nodes running the Cloudera Distribution of Apache Hadoop

28

(CDH5.3.1) [47]. Each cluster node is a 2.67 GHz six-core Intel(R) Xeon(R)

X5650 machine with 32 Gigabytes of main memory and SATA 7200-rpm hard

disks. The dimension of Yarn containers is set to 6 GB. This value leads to a

full exploitation of the resources of our hardware, representing a good trade-

off between the amount of memory assigned to each task and the level of

parallelism. Lower values would have increased the level of parallelism (i.e.

the number of concurrent parallel tasks) at the expense of the tasks avail-

able memory and, therefore, their ability to complete the frequent itemset

mining. Higher values, instead, would have decreased the maximum level of

parallelism.

For the speedup experiments we used a larger cluster of 30 nodes3 with

2.5 TB of total RAM and 324 processing cores provided by Intel CPUs E5-

2620 at 2.6GHz, running the same Cloudera Distribution of Apache Hadoop

(CDH5.3.1) [47].

From a practical point of view, all the implementations revealed to be

quite easy to deploy and use. Actually, the only requirement for all the

implementations to be run was the Hadoop/Spark installation (from a single

machine scenario to a large cluster). Only the MLlib PFP implementation

requires few additional steps and some coding skills, since it is delivered as

a library: users must develop their own class and compile it.

6.2. Impact of the minsup support threshold

The minimum support threshold (minsup) has a high impact on the com-

plexity of the itemset mining task. Specifically, the lower the minsup, the

3http://bigdata.polito.it

29

Table 2: Synthetic datasets

ID Name/IBM Generator Num. of Avg. Size

parameter setting different # items per (GB)

items transaction

1 T10-P5-I100k-C0.25-D10M 18001 10.2 0.5

2 T20-P5-I100k-C0.25-D10M 18011 19.9 1.2

3 T30-P5-I100k-C0.25-D10M 18011 29.9 1.8

4 T40-P5-I100k-C0.25-D10M 18010 39.9 2.4

5 T50-P5-I100k-C0.25-D10M 18014 49.9 3.0

6 T60-P5-I100k-C0.25-D10M 18010 59.9 3.5

7 T70-P5-I100k-C0.25-D10M 18016 69.9 4.1

8 T80-P5-I100k-C0.25-D10M 18012 79.9 4.7

9 T90-P5-I100k-C0.25-D10M 18014 89.9 5.3

10 T100-P5-I100k-C0.25-D10M 18015 99.9 5.9

11 T10-P5-I100k-C0.25-D50M 18015 10.2 3.0

12 T10-P5-I100k-C0.25-D100M 18016 10.2 6.0

13 T10-P5-I100k-C0.25-D500M 18017 10.2 30.4

14 T10-P5-I100k-C0.25-D1000M 18017 10.2 60.9

higher the complexity of the mining task [36]. For this reason, this set of

experiments uses very low minsup values. Specifically, we have tried to lower

as much as possible the minsup values to understand the behavior of the al-

gorithms dealing with such challenging tasks. Moreover, the selected minsup

values strongly affect the amount of mined knowledge (i.e., the number of

mined itemsets).

To avoid the bias due to a specific single data distribution, two different

datasets have been considered: Dataset #1 and Dataset #3 (Table 2). They

share the same average maximal pattern length (5), the number of different

items (100 thousands), the correlation grade among patterns (0.25), and

the number of transactions (10 millions). The difference is in the average

30

Figure 6: Execution time for different minsup values (Dataset #1), average transaction

length 10.

transaction length: 10 items for Dataset #1 and 30 items for Dataset #3.

Being the other characteristics constant, longer transactions lead to a higher

dataset density, which results into a larger number of frequent itemsets.

Figure 6 reports the execution time of the algorithms when varying the

minsup threshold from 0.002% to 0.4% and considering Dataset #1. DistE-

clat is the fastest algorithm for all the considered minsup values. However,

the improvement with respect to the other algorithms depends on the value

of minsup. When minsup is greater than or equal to 0.2%, all the implemen-

tations show similar performances. The performance gap largely increases

with minsup values lower than 0.05%. BigFIM is as fast as DistEclat when

minsup is higher than 0.1%, but below this threshold BigFIM runs out of

31

Figure 7: Execution time for different minsup values (Dataset #3), average transaction

length 30.

memory during the extraction of 2-itemsets.

In the second set of experiments, we analyzed the execution time of the

algorithms for different minimum support values on Dataset #3, which is

characterized by a higher average transaction length (3 times longer than

Dataset #1), and a larger data size on disk, with the same number of trans-

actions (10 millions). Since the mining task is more computationally in-

tensive, minsup values lower than 0.01% were not considered in this set of

experiments, as this has proven to be a limit for most algorithms due to

memory exhaustion or too long experimental duration (days). Results are

reported in Figure 7. MLlib PFP is much slower than Mahout PFP for most

minsup values (0.7% and below), and BigFIM, as in the previous experiment,

32

achieves top-level performance, but cannot scale to low minsup values (the

lowest is 0.3%), due to memory constraints during the k-itemset generation

phase. Finally, DistEclat was not able to run because the size of the initial

tidlists was already too big. Using the data-split approach, instead, BigFIM

generates the set of candidates to be tested in independent chunks of the

dataset. With a low minsup value, the set of candidates of the first phases is

already too large to be stored and tested in each independent task. Overall,

as expected, DistEclat is the fastest approach when it does not run out of

memory. Mahout PFP is the most reliable implementation across almost

all minsup values, even if it is not always the fastest, sometimes with large

gaps behind the top performers. MLlib is a reasonable tradeoff choice, as

it is constantly able to complete all the tasks in a reasonable time. Finally,

BigFIM does not present advantages over the other approaches, being unable

to reach low minsup values and to provide fast executions.

6.3. Impact of the average transaction length

We analyzed the effect of different average transaction lengths, from 10

to 100 items per transaction. We fixed the number of transactions to 10

millions. To this aim, Datasets #1–10 were used (see Table 2). Longer

transactions often lead to more dense datasets and a larger number of long

frequent itemsets. This generally corresponds to more computationally in-

tensive tasks. The execution times obtained are reported in Figure 8 and

Figure 9, with a respective minsup value of 1% and 0.1%. In the experiment

of Figure 8, BigFIM and DistEclat execution times for transaction length of

10 and 20 are not reported because, for these configurations, no 3-itemsets

33

Figure 8: Execution time with different average transaction lengths (Datasets #1–10,

minsup 1%).

are extracted and hence the two algorithms could not complete the mining.4

For higher transaction lengths, DistEclat is not included since it runs out of

memory for values beyond 20 items per transaction. The other algorithms

have similar execution times for short transactions, up to 30 items. For longer

transactions, a clear trend is shown: (i) MLlib PFP is much slower than the

others and it is not able to scale for longer transactions, as its execution

times abruptly increase until it runs out of memory; (ii) Mahout PFP and

BigFIM have a similar trend until 70 items per transactions, when Mahout

4Due to the absence of a specific test, BigFIM and DistEclat present some issues if no

itemsets longer than the value of the prefix length parameter are mined.

34

Figure 9: Execution time with different average transaction lengths (Datasets #1–10,

minsup 0.1%).

PFP becomes slower than BigFIM.

The experiments of Figure 9, shows a very similar trend, with exception that

also BigFIM is not able to run.

Overall, despite the Apriori-based initial phase, BigFIM proved to be the

best scaling approach for very long transactions and a relatively high min-

sup. When the minsup is decreased, BigFIM is penalized by the data-split

approach which assumes to store all the candidates in each task memory, and

only Mahout PFP is able to cope with the complexity of the task.

35

Figure 10: Execution time with different numbers of transactions (Datasets #1, #11–14,

minsup 0.4%).

6.4. Impact of the number of transactions

We evaluated the effect of varying the number of transactions, i.e., the

dataset size, without changing intrinsic data characteristics (e.g., transac-

tion length or data distribution). The experiments have been performed on

Datasets #1, #11–14 have been used (see Table 2), which have a number

of transactions ranging from 10 millions to 1 billion. The minsup is set to

0.4%, which is the highest value for which the mining leverages both phases

of BigFIM, and it corresponds to the highest value used in the experiments

of Section 6.2. Since in the experiment the relative minsup threshold is fixed,

from the mining point of view, the search space exploration is similar and

not particularly challenging, as shown in Section 6.2. What really affects this

36

experiment is the algorithms reliability dealing with such amounts of data.

As shown in Figure 10, all the considered algorithms scale almost linearly

with respect to the dataset cardinality, with BigFIM being the slowest, closely

followed by Mahout PFP, and with MLlib PFP being by far the fastest

approach, with execution times reduced by almost an order of magnitude.

PFP implementations are faster than BigFIM because they read from the

disk the input dataset only twice. BigFIM pays the iterative disk reading

activities during its initial Apriori phase when the number of records of the

input dataset increases. Finally, DistEclat fails under its assumption that

the tidlists of the entire dataset should be stored in each node, and it is not

able to complete the extraction beyond 10 million transactions.

6.5. Scalability in terms of parallelization degree

We analyzed the speedup by running the same mining problem with in-

creasing numbers of parallel tasks. The dataset selection and the minsup

parameter choice are difficult since we need to identify a mining problem

satisfying two conditions: (i) allowing all the executions to complete with

any number of parallel tasks, and, at the same time, (ii) being very demand-

ing so that the distributed framework is actually exploited. We selected

minsup 0.4% and Dataset #14 (see Table 2) to be light enough for condition

(i) and demanding enough for condition (ii). The speedup of a configuration

with a parallelization degree equal to p is computed as

speedup(paral degree = p) =
Exec T ime(paral degree = 1)

Exec T ime(paral degree = p)

Ideally, the speedup should be equal to the parallelization degree p itself,

37

Figure 11: Speedup with different parallelization degrees (Dataset #14, minsup 0.4%, the

green line represents the optimal behavior.)

i.e., increasing the number of resources (parallel tasks) of a factor p, should

lead to a speedup equal to p.

Figure 11 shows the speedup results. A parallelization degree equal to 1

corresponds to the minimal computational resource setting. In our case, it

matches a configuration with only two parallel independent tasks. Its execu-

tiion time is used as reference to compute the speedup related to the other,

more robust, configurations. For instance, the speedup related to a paral-

lelization degree equal to five is measured through a configuration exploiting

five times the amount of resources related to the basic configuration (i.e. ten

parallel independent tasks).

38

In this experiment, it is clear that the FP-Growth-based implementations

provide a better speedup. BigFIM, on the contrary, is not able to leverage

a number of parallel tasks higher than 6. Because of the size of the dataset,

DistEclat is not able to perform the mining.

6.6. Impact of framework and hardware configurations

We performed a set of experiments to test the behavior of the algorithms

with different framework and hardware configurations to identify possible

bottlenecks. We selected a set of configurations characterized by different

combinations of (i) parallelization degree, (ii) computational power (cores per

task) and (iii) memory (memory per task). The selected configurations are

reported in Table 3. Conf. 1 is considered the reference configuration. The

differences of the other configurations with respect to Conf. 1 are reported

in bold in Table 3.

Conf. 1, Conf. 2, and Conf. 3 are used to evaluate the impact of the com-

putational power (in terms of number of cores per task), Conf. 1 and Conf. 4

are used to evaluate the impact of the available memory, while Conf. 1,

Conf. 5, and Conf. 6 are used to compare the impact of the previous features

with respect to the parallelization degree. Experiments have been performed

on dataset #1, with a fixed minsup set to 0.2%, and on dataset #5, with a

minsup value set to 1.5%.5 The main difference between the two datasets is

the average transaction length (10 attributes per transaction in Dataset #1,

50 attributes per transaction in Dataset #5). In this way, it is possible to

5This support value is higher than that used in Section 6.3 to allow the execution of the

experiments also for the BigFIM algorithm with all the selected hardware configurations.

39

evaluate if the impact of hardware configuration is affected by data distri-

bution. For DistEclat, in the experiments with Dataset #1, we were forced

to reduce the dataset size to 1/10. In this way we were able to complete its

experiments in all configurations (please note that the intra-algorithm com-

parison is still possible in percentage). As evidenced in Section 6.3, DistEclat

does not suit large transactions length and, for this reason, we were not able

to run any experiment with Dataset #5.

Table 3: Framework and Hardware configurations

Configuration Parallelization Number Memory

name Degree of cores per task

per task (GB)

Conf. 1 5 1 1.5

Conf. 2 5 2 1.5

Conf. 3 5 3 1.5

Conf. 4 5 1 3

Conf. 5 2 1 1.5

Conf. 6 10 1 1.5

Figure 12 and 13 present the normalized execution time for each algo-

rithm over different configurations on Dataset #1. For each algorithm, the

normalized execution time is computed by dividing the execution time of each

configuration by the execution time of the slowest configuration. Hence, for

each algorithm, 100% is associated with the slowest configuration.

The comparison of Conf. 1, 2, and 3 shows that the number of cores

per task does not impact on the execution time of the algorithms. Only in

the second experiment (Figure 13), MLlib PFP seems to take advantage of

the superior computational power. This means that the work assigned to

each task, in the majority of the cases, can be performed by one single core.

40

Figure 12: Performances with different hardware configurations (Dataset #1, minsup

0.2%)

Hence, increasing the number of cores per task is not much effective.

Similarly, the main memory assigned to each task does not impact on

the execution time of the algorithms (see Conf. 1 and 4). Specifically, the

main memory per task impacts only on the size of the sub-problem that can

be managed by each task, but not on its execution time. Hence, a proper

setting of the main memory per task is required to be able to complete the

execution and obtain the results, but not for its efficiency and performance.

Finally, Configurations 1, 5, and 6 confirm that the parallelization degree

is the most important factor affecting the execution time of the considered

algorithms, as deeply investigated in Section 6.5, and especially in the cases

41

Figure 13: Performances with different hardware configurations (Dataset #5, minsup

1.5%

with a large amount of attributes per transactions Figure 13.

6.7. Execution time breakdown into phases

To investigate possible bottlenecks inside multi-phase algorithms, we com-

pared the execution times related to each phase. Specifically, for each algo-

rithm, we computed the percentage of time associated with the execution of

each phase with respect to the total execution time of the algorithm.

We selected Dataset #1 and we set minsup to 0.15%, which allowed us

to complete the full set of experiments with all algorithms.6

6In this set of experiments, we used a smaller configuration of our cluster to guarantee
network isolation. For this reason, we had to use a reduced version of Dataset #1 (1/10)

42

Figure 14: BigFIM: Execution time of its phases

As reported in Figure 14, for BigFIM the length of the prefixes extracted

in the first phase strongly affects the weight of that phase in the overall

process. For DistEclat (Figure 15), instead, the difference is not that heavy.

The last phase of both algorithms (i.e. the top dotted part on the graphs),

that is associated with the mining of the itemsets with a length greater than

the prefix-length threshold, has a lower impact on the execution time of the

algorithms, especially when a higher prefix threshold is set. These data, and

the failures reported in the experiments of the previous subsections, indicate

that the first two phases are the main bottlenecks for both algorithms. For

for DistEclat, very sensitive to memory issues.

43

Figure 15: DistEclat: Execution time of its phases

BigFIM, each phase is strongly exposed to memory issues, as resumed in

Table 4. The experiments demonstrate that the Apriori phase is particularly

challenging. For DistEclat, instead, the very first stage is dedicated to the

mining of 1-itemsets and it is mostly affected by high reading and communi-

cation costs. However, we have experienced some memory issues, which are

probably related to the handling of the tidlists. The other stages, instead,

are more likely to be affected by memory constraints.

Figure 16 reports the results for the PFP implementations. Mahout PFP

spends 1/3 of the time in the first phase, in which the F-list is generated,

while MLlib PFP is on the second phase for almost 90% of the time.7 The

7Please note that we have forced the materialization of all the preliminary results with

44

Figure 16: Mahout and MLlib PFP algorithms: Execution time of their phases

difference between the two approaches is motivated by the less elastic han-

dling of the different jobs by Hadoop with respect to the Spark framework.

Even if, especially for the Mahout PFP, the F-list generation could take a

good amount of time, it is not a possible bottleneck of the whole mining.

Firstly, it is a very flat WordCount-like application, characterized by high

reading and communication costs, and secondly, it has never shown to be a

point of failure in any previous experiment. From Figure 16, the bottleneck

for the FP-growth-based algorithms is the itemset extraction phase (i.e., the

second phase of both MLlib PFP and Mahout PFP), strongly constrained

the Spark-based MLlib PFP.

45

by memory.

All the algorithms and the majority of their phases are strongly bottle-

necked by memory issues. Memory availability is the main factor affecting

the ability of each algorithm to complete the itemset extraction. Interest-

ingly, we have seen that it does not affect the execution time performances

(Subsection 6.6).

We have also tried to track and measure the resource utilization in terms

of disk usage (read and write phases of HDFS), network communication, and

CPU usage. Please note that the values are normalized with respect to the

maximum resource utilization. Specifically, Figures 17a and 17b report the

achieved results for BigFIM and DistEclat, while Figures 18a and 18b show

the results for the PFP-based implementations.

Figures 17a and 17b highlight two main peaks in resources utilization for

BigFIM and DistEclat.8 For BigFIM the first peak is related to the Apriori

phase and the k+1-prefixes generation, while the second is related to the

depth-first mining. Similarly, for DistEclat the first peak is related to the

singleton and prefixes generation while the second to the depth-first mining.

In Figure 18a it is shown the behavior in terms of resource utilization of

Mahout PFP. The first peak in terms of HDFS and Network communication

is related to the initial F-list generation. After that, the tree exploration

starts and the CPU is more exploited. The last peaks are related to the

aggregation job used to extract the top-k frequent closed itemsets. Figure 18b

shows instead the MLlib PFP resource usage. Also the MLlib implementation

8For the sake of clarity we have used a prefix length of 1 to enhance the effect of the

last mining phase.

46

Table 4: Stage Bottlenecks

Algorithm Phases Bottleneck

FP-growth-based

Algorithms

F-List Reading and Communication Cost

FP-Tree Mining Memory

BigFIM

Apriori Phases Memory

K+1 Prefixes Memory

Eclat Mining Memory

DistEclat

Singletons Read. and Comm. Cost + Memory

Prefixes Memory

Eclat Mining Memory

of PFP is characterized by an initial peak in terms of HDFS operations

followed by a peak in terms of CPU usage, associated with the intensive

mining phase.

(a) BigFIM: Resource utilization (b) DistEclat: Resource utilization

Figure 17: Resource utilization

47

(a) Mahout PFP: Resource utilization (b) MLlib PFP: Resource utilization

Figure 18: Resource utilization

6.8. Real use cases

In the following, we analyze the performance of the mining algorithms

in two real-life scenarios: (i) URL tagging of the Delicious dataset and (ii)

network traffic flow analysis. The characteristics of the two datasets are

reported in Table 5.

Table 5: Real-life use-cases dataset characteristics
ID Name Num. of Avg. # items Transactions Size

different items per transaction (GB)

15 Delicious 57,372,977 4 41,949,956 44.5

16 Netlogs 160,941,600 15 10,729,440 0.61

6.8.1. URL tagging

We evaluated the selected algorithms on the Delicious dataset [48], which

is a collection of web tags. Each record represents the tag assigned by a

user to a URL and it consists of 4 attributes: date, user id (anonymized),

tagged URL, and tag value. The transactional representation of the Delicious

48

dataset includes one transaction for each record, where each transaction is

a set of four pairs (attribute, value), i.e., one pair for each attribute. The

dataset stores more than 3 years of web tags. It is very sparse because of the

huge number of different URLs and tags. Additional characteristics of the

dataset are reported in Table 6.

This experiment simulates the environment of a service provider that pe-

riodically analyzes the web tag data to extract frequent patterns: they rep-

resent the most frequent correlations among tags, URLs, users, and dates.

Many different use cases can fit this description: tag prediction, topic clas-

sification, trend evolution, etc. Their evolution over time is also interesting.

To this aim, the frequent itemset extraction has been executed cumulatively

on temporally adjacent subsets of data, whose length is a quarter of year

(i.e., first quarter, then first and second quarter, then first, second, and third

quarter, and so on, as if the data were being colleted quarterly and analyzed

as a whole at the end of each quarter). The setting of minsup in a realistic

use-case proved to be a critical choice. Too low values lead to millions of

itemsets, which become useless as they exceed the human capacity to un-

derstand the results. However, too high minsup values would discard longer

itemsets, which are more meaningful as they better highlight more complex

correlations among the different attributes and values. Because of the high

sparsity of the dataset, we identified the setting minsup=0.01% as the best

tradeoff.

Table 6 reports the cumulative number of transactions for the different

periods of time (i.e., the cardinality of the input dataset) and the number of

frequent itemsets extracted with a fixedminsup of 0.01%, while the execution

49

Table 6: Delicious dataset: cumulative number of transactions and frequent itemsets with

minsup 0.01%.

Up to year, Number of Number of

month, quarter transactions frequent itemsets

2003 Dec, Q4 153,375 7197

2004 Mar, Q1 489,556 6013

2004 Jun, Q2 977,515 5268

2004 Sep, Q3 2,021,261 5084

2004 Dec, Q4 4,349,209 4714

2005 Mar, Q1 9,110,195 4099

2005 Jun, Q2 15,388,516 3766

2005 Sep, Q3 24,974,689 3402

2005 Dec, Q4 41,949,956 3090

Figure 19: Execution time for different periods of time on the Delicious dataset

(minsup=0.01%)

50

times of the different algorithms are shown in Figure 19.

MLlib PFP consistently proves to be the fastest approach, with DistEclat

following. However, while DistEclat is slightly faster than MLlib PFP only

with the first, smallest dataset (up to Dec 2003, with 150 thousands trans-

actions), when the dataset size increases, DistEclat execution time does not

scale. DistEclat eventually fails for the final 40-million-transaction dataset

of Dec 2005, due to memory exhaustion. BigFIM and Mahout PFP consis-

tently provide 2 to 3 times higher execution times. Apart from DistEclat, all

algorithms complete the task with similar performance despite increasing the

dataset cardinality from 150 thousand transactions to 41 millions, thanks to

the constant relative minsup threshold which reduces the number of frequent

itemsets for decreasing density of the dataset. Hence, MLlib PFP is the best

choice for this dataset characterized by short transactions (the transaction

length is 4).

6.8.2. Network traffic flows

This use case entails the analysis of a network environment by using a

network traffic log dataset, where each transaction represents a TCP flow. A

network flow is a bidirectional communication between a client and a server.

The dataset has been gathered through Tstat [49, 50], a popular internet

traffic sniffer broadly used in literature [7, 51, 52, 53], by performing a one

day capture in three different vantage points of a nation-wide Internet Service

Provider in Italy. Each transaction of the dataset is associated with a flow

and consists of pairs (flow feature, value). These features can be categorical

(e.g., TCP Port, Window Scale) or numerical (e.g., RTT, Number of packets,

Number of bytes). Numerical attributes have been discretized by using the

51

Figure 20: Number of flows for each hour of the day.

same approach adopted in [7]. Finally, we have divided the set of flows (i.e.,

the set of transactions) in 1-hour slots, generating 24 sub-datasets. The

number of flows in each sub-dataset is reported in Figure 20.

In this use case, the network administrator is interested in performing

hourly analysis to shape the hourly network traffic. Hence, we evaluated

the performance of the four algorithms, comparing their execution time, on

the 24 hourly sub-datasets. For all the 24 experiments minsup was set to

1%, which was the tradeoff value allowing all the algorithms to complete the

extraction.

The results are reported in Figure 21, where the performance of the dif-

ferent approaches show a clear trend: DistEclat always achieves the lowest

execution time, followed by MLlib PFP and BigFIM. Mahout PFP is the

52

Figure 21: Execution time of different hours of the day. (dataset 31, minsup=1%)

slowest. The execution time is almost independent of the dataset cardinal-

ity, as it slightly changes throughout the day. The low dataset size (less

than 1 Gigabyte overall) and cardinality (less than 1 million transactions)

make this the ideal use case for DistEclat, which strongly exploits in-memory

computation.

6.9. Load balancing

We analyzed load balancing on a 1-hour-long subset of the network log

dataset (Table 5) with a fixed minsup of 1%. We consider the most unbal-

anced jobs of each algorithm and compare the execution times of the fastest

and the slowest tasks. To this aim, we are not interested in the absolute exe-

cution time, but rather in the normalized execution times, where the slowest

53

Table 7: Network traffic flows: number of transactions and frequent itemsets with

minsup 0.1%.

Hour of Number of Number of

the day transactions frequent itemsets

0.00 437,417 166,217

1.00 318,289 173,960

2.00 205,930 163,266

3.00 162,593 166,344

4.00 122,102 157,069

5.00 123,683 164,493

6.00 121,346 170,129

7.00 127,056 159,921

8.00 211,641 169,751

9.00 357,838 187,912

10.00 644,408 191,867

11.00 656,965 183,021

12.00 648,206 184,279

13.00 630,434 180,384

14.00 544,572 175,252

15.00 729,518 192,992

16.00 735,850 189,160

17.00 611,582 177,808

18.00 719,537 179,228

19.00 607,043 174,783

20.00 477,760 161,153

21.00 470,291 159,065

22.00 534,103 144,212

23.00 531,276 164,516

task is assigned a value of 100, and the fastest task is compared to such value,

as reported in Figure 22.

MLlib PFP achieves the best load balancing, with comparable execution

times for all tasks throughout all nodes, whose difference is in the order of

54

Figure 22: Normalized execution time of the most unbalanced tasks.

10%. Mahout PFP, instead, shows the worst load balancing issues, with dif-

ferences as high as 90%. The difference between MLlib PFP and Mahout

PFP can be correlated to the granularity of the subproblems. The smaller

the subproblems, the better the load balancing because their execution times

are more similar. MLlib PFP allows specifying the number of partitions, i.e.,

of subproblems, which obviously impacts on the granularity of each subprob-

lem. Hence, setting opportunely this parameter, a good load balancing result

is achieved. Differently, Mahout PFP automatically sets the number of sub-

problems and the current heuristic used to set it does not seem to work well

on the considered datasets (unbalanced subproblems are generated).

We included BigFIM and DistEclat with 2 different first-phase prefix

55

Figure 23: Communication costs and performance for each algorithm, Datasets #1,

minsup 0.1%. The graph reports an average between transmitted and reveiced data.

sizes. For these algorithms, the experiment confirms that a configuration with

longer prefixes leads to a more balanced mining tasks than a configuration

with short-sized prefixes, as mentioned in Subsection 5.3.

6.10. Communication costs

To evaluate the communication cost, we measure the amount of data

transmitted and received through the nodes network interfaces. This infor-

mation has been retrieved by means of the utilities provided by the Cloudera

Manager tool.

The experiments have been performed on Dataset #1 with a fixedminsup

value of 0.1%, which was the lowest value for which all algorithms completed

56

the extraction. Figure 23 reports, for each algorithm, the average value

among transmitted and received traffic, compared to the total execution time.

Firstly, the two measures do not seem to be correlated: higher communication

costs are associated with low execution times for BigFIM and DistEclat,

whereas MLlib reports both measures with high values. Mahout PFP has a

communication cost 4 to 5 times lower than all the others, which exchange

an average of 2 Gigabytes of data. Mahout PFP average communication

cost is around 0.5 Gigabytes, which is approximately the dataset size. The

difference between DistEclat and BigFIM is not large because with only

2-length prefixes just an extra iteration is done by BigFIM. Even though

Mahout PFP is the most communication-cost optimized implementation, the

very low amount of data sent through the network is related to the adoption

of compression techniques, which lead to higher execution times.

6.11. Discussion

The experiments confirm that the performance of the data-split-based

algorithms (i.e., BigFIM in its first phase) is highly affected by the number of

candidate itemsets, which must be stored in the temporary main memory of

each task. Specifically, BigFIM crashes during its Apriori-based phase when

low minsup values or dense datasets are considered, due to the large number

of generated candidate itemsets. This issue does not affect the approaches

based on the search split strategy (Mahout PFP and MLlib PFP), since they

do not need to store candidate itemsets as an intermediate result. Hence,

Mahout PFP and MLlib PFP proved to be more suitable than BigFIM to

process large dataset sizes, high-density datasets, and lowminsup thresholds.

DistEclat deserves a separate consideration: even if it is based on the search

57

space approach, it often runs out of memory, because in its initial job it needs

to store the tidlists of all frequent items in main memory and this operation

becomes easily unfeasible when large or dense datasets are considered.

Experiments also highlight the predominant importance of load balanc-

ing in the itemset mining problem, in particular when comparing BigFIM to

Mahout PFP. Since the initial mining phase of BigFIM is based on the data

split parallelization approach, it reads many times the input dataset (differ-

ently than Mahout PFP). Moreover, BigFIM is also characterized by greater

communication costs than Mahout PFP. These two factors should impact sig-

nificantly on the execution time of BigFIM. Instead, not only the execution

time of BigFIM is comparable with that of Mahout PFP with 1000-million

record datasets (Figure 10), but BigFIM is also even faster than Mahout

PFP in specific cases, e.g., with datasets with an average number of items

per transaction greater than 70 (Figure 8). The rationale of such results is

the better load balancing of BigFIM with respect to Mahout PFP. Results

highlight that load balancing seems to be predominant on the number of

dataset reads (I/O costs) and communication costs in the parallelization of

the itemset mining problem.

7. Lessons Learned

The reported experiments provide a wide view of the different behaviours

of the algorithms in various experimental settings. With this section, we aim

at supporting the reader in a conscious choice of the most suitable approach,

depending on the use case at hand. Pursuing this target, we measured the

real-life performance of the openly-available frequent-pattern mining imple-

58

mentations for the most popular distributed platforms (i.e., Hadoop and

Spark). They have been tested on many different datasets characterized by

different values of minimum support (minsup), transaction length (dimen-

sionality), number of transactions (cardinality), and dataset density, besides

two real-life use cases. Performance in terms of execution time, load balanc-

ing, and communication cost have been evaluated: a one-table summary of

the results is reported in Table 8. As a result of the described experience,

the following general suggestions emerge:

• High reliability. Without prior knowledge of dataset density, di-

mensionality (average transaction length), and cardinality (number of

transactions), Mahout PFP is the algorithm that best guarantees the

mining task completion, at the expense of longer execution times. Ma-

hout PFP is the only algorithm able to always reach the experimental

limits.

• High cardinality and low-dimensional data. On most real-world

use cases, with limited dimensionality (up to 60 items per transaction

on average), MLlib PFP has proven to be the most reasonable tradeoff

choice, with fast execution times and optimal scalability to very large

datasets.

• High-dimensional data. For high-dimensional datasets, BigFIM

resulted the fastest approach, but it cannot cope with minsup values

as low as the others. In those cases, Mahout PFP represents the only

option.

59

• Limited dataset size. When the dataset size is small with respect

to the available memory, DistEclat has proven to be among the fastest

approaches, and also to be able to reach the lowest experimentalminsup

values. DistEclat experiments showed that it cannot scale for large or

high-dimensional datasets, but when it can complete the itemset ex-

traction, it is very fast.

Table 8: Summary of the limits identified by the experimental evaluation of the algorithms

(lowest minsup, maximum transaction length, largest dataset cardinality). The faster

algorithm for each experiment is marked in bold.

Section 6.2 Section 6.2 Section 6.3 Section 6.4

minsup minsup transaction millions of

length transactions

Mahout PFP 0.002% 0.01% 100 (0.1%) 100

MLlib PFP 0.002% 0.01% 60 100

BigFIM 0.1% 0.3% 100 (1%) 100

DistEclat 0.002% - - 1

8. Open research issues

The comparative study presented in this review highlighted interesting

research directions to enhance distributed itemset mining algorithms for Big

Data.

Smarter load balancing techniques. The experimental evaluation al-

lowed us to show that load balancing issues significantly affect distributed

itemset mining performance, more than communication and I/O costs (e.g.,

reading the dataset many times). Specifically, the different complexity among

the task-level sub-problems leads to load unbalance in the cluster (i.e., some

60

sub-problems are more computationally expensive and time consuming than

others causing inefficient resource usage). Load balancing improvements

should be addressed in the design of new distributed frequent itemset min-

ing algorithms. In that context, we believe that a new research direction to

investigate is the definition of variable-length prefixes, with respect to which

the mining sub-problems are defined, hence leading to a more balanced ex-

ploration of the search space.

Self-tuning itemset mining frameworks. As discussed in the paper,

different algorithms have been proposed in literature to discover frequent

itemsets. However, the efficient exploitation of each algorithm strongly de-

pends on specific skills and expertise. The analyst is required to select

the best method to efficiently deal with the underlying data characteris-

tics, and manually configure it (e.g., from input parameters settings, such

as the minsup threshold, the k parameter of BigFIM, etc., to distributed

frameworks tuning). Thus, state-of-the-art algorithms may become inef-

fective because of the inefficient hand-picked choices of the inappropriate

specific implementations, and cumbersome parameter-configuration sessions.

The improvements in algorithm usability should be addressed by designing

innovative self-tuning itemset mining frameworks, capable of intelligently se-

lecting the most appropriate itemset extraction algorithm and automatically

configuring it.

Acknowledgement

The research leading to these results has received funding from the Euro-

pean Union under the FP7 Grant Agreement n. 619633 (Project “ONTIC”).

61

[1] O. Y. Al-Jarrah, P. D. Yoo, S. Muhaidat, G. K. Karagiannidis, K. Taha,

Efficient machine learning for big data: A review, Big Data Research

2 (3) (2015) 87–93.

[2] R. Xu, D. Wunsch, II, Survey of clustering algorithms, Trans. Neur.

Netw. 16 (3) (2005) 645–678.

[3] J. Han, H. Cheng, D. Xin, X. Yan, Frequent pattern mining: Current

status and future directions, Data Min. Knowl. Discov. 15 (1) (2007)

55–86.

[4] C. C. Aggarwal, Data Classification: Algorithms and Applications, 1st

Edition, Chapman & Hall/CRC, 2014.

[5] D. Borthakur, The hadoop distributed file system: Architecture and

design, Hadoop Project 11 (2007) 21.

[6] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster computing, in: NSDI’12,

2012, pp. 2–2.

[7] D. Apiletti, E. Baralis, T. Cerquitelli, S. Chiusano, L. Grimaudo,

Searum: A cloud-based service for association rule mining, in: 12th

IEEE International Conference on Trust, Security and Privacy in Com-

puting and Communications, TrustCom 2013 / 11th IEEE International

Symposium on Parallel and Distributed Processing with Applications,

ISPA-13 / 12th IEEE International Conference on Ubiquitous Comput-

62

ing and Communications, IUCC-2013, Melbourne, Australia, July 16-18,

2013, 2013, pp. 1283–1290.

[8] D. Antonelli, E. Baralis, G. Bruno, L. Cagliero, T. Cerquitelli, S. Chiu-

sano, P. Garza, N. A. Mahoto, MeTA: Characterization of Medical

Treatments at Different Abstraction Levels, ACM TIST 6 (4) (2015)

57.

[9] G. Cong, A. K. H. Tung, X. Xu, F. Pan, J. Yang, FARMER: finding

interesting rule groups in microarray datasets, in: G. Weikum, A. C.

König, S. Deßloch (Eds.), Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, Paris, France, June 13-18,

2004, ACM, 2004, pp. 143–154. doi:10.1145/1007568.1007587.

URL http://doi.acm.org/10.1145/1007568.1007587

[10] T. Cerquitelli, E. D. Corso, Characterizing thermal energy consumption

through exploratory data mining algorithms, in: Proceedings of the

Workshops of the EDBT/ICDT 2016 Joint Conference, EDBT/ICDT

Workshops 2016, Bordeaux, France, March 15, 2016., 2016, pp. 1–8.

URL http://ceur-ws.org/Vol-1558/paper15.pdf

[11] M. L. Antonie, O. R. Zaiane, A. Coman, Application of data mining

techniques for medical image classification, In MDM/KDD.

[12] E. Baralis, G. Bruno, T. Cerquitelli, S. Chiusano, A. Fiori, A. Grand,

Semi-automatic knowledge extraction to enrich open linked data, Cases

on Open-Linked Data and Semantic Web Applications / Patricia Ordoez

de Pablos.

63

[13] E. Baralis, L. Cagliero, A. Fiori, P. Garza, Mwi-sum: A multilingual

summarizer based on frequent weighted itemsets, ACM Trans. Inf. Syst.

34 (1) (2015) 5.

[14] A. de Andrade Lopes, R. Pinho, F. V. Paulovich, R. Minghim, Visual

text mining using association rules, Computers & Graphics 31 (3) (2007)

316–326. doi:10.1016/j.cag.2007.01.023.

URL http://dx.doi.org/10.1016/j.cag.2007.01.023

[15] M. Mampaey, N. Tatti, J. Vreeken, Tell me what i need to know: Suc-

cinctly summarizing data with itemsets, in: Proceedings of the 17th

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’11, ACM, New York, NY, USA, 2011, pp. 573–581.

doi:10.1145/2020408.2020499.

URL http://doi.acm.org/10.1145/2020408.2020499

[16] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large

clusters, in: OSDI’04, 2004, pp. 10–10.

[17] The Apache Mahout machine learning library, last Accessed:

16/10/2015 (2013).

URL http://mahout.apache.org/

[18] MADlib: Big Data Machine Learning in SQL, last Accessed:

16/10/2015.

URL http://madlib.net/

[19] The Apache Spark scalable machine learning library, last Accessed:

64

16/10/2015 (2015).

URL https://spark.apache.org/mllib/

[20] M. P. Forum, MPI: A message-passing interface standard, Tech. rep.,

Knoxville, TN, USA (1994).

[21] I. Pramudiono, M. Kitsuregawa, Parallel FP-growth on PC cluster,

in: Pacific-Asia Conference on Knowledge Discovery and Data Mining,

Springer, 2003, pp. 467–473.

[22] M. Craus, A new parallel algorithm for the frequent itemset mining

problem, in: 2008 International Symposium on Parallel and Distributed

Computing, 2008, pp. 165–170. doi:10.1109/ISPDC.2008.45.

[23] E. Ansari, G. Dastghaibifard, M. Keshtkaran, H. Kaabi, Distributed

frequent itemset mining using trie data structure, IAENG International

Journal of Computer Science 35 (3) (2008) 377–381.

[24] G. Buehrer, S. Parthasarathy, S. Tatikonda, T. Kurc, J. Saltz, To-

ward terabyte pattern mining: an architecture-conscious solution, in:

Proceedings of the 12th ACM SIGPLAN symposium on Principles and

practice of parallel programming, ACM, 2007, pp. 2–12.

[25] A. Vishnu, K. Agarwal, Large scale frequent pattern mining using mpi

one-sided model, in: Cluster Computing (CLUSTER), 2015 IEEE In-

ternational Conference on, IEEE, 2015, pp. 138–147.

[26] J. L. Reyes-Ortiz, L. Oneto, D. Anguita, Big data analytics in the cloud:

Spark on hadoop vs mpi/openmp on beowulf, Procedia Computer Sci-

ence 53 (2015) 121–130.

65

[27] F. Zhang, Y. Zhang, J. D. Bakos, Accelerating frequent itemset mining

on graphics processing units, The Journal of Supercomputing 66 (1)

(2013) 94–117. doi:10.1007/s11227-013-0887-x.

[28] W. Fang, M. Lu, X. Xiao, B. He, Q. Luo, Frequent itemset mining on

graphics processors, in: Proceedings of the fifth international workshop

on data management on new hardware, ACM, 2009, pp. 34–42.

[29] B. He, W. Fang, Q. Luo, N. K. Govindaraju, T. Wang, Mars: a mapre-

duce framework on graphics processors, in: Proceedings of the 17th

international conference on Parallel architectures and compilation tech-

niques, ACM, 2008, pp. 260–269.

[30] D. Bhalodiya, C. Patel, Comparative study of frequent itemset mining

techniques on graphics processor, International Journal of engineering

Research and Applications 1 (4) (2014) 159–163.

[31] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, S. U.

Khan, The rise of big data on cloud computing: Review and open re-

search issues, Information Systems 47 (2015) 98–115.

[32] K. Kambatla, G. Kollias, V. Kumar, A. Grama, Trends in big data

analytics, Journal of Parallel and Distributed Computing 74 (7) (2014)

2561–2573.

[33] X. Wu, X. Zhu, G.-Q. Wu, W. Ding, Data mining with big data, ieee

transactions on knowledge and data engineering 26 (1) (2014) 97–107.

[34] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,

M. Stonebraker, A comparison of approaches to large-scale data analysis,

66

in: Proceedings of the 2009 ACM SIGMOD International Conference on

Management of data, ACM, 2009, pp. 165–178.

[35] B. Goethals, Survey on frequent pattern mining, Univ. of Helsinki.

[36] C. C. Aggarwal, J. Han, Frequent pattern mining, Springer, 2014.

[37] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Discovering frequent

closed itemsets for association rules, in: Proceedings of the 7th Inter-

national Conference on Database Theory, ICDT ’99, Springer-Verlag,

London, UK, UK, 1999, pp. 398–416.

URL http://dl.acm.org/citation.cfm?id=645503.656256

[38] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in

large databases, in: Proceedings of the 20th International Conference

on Very Large Data Bases, VLDB ’94, Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1994, pp. 487–499.

URL http://dl.acm.org/citation.cfm?id=645920.672836

[39] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate

generation, in: SIGMOD ’00, 2000, pp. 1–12.

[40] M. J. Zaki, S. Parthasarathy, M. Ogihara, W. Li, New algorithms for

fast discovery of association rules, in: KDD’97, AAAI Press, 1997, pp.

283–286.

[41] L. Vu, G. Alaghband, Mining frequent patterns based on data character-

istics, in: Proceedings of 2012 International Conference on Information

and Knowledge Engineering, 2012, pp. 369–375.

67

[42] H. Qiu, R. Gu, C. Yuan, Y. Huang, YAFIM: A parallel frequent itemset

mining algorithm with spark, in: IPDPSW’14, 2014, pp. 1664–1671.

[43] H. Li, Y. Wang, D. Zhang, M. Zhang, E. Y. Chang, PFP: parallel fp-

growth for query recommendation, in: RecSys’08, 2008, pp. 107–114.

[44] S. Moens, E. Aksehirli, B. Goethals, Frequent itemset mining for big

data, in: SML: BigData 2013 Workshop on Scalable Machine Learning,

IEEE, 2013.

[45] S. Moens, E. Aksehirli, , B. Goethals, Dist-eclat and bigfim,

https://github.com/ua-adrem/bigfim (2013).

[46] N. Agrawal, T. Imielinski, A. Swami, Database mining: A performance

perspective, In IEEE TKDE 5 (6).

[47] Cloudera, last Accessed: 16/10/2015.

URL http://www.cloudera.com

[48] R. Wetzker, C. Zimmermann, C. Bauckhage, Analyzing social book-

marking systems: A del.icio.us cookbook, in: Mining Social Data

(MSoDa) Workshop Proceedings, ECAI 2008, 2008, pp. 26–30.

[49] A. Finamore, M. Mellia, M. Meo, M. Munafò, D. Rossi, Experiences of

internet traffic monitoring with tstat, IEEE Network 25 (3) (2011) 8–14.

[50] M. Mellia, M. Meo, L. Muscariello, D. Rossi, Passive analysis of tcp

anomalies, Computer Networks 52 (14) (2008) 2663–2676.

68

[51] D. Giordano, S. Traverso, L. Grimaudo, M. Mellia, E. Baralis, A. Ton-

gaonkar, S. Saha, Youlighter: An unsupervised methodology to unveil

youtube cdn changes, arXiv preprint arXiv:1503.05426.

[52] M. Garetto, E. Leonardi, V. Martina, A unified approach to the perfor-

mance analysis of caching systems, ACM Transactions on Modeling and

Performance Evaluation of Computing Systems 1 (3) (2016) 12.

[53] D. Apiletti, E. Baralis, T. Cerquitelli, P. Garza, D. Giordano, M. Mellia,

L. Venturini, Selina: a self-learning insightful network analyzer, IEEE

Transactions on Network and Service Management 13 (3) (2016) 696–

710.

69

