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Twitter data laid almost bare: an insightful
exploratory analyser

Xin Xiao®*, Antonio Attanasio?, Silvia Chiusano®*, Tania Cerquitelli*

@Control and Computer Engineering Department, Politecnico di Torino, Corso Duca
degli Abruzzi, 24 - 10129 Torino, ITtaly

Abstract

In today’s world, social networks and online communities continuously gen-
erate tons of data that reflect users’ habits, personal interests, opinions and
emotions. However, little profit can be gained from such huge raw data
collections unless we are able to translate them into useful knowledge. Twit-
ter, currently the leading microblogging social network, has attracted a great
body of research works. Indeed, the rather heterogeneous dimensions charac-
terizing Twitter data, such as space, time and text content, impose innovative
methods in the data mining discovery process.

This paper presents TCIHHARM, a data analytics methodology based on
clustering and pattern discovery, to gain interesting knowledge from large
complex collections of tweets. Cluster analysis is driven by a novel com-
bined distance measure, named TASTE, to group tweets according to their
spatio-temporal features and text content. In TASTE, the contributions of
temporal and spatial distances are parametric and grounded on exponential
proportionality. Each computed cluster is then locally characterized through
association rules to ease the inspection of its Twitter messages. A cate-
gorization of rules into a few reference classes and topics is also proposed.
TCHARM exploits the computational advantages of distributed computing
frameworks, as the current implementation runs on Apache Spark. The ex-
perimental evaluation performed on real datasets demonstrates the effective-
ness of the proposed approach in discovering cohesive clusters and actionable
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knowledge from Twitter data.

Keywords: Cluster analysis, Association rules, Text-spatio-temporal
distance, Tweets, Social networks, Apache Spark
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1. Introduction

Microblogs like Twitter have recently become a popular platform with
millions of users and an impressive flow of messages (tweets) are published
daily and spread by exchanges among users. The conciseness of their text
messages (up to 140 characters) allows a very large number of tweets to be
published at extremely low cost, thus making Twitter a timely and fresh
source of data. Tweets can also be enriched with additional information
describing their spatio-temporal publication context, such as when it was
posted and the geographical location of the user.

The collection of tweets provides useful information to help understand
peoples opinions and preferences on different topics, how peoples interests
are spread across geographical areas and how they evolve over time. This
better understanding of the collective dynamics of user interests can play
a significant role in devising the most appropriate strategies and effective
actions in various domains. From a business perspective, analyzing the trends
of topics like sports, movies, and/or fashion, in different areas and time
periods can help companies improve their services/products, the distribution
of products as well as the planning of targeted promotional campaigns for
specific services/products. In the Internet for instance, the analysis of social
dynamics in different geographical areas helps characterize and predict the
demand and supply of specific goods (Ikeda et al., 2013). On the other hand,
policy makers can exploit microblogs in order to better understand peoples
opinions regarding highly debated topics such as transport networks, taxes,
healthcare systems, and public safety in different urban, regional or country
areas and over time. The hidden knowledge in user messages allows policy
makers to identify significant problems and devise targeted actions as well as
evaluate how citizens perceive their effectiveness.

Although a large body of research focused on Twitter data analysis has
already been proposed (e.g., (?Phelan et al., 2009; Steiger et al., 2016)),
the potential impact of mining social data is still largely unexplored because
various critical issues are yet to be addressed when analyzing tons of tweets to
identify insightful nuggets. (i) Since a large number of tweets are continuously
being posted worldwide, the size of tweet collections to be explored grows
at an ever increasing rate. (ii) The collection of tweets generally tends to
be scattered in spatio-temporal dimensions, and the conciseness of the tweet
messages increases the brevity of their textual content (iii) Furthermore, the
distribution of tweets can be characterized by different spatial and temporal
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granularities. (iv) Mined knowledge should be represented using concise and
understandable patterns to enable its exploitation by domain experts. Thus,
innovative data analytics solutions are needed to effectively and efficiently
mine large Twitter data collections.

In this work we propose a novel exploratory analyser which enables end-
users to gather insightful information, including a spatio-temporal-text view-
point from tweet messages. Our data analytics methodology, named Tweets
CHARacterization Methodology (TCHARM), explores large collections of
Twitter data along the three dimensions characterizing tweets (i.e., text con-
tent, posting time and place) to support context-aware topic trend analysis.

TCHARM is based on two exploratory data mining techniques: (a) Clus-
ter analysis, to identify cohesive groups of tweets with similar text con-
tent posted from nearby geographical areas and at close time instances, and
(b) Association rule analysis, to find significant patterns that concisely de-
scribe each computed cluster. To make the proposed methodology scale up
to larger datasets, TCHARM exploits the computational advantages of dis-
tributed computing frameworks since the current implementation runs on
Apache Spark (Zaharia et al., 2010).

Unlike previous works ( e.g.,(Kim et al., 2011; Lee, 2012; Cunha et al.,
2014; Arcaini et al., 2016)), TCharM drives the clustering process by making
joint use of the tweet spatio-temporal features and text content. A novel Text
And Spatio-TEmporal distance measure, denoted by TASTE, is proposed in
this study in order to combine the contributions of all three tweet features in
one step. Through TASTE, spatial and temporal distances between tweets
are used to modulate the text content distance. By taking into account
both spatio-temporal features and text content in the clustering of tweets,
TCHARM findings can provide useful insights to identify the users topics
of interest in different areas and time periods. For instance, events such as
sports, culture and politics, which have widespread visibility, can be useful
to understand topics that are popular in different geographical areas. The
information provided by the spatio-temporal distribution of such clusters may
help characterize peoples involvement in different time frames. TCHARM has
been currently integrated into the K-means clustering algorithm (Pang-Ning
T. and Steinbach M. and Kumar V., 2006), to generate clusters of tweets
that can be concisely represented by their centroids.

TCHARM then locally investigates each computed cluster to mine signif-
icant patterns which reveal underlying correlations among frequent topics,
tweeting times and places that simultaneously emerge from cluster analysis.
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This task has been carried out using association rule analysis (Pang-Ning
T. and Steinbach M. and Kumar V., 2006), an exploratory data mining
technique to extract correlations among data items. Quality indices (e.g.,
confidence, support, and lift) are used to distinguish the most significant
correlations. Association rule analysis allows the extraction of the most re-
current spatio-temporal-text patterns in a systematic and structured way.
These patterns describe the cluster content using a concise and clear knowl-
edge representation.To further support the exploration of discovered pat-
terns, four different classes of association rules have been defined. By “class”
we mean a subset of patterns which determines significant relationships be-
tween tweet dimensions which can be used to perform a similar in-depth
analysis. The identified patterns can provide domain experts with valuable
support to identify which topics are most appealing to users in different areas
and time periods.

It is worth mentioning that our methodology can be exploited to support
knowledge discovery in different contexts, and in this study TCHARM has
been thoroughly evaluated using the large number of tweets collected during
the 2014 FIFA World Cup championship. This football competition was
selected as a representative case because it included a variety of events (e.g.,
football matches with different teams, ceremonies, celebrities statements)
spread over a set time period. Moreover, as it is of worldwide interest, peoples
interest in, and perceptions of, this kind of event may vary depending on
their geographical location. The experimental evaluation demonstrates the
effectiveness of TCHARM in identifying interesting knowledge regarding the
spatio-temporal distribution of peoples reactions to the events. The identified
clusters provide useful findings regarding hot topics for users, in the different
areas and time periods. Mined clusters are timely centered around an event
related to the 2014 FIFA World Cup Championship and they mainly include
messages about specific topics. Moreover, they show good spatio-temporal
cohesion around their centroid.

The rest of the paper is organized as follows: Section 2 summarizes the
related work regarding cluster analysis of Twitter data. Section 3 provides
an in-depth description of the TCHARM characteristics, while Section 4 dis-
cusses the experimental study conducted on the 2014 FTFA World Cup Cham-
pionship dataset. Section 5 provides a theoretical and analytical comparison
between TCHARM and some previous works on tweet clustering. Section
6 discusses the significance of TCharM findings and their possible exploita-
tion. Section 7 draws conclusions and future developments of the proposed
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approach.

2. Related Work

In the last few years the application of data mining techniques to discover
relevant social knowledge from tweets collections has become an appealing
research topic. Proposed approaches, mainly based on text processing and
its extensions to heterogeneous data, can be classified into the following two
main categories.

The first category refers to methods addressing the analysis of tweet tex-
tual content with the aim of (i) characterizing online communities (Rabiger
& Spiliopoulou, 2015), (ii) performing spam detection (Thomas et al., 2011),
(iil) detecting topics to analyse trends (Baralis et al., 2013; Vicient & Moreno,
2015; Yang & Rim, 2014), and (iv) addressing recommendation tasks (Phelan
et al., 2009).

The second category includes methods considering spatio-temporal infor-
mation in addition to tweet textual content. Different types of analysis have
been addressed as (i) discovering regional social activities or nearby events
using geo-tagged tweets (Kim et al., 2011), (ii) detecting events based on
cluster analysis (Lee, 2012; Steiger et al., 2016), (iii) extracting insightful
summaries of citizen perceptions from tweets (Bernabe-Moreno et al., 2015;
Lee et al., 2015), (iv) discovering contrasting situations by means of gener-
alized itemsets (Cagliero et al., 2014), (v) identifying the period in which a
burst of information diffusion took place (Saito et al., 2015), and (vi) mining
user opinions (Lloret et al., 2012).

Various approaches have been proposed to cluster tweets collections tak-
ing into account textual content and spatio-temporal information (Kim et al.,
2011; Steiger et al., 2016), though such works do not jointly exploit all these
features in the clustering process. Instead, they typically use a subset of
features for clustering, while remaining features are considered either in the
post-processing phase, for instance to refine or characterize discovered clus-
ters, or in the preprocessing phase, for example to specify spatial or temporal
segments in which tweets are locally clustered based on textual content. Kim
et al. (2011) cluster tweets based on their GPS coordinates using the K-means
algorithm, while Steiger et al. (2016) use a spatio-temporal clustering based
on Self Organizing Maps (SOM). In both approaches, discovered clusters are
then analysed to identify the main targeted topic. Density based clustering,
mainly based on the DBSCAN algorithm, has been also adopted to detect
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high spatial concentrations or temporal bursts of tweets about specific top-
ics (Arcaini et al., 2016; Lee, 2012; Lee et al., 2015; Sakai et al., 2015). For
instance, Lee et al. (2015) group user trajectories derived from geo-tagged
tweets and explore massive crowd movements, while Sakai et al. (2015) ex-
tract local bursty keywords and identify their dense areas to enhance local
situation awareness.

Differently from all the works above, the TCHARM framework
jointly exploits the spatio-temporal features and tweet textual con-
tent to drive the clustering process. Our main purpose is to dis-
cover cohesive clusters focused on single topics and, at the same
time, with precise spatio-temporal references. Through the TASTE
distance measure, TCHARM explores the three dimensions charac-
terizing tweets, to discover, in one step, groups of messages with
similar content but posted in nearby time and space.

As an additional contribution with respect to all the works mentioned
above, TCHARM performs a further step of clusters characterization through
association rules extraction. The use of association rules to characterize clus-
ters of tweets was proposed by Baralis et al. (2013). However, in TCHARM
rules are additionally categorized into few reference classes, according to
their semantics, to ease the comprehension and exploitation of the extracted
knowledge. Moreover, association rule analysis explores correlations not only
in the textual content, but also between textual content and the time and
location of tweet posting.

In this study, the TCHARM framework has been deployed on Apache
Spark. Several open source data mining platforms, like Scikit-learn, Rapid-
Miner, Apache Mahout and Apache Spark have proposed their own scala-
bility strategies to analyse the huge and rapidly growing amount of data.
Such platforms include libraries implementing common machine learning al-
gorithms which can be extended or modified by researchers. The adoption of
Apache Spark in many research works (including but not limited to tweets) is
mainly motivated by both the support for stream analysis (Dasgupta et al.,
2015) and the scalable computing framework that makes it possible to speed
up existing algorithms for different applications (Capdevila et al., 2016).

Tweets about the 2014 FIFA World Cup has been considered as a refer-
ence case study for the validation of the proposed framework. Various studies
have addressed the analysis of tweets related to this event, with different tar-
geted analyses devoted to (i) performing sentiment analysis to characterize
U.S. soccer fans’ emotional responses (Yu & Wang, 2015); (ii) addressing
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topic detection through a combined approach based on the DBSCAN algo-
rithm and Non-Negative matrix (Godfrey et al., 2014); (iii) tracking user
behavior through Latent Dirichlet Allocation (LDA) (Kim et al., 2015). All
these approaches analyse the textual content only, while TCHARM clusters
the tweet collection besides characterizing the cluster content based on tex-
tual and spatio-temporal dimensions.

3. TCHARM architecture

The main components of the Tweets CHARacterization Methodology
(TCHARM) architecture are shown in Figure 1. The components are briefly
introduced below while a more thorough description of cach of them is given
in the following subsections.

The first activity is data collection and preprocessing. All information
about tweets, including text content, publication time and user geographical
location, are retrieved through the Twitter Stream Application Program-
ming Interfaces (APISs) specifying a set of filter parameters (e.g., keywords,
hashtags). The collected data then undergo a preprocessing phase to be
represented in a format suitable for the subsequent clustering analysis. The
adopted data model is described in Section 3.1. The output of the preprocess-
ing is a dataset where each record corresponds to a single tweet and contains
basically three features: text content, time of tweet posting and location of
the user when posting the tweet.

Once the dataset is ready, the cluster analysis elaborates its records in
order to partition the tweets collection into cohesive groups (clusters). For
this activity, a novel combined distance measure, called Text And Spatio-
TEmporal (TASTE), is used to cluster Twitter messages considering their
spatio-temporal information and the text content as well.

Finally, TCHARM analyses each discovered cluster to mine a set of pat-
terns describing the cluster content. Specifically, through association rule
analysis, patterns of relevant correlations among tweets text contents, post-
ing times and geographical areas are extracted for each cluster. Extracted
rules are then categorized into four classes defined according to the types of
correlation among the tweets attributes while, to ease their semantic inter-
pretation, the same rules are associated with one of the few reference topic
families according to the word set they contain.
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Figure 1: The TCHARM architecture

3.1. Twitter data representation

This study aims at the characterization of groups of tweets with similar
text and posted in close geographical areas and time instants. To support
this analysis, the following three features have been considered for the repre-
sentation of Twitter data: (i) tweet text content (ii) tweet temporal feature,
i.e. tweet posting time, and (iil) tweet spatial feature, i.e., user geographical
position at posting time.

Tweet text content. Tweets are posts published by Twitter users that
include also text messages 140 characters long at most. Such messages rep-
resent the text content used in our analysis. Due to the limited size of the
single message and to the high dimensionality of many text content represen-
tations, the represented samples are inherently sparse. This property leads
to higher levels of noise in the tweet collection, thus adding complexity to
the clustering process, which requires an adequate treatment (Jing et al.,
2007). Moreover, Twitter messages are usually extremely impure because
they include a wide variety of Unicode data, symbols, numbers and links.
They therefore need to be properly cleaned and prepared before the analysis.

Tweet temporal feature corresponds to the timestamp including date and
time instant when the tweet was posted. In this study, we omit the temporal
information possibly appearing in the tweet message, since it is considered
less relevant for discovering tweets posted in nearby time.
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Text England 2-0 I still believe
Time Friday June 20 09:26:53 0000 2014
Location (latitude, longitude) | 52.076, -1.363

Table 1: Example tweet including text content and spatio-temporal features

Tweet spatial feature can be acquired as geographical coordinates of the
user when she/he posted the tweet, with the location specified in the user
profile, and location mentioned in the tweet text content. (Geo-coordinates
(i.e., latitude and longitude) are available when GPS enabled devices are used
and localization is enabled. They specify the spatial position of people right
when posting the tweet. Instead, the location reported in the user profile is
free-text information provided by the same user. It usually corresponds to
the place (such as city, state or country) where people come from. Similarly,
locations mentioned in the tweet message do not necessarily correspond to
the user position when the tweet was sent. Since our aim is to discover tweets
with similar text content but posted in nearby geographical areas (and time
periods), we focused mainly on the spatial information provided through
geo-coordinates.

Table 1 reports an example tweet including the three features. The tweet
refers to the 2014 FIFA World Cup, considered as a reference case study in
this paper. The tweet was posted on Friday morning, June 20th 2014, at
9:26 a.m. from Banbury City (UK), according to geo-coordinate values.

In TCHARM the tweets collection is represented as a dataset where each
record corresponds to a single tweet and contains basically three attributes,
corresponding to the three features above, i.e., tweet text content, and tweet
temporal and spatial features. For the purposes of this study, the text content
has been represented using the Bag-of-Words (BOW) model usually adopted
in text mining (Steinbach et al., 2000). The message is represented as the
multiset of its words, disregarding grammar and even word order, but keeping
word multiplicity. A more formal definition of the adopted representation for
tweet data is the following one.

Definition 3.1 (Tweet data representation). Let D be a set of tweets
and X = {wy, ..., wi} the set of words appearing in at least one tweet in D.
An arbitrary tweet 7; € D is represented as a triplet 7; = (t;, s;, W;) where t;
and s; are respectively the temporal and spatial features of 7;, while W; C %
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18 the tweet text content.

The temporal feature t; is the timestamp indicating when tweet 7; was
posted, while the spatial feature s; is the pair of geo-coordinates reporting
from where tweet 7; was posted. The text content W; is given by the subset
of words w; (w; € ¥) appearing in tweet 7;, with their respective frequencies.

Unweighted word frequencies do not properly characterize tweet text con-
tent, since words related to more specific events may appear with lower fre-
quency than common words. In this study, the Term Frequency (TF) -
Inverse Document Frequency (IDF) scheme (Manning et al., 2008), usually
used in text mining, has been adopted to highlight the relevance of specific
words for cach tweet, while reducing the importance of common terms in
the collection. The adoption of the TF-IDF scheme in the message repre-
sentation makes it possible to focus the tweet matching in the subsequent
clustering phase on words specific for each subset of tweets rather than on
words common to most tweets. To weight word relevance based on the TF-
IDF scheme, the tweet text content is transformed using the Vector Space
Model (VSM) representation (Salton et al., 1975). Each tweet text content
is a vector in the word space. Each vector element corresponds to a different
word and is associated with the TF-IDF weight describing the word relevance
for the tweet, as in the following Definition 3.2.

Definition 3.2 (Tweet text content representation). Let 7 =
(t;, 85, W;) be an arbitrary tweet in collection D. The tweet lext con-
tent W; is a vector of k elements corresponding to words in 3 (i.e., k = |X|).
Each wvector element W;[j] contains the TF-IDF weight of word w; for
tweet ;. W;[j] is computed as W;[j| = TF(r,w;) - IDF(w;), where terms
TF(r,w;) and IDF(w;) are defined as follows:

1. TF(r;,w;) is the relative frequency of word w; for tweet .
TF(r,w;) = f(Ti,wj)/Ele f(7i,wy), where f(1;,w;) is the number
of times word w; appeared in tweet T; and Zf:l f(r;,wy) is the total
number of words contained in ;.

2. IDF(w;) is the relative frequency of word w; in D. IDF(w;) =
log(|D|/|D,|) where |D| is the number of tweets in D and |D;|, D; =
{ri € D: f(ri,w;) > 0} C D, is the number of tweets in D which
contain (at least once) word w;.
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Mathematically, the base of the log function for IDF computation in
Definition 3.2 does not influence the overall results as it constitutes a constant
multiplicative factor (Robertson, 2004). The TF-IDF weight W;[j] for word
w; in tweet 7; is high when w; appears with high frequency in tweet 7; but
low frequency in tweets in the collection D. When word w; appears in more
tweets, the ratio inside the IDF log function approaches 1, and both the
IDF(w;) value and the TF-IDF weight W;[j] become close to 0. Hence, the
approach tends to filter out common words. In short messages like tweets, the
TF-IDF weighting score could actually be reduced to a pure IDF scheme due
to the limited word frequency within each tweet. Nevertheless, we preserved
the TF-IDF approach to consider also possible word repetitions.

3.2. Twitter data collection and preprocessing

Twitter data for the TCHARM framework are retrieved through the Twit-
ter Stream Application Programming Interfaces (APIs) by specifying a set of
filter parameters (e.g., keywords, hashtags). Collected data include all infor-
mation characterizing tweets useful for the subsequent data analysis phase,
i.e., tweet message, publication time and geographical location of the user.
Of the tweets collected, only those in English are considered.

To enable the subsequent data analysis process on crawled tweets, the
following data preparation steps are applied. Tweet messages are cleaned by
removing numbers, usernames and URLs. After converting the letters into
lowercase, messages are further cleaned by eliminating stop words (such as
“Is”, “at”, “the”, etc.). Finally, the text content is represented using the
data model described in Section 3.1, i.e., the BOW data model is applied
and the TF-IDF score schema is used to weight word relevance.

3.8. Cluster analysis of tweets

Cluster analysis partitions objects into groups so that objects within the
same group are more similar to each other than to the ones assigned to
different groups. Different kinds of clustering algorithms are available, like
partitional (e.g., K-means, K-medoids), density-based (e.g., DBSCAN), and
hierarchical (e.g., agglomerative) (Pang-Ning T. and Steinbach M. and Ku-
mar V., 2006).

In TCHARM, the K-means algorithm is used for clustering tweet data
collections. K-means has been widely used in different applications domains,
including tweets analysis, providing good quality solutions. The K-means
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algorithm discovers K clusters modeled by their representatives, named cen-
troids, given by the mean value of the objects in the clusters. Initially, K
tweets of the tweet collection D are randomly chosen as centroids. Then each
tweet 7; € D is assigned to the cluster of the nearest centroid. Finally, the
centroids are relocated by computing the mean of the tweets features within
each cluster. The process iterates until a convergence criterion is met, i.e.,
the centroids do not change or some objective functions are achieved.

The K-means algorithm used in TCHARM exploits the novel distance
measure TASTE to discover clusters with similar content but also posted
in nearby geographical areas and close time periods. The TASTE measure
takes into account the three tweet features at once to determine an overall
distance between tweets.

3.8.1. The TASTE distance measure
The proposed Text And Spatio-TEmporal (TASTE) distance measure
is formally defined as follows.

Definition 3.3 (TASTE distance measure). Let 7, = (l;,s;, W;) and
7 = (tj,55, W) be two arbitrary tweets in collection D. The TASTE dis-
tance measure between tweets 7; and 7; is defined as

dTASTE(Tth) _ dW(VVia Wj) . (k’s . oPsds(sivsg) 4 k, - ept~dt(ti,tj)) (1)

where parameters kg, ki, ps, 0, € R; kg, ky € [0,1] and ks + k&, = 1. Terms
dw (Wi, W), dy(s;, sj), and dy(;,t;) measure the distance on tweet text con-
tent, spatial feature, and temporal feature, respectively. These distances
have been normalized in the range [0,1] using the min-maz normalization
method (Pang-Ning T. and Steinbach M. and Kumar V., 2006).

TASTE is defined as a measure of dissimilarity. Given tweets 7; and 7,
lower values of dpasre(T;,7;) denote a higher similarity between 7; and 7;,
while higher values of dyasre(7;, 7;) denote a lower similarity.

In the TASTE measure, spatial and temporal distances (ds(s;, s;) and
dy(t;,t;)) modulate the text content distance (dw (W;, W;)) to determine the
overall value of dyasrp(7i,7;). The exponential form is used for d(s;, s;)
and d;(t;,t;) to significantly penalize tweets with a large space and/or time
distance.

The parameters of the TASTE measure can be conveniently tuned to fit
scenarios with different spatial and temporal scales. Parameters k, and k;
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weight the relevance of spatial and temporal distances in modulating the text
content distance. Parameters p, and p; are included as exponents to adjust
the (possibly differentiated) growth rates of exponential terms of spatial and
temporal distances. For instance, to discover clusters of tweets with a high
temporal cohesion, but possibly spread over a large geographical area, suit-
ably higher values should be assigned to parameter p; to penalize distances
in time.

In TASTE, three different measures are used to compute dy (W;, W;),
ds(si,s;), and dy(L;, ;) based on the data type describing tweet text content,
spatial feature and temporal feature.

Text content distance measure (dw (W;,W;)). The distance between
the weighted word frequency vectors W; and W; of tweets 7; and 7; is evalu-
ated using the cosine distance measure (Pang-Ning T. and Steinbach M. and
Kumar V., 2006), which has often been used to compare documents in text
mining (Steinbach et al., 2000). We define the text content distance measure
dw(Wl, W]) as

dw (W3, W;) = arccos (cos(W;, Wj)). (2)

Term cos(W;, W;) in Equation 2 represents the cosine similarity between W;
and WW;, and it is computed as

z w1
k k
\/1221 Will)? - \/l; W;[i]?

where k is the cardinality of the word set ¥ in collection D (k = |X]).

The value range is [0, 1] for the cosine similarity cos(W;, W), while the
value range for the content distance measure dy (W;, W;) is [0,7/2]. When
cos(W;, W;) = 1, then dw (W;, W;) = 0 which describes the exact similarity of
text content for tweets 7; and 7;. When cos(W;, W;) = 0, then dy (W;, W) =
7/2 which points out that tweets 7; and 7; have completely different texts.

cos(W, W) =

Temporal distance measure (d.(t;,t;)). The tweet temporal feature is
an integer number representing the time instant when the tweet was posted.
The Euclidean distance (Pang-Ning T. and Steinbach M. and Kumar V.,
2006) is adopted here as the distance on temporal features ¢; and ¢; of tweets
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7; and 7;. As t; and t; are expressed as time instants, the Euclidean distance
is computed as the absolute value of their difference, i.e.,

dy(tis tj) = |t = 151- (4)

Spatial distance measure (d,(s;, s;)). Both Haversine and Euclidean dis-
tance measures have been used in other works to calculate the spatial distance
between two geographical points (Lee, 2012). However, the Haversine dis-
tance is usually considered as more appropriate and precise especially when
the distance between two points gets larger and it cannot be approximated as
a straight line. For this reason, in this study the Haversine distance is used
for computing the spatial distance between tweets. The Haversine distance
corresponds to the great-circle distance between two points, i.e., their short-
est distance over the earth’s surface. Hence, the spatial distance between s;
and s; for tweets 7; and 7; is computed as

ds(si,s;) =2-R- arcsin(Vh) (5)
h = sin®(Ap/2) + cos g - cos g, - sin®(AN/2) (6)

where Ay and A\ are latitudinal and longitudinal differences between the
tweets and R is a constant value equal to the Earth’s mean radius (6,371 km).

The content, spatial and temporal distance measures defined above satisfy
the positivity, symmetry, and triangle inequality properties that characterize
a metric (Pang-Ning T. and Steinbach M. and Kumar V., 2006). It casily
follows that the TASTE measure also verifies these properties. Specifically,
the following properties hold. (i) Positivity: dpasre(ri,7;) > 0 for all 7;,7; €
D, while dpasre(r, ;) = 0 only if 7, = 7;. (ii) Symmetry: drasri(m,1;) =
drasre(tj, ) for all 7,7, € D. (iil) Triangle inequality: dpasrp(Ti, 7)) <
dTASTE(Tia Tk) + dTASTE(TIm 7'7) for all Ti, Tk, Tj € D.

As an example, Figure 2 reports four sample tweets (7 to 74) with their
text content, temporal and spatial features. The values of dyas7r between
tweet 71 and the other tweets are also specified. Tweets are about the 2014
FIFA World Cup. Aimed at easing the comprehension of the results, the
figure shows the original text messages, in place of the corresponding data
model based on both BOW representation and TF-IDF score. It is worth
noting that tweets 7 and 73 have a higher similarity with 7; than with 7.
Tweets 71, 75 and 73 have a similar text content as they all talk about the
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T2
TEXT | Make me proud Australia
LOCATION | 51.624, -0.786
TIME | Wed Jun 18 16:02:46

asre = 0.89

T1
TEXT | Australia vs Netherlands |
predict 3-1

LOCATION | 52.051, -0.803
TIME | Wed Jun 18 15:55:55

73
diasre = 1.13 TEXT | Proper love Australia
LOCATION | 53.756, -0.434

TIME | Wed Jun 18 16:07:32

T4
dyaste = 2.29 TEXT | Gary lineker is wearing a
Italy tee
LOCATION | 51.399, -0.071
TIME | FriJun 20 16:54:48

Figure 2: Sample tweets about 2014 FIFA World Cup with TASTE distance values

Australia football team. Tweets 7 and 73 were posted almost at the same
time as 71, but 73 exhibits a farther geographical location from 7; than 7.
This larger spatial distance penalizes the similarity on the text content and
finally provides a higher value of dyasrp for tweet m3. Conversely, tweet 74
exhibits a significantly higher TASTE distance from 7 even though it was
posted in the neighbourhood, as 74 has a completely different content from
71 and it was posted two days later.

3.8.2. Clustering Evaluation

For the (internal) validation of clustering results, TCHARM adopts the
Sum of Squared Errors (SSE) quality index, usually adopted for evaluating
the quality of a cluster set computed with the K-means algorithm (Garcia-
Gavilanes et al., 2014). The SSE index measures the cluster cohesion in
prototype-based clusters, i.e., how objects in a cluster are closely related
to the corresponding centroid. SSE is defined as the sum of the squared
distances between each member of the cluster and its centroid. In TCHARM,
the SSE index is computed as

SSE = Z Z draste(Tj, i) (7)

i=1 7;€C;

where ¢; is the centroid of cluster C;, and C; is included in a cluster set with
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K clusters. dpasre(T),c;) is the TASTE distance between a tweet 7; € C;
and the centroid ¢; of C;.

3.4. Clusters content characterization

After the cluster set is generated, in TCHARM each cluster is then locally
explored to characterize its content. Specifically, each cluster is analysed to
discover underlying correlations in the text content, and between text content
and the spatial and temporal features characterizing tweets. Cluster charac-
terization makes use of association rules as reference pattern type (Agrawal
et al., 1993).

3.4.1. Association rules extraction

Association rules analysis is an exploratory data mining technique to
mine correlations among data items (Agrawal et al., 1993). To enable the
association analysis process, tweets contained in the cluster under analysis
are tailored to a transactional data format.

Consider an arbitrary cluster C' included in the cluster set computed on
tweet collection D. The transactional tweet dataset Dy (C') for cluster C' is a
set of transactions. Each transaction 7; corresponds to a tweet 7; € C' and
it consists of a set of tweet features called items, represented in the form
{attribute : walue}. The items of the generic transaction 7; are (i) each
single word w € W; appearing in the text content of tweet 7;, (ii) the value
of the spatial feature s; of 7;, and (iii) the value of the temporal feature t; of
Ti-

An association rule is an implication in the form r : X = Y, where
X and Y are disjoint itemsets (i.e., sets of items). X and Y are denoted
as rule antecedent and consequent, respectively. Association rules extrac-
tion is commonly driven by rule support and confidence quality indexes.
Whereas the support index represents the observed frequency of occurrence
of rule 7 in the transactional dataset, the confidence index represents the
rule strength. Consider the transactional tweet dataset Dy (C) for cluster
C;let r : X = Y be a rule mined from Dy(C). Rule support (supp)
is the percentage of tweets in cluster C' that contain both X and Y. Rule
confidence (conf) is the percentage of tweets in cluster C' containing X that
also contain Y.

Consider, for example, association rule r : {start, world, cup} = {love}
(supp = 1.1%, conf = 60%) mined from cluster C'. Rule r talks about people’s
feelings on the World Cup game. The rule represents relationships that
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emerge from tweets messages contained in (| i.e., the correlation between
subset of words included in these messages. According to the rule support
and confidence values, 1.1% of tweets in cluster C' contain all the words
appearing in the rule (i.e., start, world, cup and love), but the word love
appears in 60% of tweets including the words start, world and cup.

In some cases, measuring the strength of a rule in terms of support and
confidence values may be misleading. When the rule consequent has a high
support value, the rule may be characterized by a high confidence value
even if its actual strength is relatively low. To overcome this issue, the
lift (or correlation) index (Pang-Ning T. and Steinbach M. and Kumar V.,
2006) may be used, beyond the confidence index, to measure the (symmetric)
correlation between sets X and Y. Lift values below 1 show a negative
correlation between sets X and Y, while values above 1 indicate a positive
correlation. In this study, to mine patterns representing strong correlations
among features characterizing tweets, the selection of association rules is
based on confidence and lift values.

3.4.2. Association rule categorization

Although association rules are a powerful method to discover data cor-
relations, analyzing the (usually) large number of extracted rules is not a
trivial task. To support the exploration of the mined rule set, TCHARM
exploits a categorization of rules into few classes, built upon the attributes
characterizing Twitter data, i.e., tweet spatial feature (denoted Location
(L)), tweet temporal feature (Time (T')), and text content of the tweet mes-
sage (TextContent (T'C)). Each class refers to correlations among a subset
of the above attributes. Specifically, four classes of rules have been defined
which are aimed at progressively providing more detailed information about
the cluster content. Classes are described below while an example rule is
reported for each of them in Table 2.

1. TextContent class (TC). This class focuses on tweet text content. Pat-
terns model correlations between words in tweet messages and these
are aimed at capturing the peculiar characteristics of messages in the
cluster (i.c., which topics attract/involve users). This class omits both
spatial and temporal details on when and where each tweet was posted.
Instead, this information is concisely represented by the location and
time values of the cluster centroid, considered as representative points
of the cluster.

25



740

741

742

743

744

745

746

747

748

749

750

751

752

753

2. Location-TextContent class (L-TC). This class analyses the correlations

between the words in tweet messages and the locations where tweets
have been posted. It makes it possible to identify the topics attract-
ing/involving users in a given location.

Time-TextContent class (T-TC). This class analyses the correlation
between words in tweet messages and the time when tweets have been
posted so as to discover the topics attracting/involving users in a given
time frame.

. Location-Time-TextContent class (L-T-TC). This class considers all the

properties characterizing tweets in order to analyse the correlation be-
tween the words in tweet messages together with the time when, and
the location where, the tweets were posted. It makes it possible to dis-
cover the topics attracting/involving users in a given time frame and
location.

Example pattern
Class Example question Association Rule Meaning

TC What are the topics | {world,final} = {cup} | Users talked about world
attracting/involving | centroid(T = y, L = z) | final cup event (reference
users? time frame y and geo-

graphical area )

L-TC Given a spatial | {L =z} = Users  talked  about
location, what are | {TC = (german, win, | the match Germany-
the topics attract- | argentina)} Argentina in the geo-
ing/involving users? graphical area z

T-TC Given a time frame, | {T = y} = Users  talked  about
what are the topics | {TC = (best, player, | PlayerName as the best
attracting/involving | PlayerName)} player in time frame y
users?

L-T-TC | Given a time frame | {T=y, L =12} = Users talked about the
and a geograph- | {TC = (good, perfor- | good performance of
ical  area, what | mance, PlayerName)} | PlayerName in time
are the topics at- frame y and geographi-
tracting/involving cal area z
users?

Table 2: Reference rule classes with example rules about 2014 FIFA World Cup tweets
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Topic family ID | Family description
T1 emotional states
T2 events
T3 points of interest
T4 celebrities

Table 3: List of topic families for the 2014 FIFA World Cup use case

To facilitate the semantic interpretation of the rules discovered, TCHARM
employs a list of reference topic families. A dictionary of the words character-
izing each topic family is used to associate each rule with the proper family,
based on the word set appearing in the rule. For instance, Table 3 reports
an example list of reference topic families when targeting the analysis of
tweets about the 2014 FIFA World Cup. The events family includes events
such as the football matches and the opening and the closing ceremony. The
points of interest family concerns where the events take place. Instead, the
celebrities family regards players, coaches or other famous people somehow
involved with the 2014 FIFA World Cup events.

Before applying the rule extraction process, the spatial and temporal
features of tweets are processed to map their initial values into new ones
with a coarse granularity in order to discover a limited but frequent set of
rules. Indeed, too fine a granularity in the representation of spatio-temporal
features can produce a fragmented rule set which may negatively affect the
rule quality evaluation. For example, the geographical location of the user
can be specified in terms of city, region, or country instead of using geo-
coordinates. Similarly, the information about tweet posting time can be
described with hourly or daily time slots instead of using the entire timestamp
value.

3.5. TCHARM implementation

The entire data analysis process (preprocessing, clustering, and associ-
ation rules extraction) in TCHARM has been implemented as a Scala ap-
plication in the open source computing framework Apache Spark (version
1.5) (Zaharia et al., 2010). This framework was selected because it is cur-
rently one of the leading platforms for data analytics and provides a Machine
Learning library (MLIlib) which has been exploited and extended in this study
to support all the functionalities of TCHARM.
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Available packages in MLIib are used for the TF-IDF weighting score cal-
culation in the data preprocessing phase. For the subsequent cluster analysis,
the K-means algorithm available in MLIlib has been extended by integrating
the TASTE measure. Moreover, to evaluate the quality of the generated
cluster set, the computation of the Sum of Squared Error (SSE) index was
implemented, based on TASTE and integrated in K-means too. For associ-
ation rule analysis, the FP-growth algorithm (Han et al., 2000) available in
MLIib was adopted to generate association rules from the computed clusters.
To point out relevant association rules in clusters, we used the formulas of
support and confidence values available in Apache Spark, but we also inte-
grated the calculation of the lift value.

The preliminary data collection step relies on Twitter’s Streaming Appli-
cation Programming Interfaces (APIs) to retrieve tweets data. The Stream-
ing APIs provide low latency access to Twitter’s global stream of tweets data
by establishing and maintaining a continuous connection with the stream
endpoint. A Java crawler is used to collect and parse tweets in real time
based on a predefined set of keywords (e.g., “worldcup2014”, “fifaworldcup”
in our case study), with a case-insensitive search.

4. Experimental Results

This section presents the results of the experiments with
TCHARMimplementation, regarding (i) geographical and temporal dis-
tribution of the computed cluster sets, (ii) clusters content characterization
through association rules analysis, and (iii) performance evaluation in terms
of overall execution time and scalability.

The experimental evaluation was conducted on a real collection of Twitter
data related to the FIFA World Cup held in Brazil in 2014. Experiments were
executed on a cluster of 3 master nodes (DELL PowerEdge R620 with 128GB
of RAM) and 30 worker nodes (18 DELL PowerEdge R720XD with 96GB
of RAM, 2 SuperMicro with 64GB of RAM, and 10 SuperMicro with 32GB
of RAM). Each node runs Cloudera distribution based on Apache Hadoop
including HDFS and Apache Spark (version 1.5) for Big Data distributed
applications on Linux Ubuntu 14.04.02 LTS.

4.1. Datasets

The public stream endpoint offered by the Twitter APIs was monitored
over a time period of 27 days from June 18th to July 14th 2014, by tracking
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a selection of keywords related to the 2014 FIFA World Cup (e.g., “world-
cup2014”, “fifaworldcup”). Tweets in English and with the exact GPS coor-
dinates of the user location were extracted. The resulting collection includes
302,052 tweets. To ease the computation of temporal distances between
tweets in the clustering phase, all timestamps have been converted according
to the reference time zone of America/Sao Paulo, in Brazil, where the 2014
FIFA World Cup was held.

Since the collected tweets were widely spread over both time and space,
the tweets collection was partitioned into subsets referred to disjoint spatio-
temporal segments before applying the cluster analysis, as follows.

To analyse how the tweet text content developed over time, the tweet
collection was partitioned according to three time windows following the
official time schedule of the football matches. Time window #1 and time
window #2 cover respectively the first and the second stage time period (i.e.,
from June 18th to June 27th and from June 28th to July 3rd), while time-
window #3 covers the remaining time period from the quarter-finals to the
end (i.e., from July 4th to July 14th). The number of tweets is comparable
in the three windows.

The tweet spatial distribution was then locally analysed within each of
the three time windows based on tweet, geo-coordinates. In each time window
tweets appeared to be widely dispersed and geographically partitioned into
different areas. English speaking countries like the United Kingdom (UK),
USA, and Central America show higher tweets concentrations than other
areas. Following this evaluation of tweet spatial distribution, we selected
two spatial partitions, corresponding to UK and USA, for each time window.
Table 4 summarizes the main characteristics of the six resulting datasets
which are used as reference case studies for the experimental evaluation.
Each dataset was named using the corresponding spatio-temporal segment.
For example, dataset D1 k) contains tweets posted during time window

#1 in UK.

4.2. Parameters configuration for cluster analysis

We set the parameters for the clustering analysis to best fit the use case
considered, the 2014 FIFA World Cup, which involves people worldwide.
Aimed at discovering clusters including tweets about the same topics but
posted in nearby locations and time periods, we assigned the same relevance
to spatial and temporal terms in modulating the text distance, i.e., we set
ks = k; = 0.5. On the other hand, as usually happens on Twitter, we expect
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Dataset Time Geographical | Number of Average

window partition tweets tweets length
Derwi,uk) 1 UK 29,864 8.10
Drw1,usa) 1 USA 26,447 8.02
D(rw2,UK) 2 UK 15,175 8.43
Drwa,usAa) 2 USA 19,828 8.27
Drws,uK) 3 UK 34,392 8.46
Drws,usA) 3 USA 50,028 8.06

Table 4: Main characteristics of selected reference datasets from 2014 FIFA World Cup
tweets collection

most reactions to a given event (e.g., a football match) to be published as soon
as the same event occurs (or within a short delay), even from quite distant
locations. Indeed, while users interested in the same event can be also located
in different areas, it is unlikely that they tweet at completely different times.
Therefore, to group tweets with very close temporal distances, we set the
weight of the temporal exponent p; to a higher value than the spatial one ps.
We empirically found that ps = 3 and p; = 6 provide the lowest variability of
SSE among clusters for different values of K (number of clusters) on datasets
in Table 4. For each dataset, we evaluated the average SSE among the
resulting clusters for a range of values of K. K was then set to 200 as a
good trade-off to minimize SSE and to limit the number of clusters as well.
As an example, Figure 3 plots the decrease of the average SSE for dataset
Drwhi,vk) when increasing the value of K. SSE abruptly decreases until
K = 150, after which it goes down at a lower rate. Since we needed to
limit both the desired number of clusters and the expected value of SSE, we
assumed that K = 200 was a good trade off between these two objectives.
To address the problem of centroid initialization in K-means, a common
approach was adopted. We performed multiple runs, each with a set of ran-
domly chosen initial centroids, then we selected the cluster set with minimum

SSE.
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Figure 3: Variation of average cluster SSE with respect to the number of clusters (K) for
dataset Dirw1,uk) (Ps = 3, pr = 6, ks = ky = 0.5)

4.8. Analysis of the clustering results

In this section the clustering results are characterized in terms of (i) clus-
ter cardinality, given by the number of tweets per cluster, and (ii) spatio-
temporal cluster distribution, given by the geographical area and the time
span covered by the clusters. As a reference case for the analysis, we selected
the collection of tweets posted in the UK partition during time window #1
(i.e., dataset Dywiuk) in Table 4). This time window corresponds to the
first stage in the 2014 FIFA World Cup, when there was a larger number of
football matches involving many different teams. The tweets are thus poten-
tially characterized by a higher variability of text messages as well as spatial
and temporal feature values.

Figure 4 shows the distribution of clusters cardinality in the cluster set
computed on dataset Drwivk). Clusters are sorted along the z axis by
increasing value of cardinality. The cluster set includes one cluster with
about 800 tweets, while 16.5% of clusters contain from 200 to 400 tweets,
41.5% of clusters from 100 to 200 tweets, and the remaining 41.5% less than
100 tweets. The mean value of cluster size is 132 tweets, while the median
value is 111 tweets.

The spatial and temporal distributions of the cluster set are plotted in
Figures 5 and 6, respectively. To facilitate understanding of the results,
cach cluster is concisely represented with the spatial and temporal features
of its centroid. Moreover, for both features a coarse-grained representation
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Figure 4: Distribution of number of tweets in the cluster set for dataset Dirw1,vk)

is adopted in place of the original one. Specifically, the spatial feature is
represented as the geographical area where a centroid is located, instead of its
GPS coordinates. Since the considered dataset contains tweets posted in UK,
the county is used here as reference geographical area. County membership
of a centroid is calculated based on the boundary GPS coordinates of each
county! and on the GPS coordinates of the centroid. The temporal feature
of a centroid is represented in terms of the corresponding hourly time slot,
instead of the centroid timestamp.

The evaluation of the spatial distribution of centroids in the cluster set
points out the locations in UK where people were more committed to tweeting
about the 2014 FIFA World Cup 2014. Figure 5a shows the number of
centroids located in each county, while Figure 5b reports the cardinality of
the corresponding clusters. For each county, clusters are sorted along the z
axis by decreasing value of cardinality. For readability, both figures focus on
counties including at least seven centroids.

The results show that a limited subset of counties contain at least seven
centroids (11 counties over 89), and about half of the centroids (98 over 200)
are located in six counties (i.e., Buckinghamshire, Warwickshire, Greater
London, Staffordshire, Lancashire, and Strathclyde). Clusters centered in
these six counties overall include about 56% of tweets in dataset Dirwiuk)-
Moreover, thirteen of these clusters are among the fifteen largest clusters

Yhttp:/ /www.nearby.org.uk /downloads.html
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Figure 5: Spatial characterization of the cluster set for dataset Diprw1 vk

in the cluster set (the two largest clusters in the cluster set are centered in
Leicestershire county instead). Hence, we can consider the above six counties
as the locations where most tweet activity was focused in UK during time
window #1.

The evaluation of the temporal distribution of centroids in the cluster
set reveals the time periods when people in UK were more involved in the
2014 FIFA World Cup. As an example, we report the results for a two-
day time frame (from June 19th to June 20th) within time window #1.
Figure 6a shows the number of centroids located in each hourly time slot,
while Figure 6b reports the cardinality of the corresponding clusters. For
each hourly time slot, clusters are sorted along the x axis by decreasing
value of cardinality.

Results point out that the number of clusters, as well as the number of
tweets per cluster, increases in correspondence of two events, i.e., the football
matches Colombia - Cote D’lvoire and [taly - Costa Rica (the starting hour
for both matches is highlighted with a dashed line in Figures 6a and 6b).
More specifically, in Figure 6a a peak occurs in the hourly time slot when
goals were scored in each of the two matches. For match Colombia - Cote
D’Ivoire, the peak of 28 centroids occurs in time slot 2014/06/19 [14:00-15:00)
which corresponds to the second half of the match when three goals were
scored. Instead, for the match Italy - Costa Rica, the peak of 21 centroids
occurs in time slot 2014/06/20 [13:00-14:00) which corresponds to the first
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Figure 6: Temporal characterization of the cluster set for dataset Dirw1,vx) during a
two-days time frame

half of the match when the only goal of the match was scored.

To deepen the analysis of the spatio-temporal span for the discovered
clusters, we focus on four example clusters selected among those with the
centroid located in the Greater London county. The characteristics of these
clusters are summarized in Table 5 in terms of (i) spatial and temporal fea-
tures of the cluster centroid, (ii) cluster cardinality, (iii) cluster spatial cohe-
sion as average geographical distance between tweets in the cluster and the
cluster centroid, and (iv) cluster temporal cohesion as average time distance
between tweets in the cluster and the cluster centroid. Since all the centroids
are located in the Greater London county, to describe their spatial features
Table 5 also reports the town where each centroid is placed.

Clusters manifest a good temporal cohesion since the average time dis-
tance is always about 20 minutes. This temporal span is suitable to asso-
ciate clusters to some specific events. For example, clusters A and C span on
time intervals including the Colombia - Cote D’lvoire and [taly - Costa Rica
football matches, respectively. Tweets in clusters B and D mainly discuss
the elimination of the England football team that occurred the day before.
These tweets may have been posted in response to news reporting this event
on sports channels (also mentioned in tweet messages and taking place near
the centroid time).

Clusters also demonstrate a reasonable spatial cohesion around their cen-
troid, since tweets within each cluster are mainly (or even exclusively) posted
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Cluster centroid Cluster content
Cluster|Spatial location Temporal slot # of |Avg GPS |Avg time
ID of centroid of centroid tweets| distance | distance
(County:City) |(Date:hourly time slot) (km) (min)
A Greater London: 2014/06/19 [14-15) 113 59.25 26
Harrow
B Greater London: 2014,/06/25 [08-09) 188 42.35 20
Stratford
C Greater London: 2014/06/20 [13-14) 283 68.73 23
Uxbridge
D Greater London: 2014,/06/25 [07-08) 197 42.24 19
London

Table 5: Characterization of four example clusters centered in Greater London county

in the same county where the centroid is located. The larger geographical
area covered by each cluster is due to the fact that events related to the FIFA
World Cup are of widespread interest.

As an example, Figure 7 reports the distribution of the number of tweets
in the top ten counties and over time for the cluster with the highest car-
dinality in Table 5, i.e., cluster C'. Most tweets were posted in the Greater
London county where the cluster centroid is located, while the other tweets
are mainly spread out in four of the neighboring counties. Furthermore, the
tweets were mainly posted during the hourly time slots adjacent to the slot
of the centroid.

4.4. Clusters characterization using association rules

The cluster content is concisely described here using association rules
to model correlations among tweet features (text content, location, and
time). The rules are extracted according to the rule templates defined in
Section 3.4.2 and the topic families reported in the same section. To dis-
cuss the type of information that can be mined using these patterns, some
example rules are reported in the next subsections. These rules have been
extracted from (i) one sample cluster, (ii) clusters mined in time window #1

35



979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

i 2 160

8 100 5 140

E E 120

o« 80 w100

S 60 ° 80

S 40 2 o

= g 40

g 20 2 20 -

“ O e s e r e s g 0 | | |
< Q % 2 = g % :: s é 11-12 12-13  13-14 14-15
S T gaegTAdg

| < < S Eé
5 5 = 3
5 = & Hourly ti 1
5 County ourly time slot
(a) Number of tweets per county (b) Number of tweets per hourly
time slot

Figure 7: Spatial and temporal characterization of cluster C' (from Table 5)

and from different geographical partitions, and (iii) clusters computed for
different time windows from the UK partition. For the rule extraction, we
enforced support > 1%, and lift > 1 to prune both negatively correlated
and uncorrelated item combinations.

4.4.1. Analysis of rules on a sample cluster

Cluster C' (see Table 5) from dataset Dirw1 k) was selected as the ref-
erence case for the analysis. To reduce data fragmentation in the extracted
patterns, caused by the spatio-temporal sparsity of the data collection, the
tweet geo-coordinates have been mapped to the corresponding counties and
the tweet posting timestamp to the corresponding 2-hours time slot.

Experimental results showed that the association rules generated from
cluster C' concern a variety of topics such as events, emotional states and
celebrities, mainly related to the [taly - Costa Rica football match scheduled
on June 20th, 2014. A seclection of significant rules is reported in Table 6 and
they are briefly described below.

Analysis of correlations in tweet text content (class T'C). The rules in the
class TC model correlations in the tweet text content. The information
about when and where tweets were posted is concisely described as spatial
and temporal details of the cluster centroid. Rules like R; and R, represent
strong pairwise correlations (according to the lift value) among words in tweet
messages. Rule R; captures a positive emotional state in people for the Costa
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Rica football team. Instead, in rule Ry people talked about the celebrity
Gary Lineker, a retired English footballer and current sports broadcaster,
who wore an Italy shirt. The reason is that the victory of Italy over Costa
Rica would have allowed the England football team to keep their World Cup
hopes alive.

Analysis of correlations between the location where tweets were posted and
tweets text content (class L-TC). Rules in the L-TC class, like rules R3 and
R4, point out the geographical areas where certain topics are discussed. Rule
R3 reveals that a negative emotional state about the England football team
arises from people located in the Greater London county. This opinion may
be due to the fact that the England football team did not win any match
in the first stage of the World Cup. Instead, rule R4 reports that people in
the Greater London county are watching how the Costa Rica football team
performs in matches.

Analysis of correlations between the time when tweets were posted and tweets
text content (class T-TC). Rules in the T-TC class, such as R; and Rg,
point out the time slot when certain topics are discussed. Rule Rj describes
the association between people’s disappointment about the behavior of the
Italian football team and the time slot including the football match Italy -
Costa Rica. In fact, after the goal scored by Costa Rica in the first half of
the match, the Italian team did not respond with any winning actions in
the second half of the match. Rule Rg highlights the people’s interest in
the comments on the Italy - Costa Rica match by a former English player
(Robbie Savage) hired as pundit by the British Broadcasting Corporation
(BBC) for the 2014 FIFA World Cup.

Analysis of correlations between location where, and time when, tweets were
posted and tweet text content (class L-T-TC). R; and Rg are example rules
belonging to this class and they both show that the goal scored by Costa
Rica and the consequent defeat of the Italian team in the time slot including
the first half of the match was a hot topic in the Greater London county.

It is worth noting that the rules of classes L-TC, T-TC and L-T-TC,
characterized by positive correlation and high confidence values, always in-
clude the same county and hourly time slot of the centroid. This provides
further evidence in support of the high spatio-temporal cohesion of cluster C
around its centroid.
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Rule Rule| Topic Rule supp| conf| lift

class ID | family (%] | (%]
Ry Emotional| {fancy,costa,rica} = 1.1 | 75| 53.25
TC state {chances}
R, Celebrity | {shirt,italy} = 1.1 | 100 | 56.80
{lineker}
Rs Emotionall {TC = (bad,england)} = 1.1 | 100 | 2.37
L-TC state {L = Greater London}

Ry Event {TC = (watching,costa,rica)} = 14| 66| 1.58
{L = Greater London}

Rs Emotionall {TC = (bad,italy)} = 1.1 50| 1.23
T-TC state {T = 2014-06-20 [12:00-14:00)}
Rs Celebrity | {TC = (robbiesav- | 1.1 | 100 | 1.71

age,playing,italy,costa)} =
{T = 2014-06-20 [12:00-14:00)}

R Event {T = 2014-06-20 [12:00-14:00), 1.1 60 1.42
L-T-TC TC = (lose,italy) } =
{L = Greater London}

Rsg Event {T = 2014-06-20 [12:00- 1.1 15 | 10.65
14:00), L = Greater London,
TC=(costa,rica)} =
{TC=(goal)}

Table 6: Example rules from cluster C' (centroid(T = 2014-06-20 [12:00-14:00), L =
Greater London)) from dataset D(pw 1,k (see Table 5)

38



1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

4.4.2. Analysis of rules across geographical partitions

In this section we analyse how people’s interest in events occurring within
a given time window vary across different geographical areas. We compared
the association rules mined from clusters computed in UK and USA areas
when considering time window #1 (datasets Diyw1,ux) and Dirwi,usa)). To
reduce data fragmentation in the mined patterns, we adopted a coarse spatio-
temporal data representation suitable for both cases considered. Specifically,
tweet geo-coordinates have been mapped to the nearest city and the tweet
posting timestamp to the corresponding day. Some sample rules modeling
correlations in the tweet text content (class TC) are shown in Table 7, but
the following discussion is based on the overall results.

People in the UK area commented mostly on matches involving the Eng-
land football team (e.g., rule Ry), or other teams included in the same group
as England. Moreover, an odd episode involving a single player was the main
topic of various clusters (Rs). Instead, clusters from many locations of the
USA reveal that people were interested in matches involving various football
teams, also those not included in the same group as their national team. For
instance, rule R3 refers to the match between Italy and Costa Rica and rule
R4 to the match involving Nigeria and Argentina.

The behaviour observed may be related to the people’s different interests
in the two geographical areas. Overall, football is more popular in England
than in USA, where people are mostly interested in other sports. While in
England people particularly focus on events related to their national team,
in USA they show a more general interest in the FIFA World Cup, also for
events involving teams other than their national team.

4.4.3. Analysis of rules across time windows

In this section we analyse how the interests of people tweeting from the
same geographical area vary for events that occurred in different time win-
dows. We compared rules mined from clusters computed in the UK arca
in the three time windows (datasets Dirw1,vk), Dirwe,vk), and Darws vk ).
We adopted the same spatio-temporal data representation used for the anal-
ysis discussed in Section 4.4.2. Table 8 shows some example rules from the
TC class, but the discussion is based on the overall results.

It is worth noting how interests varied after the elimination of Eng-
land team which happened at the end of time window #1. The extracted
rules show that people in UK shifted their attention to matches involv-
ing other teams. Various clusters in time window #2 are focused on the
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Rule| Partition | Topic Rule supp| conf | lift

id family (%] | [%]

R, UK Event {uruguay} = {england} 5.0 | 100 | 2.38
centroid(T = 2014-06-19,
L = Perth)

Ry UK Celebrity | {suarez,someone} = {bite} | 3.0 80 | 26.90
centroid(T = 2014-06-25,
L = Rugeley)

Rs USA Event {costa,rica} = {italy} 8.3 64 | 1.67

centroid(T = 2014-06-20,
L = Whittier,CA)

Ry USA Event {nigeria} = {argentina} 2.1 53 | 7.16
centroid(T = 2014-06-25,
L = Banning,CA)

Table 7: Example rules (class TC) characterizing clusters in UK and USA areas in time
window #1 (datasets Dirw 1,0 k) and Dirwi,usa))

Germany — Algeria football match (played on June 30, 2014), and are
mostly about the tactics (R5) and performance (Rg) of the German team.

During time window #3, the final match became one of the most popular
topics (R7). Nevertheless, the attention of people in UK also moved towards
other topics loosely related to the competition. For instance, the latest trans-
fer of player Luis Suarez away from an English club was mainly discussed on
July 11%% 2014, on the same day as the official announcement (Rg), while the
next match of the England team, scheduled for November against Scotland
(Ry), became popular just after the final World Cup match, on July 14"
2014.

4.5. Execution time and scalability

The execution time for the cluster set computation on the six datasets
in Table 4 spans from 12m 13s for the smallest dataset (Drwo,vk), 15,175
tweets) up to 33m 34s for the largest one (D(rwsusa), 50,028 tweets). The
execution time for association rules extraction is less variable and has an
overall mean value of 53s. Increasing the number of executors does not yield
better performance in terms of clustering execution time due to the limited
size of these datasets. Thus, experiments for these datasets were performed
using one execution node.
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Rule| Time Topic Rule supp| conf| lift

id window | description (%] | [%]

Ry 1 Event {uruguay} = {england} 5.0 | 100 | 2.38
centroid(T = 2014-06-19,
L = Perth)

Ry 1 Celebrity {suarez, someone} = {bite} 3.0 | 80| 26.90
centroid(T = 2014-06-25,
L = Rugeley)

Rs 2 Event {line,high} = {germany} 2.0 | 100 | 1.02
centroid(T = 2014-06-30,
L = London)

Ry 2 Emotional | {good} = {germany} 20| 58| 1.22

state centroid(T = 2014-06-30,

L = Stirling)

Ry 3 Event {world, cup} = {final} 102 99 | 2091
centroid(T = 2014-07-13,
L = Newcastle)

Rg 3 Celebrity {suarez} = {good,luck} 23| 77| 24.40
centroid(T = 2014-07-11,
L = London)

Ry 3 Event {november} = 1.8 | 100 | 36.71
{england,scotland}
centroid(T = 2014-07-14,
L = Brozbourne)

Table 8: Example rules (class TC) characterizing clusters across the three time windows
in UK area (datasets Dirw1,vk), Dirw2,uk), Dirws,vk))

The capacity of the clustering algorithm integrating the TASTE measure
to scale up to bigger data collections was assessed by measuring the execution
time when varying (i) the number of tweets under analysis and (ii) the number
of parallel executors. For scalability analysis, to get a larger number of tweets
including all (text, temporal, and spatial) features, we have considered the
location specified in the user profile as reference location information. Indeed
the amount of tweets with geo-coordinates is much less than the number of
tweets with location information in the user profile due to the limitation
of GPS enabled devices. Geo-coordinates for the location extracted from
the user profile have been calculated using Bing Maps Locations API. The
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resulting dataset, named D", includes about 23.5 million tweets.

To study scalability by varying the number of tweets, we considered dif-
ferent sample rates of dataset D" and one executor for process running. In-
creasing the number of tweets from 50,000 to about 2.35 million (10% of
whole D), we notice an increment of the execution time (from 33m 34s to
14h 31m). However, the growth rate of the execution time (about 25) is
almost half the growth rate of the dataset size (about 47).

To study scalability by varying the number of executors, we considered
the whole dataset D”. The results show that, when increasing the number
of executors from 4 to 8, the K-means algorithm integrating the TASTE
measure scales almost linearly. The execution time is about 35h 43m with 4
nodes; it decreases to about 19h 24m with 6 nodes, and to 10h 45m with 8
nodes. Thus, with a suitable number of parallel executors, the clustering task
is capable of handling also bigger data, evenly distributing the load across
the nodes. When fewer than 4 executors are used, the process exceeded 48
hours of execution and it was interrupted due to the very large dataset size.

5. Comparison with previous studies

This section discusses both a theoretical and analytical comparison be-
tween our work and four previous studies on clustering Twitter data: (Kim
et al., 2011),(Arcaini et al., 2016), (Lee, 2012), and (Cunha et al., 2014).
These studies have proposed distance measures which combine the same
tweet features considered in TASTE, or a subset of them. Specifically, the
work in (Kim et al., 2011) takes into account the tweet spatial feature, while
the spatio-temporal features are considered in (Arcaini et al., 2016), and both
the text content and the spatial feature are evaluated in (Lee, 2012). A first
attempt in considering all the three tweet features was proposed in (Cunha
et al., 2014). Like in TCHARM, in these studies the geographic and tem-
poral distances between tweets are computed using the Haversine and the
Euclidean distance, respectively. The text content is represented with the
BOW model, and the word relevance is weighted with the TF-IDF (Cunha
et al., 2014) or the BursT (Lee, 2012) score; the cosine similarity is used to
compare messages.

For each study we present the objective of the work and the methodology
for clustering tweets, including the clustering algorithm, the distance func-
tions used and the strategy adopted for combining tweet features. Then, we
discuss the analytical comparison between these works and our approach.
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In the following, we adopt the same notations as in Sections 3.1 and 3.3.
An arbitrary tweet 7; is a triplet 7; = (¢;, s;, W;) where ¢; and s; are respec-
tively the temporal and spatial features of 7;, while W; C ¥ is the tweet
text content. Given two tweets 7, = (t;,s;, W;) and 7; = (¢;,s;, W;) their
temporal, spatial and content distances are denoted by di(t;,t;), ds(si, s;),
and dy (W;, W;), respectively.

The work in Kim et al. (2011) aims at providing (near-)real time infor-
mation to users about events happening close to their location. Tweets are
clustered through the K-means algorithm by considering their geographic dis-
tance. The discovered cluster set is then analysed to detect clusters that can
reveal the occurrence of an event. The values of the tweet temporal feature
are used to filter computed clusters by comparing their temporal aspects. If
the number of tweets from a given cluster exceed far from those from clusters
found in vicinity in the past, the cluster is considered unusual and an event
may happen there. For tweets included in unusual clusters, the text content
is explored to extract representative keywords, which are sent to nearby users
to inform them about the possible events.

The study in Arcaini et al. (2016) focuses on discovering spatio-temporal
periodic and aperiodic characteristics of events to support situation aware-
ness. Tweets collections are analysed off-line with a DBSCAN based algo-
rithm (GT-DBSCAN) to extract dense clusters of arbitrary shapes. The
tweet text content is explored in a preprocessing phase to filter the subset
of tweets relevant for the subsequent cluster analysis. Messages about spe-
cific events are selected by properly setting keywords for tweets search. To
drive the clustering process, three distance measures, considering the tweet
temporal and spatial features, are evaluated: (i) a temporal distance, (ii) a
geographic distance, and (iii) a geographic-temporal distance, basically a
combination of the two above. In this study we focus on the latter distance
measure for performance comparison. The geographic-temporal distance is
defined as the maximum value between the (normalized) geographic and
temporal distances.

The work in Lee (2012) proposes a (near-)real time temporal-text cluster-
ing approach to detect bursts of tweets representing unexpectedly frequent
occurrences of a certain topic in a short period of time. A sliding window
of fixed time length is used to filter only the most recent tweets, which are
then considered in the analysis. Selected tweets are clustered using the Incre-
mentalDBSCAN algorithm (Ester et al., 1998), to detect dense clusters with
shapes changing over time and to remove uninformative tweets (outliers).
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Study | Distance measure |

Kim et al. (2011) drcim (T3, 7j) = ds
Arcaini et al. (2016) dare(ti, 75) = [Max(ds,d)]?, B € (0,1]

ds and d; values expressed as the
number of elementary units €5 and €, respectively

Lee (2012) dpee(ri 7)) = dyy - e$de/M

M: time unit; ¢: exponential decay rate factor.

Cunha et al. (2014) dcun(Ti,Tj) =ww - dw + wt - d¢ +ws - ds + wg, - dso

WW, W, Ws, Wso € [0,1] and wy + wt + ws + wgo =1

TCHARM dTAgTE(Ti,T]') =dw - (ks - ePsds + k¢ - ep"dt)

ks, ke, ps,pt € R; ke, ky € [0,1] and ks + kg = 1.

Table 9: Distance measures for tweet comparison proposed in four reference previous stud-
ies and in TCHARM. For a pair of tweets (7;,7;), their spatial distance ds(s;, s;) is shortly
denoted by ds, the temporal distance d¢(t;,t;) by d¢, the content distance dw (W;, W;) by
dw, and the social distance dg,(user;, user;) by dso.

Clusters are calculated by evaluating the temporal-text distance between
tweets. In dr.., the temporal distance is used to module the text content
distance. The exponential form has been adopted for the time distance to
significantly penalize tweets far distant in time. Finally, geo-spatial keywords
are extracted from message in cach computed cluster to estimate location of
detected events.

The authors of Cunha et al. (2014) address the problem of identifying
and displaying tweets profiles considering four different facets characterizing
tweets: temporal, spatial, and context features and user social connections.
Tweets are clustered with the DBSCAN algorithm Ester et al. (1996) to
detect arbitrarily shaped clusters and to remove outliers from the results. The
adopted distance measure is a linear combination of the four considered tweet
features, i.e., the distance on time, space, text content, and social relations
(dso). The social distance term dg, evaluates the connections between users
represented as nodes of a graph connected through edges. It is computed as
the geodesic distance (i.e., the number of edges of the shortest path) between
two nodes in the graph Bouttier et al. (2003).

Based on the purposes of this paper, we want to evaluate the ability of
each distance measure above in discovering cohesive clusters of tweets to be
represented through their centroids. Hence, keeping the K-means algorithm
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used in TCHARM as a reference clustering method, we applied in turn each
distance measure. Since the TCHARM methodology aims at discovering
cohesive clusters considering temporal and spatial tweet features and text
content, we omitted the social distance for the measure proposed in (Cunha
et al., 2014). For the sake of brevity, the resulting clustering methods are de-
noted by Cunha-14 (Cunha et al., 2014), Lee-12 (Lee, 2012), Arcaini-16 (Ar-
caini et al., 2016), and Kim-11 (Kim et al., 2011). The approach proposed
in this study adopting the TASTE measure is denoted by TCHARM.

We evaluated the cluster cohesion as the average geo-
graphic/temporal /text content distance between tweets in the cluster
and the cluster centroid. Lower values of these average distances point out
a higher degree of cohesion on the corresponding tweet dimension.

The comparison was performed with the Dipyw 1 k) dataset. To produce
comparable cluster sets, we forced K=200 as expected number of clusters
for all the distance measures (i.e., the same value selected for TCHARM in
Section 4.2). We suitably tuned the parameters to use each distance measure
at its best with the Dpwi k) datasets and with the K-means algorithm.
Starting from the configuration proposed in each study (considered as default
configuration), we performed several runs to tune the parameters of each
distance measure, with the aim of reducing the average cluster SSE as well
as the distance values for all the tweet dimensions they consider. Selected
parameter values are reported in Figure 8.

For each method, box plots in Figure 8 illustrate the distributions of the
average geographic/temporal/text content distance between tweets in each
cluster and cluster centroid, while Table 10 reports the average values. Note
that the temporal box plot for the Kim-11’s measure is not represented in
Figure 8 as its values are too high compared to the other methods.

Clusters manifest the highest text content cohesion with TCHARM,
Cunha-14 and Lee-12 distance measures, which provide comparable results.
The highest temporal cohesion is provided by Arcaini-16, TCHARM and Lee-
12, which achieve similar performance. The highest spatial cohesion is given
by Kim-11, followed by Arcaini-16, and then TCHARM.

These results point out that TCHARM provides clusters with an over-
all good cohesion on all the three facets characterizing tweets. Specifically,
computed clusters show the highest cohesion on the text content and on the
temporal feature, and the third best spatial cohesion. Yet it should be noted
that, when setting parameters in TASTE, we gave more importance to the
temporal cohesion than to the spatial one.
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Method | Avg time | Avg GPS | Avg text content
distance distance distance
(min) (km) (rad)
Kim-11 3905 14 1.28
Arcaini-16 33 66 1.26
Lee-12 35 246 1.03
Cunha-14 126 245 0.95
TCHARM 35 158 0.95

Table 10: Average value of mean temporal, spatial, and text content distances between
tweets and their centroids for each distance measure.

Clusters provided by Arcaini-16, Lee-12, and Kim-11 methods show a
good cohesion on the tweet features considered in their proposed distance
measures, but the cohesion on the remaining features is far lower than
TCHARM. Clusters tend to be spread over a larger geographic area (Lee-12)
or a longer time period (Kim-11) than TCHARM, or to discuss more different
topics (Kim-11, Arcaini-16). These results demonstrate that, to obtain clus-
ters suitable for a subsequent characterization of their spatial, temporal and
text features, it is convenient to consider all the three dimensions directly
in the clustering phase. Otherwise, further post-processing steps would be
required to characterize the clusters with the features previously left out.

Results also highlight that, when all three features are considered to clus-
ter tweets, their contributions should be properly weighted in the distance
measure. A liner combination of the content, spatial, and temporal distances
as the one proposed in Cunha-14 turns out to be less suitable than our ap-
proach since discovered clusters manifest a temporal and spatial cohesion
lower than TCHARM.

To deepen into the comparison of the methods above, we used the Ad-
justed Rand Index (ARI) (Hubert & Arabie, 1985) to evaluate the agreement
between the cluster sets generated using the TASTE measure and those ob-
tained with the other distance measures. The ARI computes the rate of
pairwise agreements between two partitions of a set. It allows a more accu-
rate estimation of the agreement between two partitions than the standard
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Rand Index (Rand, 1971). Basically, ARI rescales the Rand Index value
with respect to its expected value for two independent clustering
algorithms. ARI has a maximum value of 1 for two identical partitions,
and an expected value of 0 for two independent random partitions. Higher
ARI values imply higher levels of agreement between two partitions.

The computed values of ARI report a moderate agreement between the
cluster set provided by TCHARMand the one computed by Cunha-14 (ARI
= 0.45). The agreement decreases with Lee-11 (ARI = 0.13), Arcaini-16
(ARI = 0.03), and Kim-11 (ARI = 0.005) methods which consider a subset
of tweet features.

The results from the analytical comparison suggest that clusters discov-
ered using other distance measures have quite different properties than those
provided by TCHARM.

From a temporal perspective, clusters can have a higher temporal span.
Indeed, while our clusters are centered around events of interest (see Sec-
tion 4.3), we noticed that clusters computed with other methods (Kim-11 and
Cunha-14) can include more than one event (e.g., more football matches).
Similarly, the distance measures that do not provide a good cluster spatial
cohesion lead to clusters of tweets spread across more counties (Lee, 2012).
The two aspects above prevent from performing qualitative analyses based
on fine-grained temporal and spatial resolutions. Finally, the lower text simi-
larity among tweets in the clusters (Arcaini-16) makes it difficult to associate
a single prevailing topic with each cluster and to generate significant asso-
ciation rules (i.e., with high values of quality indices as support, confidence
and lift).

Thus, with the adoption of other distance measures than TASTE, a
further level of segmentation would be required to identify the main topics
in each cluster, or to partition the cluster content into subsets which refer to
shorter time windows or more limited geographic areas.

6. Discussion

In this section we discuss the results discovered through TCHARM. The
discussion addresses the data analysis phases in TCHARM, the computa-
tional cost of TCHARM, and the possible exploitation of the TCHARM find-
ings.
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(i) Discovering in one step cohesive spatio-temporal clusters focused on spe-
cific topics. The TCHARM findings demonstrate the ability of the proposed
methodology to properly analyse large tweet collections distributed over time
and space as well as addressing various topics for automatically computing
cohesive clusters. TCHARM allows data miners to discover clusters useful
for identifying when and where people were more involved and about which
topics. The 2014 FIFA World Cup use case considered in this study enables
a thorough validation of computed clusters due to the availability of a time
schedule for the main events (e.g., football matches) and web news about the
other events or celebrities somehow involved. The experimental evaluation
conducted on six different datasets showed that mined clusters are centered
in time in correspondence with an event related to the 2014 FIFA World Cup
and they mainly include messages about the event. Moreover, the clusters
present a good spatio-temporal cohesion around their centroid.

Differently from previous work (see Section 2), TCHARM clusters Twit-
ter data taking into account in one step both spatio-temporal features and
text content. TCHARM relies on the TASTE measure which combines the
contributions of all three features above. TASTE modulates the distance
between tweet messages through their distance in time and space, and it is
aimed at discovering groups of tweets about the same topic but posted in
nearby time periods and locations. Parameters of the TASTE measure can
be conveniently tuned to fit scenarios with different spatial and temporal
granularities.

The analytical comparison in Section 5 shows that TCHARM is

competitive in terms of cluster cohesion, in almost all dimensions.
In particular, it overperforms all the other measures in the text
average distance. Indeed, the multiplicative (exponential) factors
for time and space distances are suitably applied to the text dis-
tance, based on the hypothesis that a tight temporal and spatial
proximity can contribute in detecting clusters of tweets about the
same topic. As already demonstrated in Section 4.3, such clusters
are temporally centered within the time interval of the event they
refer to (e.g., a football match).
None of the measures considered for comparison performs far bet-
ter than TASTE in more than one dimension. Moreover, the lower
spatial cohesion obtained with TASTE is mainly due to our choice
to assign a lower weight to spatial distance (ps = 3), preferring the
temporal cohesion (p; = 6).
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(ii) Cluster characterization through rules analysis. TCHARM deeply ex-
plores the resulting clusters through association rule analysis to discover cor-
relations among topics (such as events, celebrities, emotional states) and
spatio-temporal features. While rule class TC makes possible the identifica-
tion of the main topics discussed in each cluster, the other rule classes enable
a deeper characterization by correlating topics with time periods (class T-
TC), geographical areas (L-TC), or both of them (class L-T-TC). This cluster
characterization allows data miners to better understand popular topics in
different geographical areas and through different time windows. Moreover,
association rules represent the mined knowledge in a concise and easily un-
derstandable form.

The 2014 FIFA World Cup use case allows us to qualitatively validate
various mined rules. Rule analysis pointed out some of the interests and
reactions of sports fans and supporters that were in some cases predictable
(e.g., the disappointment of people from England over the English team’s
defeats). However, it also highlighted some aspects not so evident a priori,
like those about celebrities statements or the major interest in USA for the
team of Argentina. We believe that TCHARM can be applied also in other
scenarios, for understanding people’s reactions and interests.

(111) TCHARM performance. From a computational point of view, TCHARM
has a major advantage with respect to related works, since it is implemented
on Apache Spark and can distribute computational load across parallel ex-
ecutors. Tests performed on big collections of tweets (Section 4.5) prove the
good scalability of our implementation of TCHARM and, in particular, of
the clustering algorithm integrating the TASTE measure. Thus, TCHARM
can be applied also to use cases with a higher cardinality of data and it is
still capable to provide results in a reasonable time.

(iv) Exploitation of the mined knowledge. TCHARM findings provide a
spatio-temporal overview of people involvement in occurred events. This
knowledge, hidden in Twitter data collections, can have a variety of practi-
cal applications in different domains.

In case of events with a wide and spread out audience (as FIFA World
Cup), TCHARM findings can provide useful insights to understand how peo-
ple located in different geographical areas perceive an event and to char-
acterize the different facets of people involvement in different time frames.
From a business perspective, this knowledge can be very useful to improve
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service/product provision and support targeted advertising of certain ser-
vices/products. For instance, the information about favourite teams or play-
ers in specific areas and moments can be used to provide targeted adver-
tising that leverages on such features. Also during 2014 FIFA World Cup,
advertising companies demonstrated great interest in social trends to plan
marketing strategies. This was particularly evident with some viral topics
as some brands gained visibility by proposing advertisements based on viral
marketing strategies, mostly on social networks (Jenkins, 2014; Bud, 2014).
TCHARM can thus be an effective methodology to enable a deeper analy-
sis of spatio-temporal trends on social networks, showing when and where
certain topics spread among users.

We believe that TCHARM can be profitably applied also in different
domains. In a smart urban environment, for example, social networks are
currently recognized as powerful instruments to enable citizen interaction
and participation. Citizens may use Twitter to report information related
to a variety of aspects such as urban safety, traffic and services (e.g., bike
sharing, public transport offer, etc.). City administration is interested in
better understanding where and when citizens report issues about the above
aspects, to eventually undertake appropriate and targeted responses to cit-
izens’ concerns. The application of TCHARM to such collections of tweets
would help to find out in which areas of the city and in which periods of time
citizens discuss and complain about some issues. Clustering analysis would
extract spatio-temporally defined clusters of topics reported by citizens. Rule
analysis would then better highlight the degrees of correlation among topics,
times and places of discussion and describe how the same topics evolve across
different periods and through nearby urban areas.

7. Conclusion

In this paper we introduce TCHARM, a novel exploratory data mining
methodology to analyse Twitter datasets. Its aim is to discover significant
and cohesive groups of tweets by considering three facets of Twitter data:
spatial, temporal, and text content information. The TASTE measure is one
of the main added values of TCHARM as it allows the K-means algorithm
to discover clusters with suitable levels of spatial and temporal cohesion,
centered on specific events and including tweets which can be concisely rep-
resented by their centroids with an acceptable approximation. Moreover,
through association rules mining, TCHARM provides us with a set of pat-
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terns that concisely describe the most significant characteristics of tweets in
clusters. The TCHARM system has been deployed on Apache Spark to dis-
tribute computational load across parallel executors and reduce the overall
execution time also with huge amounts of data.

The experimental validation conducted on tweets collected for the 2014
FIFA World Cup demonstrated the ability of TCHARM in efficiently charac-
terizing collections of tweets in terms of distribution of people involvement,
topic identification, and correlations among tweet features. As a matter of
fact, we managed to isolate groups of tweets focused on a few topics, tem-
porarily associated to actual events (e.g., football matches), and posted from
a limited geographical area. Compared with other approaches for tweet clus-
tering, clusters computed using the TASTE measure confirmed an overall
better cohesion balanced between the three tweet features.

TCHARM can be an effective methodology to enable a deeper analysis of
spatio-temporal trends on social networks, showing the different patterns of
user involvement in certain topics or events. TCHARM can be used to anal-
yse global events like the FIFA World Cup at a local scale and, for instance,
to assess the popularity of soccer matches and football players in different
areas and time periods. This information could be very useful for compa-
nies to improve their services and products and to optimize their marketing
strategies. For example, information about favourite teams and players in
specific areas and moments can be used to provide targeted advertising that
leverages on the characteristics of the computed clusters.

There is still room for improvement of the TCHARM methodology in
order to mitigate some of its weaknesses. Five promising future research
directions have been identified.

In the current implementation of TCHARM, the number of expected clus-
ters for the k-means algorithm and the parameters in the TASTE measure
should be experimentally tuned by trading-off the cardinality of the cluster
set and the expected quality of clusters. However, the selection of the proper
TCHARM configuration can be a very time-consuming activity. The design
of innovative self-tuning configuration strategies Di Corso et al. (2017) to
automatically identify the suitable TCHARM set up for each targeted data
collection can permit the use of TCHARM in various application domains.
These strategies would simplify the analysts role by relieving the end-user of
the burden of configuring the overall cluster analysis process.

The ability of TCHARM to discover cohesive and significant clusters may
decrease when data sparseness further increases. In this case, a larger number
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of clusters should be generated to discover groups with good quality, but these
groups may be limited in size. To deal with this issue, data tazonomies on
the three facets characterizing tweets can be climbed during the clustering
process. The use of data taxonomies can result into coarse-grained data
representations with a lower degree of sparsness and allows the evaluation of
data correlations at different abstraction levels.

The use of K-means clustering, rather than other clustering algorithms
as density-based methods, was motivated in this study by the purpose of
generating clusters of tweets that can be concisely represented by their cen-
troids. However, TCHARM inherits one of the main weaknesses of K-means,
which is more sensitive to outliers in the dataset. A future task is to conduct
a detailed study on evaluating the integration of other candidate clustering
methods in TCHARM and their ability to identify more cohesive and signif-
icant clusters of tweets.

Currently, the proposed TASTE measure weights various tweet facets,
but omits other aspects such as the characteristics of users who posted tweets
and their social relationships. Considering also user information in the clus-
ter analysis would be very helpful to discover spatio-temporal patterns of
communities of users and to better profile how the user interests evolve over
time. As a future work, we will study an improvement of the TASTE mea-
sure with the aim of evaluating also data about users.

Finally, in this study we have applied the TCHARM engine for the off-
line analysis of spatio-temporal-text information from tweets posted within a
(relatively large) time window. As a future study, TCHARM can be applied
for the (near-)real time analysis, for instance of tweets collected every hour,
to investigate the spatial evolution of clusters and related topics with a low
time granularity. This approach would provide a deeper overview of the
spatio-temporal dynamics of people’s interests. Thanks to the deployment
on a cloud-based platform as Apache Spark, TCHARM can analyse huge
amounts of data thus providing results in a reasonable time consistent with
a near-real time analysis.
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